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A B S T R A C T   

To address urgent need for strategies to limit mortality from coronavirus disease 2019 (COVID-19), this review 
describes experimental, clinical and epidemiological evidence that suggests that chronic sub-optimal hydration 
in the weeks before infection might increase risk of COVID-19 mortality in multiple ways. Sub-optimal hydration 
is associated with key risk factors for COVID-19 mortality, including older age, male sex, race-ethnicity and 
chronic disease. Chronic hypertonicity, total body water deficit and/or hypovolemia cause multiple intracellular 
and/or physiologic adaptations that preferentially retain body water and favor positive total body water balance 
when challenged by infection. Via effects on serum/glucocorticoid-regulated kinase 1 (SGK1) signaling, aldos-
terone, tumor necrosis factor-alpha (TNF-alpha), vascular endothelial growth factor (VEGF), aquaporin 5 (AQP5) 
and/or Na+/K+-ATPase, chronic sub-optimal hydration in the weeks before exposure to COVID-19 may con-
ceivably result in: greater abundance of angiotensin converting enzyme 2 (ACE2) receptors in the lung, which 
increases likelihood of COVID-19 infection, lung epithelial cells which are pre-set for exaggerated immune re-
sponse, increased capacity for capillary leakage of fluid into the airway space, and/or reduced capacity for both 
passive and active transport of fluid out of the airways. The hypothesized hydration effects suggest hypotheses 
regarding strategies for COVID-19 risk reduction, such as public health recommendations to increase intake of 
drinking water, hydration screening alongside COVID-19 testing, and treatment tailored to the pre-infection 
hydration condition. Hydration may link risk factors and pathways in a unified mechanism for COVID-19 
mortality. Attention to hydration holds potential to reduce COVID-19 mortality and disparities via at least 5 
pathways simultaneously.   

Background 

There is an urgent need for strategies to limit mortality from cor-
onavirus disease 2019 (COVID-19). Coronavirus is expected to infect up 
to 70% of the world’s population and kill millions of people [1]. To 
date, the main public health strategy for limiting mortality, to reduce 
exposure to the virus via physical distancing, carries tremendous eco-
nomic costs [2] and may create COVID-19 disparities, as not everyone 
can telecommute for work or afford to shelter in place [3]. The main 
treatment strategy for limiting mortality involves ventilators, which 
may not be available and accessible in adequate quantities [4]. To 
address need for strategies that are less costly, more equitable, and 
more accessible, this paper describes potential causal paths from sub- 
optimal hydration before COVID-19 infection to increased morbidity 

and mortality. The hypothesized mechanisms suggest potential for free 
or low-cost, globally applicable drinking water interventions and hy-
dration-informed treatment (e.g. hypertonic resuscitation) to limit 
COVID-19 mortality. 

Why do people die from COVID-19? 

COVID-19 triggers an immune response in the lungs that is de-
scribed as a “cytokine storm” in the lay press and acute respiratory 
distress syndrome (ARDS) in the scientific literature [5]. “Inflammation 
spikes, and fluid and dying cells fill the lung sacs, essentially drowning 
the patient [6].” The inflammation “makes the membranes between the 
air sacs and blood vessels more permeable, which can fill the lungs with 
fluid…In severe cases, you basically flood your lungs and you can’t 
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breathe [6].” Death from ARDS is strongly associated with positive total 
body water (TBW) balance, i.e. body water retention [7] (see Fig. 1). 

Risk factors for COVID-19 death 

Death from COVID-19 is strongly associated with older age, male 
sex, and age-related chronic health conditions [8–10]. The United 
States (US) Centers for Disease Control (CDC) highlights the following 
risk factors: residence in a nursing home or long-term care facility, 
chronic lung disease or moderate to severe asthma, serious heart con-
ditions, severe obesity (body mass index  >  40), diabetes, renal failure, 
liver disease, and/or weakened immune system due to cancer treat-
ment, smoking, bone marrow or organ transplantation, immune defi-
ciencies, poorly controlled HIV or AIDS, and prolonged use of corti-
costeroids and other immune weakening medications [10]. In the US 
and United Kingdom (UK), consistent with obesity, diabetes, cardio-
vascular and chronic kidney disease disparities, ethnic minorities are at 
increased risk of dying from COVID-19 [11,12]. 

Although not specified on the CDC’s list of risk factors [10], given 
the ARDS literature (e.g. Rahmel et al. [7]), a propensity to retain body 
water when stressed or challenged is partially recognized as a risk 
factor for COVID-19 ARDS death. Recommendations for COVID-19 
ARDS treatment explicitly aim to achieve a negative fluid balance of 
0.5–1.0 L/d [13]. This paper posits that attention to hydration may not 
only increase the success of treatment for ARDS but may also prevent 
the development of ARDS and positive fluid balance during COVID-19 
infection, in the first place. 

Hypotheses 

Hypothesized mechanism 

This paper hypothesizes that, compared to people who survive 
COVID-19, people who die from COVID-19 have too much fluid accu-
mulating in their lungs, in part because of chronic suboptimal hydration 
before infection with COVID-19. Chronic hypertonic stress causes a wide 
variety of metabolic and physiologic adaptations throughout the body  
[14], which alter intracellular composition and response to subsequent 
hypo-osmotic challenge. Infection triggers an inflammatory response 
which signals body water retention and vessel dilation, creating rela-
tively hypotonic conditions. 

Chronic hypertonicity, TBW deficit and/or hypovolemia in the 
weeks before COVID-19 infection are hypothesized to result in one or 
more adaptations, including: 

• Greater abundance of angiotensin converting enzyme 2 (ACE2) re-
ceptors in the lung, which increases likelihood of COVID-19 infec-
tion. 

