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Abstract

Safe Online Decision-Making for Non-Stationary Systems

by

Yuhao Ding

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Associate Professor Javad Lavaei, Chair

Despite several progresses of control-theoretic techniques in the past decade, these methods
still struggle to bridge the widening gap between theory and reality, which is exacerbated by
the increasing complexity, uncertainty, and safety requirements. Consequently, the creation
of online control algorithms for safety-critical applications in non-stationary environments
could pave the way for a new chapter in modern control theory, substantially enhancing
the reliability of intelligent systems as they function in dynamic, uncertain, and potentially
hostile conditions subject to physical and computational limitations. Safe non-stationary
decision-making not only encompasses the core challenges of traditional decision-making but
also presents new hurdles, such as (i) fast adaptation under the non-stationary environments,
(ii) global optimality convergence of the non-convex optimization, (iii) continual balancing of
objective and constraints. The above challenges go beyond current capabilities in computation
and theory and manifest in various aspects of practical and theoretical interests, from sample
complexity and non-convergence issues to computational tractability and enforcement of safety
constraints for real-time control. This thesis aims to pioneer system operation at the nexus of
reinforcement learning, online learning, statistical learning, and nonlinear optimization. The
design of provably efficient and safe online decision-making algorithms that exploit prediction
and prior knowledge while grappling with the effects of dynamic feedback and non-stationary
environment will push the frontiers of computational verification and synthesis of control
policies for safety-critical systems.

To overcome these challenges and realize the full potential of online decision-making approaches
for adaptability and performance gains, this thesis aims to extend the foundational knowledge
in systems and control and broaden our understanding of performance limits and engineering
trade-offs when the system must operate outside of the assumptions of known models and
needs to adapt to its environment in real-time. In particular, we develop a new mathematical
foundation and a set of computational tools for the design of safe online decision-making
algorithms that can be deployed in environments that undergo changes. Along this line, we
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will address the following objectives: (i) escaping spurious local minimum trajectories in
online time-varying non-convex optimization, (ii) provably efficient primal-dual reinforcement
learning for CMDPs with non-stationary objectives and constraints, (iii) non-stationary
risk-sensitive reinforcement learning with near-optimal dynamic regret, adaptive detection,
and separation design.
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Chapter 1

Introduction

This dissertation focuses on developing computational tools and analytical assurance for
modern safety-critical systems in non-stationary environments. The employment of intelligent
autonomous systems has seen a marked increase across various domains, including robotics,
communication, transportation, and power systems. With the opportunities also come
challenges to the classical control paradigm, increasingly confronted by the widening gap
between theory and reality due to the unprecedented uncertainty and complexity of real-world
systems. On the other hand, the potential of online decision-making techniques such as
online optimization and reinforcement learning (RL) to enhance system performance and
adaptivity has been observed in many applications over the past few years. However, there is
an equally-vast array of real-world applications for which the existing online decision-making
techniques are not yet applicable or are too risky to employ. Those applications often require
the nonconvex optimization, safety assurance, and the underlying environment may undergo
changes and be nonstationary. While these aspects have been tackled separately in the
literature to some limited extent, there remains a substantial gap when these issues arise
simultaneously, imposing challenges for the deployment of concurrent methods in real-world
systems. For example, in autonomous driving [103], it is essential to guarantee the safety,
such as collision avoidance and traffic rules, while handling time-varying conditions related to
weather and traffic; similarly, in most safety-critical human-computer interaction applications,
e.g., automated medical care, human behavior changes over time.

In the following sections of this chapter, we first provide a general introductory overview
of the problems that are considered in this dissertation, as well as discuss the potential
challenges we may encounter in addressing them. Following that, we provide a brief summary
of our contributions. We then identify the pertinent publications referenced throughout
the dissertation. We conclude this chapter by presenting the basic notations that are used
throughout the dissertation.
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1.1 Safe Decision-Making under Non-Stationarity
This dissertation is devoted to solving safe decision-making problems under non-stationarity
in the form of

min
xt∈Rn

f(xt; θt) (1.1a)

subject to xt ∈ X(θt) (1.1b)

for t = 1,2,3, . . ., where

• θt ∈ Rm is the time-varying exogenous vector that (directly or indirectly) captures the
non-stationary parameters of the problem. For instance, it may capture the electricity
demands in a power system which may vary over time during a day and exhibit strong
seasonality. It can also encapsulate specific non-stationary parameters of a dynamical
system, such as the moving targets or obstacles in the motion-planning problem of a
robotic system.

• xt ∈ Rn is the targeted multivariate decision variable at the time t. For instance, it may
capture the amount of generations for different generators in a power system, or it may
indicate an optimal control policy for a dynamical system. Due to the non-stationarity
of the parameters θt, the decision variable should be optimized at each time t to adapt
to the varying systems.

• f(xt; θt) is the objective function with respect to xt and parameterized by θt. For
example, it may correspond to the operational cost of a power system, or it may be the
accumulated costs that a reinforcement learning agent aims to minimize.

• X(θt) is the feasible set of the decision-making problems parameterized by θt, i.e., the
set of all feasible values that can be attributed to the decision variable xt. The feasible
set X(θt) is usually explicitly characterized by a set of inequality or equality constraints
that are parameterized by θt. For instance, it may correspond to the constraints to
match the power generation and electricity demand in a power system, or it may
capture certain safety requirements such as the collision-avoidance and risk control for
a reinforcement learning agent.

As will be shown later in the dissertation, many real-world problems can be cast as
instances of the problem (1.1). Our goal is to provide computational tools and analytical
assurance for safe decision-making problems in non-stationary environments under safety
constraints. While it is mentioned in the seminal book by Sutton and Barto [116] that
“nonstationarity is the case most commonly encountered in reinforcement learning,” the field
is still in its infancy. As will be delineated later, there are some unique technical challenges
in this setting:
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• Non-stationarity: Non-stationarity presents a substantial challenge for many real-
world safety-critical applications [97] since we may not have a full knowledge of how the
parameter vector θt may vary over the time. For instance, the exact real-time electricity
demand in the future is not available at the time of scheduling the power generation.
Similarly, the true model of a dynamical system is rarely known in practice and may
vary over time due to the varying operating conditions. Indeed, the inference of the
non-stationary parameter θt based on a limited number of noisy observations/samples of
{θi}

t−1
i=1 is the key challenge for solving the problem (1.1). Since the data associated with

{θi}i is not independent and identically distributed (i.i.d.), a traditional estimator based
on i.i.d. assumption is no longer effective. Furthermore, without a precise estimation
of θt, solving the problem (1.1) accurately for each time t is impossible. Thus, the
performance guarantee on solving the problem (1.1) will also depend on the underlying
non-stationarity structure of the parameter {θi}i.

• Non-convexity: Nonconvexity is inherent in many real-world problems such as training
of deep neural networks [82], the optimal power flow problem [79], and reinforcement
learning [4]. If the objective function f(⋅; θt) in the problem (1.1) is non-convex, it may
possess multiple local/global solutions, any of which may be recovered and returned as
a candidate solution using the local search algorithms. From the classical complexity
theory, this nonconvexity is perceived to be the main contributor to the intractability
of these problems. Although there has been recently shown that simple local search
methods, such as gradient-based algorithms, have a superb performance in solving
nonconvex optimization problems. However, these results are all for time-invariant
optimization problems for which the landscape is time-invariant. In contrast, many
real-world problems should be solved sequentially over time with time-varying data.
Therefore, it is essential to study the effect of the temporal variation on the landscape
of time-varying nonconvex optimization problems.

• Continual balancing among constraints and objective: As mentioned before,
the problems that are considered in this dissertation are motivated by safety-critical
applications. Most works in safe decision-making have resorted to a primal-dual
formulation/algorithm. The dual variables play the role of balancing the constraints
and objective (similar to penalty coefficients); while the optimal dual solution is fixed in
a stationary environment, the optimal dual solution is time-varying in a nonstationary
environment, introducing a technical challenge in algorithm design and analysis.

1.2 Summary of Contributions
In view of the above fundamental challenges, nonstationary safe decision-making encapsulates
various open problems that, if addressed, will substantially extend the foundational knowledge
in systems & control and broaden our understanding of performance limits and engineering
trade-offs when the system must operate outside of the assumptions of known models and
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needs to adapt to its environment in real-time. In this section, we will briefly summarize the
contributions of the dissertation.

• Chapter 2
A major limitation of online algorithms that track the optimizers of time-varying
nonconvex optimization problems is that they focus on a specific local minimum
trajectory, which may lead to poor spurious local solutions. In Chapter 2, we show that
the natural temporal variation may help simple online tracking methods find and track
time-varying global minima. To this end, we investigate the properties of a time-varying
projected gradient flow system with inertia, which can be regarded as the continuous-
time limit of (1) the optimality conditions for a discretized sequential optimization
problem with a proximal regularization and (2) the online tracking scheme. We introduce
the notion of the dominant trajectory and show that the inherent temporal variation
could reshape the landscape of the Lagrange functional and help a proximal algorithm
escape the spurious local minimum trajectories if the global minimum trajectory is
dominant. For a problem with twice continuously differentiable objective function and
constraints, sufficient conditions are derived to guarantee that no matter how a local
search method is initialized, it will track a time-varying global solution after some time.
The results are illustrated on a benchmark example with many local minima.

• Chapter 3
We consider primal-dual-based reinforcement learning (RL) in episodic constrained
Markov decision processes (CMDPs) with non-stationary objectives and constraints,
which plays a central role in ensuring the safety of RL in time-varying environments.
In this problem, the reward/utility functions and the state transition functions are
both allowed to vary arbitrarily over time as long as their cumulative variations do not
exceed certain known variation budgets. Designing safe RL algorithms in time-varying
environments is particularly challenging because of the need to integrate the constraint
violation reduction, safe exploration, and adaptation to the non-stationarity. To this
end, we identify two alternative conditions on the time-varying constraints under which
we can guarantee the safety in the long run. We also propose the Periodically Restarted
Optimistic Primal-Dual Proximal Policy Optimization (PROPD-PPO) algorithm that
can coordinate with both two conditions. Furthermore, a dynamic regret bound and a
constraint violation bound are established for the proposed algorithm in both the linear
kernel CMDP function approximation setting and the tabular CMDP setting under
two alternative conditions. This chapter provides the first provably efficient algorithm
for non-stationary CMDPs with safe exploration.

• Chapter 4
We study risk-sensitive reinforcement learning (RL) based on an entropic risk measure in
episodic non-stationary Markov decision processes (MDPs). Both the reward functions
and the state transition kernels are unknown and allowed to vary arbitrarily over time
with a budget on their cumulative variations. When this variation budget is known a
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prior, we propose two restart-based algorithms, namely Restart-RSMB and Restart-
RSQ, and establish their dynamic regrets. Based on these results, we further present
a meta-algorithm that does not require any prior knowledge of the variation budget
and can adaptively detect the non-stationarity on the exponential value functions. A
dynamic regret lower bound is then established for non-stationary risk-sensitive RL to
certify the near-optimality of the proposed algorithms. Our results also show that the
risk control and the handling of the non-stationarity can be separately designed in the
algorithm if the variation budget is known a prior, while the non-stationary detection
mechanism in the adaptive algorithm depends on the risk parameter. This work offers
the first non-asymptotic theoretical analyses for the non-stationary risk-sensitive RL in
the literature.

1.3 Related Publications
• Chapter 2

Main paper:

– Yuhao Ding, Javad Lavaei and Murat Arcak. “Time-variation in online nonconvex
optimization enables escaping from spurious local minima”, IEEE Transactions on
Automatic Control, vol. 68, no. 1, pp. 156-171, Jan. 2023.

Related paper:

– Yuhao Ding, Javad Lavaei and Murat Arcak. “Escaping Spurious Local Minimum
Trajectories in Online Time-varying Nonconvex Optimization", 2021 American
Control Conference (ACC), New Orleans, LA, USA, 2021, pp. 454-461.

– Salar Fattahi; Cedric Josz; Yuhao Ding; Reza Mohammadi; Javad Lavaei; So-
mayeh Sojoudi. "On the Absence of Spurious Local Trajectories in Time-Varying
Nonconvex Optimization", in IEEE Transactions on Automatic Control, vol. 68,
no. 1, pp. 80-95, Jan. 2023.