• Lung epithelial cells which are pre-set for exaggerated immune re-
sponse.  

• Increased capacity for capillary leakage of fluid into the airway 
space.  

• Reduced capacity for active transport of fluid out of the airways.  
• Reduced capacity for passive transport of fluid out of the airways. 

Fluid accumulating in the lungs results from an imbalance between 
passive and active forces driving fluid into the airspaces and mechan-
isms removing fluid from the airspace [15,16]. The multiplicity of 
factors influencing the balance of forces suggests need for intervention 
strategies that attend to multiple factors, simultaneously. 

Evidence motivating the hypotheses 

Overview 

The rationale begins by linking the CDC’s list of risk factors for 
COVID-19 death with increased likelihood of suboptimal hydration, 
expressed in terms of hypertonicity, TBW deficit and/or hypovolemia. 
Suboptimal hydration is, next, linked with each of the adaptations, 
listed above, by experimental, clinical, and epidemiological evidence. 
Metabolic intermediates or pathways that mediate effects of suboptimal 
hydration are identified. Experiments and clinical trials that intervene 
against these mechanisms and increase survival from ARDS are de-
scribed. 

Risk factors for COVID-19 death are associated with indices of suboptimal 
hydration 

Hypertonicity, TBW deficit and/or hypovolemia are prevalent 
among people who are at increased risk for COVID-19 death. In po-
pulation-representative datasets, a majority of older adults have plasma 
hypertonicity [17,18]. In the US, hypertonicity is significantly more 
frequent among males than females [17] and among Black or African 
Americans and Hispanics compared to Asians (78–79% vs 55%) [18]. 
Hypovolemia is common among residents of nursing home or long-term 
care facilities [19,20]. 

Hypertonicity is associated with chronic disease risk factors for 
COVID-19 death. The prevalence of hypertonicity in non-acutely ill US 
adults ages 51–70 years who have obesity, high waist circumference, 
insulin resistance, diabetes, hyperglycemia, glycosylated hemoglobin, 
dyslipidemia, hypertension and/or metabolic syndrome is 73%, com-
pared to 56% among individuals without any of the listed conditions, in 
the same age group [18]. Systematic review of observational studies 
suggests that hypernatremia is consistently associated with metabolic 
syndrome [21]. Animal models and observational studies implicate 
hypertonicity and the vasopressin-hydration system in the etiology of 

Fig. 1. Reproduced with permission from Rahmel et al [7]. Mean cumulative fluid balance with 95% CI for survivors and non-survivors of ARDS until ICU day 30.  
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chronic kidney disease [22]. Hypovolemia is an established risk factor 
for renal failure in the ICU [23]. 

Beyond older age, male sex, race-ethnicity and metabolic syndrome, 
hypertonicity and/or hypovolemia are also associated with asthma, 
liver disease, and impaired immune function, other risk factors for 
COVID-19 death highlighted by the CDC [10]. Bronchial hyperrespon-
siveness in asthma is associated with hypertonicity [24]. The patho-
genesis of cirrhosis involves vasopressin/antidiuretic hormone, low 
effective circulatory volume and retention of sodium and water [25]. 
Hypertonicity suppresses innate and adaptive immune responses [26]. 
For US adults ages 50–70 years, hypertonicity doubles the risk of all- 
cause mortality within 3 to 6 years [18] and has been proposed as a 
biomarker of general frailty [27]. 

Suboptimal hydration causes body water retention 

Hypertonicity, TBW deficit, and hypovolemia trigger changes in 
metabolism and physiology that favor cell water retention [28] and 
TBW retention [29]. Responses to acute and chronic hypertonicity are 
distinct [30]. Multiple metabolic and physiologic responses co-occur 
impacting multiple pathways and organ systems simultaneously  
[14,30]. In free-living individuals, under conditions of daily life, 
adaptation to chronic hypertonicity may take weeks [31,32]. 

Acute suboptimal hydration 
Acute extracellular hypertonicity causes water to shift out of cells 

following the osmotic gradient via aquaporin channels. The cell 
shrinkage increases intracellular solute concentrations, which activate 
the Na+,K+-ATPase, Na+,K+,2Cl- co-transporter and the Na+/ 
H+ exchanger, which couple to Cl-/H2CO3, to enhance cellular osmo-
larity and restore cell volume [33]. 

At the whole-person level, acute hypertonic shrinkage of osmor-
eceptor cells and/or hypovolemia activate the hypothalamic–pituitar-
yadrenal (HPA) axis and renin-angiotensin-aldosterone system (RAAS). 
Acute hypertonicity triggers release of arginine vasopressin, also known 
as antidiuretic hormone, which stimulates thirst and signals the kidney 
to concentrate urine and reduce urine volume. Acute hypovolemia 
triggers the kidney to produce renin, which stimulates the conversion of 
angiotensinogen to angiotensin 1 (Ang I) in the liver and the conversion 
of Ang I to angiotensin II (Ang II) by the angiotension-converting en-
zyme (ACE) in multiple organs, including the lung [34]. Ang II causes 
vasoconstriction and secretion of antidiuretic hormone and aldosterone  
[34]. Aldosterone binds to mineralocorticoid receptors and stimulates 
renal and intestinal sodium reabsorption by upregulating ENaC and 
Na+, K+-ATPase. 