• Chapter 3
Main paper:

– Yuhao Ding and Javad Lavaei. “Provably Efficient Primal-Dual Method for
CMDPs with Non-stationary Objectives and Constraints‘”, Proceedings of the
AAAI Conference on Artificial Intelligence. 2023

Related paper:

– Donghao Ying, Yuhao Ding and Javad Lavaei. “A dual approach to constrained
markov decision processes with entropy regularization", Proceedings of The 25th
International Conference on Artificial Intelligence and Statistics, PMLR 151:1887-
1909, 2022.
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– Vanshaj Khattar, Yuhao Ding, Bilgehan Sel, Javad Lavaei and Ming Jin. “A
CMDP-within-online framework for Meta-Safe Reinforcement Learning", Interna-
tional Conference on Learning Representations, 2023.

– Donghao Ying, Mengzi Guo, Yuhao Ding, Javad Lavaei and Zunjun Shen. “Policy-
based Primal-Dual Methods for Convex Constrained Markov Decision Processes",
Proceedings of the AAAI Conference on Artificial Intelligence. 2023

• Chapter 4
Main paper:

– Yuhao Ding, Ming Jin and Javad Lavaei. “Non-stationary Risk-sensitive Rein-
forcement Learning: Near-optimal Dynamic Regret, Adaptive Detection, and
Separation Design”, Proceedings of the AAAI Conference on Artificial Intelligence.
2023

1.4 Notations
Scalars, vectors, matrices, and sets: For a vector x, we use xT to denote the transpose of
x, and use xi or (x)i to denote the i-th entry of x. For vectors x and y, we use x ≥ y to denote
an entry-wise inequality. We use the standard notations that ∥x∥1 = ∑i ∣xi∣, ∥x∥2 =

√
∑i x

2
i ,

and ∥x∥∞ = maxi ∣xi∣. For simplicity, we will also use the notation ∥⋅∥ to represent the
Euclidean norm ∥⋅∥2. We denote Proj[a,b](x) as the projection of x onto the interval [a, b]
and (x)+ as the maximum between x and 0. Let In denote the n × n identity matrix. For a
matrix A, we use Aij to denote its (i, j)-th entry and use λmin(A) to denote its minimum
eigenvalue. We use ∥v∥A to denote the norm induced by a positive definite matrix A for
vector v, i.e., ∥v∥A =

√
v⊺Av. Let ∣S∣ denote the cardinality of set S. Let R represent the

set of real numbers. The interior of the interval Īt,2 is denoted by int(Īt,2). The symbol
Br(h(t)) = {x ∈ Rn ∶ ∥x − h(t)∥ ≤ r} denotes the region centered around a trajectory h(t) with
radius r at time t. We use the shorthand notation [n] for the set {1,2, . . . , n}.

Functions: We denote the solution of ẋ = f(x, t) starting from x0 at the initial time
t0 with x(t, t0, x0) or the short-hand notation x(t) if the initial condition (t0, x0) is clear
from the context. When applying a scalar function to a vector x, e.g. logx, the operation is
understood as entry-wise. For a function f(x), let ∇xf(x) denote its gradient with respect
to x, and we may omit x in the subscript when it is clear from the context. Let arg min f(x)
(resp. arg max f(x)) denote any arbitrary global minimum (resp. global maximum) of f(x).
Given a variable x, the notation a = O(b(x)) means that a ≤ C ⋅ b(x) for some constant C > 0
that is independent of x. Similarly, a = Õ(b(x)) indicates that the previous inequality may
also depend on the function log(x), where C > 0 is again independent of x. In addition, the
notation a = Ω(b(x)) means that a ≥ C ⋅ b(x) for some constant C > 0 that is independent of
x.
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Probability: When the variable s follows the distribution ρ, we write it as s ∼ ρ. Let
E[⋅] and E[⋅ ∣ ⋅] denote the expectation and conditional expectation of a random variable,
respectively.
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Chapter 2

Time-varying non-convex optimization

Consider the following equality-constrained time-varying optimization problem:

min
x(t)∈Rn

f(x(t), t)

s.t. g(x(t), t) = 0
(2.1)

where t ≥ 0 denotes the time and x(t) is the optimization variable that depends on t.
Moreover, the objective function f ∶ Rn × [0,∞) → R and the constraint function g(x, t) =
(g1(x, t), . . . , gm(x, t)) with gk ∶ Rn × [0,∞) → R for k = 1, ...,m are assumed to be twice
continuously differentiable in state x and continuously differentiable in time t. For each time
t, the function f(x, t) could potentially be nonconvex in x with many local minima and the
function g(x, t) could also potentially be nonlinear in x, leading to a nonconvex feasible set.
The objective is to solve the above problem online under the assumption that at any given
time t the function f(x, t′) and g(x, t′) are known for all t′ ≤ t while no knowledge about
f(x, t′) or g(x, t′) may be available for any t′ > t. Therefore, the problem (2.1) cannot be
minimized off-line and should be solved sequentially. Another issue is that the optimization
problem at each time instance could be highly complex due to NP-hardness, which is an
impediment to finding its global minima. This chapter aims to investigate under what
conditions simple local search algorithms can solve the above online optimization problem
to almost global optimality after some finite time. More precisely, the goal is to devise an
algorithm that can track a global solution of (2.1) as a function of time t with some error at
the initial time and a diminishing error after some time.

If f(x, t) and g(x, t) do not change over time, the problem reduces to a classic (time-
invariant) optimization problem. It is known that simple local search methods, such as
stochastic gradient descent (SGD) [63], may be able to find a global minimum of such
time-invariant problems (under certain conditions) for almost all initializations due to the
randomness embedded in SGD [68, 54, 75]. The objective of this chapter is to significantly
extend the above result from a single optimization problem to infinitely-many problems
parametrized by time t. In other words, it is desirable to investigate the following ques-
tion: Can the temporal variation in the landscape of time-varying nonconvex
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optimization problems enable online local search methods to find and track
global trajectories? To answer this question, we study a first-order time-varying ordinary
differential equation (ODE), which is the counterpart of the classic projected gradient flow
system for time-invariant optimization problems [119] and serves as a continuous-time limit
of the discrete online tracking method for (2.1) with the proximal regularization. This ODE
is given as

ẋ(t) = −
1
α
P(x(t), t)∇xf(x(t), t) −Q(x(t), t)g

′(x(t), t) (P-ODE)

where α > 0 is a constant parameter named inertia due to a proximal regularization,
g′(z, t) = ∂g(z,t)

∂t , P(x(t), t) and Q(x(t), t) are matrices related to the Jacobian of g(x, t) that
will be derived in detail later. A system of the form (P-ODE) is called a time-varying
projected gradient system with inertia α. The behavior of the solutions of this system
initialized at different points depends on the value of α. In the unconstrained case, this ODE
reduces to the time-varying gradient system with inertia α given as

ẋ(t) = −
1
α
∇xf(x, t) (ODE)

In what follows, we offer a motivating example without constraints (to simplify the visualiza-
tion) before stating the goals of this chapter.

Motivating example
Example 1. Consider f(x, t) ∶= f̄(x − b sin(t)), where

f̄(y) ∶=
1
4y

4 +
2
3y

3 −
1
2y

2 − 2y

This time-varying objective has a spurious (non-global) local minimum trajectory at −2 +
b sin(t), a local maximum trajectory at −1 + b sin(t), and a global minimum trajectory at
1 + b sin(t). In Figure 2.1, we show a bifurcation phenomenon numerically. The red lines are
the solutions of (P-ODE) with the initial point −2. In the case with α = 0.3 and b = 5, the
solution of (P-ODE) winds up in the region of attraction of the global minimum trajectory.
However, for the case with α = 0.1 and b = 5, the solution of (P-ODE) remains in the region
of attraction of the spurious local minimum trajectory. In the case with α = 0.8 and b = 5, the
solution of (P-ODE) fails to track any local minimum trajectory. In the case with α = 0.1 and
b = 10, the solution of (P-ODE) winds up in the region of attraction of the global minimum
trajectory.

Two observations can be made here. First, jumping from a local minimum trajectory to
a better trajectory tends to occur with the help of a relatively large inertia when the local
minimum trajectory changes the direction abruptly and there happens to exist a better local
minimum trajectory in the direction of the inertia. Second, when the inertia α is relatively
small, the solution of (P-ODE) tends to track a local (or global) minimum trajectory closely
and converges to that trajectory quickly.
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(a) α = 0.3, b = 5 (b) α = 0.1, b = 5

(c) α = 0.8, b = 5 (d) α = 0.1, b = 10

Figure 2.1: Illustration of Example 1 (in order to increase visibility, the objective function
values are rescaled). Jumping from a spurious local minimum trajectory to a global minimum
trajectory occurs in Figure 2.1a and 2.1d when the inertia α and the change (controlled by
the parameter b) of local minimum trajectory are appropriate.

Example 2. Consider the time-varying optimal power flow (OPF) problem, as the most
fundamental problem for the operation of electric power grids that aims to match supply
with demand while satisfying network and physical constraints. Let f(x, t) be the function to
be minimized at time t, which is the sum of the total energy cost and a penalty term taking
care of all the inequality constraints of the problem. Let g(x, t) = 0 describe the time-varying
demand constraint. Assume that the load data corresponds to the California data for August
2019. As discussed in [93], this time-varying OPF has 16 local minima at t=0 and many
more for some values of t > 0. However, if (ODE) is run from any of these local minima, the
16 trajectories will all converge to the globally optimal trajectory, as shown in Figure 2.2.
This observation has been made in [93] for a discrete-time version of the problem, but it also
holds true for the continuous-time (ODE) model.
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Figure 2.2: ∣x(t)∣ (magnitude of the solution of (ODE)).

Our contributions
To mathematically study the observations made in Example 1 and Example 2 for a general
time-varying nonconvex optimization problem with equality constraints, we focus on the
aforementioned time-varying projected gradient flow system with inertia α as a continuous-
time limit of an online updating scheme for (2.1). We first introduce a time-varying Lagrange
functional to unify the analysis of unconstrained problems and equality-constrained problems,
and make the key assumption that the time-varying Lagrange functional is locally one-point
strongly convex around each local minimum trajectory. This assumption is justified by
the second-order sufficient optimality conditions. A key property of (P-ODE) is that its
solution will remain in the time-varying feasible region if the initial point is feasible for (2.1),
which allows us to use the Lyapunov technique without worrying about the feasibility of the
solution. Then, we show that the time-varying projected gradient flow system with inertia α
is a continuous-time limit of the Karush–Kuhn–Tucker (KKT) optimality conditions for a
discretized sequential optimization problem with a proximal regularization. The existence
and uniqueness of the solution for such ODE is proven.

As a main result of this work, it is proven that the natural temporal variation of the time-
varying optimization problem encourages the exploration of the state space and re-shaping the
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landscape of the objective function (in the unconstrained case) or the Langrange functional
(in the constrained case) by making it one-point strongly convex over a large region during
some time interval. We introduce the notion of the dominant trajectory and show that if a
given spurious local minimum trajectory is dominated by the global minimum trajectory, then
the temporal variation of the time-varying optimization would trigger escaping the spurious
local minimum trajectory for free. We develop two sufficient conditions under which the
ODE solution will jump from a certain local minimum trajectory to a more desirable local
minimum trajectory. We then derive sufficient conditions on the inertia α to guarantee that
the solution of (P-ODE) can track a global minimum trajectory. To illustrate how the time
variation nature of an online optimization problem promotes escaping a spurious minimum
trajectory, we offer a case study with many shallow minimum trajectories.