Chronic suboptimal hydration 
At the cell level, chronic hypertonicity shifts metabolism to favor 

pathways that accumulate metabolic end-products (osmolytes) of low 
molecular weight inside the cell. The increased osmolyte concentrations 
create an osmotic gradient that drives water into the cell. Hypertonic 
conditions alter the expression of multiple genes. Hypertonicity acti-
vates tonicity-responsive enhancer binding protein (TonEBP), also 
known as nuclear factor of activated T cells (NFAT5), which co-
ordinates increases in the expression of organic osmolyte transporters 
and enzymes such as aldose reductase (AR), betaine/GABA transporter 
(BGT1), sodium myoinositol transporter (SMIT) and taurine transporter 
(TauT) [33]. Hypertonic conditions induced by high-salt diet decrease 
expression of renal renin and angiotensinogen-mRNAs compared to 
normal- and low-salt diets [35]. Hypertonic conditions reduce expres-
sion of the mineralocorticoid receptor that mediates aldosterone effects  
[36]. Chronic hypertonicity and hypovolemia increase expression of 
vascular endothelial growth factor (VEGF) [37,38]. 

At the physiological level, hypertonicity alters the levels and/or 
activity of hormones that depend on cell volume, such as insulin  
[39,14], and/or that regulate TBW balance, such as aldosterone. 

Experiments in animals and healthy humans show that hypertonicity 
induced by high salt diet or hypertonic infusion reduces plasma al-
dosterone [35,40–43]. Crossover experiments in healthy volunteers 
report that infusion of 25 ml/kg of a relatively hypertonic solution 
(osmolarity 614 mOsm/l; tonicity 373 mOsm/l) significantly decreases 
plasma aldosterone relative to the same volume of a hypotonic solution 
(osmolarity 447 mOsm/l; tonicity 169 mOsm/l) [43]. In controlled 
experiments in healthy humans, hypertonic saline infusion decreases 
plasma aldosterone and free water clearance [42,44]. 

In healthy young men with urine osmolality over 800 mmol/kg 
under conditions of daily life, chronic hypertonicity and mild (< 2%) 
TBW deficit appear associated with metabolic and physiologic adapta-
tions that result in water retention in response to hypotonic challenge  
[31]. Four weeks of sustained higher intake of drinking water (> +1L/ 
d) is associated with a mean (SE) decrease in HOMA-IR of 2.2 (0.2) to 
1.7 (0.1), a mean (SE) increase in plasma aldosterone from 111 (17) pg/ 
ml to 143 (19) pg/ml and an average (SE) increase in body weight of 
+1.8 (0.5) percent [32,31]. While significant change in body weight is 
not detected from one week to the next, the cumulative change over 
4 weeks is statistically significant and correlated with increases in 
serum sodium and a muted change in water turnover [31]. 

Adaptation to chronic hypertonicity presets for overreaction to hypotonic 
challenge 

Cells that have adapted to hypertonic conditions are vulnerable to 
over-swell or lyse if exposed to hypotonic conditions. The higher in-
tracellular osmolyte concentrations draw water in by osmosis. The 
phenomenon is well-established as a complication of hyperglycemic 
hypertonic dehydration in diabetic patients [45], source of systematic 
error in the hematology literature [45], cause of neuronal excitability  
[46], and hyponatremia associated brain damage [47]. To protect 
against lysis, cells adapted to hypertonic conditions release more os-
molytes given acute hypotonic challenge, compared to cells maintained 
in isotonic conditions or cells exposed to repeated hypotonic challenge  
[48]. 

In healthy young men with usual total water intake below 2L/d and 
urine osmolality above 800 mmol/kg, an acute bolus of 750 ml drinking 
water reduces urine osmolality by over 700 mmol/kg within 60 min. 
After 4 weeks of total water intake above 3L/d, the corresponding de-
crease in urine osmolality induced by an acute 750 ml bolus is ap-
proximately halved [32,31]. 

Chronic suboptimal hydration may increase risk of COVID-19 infection 

Hypertonicity may increase risk of COVID-19 infection by reducing 
aldosterone [35,40–43], and/or increasing insulin resistance  
[14,44,49], which increase ACE2 receptors. The balance of ACE and 
ACE2 receptors regulates the RAAS. While ACE converts Ang I to Ang II, 
which has vasoconstricting effects, ACE2 converts Ang II to Ang-1–9 
and Ang-1–7, which have opposite, vasodilating and anti-inflammatory, 
effects. ACE2 abundance is inversely related with aldosterone [50]. 
Hypoaldosteronism is known to interrelate with diabetes and renal in-
sufficiency for persons ages 50–70 years [51]. In rodent models ACE2 
expression is increased by diabetes and decreased by insulin adminis-
tration [52,53]. Diabetes is hypothesized to increase risk of COVID-19 
infection by increasing ACE2 receptors [54]. 

Chiusano et al. [55] propose a model for describing mechanisms 
involved in COVID-19 infection that implicates ACE2 receptors, in 
conjunction with aldosterone and conditions that predispose to ARDS 
and poor disease outcome. ACE2 receptors are expressed by lung epi-
thelial cells [34]. The spike proteins of SARS-CoV bind to ACE2 re-
ceptors [56,34,55]. Antibodies that bind ACE2 block SARS-CoV infec-
tion [34]. “ACE2 has recently been identified as the SARS-CoV-2 
receptor, the infective agent responsible for COVID-19, providing a 
critical link between immunity, inflammation, ACE2, and cardiovas-
cular disease [57].” “We know that SARS-COV-2 is bound to ACE2 
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which serves as a portal of entry of the SARS-COV2 virus into cells—just 
as it was for the SARS and probably the MERS viruses. Theoretically, 
anything with increased ACE2 levels could make patients more sus-
ceptible to infection with coronavirus, and make their cases more se-
vere [58].” “It is becoming evident that the RAAS system is involved in 
HCoV infections and presumably of high importance for their patho-
genicity [34].” “Attention should… focus on monitoring COVID19 
propensities for the …diseases or treatments that trigger ACE2 increase  
[55].” 