2.1 Related Work
Online time-varying optimization problems: Time-varying optimization problems of
the form (2.1) arise in the real-time optimal power flow problem [120, 62] for which the
power loads and renewable generations are time-varying and operational decisions should
be made every 5 minutes, as well as in the real-time estimation of the state of a nonlinear
dynamic system [101]. Other examples include model predictive control [16], time-varying
compressive sensing [104, 9] and online economic optimization [72, 130]. There are many
researches on the design of efficient online algorithms for tracking the optimizers of time-
varying convex optimization problems [111, 44, 12, 110]. With respect to time-varying
nonconvex optimization problems, the work [57] presents a comprehensive theory on the
structure and singularity of the KKT trajectories for time-varying optimization problems.
On the algorithm side, [120] provides regret-type results in the case where the constraints are
lifted to the objective function via penalty functions. [121] develops a running regularized
primal-dual gradient algorithm to track a KKT trajectory, and offers asymptotic bounds on
the tracking error. [89] obtains an ODE to approximate the KKT trajectory and derives an
algorithm based on a predictor-corrector method to track the ODE solution. Recently, [42]
proposed the question of whether the natural temporal variation in a time-varying nonconvex
optimization problem could help a local tracking method escape spurious local minimum
trajectories. It developed a differential equation to characterize this phenomenon (which is the
basis of the current work), but it lacked mathematical conditions to guarantee this desirable
behavior. The paper [93] also studies this phenomenon in the context of power systems and
verifies on real data for California that the natural load variation enables escaping local
minima of the optimal power flow problem. The current work significantly generalizes the
results of [42] and [93] by mathematically studying when such an escaping is possible.

Local search methods for global optimization: Nonconvexity is inherent in many
real-world problems: the classical compressive sensing and matrix completion/sensing [39,
22, 23], training of deep neural networks [82], the optimal power flow problem [79], and
others. From the classical complexity theory, this nonconvexity is perceived to be the main
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contributor to the intractability of these problems. However, it has been recently shown that
simple local search methods, such as gradient-based algorithms, have a superb performance
in solving nonconvex optimization problems. For example, [81] shows that the gradient
descent with a random initialization could avoid the saddle points almost surely, and [68]
and [54] prove that a perturbed gradient descent and SGD could escape the saddle points
efficiently. Furthermore, it has been shown that nearly-isotropic classes of problems in matrix
completion/sensing [15, 53, 131], robust principle component analysis [43, 71], and dictionary
recovery [115] have benign landscape, implying that they are free of spurious local minima.
The work [75] proves that SGD could help escape sharp local minima of a loss function by
taking the alternative view that SGD works on a convolved (thus smoothed) version of the
loss function. However, these results are all for time-invariant optimization problems for
which the landscape is time-invariant. In contrast, many real-world problems should be solved
sequentially over time with time-varying data. Therefore, it is essential to study the effect of
the temporal variation on the landscape of time-varying nonconvex optimization problems.

Continuous-time interpretation of discrete numerical algorithms: Many iterative
numerical optimization algorithms for time-invariant optimization problems can be interpreted
as a discretization of a continuous-time process. Then, several new insights have been obtained
due to the known results for continuous-time dynamical systems [74, 59]. Perhaps, the simplest
and oldest example is the gradient flow system for the gradient descent algorithm with an
infinitesimally small step size. The recent papers [114, 76, 125] study accelerated gradient
methods for convex optimization problems from a continuous-time perspective. In addition,
the continuous-time limit of the gradient descent is also employed to analyze various non-
convex optimization problems, such as deep linear neural networks [106] and matrix regression
[58]. It is natural to analyze the continuous-time limit of an online algorithm for tracking a
KKT trajectory of time-varying optimization problem [111, 121, 89, 42].

2.2 Preliminaries and Problem Formulation

Time-varying optimization with equality constraints
The first-order KKT conditions for the time-varying optimization (2.1) are as follows:

0 =∇xf(x(t), t) + Jg(x(t), t)
⊺λ(t) (2.2a)

0 =g(x(t), t) (2.2b)

where Jg(z, t) ∶=
∂g(z,t)

∂z denotes the Jacobian of g(⋅, ⋅) with respect to the first argument and
λ(t) ∈ Rm is a Lagrange multiplier associated with the equality constraint. We first make
some assumptions below.

Assumption 1. f ∶ Rn × [0,∞) → R is twice continuously differentiable in x ∈ Rn and
continuously differentiable in t ≥ 0. gk ∶ Rn × [0,∞) → R is twice continuously differentiable in
x ∈ Rn and twice continuously differentiable in t ≥ 0 for k = 1, . . . ,m. Moreover, at any given
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time t, f(x, t) is uniformly bounded from below over the set {x ∈ Rn ∶ g(x, t) = 0}, meaning
that there exists a constant M such that f(x, t) ≥M for all x ∈ {x ∈ Rn ∶ g(x, t) = 0} and t ≥ 0.

Assumption 2. The feasible set at t defined as

M(t) ∶= {x ∈ Rn ∶ g(x, t) = 0}

is nonempty for all t ≥ 0.

Assumption 3. For all t ≥ 0 and x ∈ M(t), the matrix Jg(x, t) has full row-rank.

Remark 1. Although Assumption 3 is somewhat stronger than the Linear independence
constraint qualification [13], it is necessary for our following analysis because with different
values of α and different initial points, the solution of (P-ODE) may land anywhere in the
feasible region. Furthermore, Sard’s theorem [105] ensures that if the constraint function
g(⋅, t) is sufficiently smooth, then the set of values of g(⋅, t), denoted as S(t), for which
Jg(x, t) is not full row-rank has measure 0. Thus, Assumption 3 is satisfied if 0 ∉ S(t) where
S(t) is only a set with measure 0. Finally, if the inertia parameter α is fixed and the initial
point of (P-ODE) is a local solution, then the work [42] provides a sophisticated proof for
the existence and uniqueness of the solution for a special class of (P-ODE) under a minor
assumption that the Jacobian has full-row rank only at the discrete local trajectories (which
is defined in the paragraph after equation (2.10) in our work). However, to be able to study
the solution of (P-ODE) for all α > 0 and any initial feasible point and keep the focus of the
paper on studying the escaping behavior, we made Assumption 3.

Under Assumption 3, the matrix Jg(x(t), t)Jg(x(t), t)⊺ is invertible and therefore λ(t) in
(2.2a) can be written as

λ(t) = −(Jg(x(t), t)Jg(x(t), t)
⊺)−1Jg(x(t), t)∇xf(x(t), t) (2.3)

Since λ(t) is written as a function of x(t) in (2.3), we also denote it as λ(x(t), t). Now, (2.2a)
can be written as

0 =[In − Jg(x(t), t)
⊺(Jg(x(t), t)Jg(x(t), t)

⊺)−1Jg(x(t), t)]∇xf(x(t), t) (2.4)

where In is the identity matrix in Rn×n. For the sake of readability, we introduce the symbolic
notation

P(x(t), t) ∶=In − Jg(x(t), t)
⊺(Jg(x(t), t)Jg(x(t), t)

⊺)−1Jg(x(t), t)

which is the orthogonal projection operation onto T t
x, where T t

x denotes the tangent plane of
g(x(t), t) at the point x(t) and the time t. It is convenient and conventional to introduce
the time-varying Lagrange functional

L(x,λ, t) = f(x, t) + λg(x, t) (2.5)
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In terms of this functional, (2.4) can be written as

0 = ∇xL(x,λ, t) (2.6)

where λ is given in (2.3). Here, ∇xL(x,λ, t) means first taking the partial gradient with
respect to the first argument and then using the formula (2.3) for λ. Since the solution is
time-varying, we define the notion of the local (or global) minimum trajectory below.

Definition 1. A continuous trajectory h ∶ It → Rn, where It ⊆ [0,∞), is said to be a local
(or global) minimum trajectory of the time-varying optimization (2.1) if each point of
h(t) is a local (or global) minimum of the time varying optimization (2.1) for every t ∈ It.

In this chapter, we focus on the case when the local minimum trajectories will not cross,
bifurcate or disappear by assuming the following uniform regularity condition.

Assumption 4. For each local minimum trajectory h(t), its domain It is [0,∞) and h(t) sat-
isfies the second-order sufficient optimality conditions uniformly, meaning that ∇2

xxL(h(t), λ, t)
is positive definite on T t

h(t) = {y ∶ Jg(h(t), t)⊺y = 0} for all t ∈ [0,∞).

Lemma 1. Under Assumptions 1-4, each local minimum trajectory h(t) is differentiable and
isolated, and therefore it can not bifurcate or merge with other local minimum trajectories.

After freezing the time t in (2.1) at a particular value, one may use local search methods,
like Rosen’s gradient projection method [102], to minimize f(x, t) over the feasible region
M(t). If the initial point is feasible and close enough to a local solution and the step size is
small enough, the algorithm will converge to the local minimum. This leads to the notion of
region of attraction defined by resorting to the continuous-time model of Rosen’s gradient
projection method [119] (for which the step size is not important anymore).

Definition 2. The region of attraction of a local minimum point h(t) of f(⋅, t) in the
feasible set M(t) at a given time t is defined as:

RAM(t)(h(t)) = {x0 ∈ M(t) ∣ lim
t̃→∞

x̃(t̃) = h(t) where

dx̃(t̃)

dt̃
= −P(x̃(t̃), t)∇xf(x̃(t̃), t) and x̃(0) = x0}.

In the unconstrained case, the notion of the locally one-point strong convexity can be
defined as follows:

Definition 3. Consider arbitrary positive scalars c and r. The function f(x, t) is said to be
locally (c, r)-one-point strongly convex around the local minimum trajectory h(t) if

∇xf(e + h(t), t)
⊺e ≥ c ∥e∥

2
, ∀e ∈D, ∀t ∈ [0,∞) (2.7)

where D = {e ∈ Rn ∶ ∥e∥ ≤ r}. The region D = {e ∈ Rn ∶ ∥e∥ ≤ r} is called the region of locally
(c, r)-one-point strong convexity around h(t).
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This definition resembles the (locally) strong convexity condition for the function f(x, t),
but it is only expressed around the point h(t). This restriction to a single point constitutes
the definition of one-point strong convexity and it does not imply that the function is convex.
The following result paves the way for the generalization of the notion of the locally one-point
strong convexity from the unconstrained case to the equality constrained case.

Lemma 2. Consider an arbitrary local minimum trajectory h(t) satisfying Assumption 4,
there exist positive constants r̂ and ĉ such that

e(t)⊺∇xL(e(t) + h(t), λ(e(t) + h(t), t), t) ≥ ĉ ∥e(t)∥
2

for all e(t) ∈ {e + h(t) ∈ M(t) ∶ ∥e∥ ≤ r̂}.

Definition 4. Consider arbitrary positive scalars c and r. The Lagrange function L(x,λ, t)
with λ given in (2.3) is said to be locally (c, r)-one-point strongly convex with respect
to x around the local minimum trajectory h(t) in the feasible set M(t) if:

e⊺∇xL(e + h(t), λ(e + h(t), t), t) ≥ c ∥e∥
2 (2.8)

for all e ∈ DM(t) and t ∈ [0,∞), where DM(t) = {e + h(t) ∈ M(t) ∶ ∥e∥ ≤ r}. The region
DM(t) = {e + h(t) ∈ M(t) ∶ ∥e∥ ≤ r} is called the region of locally (c, r)-one-point strong
convexity of the Lagrange function L(x,λ, t) around h(t) in the feasible set M(t).

Remark 2. The Lagrange function L(x,λ, t) with λ given in (2.3) being locally (c, r)-
one-point strongly convex with respect to x around h(t) is equivalent to the vector field
P(x, t)∇xf(x(t), t) being locally (c, r)-one-point strongly monotone with respect to x
around h(t).

Derivation of time-varying projected gradient flow system
In practice, one can only hope to sequentially solve the time-varying optimization problem
(2.1) at some discrete time instances 0 = τ0 < τ1 < τ2 < τ3 < . . . as follows:

min
x∈Rn

f(x, τi), s.t. g(x, τi) = 0, i = 1,2, . . . (2.9)

In many real-world applications, it is neither practical nor realistic to have solutions
that abruptly change over time. To meet this requirement, we impose a soft constraint to
the objective function by penalizing the deviation of its solution from the one obtained in
the previous time step. This leads to the following sequence of optimization problems with
proximal regularization (except for the initial optimization problem):

min
x∈Rn

f(x, τ0), (2.10a)

s.t. g(x, τ0) = 0,

min
x∈Rn

f(x, τi) +
α

2(τi − τi−1)
∥x − x∗i−1∥

2
, (2.10b)

s.t. g(x, τi) = 0, i = 1,2, . . .
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where x∗i−1 denotes an arbitrary local minimum of the modified optimization problem (2.10)
obtained using a local search method at time iteration i − 1. A local optimal solution
sequence x∗0, x∗1, x∗2, . . . is said to be a discrete local trajectory of the sequential regularized
optimization (2.10). The parameter α is called inertia because it acts as a resistance to
changes x at time step τi with respect to x at the previous time step τi−1. Note that α could
be time-varying (and adaptively changing) in the analysis of this chapter, but we restrict our
attention to a fixed regularization term to simplify the presentation.

Under Assumption 3, all solutions x∗ of (2.10b) must satisfy the KKT conditions:

0 = ∇xf(x
∗
i , τi) + α

x∗i − x
∗
i−1

τi − τi−1
+ Jg(xi, τi)

⊺λ̄i, (2.11a)

0 = g(xi, τi), (2.11b)

where λ̄i’s are the Lagrange multipliers for the sequence of optimization problems with
proximal regularization in (2.10). Similar to [89], we can write the right-hand side of the
constraint (2.11b) as:

g(xi, τi) − g(xi, τi−1) + g(xi, τi−1) − g(xi−1, τi−1)

τi − τi−1
(2.12)

Since the function f(x, t) and g(x, t) are nonconvex in general, the problem (2.10) may not
have a unique solution x∗i . In order to cope with this issue, we study the continuous-time limit
of (2.11) as the time step τi+1 − τi diminishes to zero. This yields the following time-varying
ordinary differential equations:

0 = ∇xf(x(t), t) + αẋ(t) + Jg(x(t), t)
⊺λ̄(t), (2.13a)

0 = Jg(x(t), t)ẋ(t) + g
′(x(t), t), (2.13b)

where g′ = ∂g(x,t)
∂t denotes the partial derivative of g with respect to t. Since Jg(x(t), t)Jg(x(t), t)⊺

is invertible, we have

0 =(Jg(x(t), t)Jg(x(t), t)
⊺)−1Jg(x(t), t)∇xf(x(t), t)

− α(Jg(x(t), t)Jg(x(t), t)
⊺)−1g′(x(t), t) + λ̄(t). (2.14)

Therefore, λ̄(t) can be written as a function of x, t and α:

λ̄(t) = − (Jg(x(t), t)Jg(x(t), t)
⊺)−1Jg(x(t), t)∇xf(x(t), t)

+ α(Jg(x(t), t)Jg(x(t), t)
⊺)−1g′(x(t), t)

=λ(x(t), t) + α(Jg(x, t)Jg(x, t)
⊺)−1g′(x, t) (2.15)

We alternatively denote λ̄(t) as λ̄(x(t), t, α). When α = 0, we have λ̄(x(t), t, α) = λ(x(t), t)
and the differential equation (2.13) reduces to the algebraic equation (2.2), which is indeed
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the first-order KKT condition for the unregularized time-varying optimization (2.1). When
α > 0, substituting λ̄(x(t), t, α) into (2.13a) yields the following time-varying ODE:

ẋ(t) = −
1
α
P(x(t), t)∇xf(x(t), t) −Q(x(t), t)g

′(x(t), t), (P-ODE)

whereQ(x(t), t) = Jg(x(t), t)⊺(Jg(x(t), t)Jg(x(t), t)⊺)−1. In terms of the Lagrange functional,
(P-ODE) can be written as

ẋ = −
1
α
∇xL(x, λ̄, t) = −

1
α
∇xL(x,λ, t) −Q(x, t)g

′(x, t). (2.16)

Here, ∇xL(x, λ̄, t) means first taking the partial gradient with respect to the first argument
and then using the formula (2.15) for λ̄. It can be shown that if the initial point of (P-ODE)
is in the feasible set M(t0), the solution of (P-ODE) will stay in the feasible set M(t).

Lemma 3. Suppose that the solution x(t, t0, x0) of (P-ODE) is defined in [t0,∞) with the
initial point x0. If x0 ∈ M(t0), then the solution x(t, t0, x0) belongs to M(t) for all t ≥ t0.

Therefore, as long as the initial point of (P-ODE) is in the feasible set M(t0), the
above lemma guarantees that we can analyze the stability of (P-ODE) using the standard
Lyapunov’s theorem without worrying about the feasibility of the solution. When α > 0,
we will show that for any initial point x0, (P-ODE) has a unique solution defined for all
t ∈ It ⊆ [0,∞) if there exists a local minimum trajectory h(t) such that the solutions of
(P-ODE) lie in a compact set around h(t) 1.

Theorem 1 (Existence and uniqueness). Under Assumptions 1-4 and given any initial point
x0 ∈ M(t0), suppose that there exists a local minimum trajectory h(t) with the property
that x(t) − h(t) lies entirely in D for all t ∈ It ⊆ [0,∞) where D is a compact subset of Rn

containing x0 − h(t0) tand x(t) denotes the solution of (P-ODE) with the initial point x0.
Then, (P-ODE) has a unique solution starting from x0 that is defined for all t ≥ 0.

In online optimization, it is sometimes desirable to predict the solution at a future time
(namely, τi) only based on the information at the current time (namely, τi−1). This can be
achieved by implementing the forward Euler method to obtain a numerical approximation to
the solution of (P-ODE):

x̄∗i =x̄
∗
i−1 − (τi − τi−1)(

1
α
P(x̄∗i−1, τi−1)∇xf(x̄

∗
i−1, τi−1 +Q(x̄

∗
i−1, τi−1)g

′(x̄∗i−1, τi−1)) (2.17)

(note that x̄∗0, x̄∗1, x̄∗2, ... show the approximate solutions). The following theorem explains
the reason behind studying the continuous-time problem (P-ODE) in the remainder of this
chapter.

1In Theorems 3 and 4, the compactness assumption is included in the definition of the dominant trajectory.
In Theorem 5, checking the compactness assumption can be carried out via the Lyapunov’s method without
solving the differential equation due to the one-point strong convexity condition around h(t).
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Theorem 2 (Convergence). Under Assumptions 1-4 and given a local minimum x∗0 of (2.10a),
as the time difference ∆τ = τi+1 − τi approaches zero, any sequence of discrete local trajectories
(x∆

k ) converges to the (P-ODE) in the sense that for all fixed T > 0:
lim

∆τ→0
max

0≤k≤ T
∆τ

∥x∆
k − x(τk, τ0, x

∗
0)∥ = 0 (2.18)

and any sequence of (x̄∆
k ) updated by (2.17) converges to the (P-ODE) in the sense that for

all fixed T > 0:
lim

∆τ→0
max

0≤k≤ T
∆τ

∥x̄∆
k − x(τk, τ0, x

∗
0)∥ = 0 (2.19)

Theorem 2 guarantees that the solution of (P-ODE) is a reasonable approximation in the
sense that it is the continuous-time limit of both the solution of the sequential regularized
optimization problem (2.10) and the solution of the online updating scheme (2.17). For this
reason, we only study the continuous-time problem (P-ODE) in the remainder of this chapter.

Jumping, tracking and escaping
In this chapter, the objective is to study the case where there are at least two local minimum
trajectories of the online time-varying optimization problem. Consider two local minimum
trajectories h1(t) and h2(t). We provide the definitions of jumping, tracking and escaping
below.

Definition 5. It is said that the solution of (P-ODE) (v,u)-jumps from h1(t) to h2(t)
over the time interval [t1, t2] if there exist u > 0 and v > 0 such that

Bv(h1(t1)) ∩M(t1) ⊆ RA
M(t1)(h1(t1)) (2.20a)

Bu(h2(t2)) ∩M(t2) ⊆ RA
M(t2)(h2(t2)) (2.20b)

∀x1 ∈ Bv(h1(t1)) ∩M(t1) Ô⇒ x(t2, t1, x1) ∈ Bu(h2(t2)) ∩M(t2) (2.20c)
Definition 6. Given x0 ∈ M(t0), it is said that x(t, t0, x0) u-tracks h2(t) if there exist a
finite time T > 0 and a constant u > 0 such that

x(t, t0, x0) ∈ Bu(h2(t)) ∩M(t), ∀t ≥ T (2.21a)
Bu(h2(t)) ∩M(t) ⊆ RA

M(t)(h2(t)), ∀t ≥ T (2.21b)
In this chapter, the objective is to study the scenario where a solution x(t, t0, x0) tracking

a poor solution h1(t) at the beginning ends up tracking a better solution h2(t) after some
time. This needs the notion of “escaping" which is a combination of jumping and tracking.

Definition 7. It is said that the solution of (ODE) (v,u)-escapes from h1(t) to h2(t) if
there exist T > 0, u > 0 and v > 0 such that

Bv(h1(t0)) ∩M(t0) ⊆ RA
M(t0)(h1(t0)) (2.22a)

Bu(h2(t)) ∩M(t) ⊆ RA
M(t)(h2(t)), ∀t ≥ T (2.22b)

∀x0 ∈ Bv(h1(t0)) ∩M(t0) Ô⇒ x(t, t0, x0) ∈ Bu(h2(t)) ∩M(t), ∀t ≥ T (2.22c)
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Figure 2.3: Illustration of jumping and tracking.

Figure 2.3 illustrates the definitions of jumping and tracking for Example 1 with α = 0.3
and b = 5. The objective of this chapter is to study when the solution of (P-ODE) started at
a poor local minimum at the initial time jumps to and tracks a better (or global) minimum
of the problem after some time. In other words, it is desirable to investigate the escaping
property from h1(t) and h2(t).

2.3 Change of variables
Given two isolated local minimum trajectories h1(t), h2(t). One may use the change of
variables x(t, t0, x0) = e(t, t0, e0) + h2(t) to transform (P-ODE) into the form

ė(t) = −
1
α
P(e(t) + h2(t), t)∇xf(e(t) + h2(t), t) −Q(e(t) + h2(t), t)g

′(e(t) + h2(t), t) − ḣ2(t)

(2.23a)

= −
1
α
∇x(L(e(t) + h2(t), λ̄(e(t) + h2(t), t, α), t) + αḣ2(t)

⊺e(t)) (2.23b)

We use e(t, t0, e0) to denote the solution of this differential equation starting at time t = t0 with
the initial point e0 = x0−h2(t0) and use − 1

αU(e(t), t, α) to denote the right-hand side of (2.23).
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Note that h1(t) and h2(t) are local solutions of (2.1) and as long as (2.1) is time-varying, these
functions cannot satisfy (P-ODE) in general. We denote Mh(t) ∶= {e ∈ Rn ∶ g(e + h(t), t) = 0}.

Unconstrained optimization landscape after a change of variables
In this subsection, we study the unconstrained case to enable a better visualization of the
optimization landscape. In the unconstrained case, (2.23) is reduced to

ė(t) = −
1
α
∇xf(e(t) + h2(t), t) − ḣ2(t). (2.24)

Inertia encouraging the exploration

The first term ∇xf(e + h2(t), t) in (2.24) can be understood as a time-varying gradient term
that encourages the solution of (2.24) to track h2(t), while the second term ḣ2(t) represents
the inertia from this trajectory. In particular, if ḣ2(t) points toward outside of the region
of attraction of h2(t) during some time interval, the term ḣ2(t) acts as an exploration
term that encourages the solution of (ODE) to leave the region of attraction of h2(t). The
parameter α balances the roles of the gradient and the inertia.

In the extreme case where α goes to infinity, e(t) converges to −h2(t) and x(t) approaches
a constant trajectory determined by the initial point x0; when α is sufficiently small, the
time-varying gradient term dominates the inertia term and the solution of (ODE) would
track h2(t) closely. With an appropriate proximal regularization α that keeps the balance
between the time-varying gradient term and the inertia term, the solution of (ODE) could
temporarily track a local minimum trajectory with the potential of exploring other local
minimum trajectories.

Inertia creating a one-point strongly convex landscape

The differential equation (2.24) can be written as

ė(t) = −
1
α
∇e(f(e(t) + h2(t), t) + αḣ2(t)

⊺e(t)) (2.25)

This can be regarded as a time-varying gradient flow system of the original objective function
f(e + h2(t), t) plus a time-varying perturbation αḣ2(t)⊺e. During some time interval [t1, t2],
the time-varying perturbation αḣ2(t)⊺e may enable the time-varying objective function
f(e+h2(t), t)+αḣ2(t)⊺e over a neighborhood of h1(t) to become one-point strongly convexified
with respect to h2(t). Under such circumstances, the time-varying perturbation αḣ2(t)⊺e
prompts the solution of (2.25) starting in a neighborhood of h1(t) to move towards a
neighborhood of h2(t). Before analyzing this phenomenon, we illustrate the concept in an
example.