Infection creates a hypotonic challenge 

During infection, monocytes and macrophages secrete cytokines, 
including tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta 
(IL1B) and interleukin-6 (IL6), into the circulation [59]. Increased 
plasma TNF-alpha, IL1B and IL6 stimulate secretion of corticotrophin- 
releasing hormone, adrenocorticotropic hormone, vasopressin and 
oxytocin [60,61], which trigger antidiuresis and increase risk of hy-
ponatremia [59]. 

Suboptimal hydration promotes an immune response like that described as a 
‘cytokine storm’ 

Preliminary data on COVID-19 and similarities between SARS-COV2 
and other betacoronaviruses such as Severe Acute Respiratory 
Syndrome (SARS)-CoV or Middle East Respiratory Syndrome (MERS)- 
CoV suggest a 2-step pattern of activation of the immune system [62]. 
During the type 1 IFN mediated initial step, in lung epithelial cells and 
macrophages, cascades of molecular events, via transcription factor 
nuclear factor κB (NF-κB) and IRF3/7, result in the production of cy-
tokines such as IL1, IL6, or TNF-alpha. In some cases, the virus escapes 
the initial step, causing extra tissue damage and antibody response, 
which escalate subsequent immune response to the level of vicious 
cycle called cytokine storm [62]; Additional, blood-derived macro-
phages/monocytes are attracted, activated and lead to uncontrolled, 
secondary innate and adaptive (T cell mediated) responses [62]. 

Chronic hypertonicity in the weeks before infection could con-
ceivably play a role in suppressing the initial immune response to 
COVID-19 by lung epithelial cells. In vitro, treatment of primary human 
small airway epithelial cells with hypertonic saline suppresses neu-
trophil, monocyte, and natural killer and T cell chemoattractants, as 
well as the pro-inflammatory cytokines IL32, IL6 and LIF [26]. Adap-
tation to chronic hypertonicity before infection may delay the arrival of 
neutrophils, monocytes, natural killer and T cells in the early stage of 
infection, allowing time for the COVID-19 virus to replicate and infect 
more cells. 

Hypertonicity is described as a “danger signal” that boosts the im-
mune system to ward off infection without need for de novo production 
of mediators [63]. Hypertonicity may amplify neutrophil, monocyte, 
macrophage, and T cell response. Under the controlled environmental 
conditions of an enclosed spaceflight simulation center, compared to a 
lower salt diet of 6 g/d, a high salt diet of 12 g/d for 50 +/- 10 days is 
associated with a marked increase in the number of monocytes and 
“potential risk of excessive immune response when infection occurs” in 
healthy young men [64]. In a randomized, double-blind crossover study 
involving asthmatic patients, high salt diet for two weeks significantly 
increased post-exercise-induced sputum neutrophil and eosinophil dif-
ferential cell counts and induced sputum supernatant concentration of 
eosinophil cationic protein, IL1beta, IL8, leukotriene (LT) C(4)-E(4), 
LTB(4), and prostaglandin D(2) compared to low salt diet [65]. Adap-
tation to long-term or chronic hypertonicity may be required to mag-
nify the immune response, as acute infusion of hypertonic saline does 
not significantly change the number of monocytes in young women  
[66]. Effects of hypertonicity on immunity depend on the extent and 
duration of the hypertonic state [67]. 

Effects of hypertonicity on neutrophils, T cells and macrophages in 

vitro and in animal models have been reviewed by Kølsen-Petersen  
[67]. Chronic hypertonicity impacts immune responses via signal 
transduction cascades that involve NF-κB, p38 MAPK and NFAT5. 
NFAT5 coordinates expression of osmolytes [33] and augments the 
effect of NF-κB on critical aspects of the innate and adaptive immune 
responses [68]. 

In vitro, hypertonicity stimulates the secretion of pro-inflammatory 
cytokines such as IL6 and TNF-alpha by monocytes and induces the 
stimulation of macrophages [69–72]. Monocytes that produce extra 
TNF-alpha are distinguished as an “inflammatory subset” with potent 
pro-inflammatory activity [73]. TNF-alpha induces NF-κB, thereby 
creating a feedback system that propagates and magnifies cytokine 
response [68]. 

Increased extracellular osmolality also influences adaptive im-
munity. Hypertonic saline promotes T cell proliferation by increasing 
cAMP, which triggers a phosphorylation cascade that activates p38 
MAPK in T cells, neutrophils, and monocytes [74,75], which in turn 
increases IL2 production. In T cells, hypertonic conditions activate 
NFAT5, which upregulates TNF-alpha alongside increased expression of 
osmoprotective genes [76]. High salt conditions promote the differ-
entiation of CD4+ helper T cells into IL17-producing CD4+ helper T 
cells (TH17 cells), via p38 MAPK and NFAT5 [77], as well as serum/ 
glucocorticoid-regulated kinase 1 (SGK1)-dependent signaling [78,79]. 
In vitro hypertonicity or in vivo high salt diet also impair the function 
of regulatory T cells (Tregs), that normally counteract the effects of 
Th17 cells, by increasing the SGK1-mediated production of interferon 
gamma and inducing a TH1 phenotype (TH1-like Tregs) [80]. Th17 
cells are involved in inflammation and drive autoimmune diseases in 
animal models [79]. Induced activation of Th17 cells results in ARDS in 
mice [81]. 