Consider again Example 1 and recall that f̄(x) has 2 local minima at x = −2 and x = 1.
By taking b = 5, h1(t) = −2 + 5 sin(t) and h2(t) = 1 + 5 sin(t), the differential equation (2.25)



CHAPTER 2. TIME-VARYING NON-CONVEX OPTIMIZATION 22

can be expressed as ė(t) = − 1
α∇e(f̄(1 + e(t)) + 5α cos(t)e(t)). The landscape of the new

time-varying function f̄(1 + e) + 5α cos(t)e with the variable e is shown for two cases α = 0.3
and α = 0.1 in Figure 2.4. The red curves are the solutions of (2.25) starting from e = −3.
One can observe that when α = 0.3, the new landscape becomes one-point strongly convex
around h2(t) over the whole region for some time interval, which provides (2.25) with the
opportunity of escaping from the region around h1(t) to the region around h2(t). However,
when α = 0.1, there are always two locally one-point strongly convex regions around h1(t)
and h2(t) and, therefore, (2.25) fails to escape the region around h1(t).

(a) f̄(1 + e) + 1.5 cos(t)e (b) f̄(1 + e) + 0.5 cos(t)e

Figure 2.4: Illustration of time-varying landscape after change of variables for Example 1.

To further inspect the case α = 0.3, observe in Figure 2.5a that the landscape of the
objective function f̄(1 + e) + 1.5 cos(0.85π)e shows that the region around the spurious local
minimum trajectory h1(t) is one-point strongly convexified with respect to h2(t) at time
t = 0.85π. This is consistent with the fact that the solution of ė = − 1

0.3∇xf̄(1 + e) − 5 cos(t)
starting from e = −3 jumps to the neighborhood of 0 around time t = 0.85π, as demonstrated
in Figure 2.5c. Furthermore, if the time interval [t1, t2] is large enough to allow transitioning
from a neighborhood of h1(t) to a neighborhood of h2(t), then the solution of (2.25) would
move to the neighborhood of h2(t). In contrast, the region around 1 + b sin(t) is never
one-point strongly convexified with respect to −2 + b sin(t), as shown in Figure 2.5b.

From the right-hand side of (2.25), it can be inferred that if the gradient of f(⋅, t) is
relatively small around some local minimum trajectory, then its landscape is easier to be
re-shaped by the time-varying linear perturbation αḣ2(t)⊺e. The local minimum trajectory in
a neighborhood with small gradients usually corresponds to a shallow minimum trajectory in
which the trajectory has a relatively flat landscape and a relatively small region of attraction.
Thus, the one-point strong convexication introduced by the time-varying perturbation could
help escape the shallow minimum trajectories.
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(a) f̄(1 + e) + 1.5 cos(0.85π)e
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(c) solution of ė = − 1
0.3∇xf̄(1+ e) −

5 cos(t) starting from e0 = −3

Figure 2.5: Illustration of one-point strong convexification for Example 1.

Table 2.1: A unified view for unconstrained and equality-constrained problems

Unconstrained problem Equality-constrained problem
First-order optimality

condition(FOC) 0 = ∇xf(x, t) 0 = ∇xL(x, λ, t)

ODE (continuous
time limit of FOC

for regularized problem)
ẋ = − 1

α∇xf(x, t) ẋ = − 1
α∇xL(x, λ̄, t)

Change of variables:
x = h + e

ė = − 1
α∇ef(e + h, t) − ḣ ė = − 1

α∇eL(e + h, λ̄, t) − ḣ

Key assumption:
one-point strong convexity e⊺∇ef(e + h, t) ≥ c ∥e∥2 e⊺∇eL(e + h, λ, t) ≥ c ∥e∥2

Reshaping of the landscape:
one-point strong convexification

e⊺(∇ef(e + h, t) + αḣ)
≥ w ∥e∥2

e⊺(∇eL(e + h, λ̄, t) + αḣ)
≥ w ∥e∥2

Dominant trajectory
In this subsection, we will formalize the intuitions discussed in Section 2.3. We first define
the notion of the shallow local minimum trajectory.

Definition 8. Consider a positive number α and assume that ḣ1(t) is L-Lipschitz continuous.
It is said that the local minimum trajectory h1(t) is α-shallow during the time period
[t0, t0 + δ] if

ϵ > E(α) +Lδ and r ≤ 1
2δ(ϵ −E(α) −Lδ),

where ϵ = supt∈[t0,t0+δ] ∥ḣ1(t)∥ , r = supt∈[t0,t0+δ] supx(t)∈RAM(t)(h1(t)) ∥x(t) − h1(t)∥, E(α) =

supt∈[t0,t0+δ] supx(t)∈RAM(t)(h1(t)) ∥
1
α∇xL(x, λ̄, t)∥ ,

1
α∇xL(x, λ̄, t) is defined in (2.16).

In other words, a local minimum trajectory is shallow if it has a large time variation but a
small region of attraction. We next show that whenever a local minimum trajectory h1(t) is
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shallow during some time interval, the solution of (P-ODE) starting anywhere in the region
of attraction of h1(t) will leave its region of attraction at some time.

Lemma 4. If the local minimum trajectory h1(t) is α-shallow during [t0, t0 + δ], then for any
x(t0) ∈ RAM(t0)(h1(t0)), then there exists a time t ∈ [t0, t0+δ] such that x(t) ∉ RAM(t)(h1(t)).

On the one hand, Lemma 4 shows that any shallow local minimum trajectory is unstable
in the sense that the time-variation in the minimum trajectory will force the solution of
(P-ODE) to leave its region of attraction. If the shallow local minimum trajectory happens to
be a non-global local solution, then the solution of (P-ODE), acting as a tracking algorithm,
will help avoid the bad local solutions for free. On the other hand, Lemma 4 does not
specify where the solution of (P-ODE) will end up after leaving the region of attraction of a
shallow local minimum trajectory. Simulations (such as those provided in Sections 2.3 and
2.5) suggest that, with some appropriate α, the solution of (P-ODE) may move towards a
nearby local minimum trajectory that has an enlarged region of one-point strong convexity.
This leads to the following definition of the region of the domination and the dominant local
minimum trajectory.

Definition 9. Given two local minimum trajectories h1(t) and h2(t), suppose that the time-
varying Lagrange function L(x,λ, t) with λ given in (2.3) is locally (c2, r2)-one-point strongly
convex with respect to x around h2(t) in the region Mh2(t) ∩ Br2(0). A set Dv,ρ,r2 is said to
be the region of domination for h2(t) with respect to h1(t) if it satisfies the following
properties:

• Dv,ρ,r2 is a compact subset such that

e1 ∈Dv,ρ,r2 ⇒ e(t, t1, e1) ∈Dv,ρ,r2 ,∀t ∈ [t1, t2] (2.26)

where e(t, t1, e1) is the solution of (2.23) staring from the feasible initial point e1 ∈

Mh2(t1) at the initial time t1.

• Dv,ρ,r2 ⊇D
′
v ∪ Bρ(0) where

D′v ={e1 ∈ Rn ∶ e1 + h2(t1) ∈ M(t1) ∩ Bv(h1(t1)) ⊆ RA
M(t1)(h1(t1))}, (2.27)

ρ ≥ sup
t∈[t1,t2]

sup
ē(t)∶∥ē(t)∥<r2,
0=U(ē(t),t,α)

∥ē(t)∥ . (2.28)

The condition (2.26) is a set invariance property, which requires that the solution of (2.23)
starting from an initial point in Dv,ρ,r2 stays in Dv,ρ,r2 during the time period [t1, t2]. For the
visualization of Dv,ρ,r2 , Bρ and D′v in Definition 9, we consider again Example 1. In Fig 2.6,
the red curve corresponds to the landscape of the function f̄(1 + e) + 1.5 cos(0.85π)e, e = 0
corresponds to h2(t) and e = −3 corresponds to h1(t). Bρ is a region around h2(t) containing
all zeros of 0 = U(⋅, t, α) during a time period around 0.85π and D′v is a neighborhood
around h1(t). In this example, the region of domination for h2(t) with respect to h1(t) is
Dv,ρ,r2 = [−4,1] which contains Bρ and D′v if h1(t) if it also satisfies (2.26).
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Figure 2.6: Illustration of Definition 9: the region of domination.

Definition 10. It is said that h2(t) is a (α,w)-dominant trajectory with respect to h1(t)
during the time period [t1, t2] over the region Dv,ρ,r2 if the time variation of h2(t) makes the
time-varying function U(e(t), t, α) become one-point strongly monotone over Dv,ρ,r2, i.e.,

U(e(t), t, α)⊺(e(t) − ē(t)) ≥ w ∥e(t) − ē(t)∥
2
,

∀e(t) ∈Dv,ρ,r2 ∩M(t), t ∈ [t1, t2], (2.29)

where w > 0 is a constant and ē(t) is defined in (2.28).

Note that h2(t) being a dominant trajectory with respect to h1(t) is equivalent to the
statement that the inertia of h2(t) creates a strongly convex landscape over Dv,ρ,r2 , as
discussed in Section 2.3.

Remark 3. The intuition behind Definition 10 is that if the time variation in the time-
varying optimization could make the landscape after the change of variables become one-point
strongly convex with respect to h2(t) in a neighborhood including both h1(t) and h2(t), then
the minimum trajectory h2(t) is dominant (with respect to h1(t)).
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The role of temporal variations of the constraints
From the perspective of the landscape of the Lagrange functional, (2.23b) can be regarded
as a time-varying gradient flow system of the Lagrange functional L(e(t) + h2(t), λ̄(e(t) +

h2(t), t, α), t) t(the partial gradient is taken with respect to the first argument of L) plus a
linear time-varying perturbation αḣg

2(t)
⊺e(t). Besides the linear time-varying perturbation

αḣg
2(t)

⊺e(t) induced by the inertia of the minimum trajectory similar to the unconstrained case,
the constraints’ temporal variation g′(⋅, t) plays the role of shifting the Lagrange multiplier
from λ in (2.3) to λ̄ in (2.15), which results in a nonlinear time-varying perturbation of the
landscape of the Lagrange functional.

From the perspective of the perturbed gradient, the constraints’ temporal variation g′(⋅, t)
perturbs the projected gradient P(⋅, t)∇xf(⋅, t) in an orthogonal direction Q(⋅, t)g′(⋅, t) to
drive the trajectory of (2.23a) towards satisfying the time-varying constraints.

Lemma 5. At any given time t, the vector P(x, t)∇xf(x, t) is orthogonal to the vector
Q(x, t)g′(x, t).

Therefore, in the equality-constrained problem, the time-varying projected gradient flow
system after a change of variables in (2.23a) can be regarded as a composition of a time-
varying projected term P(e+h2(t), t)∇xf(e+h2(t), t), a time-varying constraint-driven term
Q(e + h2(t), t)g′(e + h2(t), t) and an inertia term ḣ2(t) due to the time variation of the local
minimum trajectory.

A unified view for unconstrained and equality-constrained problems
By introducing the Lagrange functional in (2.5) and (2.16), we can unify the analysis of
how the temporal variation and the proximal regularization help reshape the optimization
landscape and potentially make the landscape become one-point strongly convex over a
larger region, for both unconstrained and equality constrained problems. This unified view is
illustrated in Table 2.1.

2.4 Main results
In this section, we study the jumping, tracking and escaping properties for the time-varying
nonconvex optimization.

Jumping
The following theorem shows that the solution of (P-ODE) could jump to the dominant
trajectory as long as the time-interval of such domination is large enough.

Theorem 3 (Sufficient conditions for jumping from h1(t) to h2(t)). Suppose that the local
minimum trajectory h2(t) is a (α,w)-dominant trajectory with respect to h1(t) during [t1, t2]
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over the region Dv,ρ,r2. Let e1 ∈ D′v be the initial point of (2.23), and consider ē(t) defined
in (2.28). Assume that U(e, t, α) is non-singular for all t ∈ [t1, t2] and e ∈ Dv,ρ,r2 and there
exists a constant θ ∈ (0,1) such that

t2 − t1 ≥max
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

αρ

(r2 − ρ)θw
,
α ln ( ∥e1−ē(t1)∥

r2−ρ )

(1 − θ)w

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

. (2.30)

Then, the solution of (P-ODE) will (v, r2)-jump from h1(t) to h2(t) over the time interval
[t1, t2].

We also offer an approach based on the time-averaged dynamics over a small time interval
and name it “small interval averaging"2. This technique guarantees that the solution of the
time-varying differential equation (or system) will converge to a residual set of the origin
of (2.24), provided that: (i) there is a time interval [t1, t2] such that the temporal variation
makes the averaged objective function during this interval locally one-point strongly convex
around h2(t) not only just over a neighborhood of h2(t) but also over a neighborhood of
h1(t), (ii) the original time-varying system is not too distant from the time-invariant averaged
system, (iii) [t1, t2] is large enough to allow the transition of points from a neighborhood of
h1(t) to a neighborhood of h2(t). Therefore, the time interval [t1, t2] and the time-averaged
dynamics over this time interval serve as a certificate for jumping from h1(t) to h2(t). In
what follows, we introduce the notion of averaging a time-varying function over a time interval
[t1, t2].

Definition 11. A function Uav(e,α) is said to be the average function of U(e, t, α) over
the time interval [t1, t2] if

Uav(e,α) =
1

t2 − t1
∫

t2

t1
U(e, τ, α)dτ

The averaged system of (2.23) over the time interval [t1, t2] can be written as

ė = −
1
α
Uav(e,α) (2.31)

Then, (2.23) can be regarded as a time-invariant system (2.31) with the time-varying pertur-
bation term p(e(t), t, α) = − 1

α(U(e(t), t, α) −Uav(e(t), α)). For the averaged system, we can
define the on-average region of domination Dv,ρ,r2 for h2(t) with respect to h1(t) similarly as
Definition 9 by replacing (2.28) with

ρ ≥ sup
ē∶∥ē∥<r2,0=Uav(ē,α)

∥ē∥ . (2.32)

2Our averaging approach distinguishes from classic averaging methods [59, 74, 122, 3] and the partial
averaging method [99] in the sense that: (1) it is averaged over a small time interval instead of the entire
time horizon, and (2) there is no two-time-scale behavior because there is no parameter in (2.24) that can be
taken sufficiently small.
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The corresponding on-average (α,w)-dominant trajectory with respect to h1(t) during [t1, t2]
over the region Dv,ρ,r2 can also be defined similarly as Definition 10 by replacing (2.29) with

Uav(e,α)
⊺(e − ē) ≥ w ∥e − ē∥

2
, ∀e ∈Dv,ρ,r2 ∪ (∪[t1,t2]M(t)) (2.33)

where ē is defined in (2.32).

Theorem 4 (Sufficient conditions for jumping from h1(t) to h2(t) using averaging). Suppose
that the local minimum trajectory h2(t) is a on-average (α,w)-dominant trajectory with
respect to h1(t) during [t1, t2] over the region Dv,ρ,r2. Assume that the following conditions
are satisfied:

1. There exist some time-varying scalar functions δ1(α, t) and δ2(α, t) such that

∥p(e(t), t, α)∥ ≤ δ1(α, t) ∥e − ē∥ + δ2(α, t), (2.34)

for all t ∈ [t1, t2], and there exist some positive constants η1(α) and η2(α) such that

∫

t

t1
δ1(α, τ)dτ ≤ η1(α)(t − t1) + η2(α). (2.35)

2. The inequality

β2(α) ∥e1 − ē∥ e
−β1(α)(t2−t1) + β2(α)∫

t2

t1
e−β1(α)(t2−τ)δ2(α, τ)dτ ≤ r2 − ρ,∀e1 ∈D

′
v (2.36)

holds, where β1(α) =
w
α − η1(α) > 0 and β2(α) = eη2(α) ≥ 1.

Then, the solution of (P-ODE) will (v, r2)-jump from h1(t) to h2(t) over the time interval
[t1, t2].

Remark 4. If the global minimum trajectory is the dominant trajectory with respect to the
spurious local minimum trajectories, then Theorems 3 and 4 guarantee that the solution of
(P-ODE) will jump to the neighborhood of the global minimum trajectory.

Remark 5. The condition in Theorem 3 and Condition 2 in Theorem 4 mean that [t1, t2]
needs to be large enough to allow the transition of points from a neighborhood of h1(t) to a
neighborhood of h2(t). Condition 1 in Theorem 4 means that the original time-varying system
should not be too distant from the time-invariant averaged system.

Remark 6. To make the one-point strong monotonicity conditions (2.29) and (2.33) hold,
the inertia parameter α cannot be too small.

Remark 7. The locally one-point strongly convex parameter w in (2.29) and (2.33) determines
the convergence rate during [t1, t2], which is reflected in (2.30) and (2.36).

Remark 8. In Theorem 4, to ensure that the time-invariant partial interval averaged system
is a reasonable approximation of the time-varying system, the time interval [t1, t2] should not
be very large. On the other hand, to guarantee that the solution of (2.23) has enough time to
jump, the time interval [t1, t2] should not be very small. This trade-off is reflected in (2.36).
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Tracking
In this subsection, we study the tracking property of the local minimum trajectory h2(t).
First, notice that if h2(t) is not constant, the right-hand side of (P-ODE) is nonzero while
the left-hand side is zero. Therefore, h2(t) is not a solution of (P-ODE) in general. This
is because the solution of (P-ODE) approximates the continuous limit of a discrete local
trajectory of the sequential regularized optimization problem (2.10). However, to preserve
the optimality of the solution with regards to the original time-varying optimization problem
without any proximal regularization, it is required to guarantee that the solution of (P-ODE)
is close to h2(t).

If the solution of (2.23) can be shown to be in a small residual set around 0 on the
time-varying manifold M(t), then it is guaranteed that x(t, t0, x0) tracks its nearby local
minimum trajectory. Notice that (2.23) can be regarded as a time-varying perturbation of
the system

ė = −
1
α
P(e + h2(t), t)∇xf(e + h2(t), t), ∀t ≥ t0 (2.37)

Since h2(t) is a local minimum trajectory, it is obvious that e(t) ≡ 0 is an equilibrium point of
(2.37). In addition, if the time-varying Lagrange function L(x,λ, t) with λ given in (2.3) is
locally one-point strongly convex with respect to x around h2(t) in the time-varying feasible
set M(t), after noticing the fact that the solution of (2.23) will remain in Mh2(t) if the
initial point e0 ∈ Mh2(t0) from Lemma 3, one would expect that the solution of (2.23) stays
in a small residual set of e = 0 if the perturbation Q(e(t) + h2(t), t)g′(e(t) + h2(t), t) + ḣ2(t)
is relatively small. The perturbation Q(e(t) +h2(t), t)g′(e(t) +h2(t), t) + ḣ2(t) being small is
equivalent to α being small. The next theorem shows that every local minimum trajectory
can be tracked for a relatively small α.

Theorem 5 (Sufficient condition for tracking). Assume that the time-varying Lagrange
function L(x,λ, t) with λ given in (2.3) is locally (c2, r2)-one-point strongly convex with
respect to x around h2(t). Given γ(t) such that ∥ḣ2(t)∥ ≤ γ(t), suppose that there exist
time-varying scalar functions δ1(t) and δ2(t) such that the perturbed gradient due to the
time-variation of constraints satisfies the inequality

∥Q(e(t) + h2(t), t)g
′(e(t) + h2(t), t)∥ ≤ δ1(t) ∥e∥ + δ2(t), (2.38)

and there exist some positive constants η1 and η2 such that

∫

t

t1
δ1(τ)dτ ≤ η1(t − t1) + η2. (2.39)

If supt≥t1(δ2(t) + γ(t)) is bounded and the following conditions hold

∥x0 − h2(0)∥ ≤
r2

eη2
, (2.40a)

α ≤
c2r2

eη2 supt≥t1(δ2(t) + γ(t)) + η1r2
, (2.40b)
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then the solution x(t, t0, x0) will r2-track h2(t). More specifically, we have

∥x(t, t0, x0) − h2(t)∥ ≤ e
η2 ∥e1∥ e

−( c2
α
−η1)(t−t1) + eη2

∫

t

t1
e−(

c2
α
−η1)(t−τ)(δ2(t) + γ(t))dτ ≤ r2.

(2.41)

Remark 9. The inequality (2.41) implies that the smaller the regularization parameter α is,
the smaller the tracking error x(t, t0, x0) − h2(t) is and the faster x(t, t0, x0) converges to the
neighbourhood of h2(t).

Remark 10. In the case that the local minimum trajectory h2(t) is a constant, the upper
bound on α simply becomes α < ∞. This implies that if h2(t) is constant, then it will be
perfectly tracked with any regularization parameter and can not be escaped by tuning the
regularization parameter.

Remark 11. In the unconstrained case or the case with the time-invariant constraints,
δ1(t) and δ2(t) in (2.38) simply become zero. Then, the tracking conditions in (2.40) become
∥x0 − h2(0)∥ ≤ r2 and α ≤ c2r2

supt≥t0 γ(t) , and the tracking error bound in (2.41) becomes

∥e(t)∥ ≤ ∥e1∥ e
− c2

α
(t−t1) + ∫

t

t1
e−

c2
α
(t−τ)γ(t)dτ ≤

α supt≥t1 γ(t)

c2

Remark 12. After the solution of (P-ODE) has escaped the spurious local trajectories and
started tracking the globally minimum trajectory, one may use the state-of-the-art tracking
methods in [121] and [130] to improve the tracking of the globally minimum trajectory.

Escaping
Combining the results of jumping and tracking immediately yields a sufficient condition on
escaping from one local minimum trajectory to a more desirable local (or global) minimum
trajectory. The proof is omitted for brevity.

Theorem 6 (Sufficient conditions for escaping from h1(t) to h2(t)). Given two local minimum
trajectories h1(t) and h2(t), suppose that the Lagrange function L(x,λ, t) with λ given in (2.3)
is locally (c2, r2)-one-point strongly convex with respect to x around h2(t) in the time-varying
feasible set {e ∈ Rn ∶ e + h2(t) ∈ M(t), ∥e∥ ≤ r2} and let Bv(h1(t1)) ⊆ RAM(t1)(h1(t1)). Under
the conditions of Theorem 3 or 4, if (2.38)-(2.40) hold, then the solution of (P-ODE) will
(v, r2)-escape from h1(t) to h2(t) after t ≥ t2.

Discussions
Adaptive inertia: To leverage the potential of the time-varying perturbation αQ(e(t) +
h2(t), t)g′(e(t) + h2(t), t) + αḣ2(t) in re-shaping the landscape of the Langrange function or
the objective function to become locally one-point strongly convex in x over a large region,
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the regularization parameter α should be selected relatively large. On the other hand, to
ensure that the solution of (2.23) and (2.25) will end up tracking a desirable local (or global)
minimum trajectory, Theorem 5 prescribes small values for α. In practice, especially when
the time-varying objective function has many spurious shallow minimum trajectories, this
suggests using a relatively large regularization parameter α at the beginning of the time
horizon to escape spurious shallow minimum trajectories and then switching to a relative
small regularization parameter α for reducing the ultimate tracking error bound.
Sequential jumping: When the time-varying optimization problem has many local minimum
trajectories, the solution of (P-ODE) or (ODE) may sequentially jump from one local
minimum trajectory to a better local minimum trajectory. To illustrate this concept, consider
the local minimum trajectories h1(t), h2(t), ..., hm(t), where hm(t) is a global trajectory.
Assume that there exists a sequence of time intervals [ti1, ti2] for i = 1,2, . . . ,m − 1 such that
the conditions of Theorem 3 or 4 are satisfied for hi(t) and hi+1(t) during each time interval.
Then, by sequentially deploying Theorem 3 or 4, it can be concluded that the solution of
(P-ODE) or (ODE) will jump from h1(t) to hm(t) after t ≥ tm2 . Furthermore, if hm(t) can be
tracked with the given α, the solution of (P-ODE) or (ODE) will escape from h1(t) to hm(t)
after t ≥ tm2 .