Regarding humoral immunity, hypertonicity participates in B cell 
activation and differentiation (Pax5 downregulation and CD138 upre-
gulation) [82]. In a secondary phase, it increases cell death and impairs 
plasmablast differentiation. Class switch to IgG1 is impaired, phos-
phorylation of p38 mitogen-activated kinase is inhibited and NFAT5 
response is delayed. 

Hypovolemia, in the context of large loss of blood volume due to 
hemorrhage, is known to trigger the immune system and increase in-
flammation [83] and neutrophil activation [84]. Effects of hemorrhagic 
shock (hypovolemia) on immune response are similar enough to those 
of hyperosmotic stress to be considered equivalent [85]. 

Finally, perhaps to balance or compensate for hypertonicity-induced 
increases in reactive oxygen species, and important when considering 
the context of infection-induced hypotonic challenge subsequent to 
adaptation to hypertonicity, chronic hypertonicity also increases in-
tracellular glutathione, an antioxidant, via glutathione peroxidase 
(GPX) [81]. Increased glutathione concentrations can restore redox 
balance and decrease the release of cytokines and chemokines from 
lung cells by decreasing NF-κB activation [86,87]. The main function of 
endogenous intracellular glutathione is to gauge the innate immune 
response to infection [88]. 

Response to hypotonicity after adaptation to hypertonicity 
Relative hypotonicity causes cell swelling by osmosis, which trig-

gers cellular loss of organic osmolytes including amino acids, polyols 
and trimethylamines. Glutathione, a low molecular weight osmolyte 
and the most abundant intracellular antioxidant thiol, is depleted from 
cells in hyponatremia. The osmotically induced loss of intracellular 
glutathione makes cells more susceptible to oxidative injury [89]. 
Glutathione production via glutathione peroxidase (GPX) is decreased 
by hypotonicity, delaying re-accumulation of intracellular glutathione 
concentrations after loss due to hypotonic swelling [89]. An altered 
redox balance, excess generation vs. elimination of reactive oxygen 
species (ROS), is implicated in lung inflammation and ARDS [90,91]. 

During lung injury, in the midst of the hypotonic challenge, hyper-
tonic saline has an anti-inflammatory effect. During injury, 
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hypertonicity promotes cell cycle arrest, and prevents ROS formation 
and mitochondria depolarization, mediated by p53-p21 signaling [92]. 
This effect implies the converse, that relative hypotonicity during the 
inflammatory response decreases p53 gene regulation and cell cycle 
arrest and increases ROS formation and mitochondrial polarization. It is 
well established that the use of isotonic saline to restore blood volume 
and tissue perfusion after hemorrhagic shock results in edema forma-
tion, neutrophil activation and an inflammatory cascade [81]. For in-
dividuals who are adapted to hypertonic conditions, it would not be 
surprising that restoration of hypertonic conditions with hypertonic 
saline has beneficial effects. 

Neutrophils are primary mediators of organ injury following 
trauma. The effect of hypertonicity on neutrophil activation depends on 
the timing of the hypertonicity [67]. In vitro, it has been observed that 
if hypertonic saline is present before infection (lipopolysaccharide sti-
mulation), then hypertonic solutions inhibit neutrophil activation in 
response to the infection [85,74]. After hypertonic conditioning, neu-
trophils have an exaggerated cytotoxic response in normotonic condi-
tions. In vitro, the duration of hypertonic pretreatment modifies lung 
neutrophil responsiveness to infection under isotonic conditions [93]. 

Suboptimal hydration increases risk of fluid leakage into the airway space 

Chronic hypertonicity and hypovolemia favor capillary leakage by 
increasing expression of VEGF, which stimulates lymphatic formation 
and endothelial nitric oxide synthase expression [37,38]. Increased 
expression of VEGF stimulates angiogenesis and can increase vascular 
permeability 20,000 times more potently than histamine [94,95]. It 
causes vasodilation, mediated by nitric oxide [96,97]. 

VEGF dysregulation is associated with ARDS [98–100]. In mice, 
experimental overexpression of VEGF in alveolar epithelial cells is as-
sociated with capillary leakage and pulmonary edema [99], airway 
hyperresponsiveness, inflammation and mortality [97]. Clinical studies 
report that ARDS patients have significantly higher plasma VEGF than 
normal controls and ventilated controls [98]. Experimental data suggest 
that increases in plasma VEGF levels during infection determine ARDS 
risk. Following induced infection, mice that develop acute lung injury 
experience a significant increase in plasma VEGF levels by day 7 after 
infection, while mice that do not develop acute lung injury experience 
no significant change in VEGF levels [100]. 

Both pre-infection hypertonicity and infection-induced hypotonicity 
might be expected to increase plasma VEGF, because both hyperna-
tremia and hypotonicity-induced aldosterone may increase VEGF. 
Aldosterone increases VEGF-A mRNA and protein expression in a dose- 
and time-dependent manner in neutrophils via PI3 kinases, ERK1/2, 
and p38 MAPK [148]. Angiogenesis is subject to U-shaped response 
curves [151]. 

Suboptimal hydration limits active transport of fluid out of the airway space 

Chronic hypertonicity and hypovolemia may limit active transport 
of fluid out of the lungs during COVID-19 infection by decreasing the 
expression of ENaC and Na+,K+-ATPase. Fluid is normally removed 
from the alveolar space by active transport of sodium [25] by Na+ 

channels on the apical surface of the alveolar epithelium, and subse-
quently pumped out of the cell to the interstitium by Na+/K+-ATPase 
on the basal-lateral side [152]. The sodium potassium adenosine tri-
phospatase (Na+/K+-ATPase) on the basolateral surface of alveolar 
type 1 epithelia creates a driving force that pulls Na+ from the alveolar 
space through the epithelial sodium channel (ENaC) and other 
amiloride sensitive sodium channels on the apical surface [153]. 

Active transport of sodium is impaired in ARDS [101]. Dysregula-
tion of the ion channels in alveolar epithelia cells causes pulmonary 
edema [102]. Impaired ENaC predisposes to more severe lung injury  
[103,104]. A 50% reduction in both alpha1 and alpha 2 subunit protein 
expression of ENaC significantly decreases the maximal cAMP 

dependent fluid clearance [105]. Recovery from pulmonary edema 
depends on active salt and water fluid transport from the distal air 
spaces. Increased ENaC and Na+/K+-ATPase activity can reduce the 
risk of acute lung injury [106–108]. 

Suboptimal hydration limits passive transport of fluid out of the airway space 

Chronic hypertonicity and hypovolemia may limit passive transport 
of fluid out of the lungs during COVID-19 infection by causing an ex-
aggerated decrease in the membrane abundance of aquaporin 5 (AQP5) 
water channels in response to the hypotonic challenge created by the 
infection. 

AQP5 abundance is tightly regulated by osmolality and reduced in a 
stepwise fashion by extracellular hypotonicity [109]. Cell responses to 
initial osmotic challenge and subsequent regulatory volume change 
require AQP5 [110]. In individuals who are adapted to chronic hy-
pertonicity before infection, the hypotonic conditions created during 
infection can be expected to represent a relatively more hypotonic 
challenge, resulting in an exaggerated reduction of AQP5 membrane 
abundance, compared to the response of individuals adapted to nor-
motonic conditions before infection (See section on preliminary data 
and Appendix below). Downregulation of AQP5 decreases survival from 
sepsis induced lung injury [111]. 

In rats, pulmonary expression of AQP1 and AQP5 is downregulated 
by hypovolemia, induced by acute hemorrhage, and lipopolysaccharide 
infection [112]. The “decrease in both AQP1 and AQP5 may contribute 
to edema by essentially reducing the transcellular rate of removal of 
excess water, thereby effectively trapping water in the alveolar and 
interstitial spaces. These changes in AQP expressions either may re-
present a response to inflammation associated pulmonary edema or 
may be causal in the formation of pulmonary edema [112]”. 

In mice, pulmonary inflammation induced by adenovirus infection 
and lipopolysaccharide significantly downregulates AQP5 expression  
[113,114]. Treatment of murine lung epithelial cells (MLE-12) with the 
proinflammatory cytokine TNF-alpha results in a concentration- and 
time-dependent decrease in AQP5 mRNA and protein expression [115]. 
AQP5 expression is decreased 2-fold at the mRNA level and 10-fold at 
the protein level [115]. The decreased AQP5 expression is sustained 
7–14 days after infection. The molecular pathway for the AQP5 
downregulation involves TNF-alpha binding to a 55-kDa receptor 
(TNFR1) and/or to a 75-kDa receptor (TNFR2) [115,116], alterations in 
gene expression via activation of multiple signal transduction path-
ways, including the MAP kinase family, ERK1/2, p38, and JNK [117], 
and NF-κB [118,116]. 

Intervention to address hydration status increases survival 

Experimental data indicate that intervention to improve hydration 
reduces ARDS mortality [119]. Under conditions of hemorrhage and 
shock, hypertonic resuscitation solutions cause a high osmotic gradient 
that shifts water into the intravascular compartment from edematous 
endothelial cells, an immediate increase of systemic pressure and car-
diac output with reduced peripheral vascular resistance, instantaneous 
increase of blood flow, resumption of organ function, increased urinary 
output, and increased survival rate [119]. Hypertonic saline resuscita-
tion inhibits LPS-induced TNF-alpha production, enhances IL10 release, 
and shifts the balance of pro- and counter-inflammatory cytokine pro-
duction in favor of an anti-inflammatory response in alveolar macro-
phages [120]. Nebulized hypertonic saline decreases lung inflamma-
tion, alveolar macrophage activation, and neutrophil recruitment into 
the lung [121]. In ARDS, a negative cumulative fluid balance is asso-
ciated with markedly increased survival [7,122,123]. 

A large clinical network established through the National Heart, 
Lung and Blood Institute (NHLBI) developed fluid management guide-
lines that have improved outcomes for patients with ARDS [124]. 
Consistent with a return to a pre-infection hypertonic state, hypertonic 
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saline, and not isotonic saline, improves outcomes for ARDS patients  
[123]. 

Alternative hypotheses 

Genetic predisposition 

Genetic susceptibility to COVID-19 cannot be ruled out as an ex-
planation for increased COVID-19 mortality that is independent of hy-
dration. A polymorphism that affects ACE activity is associated, for 
example, with ARDS mortality. ARDS patients with genotype leading to 
lower ACE activity have increased survival [125,126]. A common single 
nucleotide polymorphism (SNP; −1364A/C; rs3759129) in the AQP5 
gene promoter, cytosine instead of adenosine at position −1364, is 
associated with decreased AQP5 expression [127] and decreased sur-
vival from sepsis [128]. A gain-of-function SGK1 polymorphism could 
cause metabolic syndrome on the one hand and augment the in-
flammatory response during COVID-19 induced ARDS on the other  
[129] 

Implications of the hypothesized mechanism 

The hypothesized mechanism(s) described above suggest opportu-
nity for hydration-related strategies to limit COVID-19 mortality and 
motivate testable hypotheses regarding hydration screening to identify 
people at-risk, drinking water intervention to reduce COVID-19 infec-
tion and morbidity, and treatment protocol tailored to the pre-infection 
hydration condition. 