2.5 Numerical Examples
Example 3. Consider the non-convex function

f̄(x) =0.5e + 20e−d − 20e−
√

0.5(x2
1+x2

2)+d2
− 0.5e(0.5(cos(2πx1)+cos(2πx2))).

This function has a global minimum at (0,0) with the optimal value 0 and many spurious
local minima. Its landscape is shown in Figure 2.7. When d = 0, this function is called the
Ackley function [2], which is a benchmark function for global optimization algorithms. To
make this function twice continuously differentiable, we choose d = 0.01.

Consider the time-varying objective function f(x, t) = f̄(x − z(t)) and the time-varying
constraint g(x, t) = (x1 − z1(t)) − 1/2(x2 − z2(t))2 = 0, where z(t) = [24 sin(t), cos(t)]⊺. This
constrained time-varying optimization problem has the global minimum trajectory [0, 0]⊺+z(t)
and many spurious local minimum trajectories. Two local minimum trajectories are h1(t) =
[1.92,1.96]⊺ + z(t) and h2(t) = [0,0]⊺ + z(t). It can be shown that L(x,λ, t) is locally
(20,0.5)-one-point strongly convex with respect to h2(t).

We take Dv,ρ,r2 =D0.04,0.01,1 = [−0.1, 2] × [−0.1, 2] in Definition 10. The condition in (2.26)
can be verified by checking the signs of the derivatives of e1(t) and e2(t) along the dynamics
(2.23) on the boundary points of D0.04,0.01,1 ∩Mh2(t). Furthermore, (2.33) is satisfied for
w = 1. Thus, h2(t) is a (0.2,1)-dominant trajectory with respect to h1(t) during [0, π

8 ] over
the region D0.04,0.01,1.

Regarding Theorem 3, if we select θ = 0.2, the inequality (2.36) is satisfied for α = 0.2
and t2 − t1 = π/8. Thus, the solution of (P-ODE) will (0.04,0.5)-jump from h1(t) to h2(t).
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Figure 2.7: Illustration of Example 3.

Regarding Theorem 5, δ1 and δ2 in the inequality (2.38) can be taken as 0 and 24
√

2 cos(t) +√
2 sin(t), respectively. Then the inequality (2.40b) reduces to α ≤ 10√

2(242+1) ≈ 0.29, which is
satisfied by α = 0.2. Thus, the solution of (P-ODE) will 0.5-track h2(t). Putting the above
findings together, we can conclude that the solution of (2.23) will (0.04,0.5)-escape from
h1(t) to h2(t).

In addition, by choosing the inertia parameter α = 0.2, the simulation shows that for 1000
runs of random initialization with x2(0) − z(0) ∈ [−5, 5] and x1(0) determined by the equality
constraint, all solutions of the corresponding (P-ODE) will sequentially jump over the local
minimum trajectories and end up tracking the global trajectory after t ≥ 5π.
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Appendix

2.A Omitted proofs of Section 2.2

Proof of Lemma 1
Proof. Under Assumptions 1-4, one can apply the inverse function theorem to (2.2) (see
[113, Theorem 4.4, Example 4.7]) to conclude that for every h(t̄) and t̄, there exist an open
set Sh(t̄) containing h(t̄) and an open set St̄ containing t̄ such that there exist a unique
differentiable function x(t) in Sh(t̄) for all t ∈ St̄ where x(t) is the isolated local minimizer
of the time-varying optimization problem (2.1). Because of this uniqueness property and
the continuity of the local minimum trajectory h(t), x(t) must coincide with h(t) for all
t ∈ St̄. Then, because the above property holds uniformly for every t ∈ [0,∞), h(t) must be a
differentiable isolated minimum trajectory.

Proof of Lemma 2
Proof. Due to the second-order sufficient conditions for the equality constrained minimiza-
tion problem, ∇2

xxL(h(t), λ(h(t), t), t) is positive definite on T t
h(t) for all t ∈ [0,∞), mean-

ing that for every nonzero vector y ∈ T t
h(t), there exists a positive constant c̄ such that

y∇2
xxL(h(t), λ, t)y > c̄ ∥y∥

2. Since P(h(t), t) is the orthogonal projection matrix onto the
tangent plane T t

h(t), we have y∇2
xxL(h(t), λ(h(t), t), t)P(h(t), t)y > c̄ ∥y∥

2 for all y ∈ T t
h(t) and

y ≠ 0, and y∇2
xxL(h(t), λ(h(t), t), t) P(h(t), t)y = 0 for all y ∉ T t

h(t). Taking the first-order
Taylor expansion of ∇xL(x,λ(x, t), t) with respect to x around h(t) and using the following
result from [84, Corollary 1]:

∂

∂x
∇xL(x,λ(x, t), t)∣x=h(t) =∇

2
xxL(h(t), λ(h(t), t), t)P(h(t), t),

it yields that

e(t)⊺∇xL(e(t) + h(t), λ, t) = e(t)
⊺∇xL(h(t), λ, t) + e(t)

⊺∇2
xxL(h(t), λ, t)P(h(t), t)e(t) + o(e(t)

3)

= e(t)⊺∇2
xxL(h(t), λ, t)P(h(t), t)e(t) + o(e(t)

3)

From Lemma 6 in the online report [36], we know that ∇2
xxL(x,λ, t)P(x, t) is continuous in

x and t. In addition, g(x, t) is also continuous in x and t. As a result, there exist positive
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constants r̂ and ĉ such that

e(t)⊺∇xL(e(t) + h(t), λ, t) ≥ ĉ ∥e(t)∥
2

for all e(t) ∈ {e + h(t) ∈ M(t) ∶ ∥e∥ ≤ r̂}

Proof of Lemma 3
Proof. On examining the evolution of g(x(t), t) along the flow of the system (P-ODE), we
obtain

ġ(x(t), t) = Jg(x(t), t)ẋ(t) + g
′(x(t), t) = 0

Hence, g(x(t0), t0) = g(x(t, t0, x0), t) for all t ≥ t0.

Proof of Theorem 1
Proof. Since h(t) is differentiable by Lemma 1, we can use the change of variables e(t) =
x(t) − h(t) to rewrite (P-ODE) as:

ė(t) = −
1
α
P(e(t) + h(t), t)∇xf(e(t) + h(t), t) −Q(e(t) + h(t), t)g

′(e(t) + h(t), t) − ḣ(t)

(2.42)

In light of the conditions in Theorem 1, the solution of (2.42) stays in a compact set. Then, by
Lemma 3 and [74, Theorem 3.3], the equation (2.42) has a unique solution. Thus, (P-ODE)
must also have a unique solution.

Proof of Theorem 2
Proof. The first part follows from Theorem 2 in [42]. For the second part, a direct application
of the classical results on convergence of the forward Euler method [66] immediately shows
that the solution of (P-ODE) starting at a local minimum of (2.10a) is the continuous limit
of the discrete local trajectory of the sequential regularized optimization (2.10).

2.B Omitted proofs of Section 2.3

Proof of Lemma 4
Proof. Let b(t0) be the unit vector − ḣ1(t0)

∥ḣ1(t0)∥
. One can write

−ḣ1(t)
⊺b(t0) ≥ −ḣ1(t0)

⊺b(t0) −L∣t − t0∣ ≥ ϵ −Lδ ∶= ϵ
′
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For any t ∈ [t0, t0 + δ] and e(t) ∈ RAM(t)(h1(t)), we have

(ẋ(t) − ḣ1(t))
⊺b(t0) = −

1
α
∇xL(x, λ̄, t)

⊺b(t0) − ḣ1(t)
⊺b(t0)

≥ϵ′ − ∥
1
α
∇xL(x, λ̄, t)∥ ≥ ϵ

′ −E

Hence,

r ≥∥x(t0 + δ) − h1(t0 + δ)∥

≥(x(t0 + δ) − h1(t0 + δ))
⊺b(t0)

≥(x(t0) − h1(t0))
⊺b(t0) + ∫

t0+δ

t0
(ϵ′ −E)dt

≥ − r + (ϵ′ −E)δ

The above contradiction completes the proof.

Proof of Lemma 5
Proof. Recall that P(x, t) is the orthogonal projection matrix on the tangent plane of
g(x(t), t) at the point x(t) after the freezing time t. Thus, we have P(x, t)∇xf(x, t) ∈ T t

x.
For the vector Q(x, t)g′(x, t), it can be shown that

P(x, t)Q(x, t)g′(x, t) = 0

This implies that the orthogonal projection of the vector Q(x, t)g′(x, t) onto the tangent
plane T t

x is 0. Thus, Q(x, t)g′(x, t) must be orthogonal to T t
x.

2.C Omitted proofs of Section 2.4

Proof of Theorem 3
Proof. First, notice that if U(e, t, α) is uniformly non-singular for all t ∈ [t1, t2] and e ∈Dv,ρ,r2 ,
then ē(t) defined in (2.28) is continuously differentiable for t ∈ [t1, t2]. Then, notice that
every solution of (2.23) with an initial point in Dv,ρ,r2 ∩M(t1) will remain in Dv,ρ,r2 . It
follows from Theorem 1 that (2.23) has a unique solution defined for all t ∈ [t1, t2] whenever
e1 ∈Dv,ρ,r2 ∩M(t1).

We take V (e(t), t) = 1
2 ∥e(t) − ē(t)∥

2 as the Lyapunov function for the system (2.23).
Because of Lemma 3, any solution of (2.23) stating in M(t1) will remain in M(t) for all
t ≥ t1. Therefore, the derivative of V (e(t), t) along the trajectories of (2.23) in M(t) can be
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expressed as

V̇ =(e(t) − ē(t))⊺( −
1
α
U(e(t), t, α)) − (e(t) − ē(t))⊺ ˙̄e(t), ∀e(t) ∈Dv,ρ,r2 ∩M

h2(t)

≤ −
w

α
∥e(t) − ē(t)∥

2
+ ∥ ˙̄e(t)∥ ∥e(t) − ē(t)∥ , ∀e(t) ∈Dv,ρ,r2 ∩M

h2(t)

≤ − (1 − θ)w
α
∥e(t) − ē(t)∥

2
− θ

w

α
∥e(t) − ē(t)∥

2
+ δ ∥e(t) − ē(t)∥ , ∀e(t) ∈Dv,ρ,r2 ∩M

h2(t)

≤ − (1 − θ)w
α
∥e(t) − ē(t)∥

2
, ∀e(t) ∈ {e(t) ∈Dv,ρ,r2 ∩M

h2(t) ∶ ∥e(t) − ē(t)∥ ≥
αδ

θw
} (2.43)

where δ ∶= supt∈[t1,t2] ∥
˙̄e(t)∥. By taking e1 ∈ D′v ∩M(t1), since Dv,ρ,r2 satisfies the condition

(2.26), the solution of (2.23) starting from e1 will stay in Dv,ρ,r2 . Thus, the bound in (2.43)
is valid. To ensure that the trajectory of (2.23) enters the time-varying set Br2−ρ(ē(t)), it is
sufficient to have αδ

θw ≤ r2 −ρ or α ≤ (r2−ρ)θw
δ . Since δ = supt∈[t1,t2] ∥

˙̄e(t)∥ ≥ ρ
t2−t1

. We can further
bound α as α ≤ (r2−ρ)θw(t2−t1)

ρ which is equivalent to t2 − t1 ≥ αρ
(r2−ρ)θw .