Potential for hydration screening to identify people at-risk 

Despite lack of a gold standard biomarker for hydration [130] and 
controversy regarding chronic TBW deficit among non-acutely ill in-
dividuals under free-living conditions [31], biomarkers such as leuko-
cyte SGK1 mRNA and saliva osmolality, at the cellular and physiolo-
gical levels, respectively, may reflect chronic hypertonicity and/or TBW 
deficit and increased risk of COVID-19 infection, morbidity and/or 
mortality. 

Sgk1 
SGK1 is strongly upregulated by dehydration [129] and contributes 

to the orchestration of inflammation [131]. SGK1 stimulates IL23 [78] 
to generate IL17-producing CD4+ TH17 cells [79]. TH17 cells, in turn, 
upregulate the pro-inflammatory cytokines GM-CSF, TNF-alpha and IL2  
[79]. Up-regulation of SGK1 theoretically predisposes to a severe course 
of lung infection. 

SGK1 participates in the orchestration of tissue fibrosis, by in-
activating the ubiquitin ligase Nedd4L, which degrades TGFß, a key 
stimulator of fibrosis [132]. SGK1 activates NFκB [133], a transcription 
factor fostering inflammation and fibrosis [132,134,135]. Excessive 
SGK1 expression is observed in a wide variety of fibrosing diseases, 
including lung fibrosis [132,133,136,137]. 

SGK1 plays a pivotal role in platelet activation [129], which con-
tributes to a severe course of COVID-19 infection [138] 

Saliva osmolality 
Saliva osmolality has been proposed as a biomarker for isotonic 

dehydration [139] and chronic TBW deficit [31]. Unlike serum and 
urine osmolality, which are sensitive to acute change in TBW  
[140,141,142], saliva osmolality appears relatively more sensitive to 
longer-term hydration, over weeks, than serum or urine osmolality [31] 
(See preliminary data and Appendix below). Saliva osmolality is regu-
lated by aldosterone [143,144]. 

Potential for drinking water intervention 

As of August 2020, health authorities, including the WHO [145] and 
CDC [146], advise the public to wash hands often with soap and water, 
avoid touching the face, avoid close contact with people by physical dis-
tancing and staying home, wear mouth covering around others, and reg-
ularly clean and disinfect. None of the recommended strategies explicitly 
work to correct chronic hypertonicity and/or hypovolemia. Prospective 
studies and randomized interventions might test if, in addition to shel-
tering in place, a sustained increase in drinking water over weeks lowers 
COVID-19 mortality to a greater extent than social distancing alone, by 
decreasing ACE2 receptors and improving immune response. 

Preliminary data regarding effects of drinking water intervention 
In healthy young men under conditions of daily life, sustaining an 

increase in total water intake from a baseline below 2L/d to above 3L/d 
for 4 weeks by increasing intake of plain drinking water was associated 
with significant increases in plasma aldosterone [31] and VEGF, and a 
smaller reduction in saliva AQP5 following acute hypotonic challenge 
(See Appendix). At baseline, 60 min after an acute bolus of 750 ml 
drinking water following overnight food and water restriction, the 
mean (SE) saliva AQP5 was 0.20 (0.09) ng/ml. After 4 weeks of sus-
tained higher water intake, the corresponding post-bolus mean (SE) 
saliva AQP5 was higher, 0.87 (0.43) ng/ml. 

The preliminary data also suggest that for individuals with usual 
total water intake below 2L/d and urine osmolality above 800 ml/kg, 
saliva osmolality above 100 mmol/kg (i.e. indication of TBW deficit in 
addition to hypertonicity) signals different response to drinking water 
intervention. After 4 weeks of consuming > +1L/d drinking water 
above baseline, individuals who initially have urine osmolality above 
800 mmol/kg and saliva osmolality above 100 ml/kg show significantly 
greater increases in RBC glutathione peroxidase and RBC K:Na after a 
750 ml bolus of drinking water than individuals with initial saliva os-
molality below 100 mmol/kg (see Appendix). 

Potential to tailor treatment for COVID-19 to pre-infection hydration status 

Although “fluid management is important to consider as a measure 
to reduce pulmonary oedema [13]”, treatment guidelines do not call 
attention to the pre-infection chronic hydration state. The guidelines focus 
on the acute hydration state during infection: “In the absence of shock, 
fluid conservative therapy is recommended to achieve a negative fluid 
balance of 0.5–1.0 L per day. In the presence of shock, fluid balance 
might be achieved with renal replacement therapy, especially if there is 
associated acute kidney injury and oliguria [13].” “Therapeutically, 
hyponatremia during inflammation is challenging. However, it is im-
portant for physicians to beware of the predisposition to anti-diuresis in 
this context and adjust intravenous fluid therapy accordingly [59].” 

Treatment tailored to pre-infection hydration state is hampered by 
the fact that lab tests ordered when the patient presents to the clinic 
reflect status after infection. Recognized hydration lab tests such as 
urine osmolality, BUN:creatinine and serum osmolality are relatively 
insensitive to chronic hypertonicity over weeks before the infection. 
There is potential opportunity to add biomarkers of chronic hyperto-
nicity, such as SGK1 and saliva osmolality, to clinical lab protocol. 

Wevers et al [34] suggest that if the pathogenicity of coronavirus 
infections depends on dysregulation of the renin-aldosterone system, 
then “a therapy aimed at restoring the RAS equilibrium provides the 
opportunity to treat the symptoms of an infection. Especially in elderly 
patients, this treatment might be beneficial as the aged population is 
most vulnerable to deregulation of the RAS.” 

Chiusano et al [55] hypothesize that the severity of COVID-19 in-
fection is modulated by patient predisposition and capability to mount 
an appropriate immune response before infection. 

The success of hypertonic saline treatment may depend on pre-
existing dehydration [81,147]. 
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Summary 

In sum, this paper hypothesizes that sub-optimal hydration in the 
weeks prior to exposure to COVID-19 increases risk of COVID-19 
mortality via multiple possible pathways that favor fluid accumulation 
in the lungs. Evidence from in-vitro, animal, clinical and epidemiolo-
gical studies suggest that chronic plasma hypertonicity, TBW deficit 
and/or hypovolemia may increase the likelihood of COVID-19 infec-
tion, pre-set the body for exaggerated immune response, increase tissue 
damage and leakage of fluid into the airway space, and/or decrease 
capacity for active and passive transport of fluid out of the airway 
space. 

Taken together, the evidence suggests that strategies to limit 
COVID-19 mortality may need to account for multiple determinants of 
water retention, fluid entry into and fluid removal out of the lungs, 
simultaneously. The mechanism(s) described above suggest testable 
hypotheses regarding screening to identify at-risk groups, public health 
recommendations to limit risk, and clinical treatment protocol. The pre- 
infection hydration condition is measurable by biomarkers and 

modifiable by drinking water. The United Nations imperative to have 
drinking water be available and accessible, worldwide [148], might be 
leveraged for COVID-19 risk reduction. Attention to hydration by 
clinicians, researchers and public health authorities has potential to 
block at least 5 pathways to COVID morbidity and holds promise to 
prevent death due to COVID-19. 
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Appendix 1. Biomarkers of status at baseline and change associated with 4 weeks of sustained higher drinking water in 5 healthy young 
men with initial total water intake below 2L/d who participated in the Adapt study.                  

Biomarkers of chronic hypertonicity Angiogenesis Antioxidant Passive transport Active transport Body water retention  

Saliva Osmolality Leukocyte SGK1 
mRNA 

Plasma VEGF RBC GPX Saliva AQP5 RBC K:Na Half-life of water in 
the body 

Body weight  

Baseline Change Baseline Change Baseline Change Baseline Change Baseline Change Baseline Change Baseline Change Change  
mmol/kg A.U. (2^-delta Ct) ng/ml nmol/min/mg Hb ng/ml   Days %  

1 65 −5 0.060 −0.037 4670.8 +1878 462.6 −167.3 0.369 +1.640  8.9 −0.57  17.9 −6.7 +0.9 
2 81 +10 0.025 −0.000 8807.3 +767 596.5 −31.1 0 +0.158  9.7 −0.70  15.3 −4.7 +3.0 
3 106 −19 0.080 −0.018 3731.9 +1213 401.8 +84.0 0 +1.82  9.3 −1.50  15.0 −1.6 +2.7 
4 122 −45 0.067 −0.032 3175.7 +2823 455.1 +163.7 0.153 +0.084  11.1 −1.79  11.4 −1.8 +2.0 
5 153 −36 0.122 −0.064 4213.4 +2257 318.4 +207.0 0.464 −0.352  8.5 −1.71  11.6 −2.5 +0.6  

The Adapt study aims, pre-post design, data collection protocol and methods for determining saliva osmolality, RBC K:Na, half-life of water in the 
body and body weight change are described elsewhere [32,31]. After a baseline period, the Adapt study induced increases in drinking water of 1L/d 
or more above baseline, which were sustained for 4 weeks. Saliva, blood and body weight were measured each week. Each week, saliva and blood 
were collected 60 min after a 750 ml bolus of drinking water following overnight food and water restriction. The saliva and blood results in this table 
thus reflect status in the hour after an acute hypotonic challenge, at baseline and after 4 weeks of sustained higher water intake. SGK1: Human SGK1 
gene expression analysis by qPCR. Total RNA from human whole blood was isolated using PAXgene Blood miRNA extraction kit, according to the 
manufacturer’s instructions. RNA concentrations were estimated by Nanodrop. Equal amounts of RNA were retro-transcribed to cDNA using cDNA 
synthesis kit (Bio-Rad). The resultant cDNA was used as template in quantitative PCR reactions containing SYBR-green fluorescent dye (Bio-Rad). 
Human SGK1 relative expression levels were calculated using the 2^-delta Ct method. Human actin (hActin) expression was used for SGK1 nor-
malization. Target primer (5′-3′) sequences for SGK1 were TTC TCT TTC CAG ACT GCT GA and TGG ATG TTG TGC TGT TGT GT and for hActin: CAC 
CAA CTG GGA CGA CAT and ACA GCC TGG ATA GCA ACG. Plasma VEGF: vascular endothelial growth factor was determined by MyBiosource ELISA 
No. MBS2886894 by ProNovus Biosciences, Menlo Park, CA, USA. RBC GPX: Red blood cell glutathione peroxidase was determined by assay 
No.703102, Cayman Chemical, Ann Arbor, MI, USA. Saliva AQP5 was determined by Lifespan Biosciences ELISA No. LS-F4078 by ProNovus 
Biosciences, Menlo Park, CA, USA.  
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