Now, it is desirable to show that if the time interval [t1, t2] is large enough, the solution
of (2.23a) will enter the time-varying set Br2−ρ(ē(t)) with an exponential convergence rate.
Since V̇ (⋅, ⋅) is negative in Γ(t) ∶= {e ∈Dv,ρ,r2 ∩M

h2(t) ∶ ∥e − ē(t)∥ ≥ αδ
θw} and because of (2.26),

a trajectory starting from Γ(t1) must stay in Dv,ρ,r2 and move in a direction of decreasing
V (e, t). The function V (e, t) will continue decreasing until the trajectory enters the set
{e ∈Dv,ρ,r2 ∩M

h2(t) ∶ ∥e − ē(t)∥ ≤ αδ
θw} or until time t2. Let us show that the trajectory enters

Br2−ρ(ē(t)) before t2 if t2 − t1 > α
w(1−θ) ln( ∥e1−ē(t1)∥

r2−ρ ). Since V (e(t), t) = 1
2 ∥e(t) − ē(t)∥

2, (2.43)
can be written as

V̇ (e(t), t) ≤ −(1 − θ)2w
α
V (e(t), t), ∀e ∈ {e ∈Dv,ρ,r2 ∩M

h2(t) ∶ ∥e(t) − ē(t)∥ ≥
αδ

θw
}},

By the comparison lemma[74, Lemma 3.4],

V (e(t), t) ≤ exp{ − (1 − θ)2w
α
(t − t1)}V (e1, t1)

Hence,

∥e(t) − ē(t)∥ ≤ exp{ − (1 − θ)w
α
(t − t1)} ∥e1 − ē(t1)∥ .

The inequality ∥e(t2) − ē(t2)∥ ≤ r2 − ρ holds if t2 − t1 ≥ α
w(1−θ) ln( ∥e1−ē(t1)∥

r2−ρ ).

Proof of Theorem 4
Proof. Due to the space restriction, we move the proof to the online report [36].
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Proof of Theorem 5
Proof. Consider V (e) = 1

2 ∥e∥
2
∶ Br2(0) → R as the Lyapunov function for the system (2.23).

Because of Lemma 3, any solution of (2.23) stating in M(t1) will remain in M(t) for all
t ≥ t1. The derivative of V (e) along the trajectories of (2.23) can be obtained as

V̇ = e(t)⊺( −
1
α
P(e(t) + h2(t), t)∇xf(e(t) + h2(t), t)

−Q(e(t) + h2(t), t)g
′(t)(e(t) + h2(t), t) − ḣ

g
2(t)),

≤ −
c

α
∥e(t)∥

2
+ δ1(t) ∥e(t)∥

2
+ (δ2(t) + γ(t)) ∥e(t)∥

Since V (e) = 1
2 ∥e∥

2, one can derive an upper bound on V̇ as

V̇ ≤ −[
2c
α
− 2δ1(t)]V + (δ2(t) + γ(t))

√
2V

Using the same proof procedure as in Theorem 4 of the online report [36] and by taking
β1(α) =

c
α − η1 > 0 and β2 = eη2 ≥ 1, it can be shown that

∥e(t)∥ ≤ β2 ∥e1∥ e
−β1(α)(t−t1) + β2∫

t

t1
e−β1(α)(t−τ)(δ2(t) + γ(t))dτ (2.44)

To make the bound in (2.44) valid, we must ensure that e(t) ∈ Br2(0) for all t ≥ t1. Note that

∥e(t)∥ ≤β2 ∥e1∥ e
−β1(α)(t−t1) +

β2

β1(α)
(1 − e−β1(α)(t−τ)) sup

t≥t0
(δ2(t) + γ(t))

≤max {β2 ∥e1∥ ,
β2

β1(α)
sup
t≥t0
(δ2(t) + γ(t))}

It can be verified that the condition e(t) ∈ Br2(0) will be satisfied if (2.40) holds. Furthermore,
by e(t) ∈ Br2(0) and Theorem 1, there must exist a unique solution for (P-ODE) for all
t ≥ t1.
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Chapter 3

Non-Stationary Constrained MDPs

Safe reinforcement learning (RL) studies how an agent learns to maximize its expected
total reward by interacting with an unknown environment over time while dealing with
restrictions/constraints arising from real-world problems [6, 40, 52]. A standard approach
for modeling the safe RL is based on Constrained Markov Decision Processes (CMDPs) [5],
where one seeks to maximize the expected total reward under a safety-related constraint on
the expected total utility.

While classical safe RL and CMDPs assume that an agent interacts with a time-invariant
(stationary) environment, both the reward/utility functions and transition kernels can be
time-varying for many real-world safety-critical applications. For example, in autonomous
driving [103] or power grid control [37], it is essential to guarantee safety, such as collision-
avoidance and contingency, while handling time-varying conditions related to traffic and
load demands. Similarly, in most safety-critical human-computer interaction applications,
e.g., automated medical care, human behavior changes over time. In such scenarios, if the
automated system is not adapted to take such changes into account, then the system could
quickly violate the safety constraint and incur a severe loss [26, 92]. Despite the importance
of non-stationary safe RL problems, the literature lacks provably efficient algorithms and
theoretical results.

In this work, we formulate a general non-stationary safe exploration problem as an episodic
CMDP in which the transition model is unknown and non-stationary, the reward/utility
feedback after each episode is bandit and non-stationary, and the variation budget is known.
The goal is to design an algorithm that can perform a non-stationary safe exploration, that
is, to adaptively explore the unknown and time-varying environment and learn to satisfy
time-varying constraints in the long run.

The safe exploration in non-stationary CMDPs is more challenging since the utilities and
dynamics are time-varying and unknown a priori. Thus, it is difficult/impossible to guarantee
a small/zero constraint violation without knowing how CMDPs will change. Previous
constraint violation analyses [34, 83] strongly rely on the conditions of having the same
transition dynamics and rewards over all episodes, which are not applicable to non-stationary
CMDPs. In view of the aforementioned challenges, we propose a new primal-dual method
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and develop novel techniques to decouple the optimality gap and the constraint violation.

3.1 Related Work
Non-stationary RL. Non-stationary RL has been mostly studied in the unconstrained
setting [67, 7, 95, 38, 86, 134, 123, 46, 132, 27, 124]. Our work is related to policy-based
methods for non-stationary RL since the optimal solution of CMDP is usually a stochastic
policy [5] and thus a policy-based method is preferred. When the variation budget is known
a prior, [46] propose the first policy-based method for non-stationary RL, but they assume
stationary transitions and adversarial full-information rewards in the tabular setting. [132]
extends the above results to a more general setting where both the transitions and rewards
can vary over episodes. To eliminate the assumption of having prior knowledge on variation
budgets, [124] recently outline that an adaptive restart approach can be used to convert
any upper-confidence-bound-type stationary RL algorithm to a dynamic-regret-minimizing
algorithm. Beyond the non-stationary unconstrained RL, [100] consider the online CMDPs
where the reward is adversarial but the transition model is fixed and the constraints are
stochastic over episodes. In summary, the above papers only consider the non-stationarity in
the objective and may not work for the more general safe RL problems where there is also
time-varying constraints.

CMDP. The study of RL algorithms for CMDPs has received considerable attention
due to the safety requirement [5, 98, 129, 40, 52, 56, 55]. Our work is closely related to
Lagrangian-based CMDP algorithms with optimistic policy evaluations [41, 112, 34, 83, 100].
In particular, [41, 112] leverage upper confidence bound (UCB) bonus on fixed reward/utility
and transition probability to propose sample efficient algorithms for tabular CMDPs. [34]
generalize the above results to the linear kernel CMDPs. Under some mild conditions and
additional computation cost, [83] propose two algorithms to learn policies with a zero or
bounded constraint violation for CMDPs. Beyond the stationary CMDP, [100] consider the
online CMDPs where only the rewards in objective can vary over episodes. In contrast,
our work focuses on a more general and realistic safe RL setting where the dynamics and
rewards/utilities can all change over episodes, and thus we significantly extend the existing
results.

3.2 Problem formulation
Model. In this chapter, we study safe RL in non-stationary environments via episodic
CMDPs with adversarial bandit-information reward/utility feedback and unknown adversarial
transition kernels. At each episode m, a CMDP is defined by the state space S, the action
space A, the fixed length of each episode H, a collection of transition probability measure
{Pm

h }
H
h=1, a collection of reward functions {rm

h }
H
h=1, a collection of utility functions {gm

h }
H
h=1

and the constraint offset bm. We assume that S is a measurable space with a possibly infinite



CHAPTER 3. NON-STATIONARY CONSTRAINED MDPS 40

number of elements, and that A is a finite set. In addition, we assume rm
h ∶ S × A → [0,1]

and gm
h ∶ S × A → [0,1] are deterministic reward and utility functions. Our analysis readily

generalizes to the setting where the reward/utility functions are random. In this chapter,
we focus on a bandit setting where the agent only observes the values of reward and utility
functions, rm

h (x
m
h , a

m
h ) and gm

h (x
m
h , a

m
h ) at the visited state-action pair (xm

h , a
m
h ). To avoid

triviality, we take bm ∈ (0,H] and assume that it is known to the agent.
Let the policy space ∆(A∣S,H) be {{πh(⋅∣⋅)}

H
h=1 ∶ πh(⋅∣s) ∈∆(A),∀x ∈ S, h ∈ [H]}, where

∆(A) denotes a probability simplex over the action space. Let πm ∈∆(A∣S,H) be a policy
taken by the agent at episode m, where πm

h (⋅∣x
m
h ) ∶ S → A is the action that the agent takes at

state xm
h . For simplicity, we assume the initial state xm

1 to be fixed as x1 in different episodes.
The episode terminates at state xm

H in which no control action is needed and both reward
and utility functions are equal to zero.

Given a policy π ∈ ∆(A∣S,H) and the episode m, the value function V π,m
r,h associated

with the reward function r at step h in episode m is the expected value of the total reward,
V π,m

r,h (x) = Eπ,Pm [∑
H
i=h r

m
i (xi, ai)∣xh = x], for all x ∈ S and h ∈ [H], where the expectation

Eπ,Pm is taken over the random state-action sequence {(xm
i , a

m
i )}

H
i=h, the action am

h follows
the policy πm

h (⋅∣x
m
h ), and the next state xh+1 follows the transition dynamics Pm

h (⋅∣x
m
h , a

m
h ).

The action-value function is defined asQπ,m
r,h (x, a) = Eπ,Pm [∑

H
i=h r

m
i (x

m
i , a

m
i )∣x

m
h = x, a

m
h = a],

for all x ∈ S, a ∈ A and h ∈ [H]. Similarly, we define the value function V π,m
g,h ∶ S → R and

the action-value function Qπ,m
g,h ∶ S × A → R associated with the utility function g. For

brevity, we use the symbol ◇ to denote r or g. and take the shorthand Pm
h V

π,m
◇,h (x, a) ∶=

Ex′∼Pm
h
(⋅∣x,a) [V

π,m
◇,h+1(x

′)]. The Bellman equation associated with a policy π is given by

Qπ,m
◇,h (x, a) = (◇

m
h + Pm

h V
π,m
◇,h+1)(x, a), (3.1a)

V π,m
◇,h (x) = ⟨Q

π,m
◇,h (x, ⋅), πh(⋅∣x)⟩A , (3.1b)

for all (x, a) ∈ S × A, where ⟨⋅, ⋅⟩A denotes the inner product over A and we will omit the
subscript A in the sequel when it is clear from the context.

Constrained MDP. In constrained MDPs, the agent aims to approximate the optimal
non-stationary policy by interacting with the environment. In each episode m, the agent
aims to maximize the expected total reward while satisfying the constraints on the expected
total utility

max
π∈∆(A∣S,H)

V π,m
r,1 subject to V π,m

g,1 ≥ bm (3.2)

for all m = 1, 2, . . ., where the reward/utility functions and the transition kernels are potentially
different across the episodes. The associated Lagrangian of problem (3.2) is given by

Lm(π,µ) ∶= V π,m
r,1 + µ (V

π,m
g,1 − bm) (3.3)

where the policy π is the primal variable and µ ≥ 0 is the dual variable. We can reformulate
the constrained optimization problem (3.2) as the saddle-point problem

max
π∈∆(A∣S,H)

min
µ≥0
Lm(π,µ).
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Let Dm(Y ) ∶= maximize πL
m(π,µ) be the dual function, µ⋆,m ∶= argminµ≥0D

m(µ) be an
optimal dual variable and π⋆,m be a globally optimal solution of (3.2) at episode m. Unlike
the unconstrained MDP, the optimal solution of CMDP is usually a stochastic policy and the
best deterministic policy can lose as much as the difference between the respective values of
the best and the worst policies [5]. As a consequence, RL methods that implicitly rely on
the existence of a deterministic optimal policy (e.g., Q learning) may not be suitable for this
type of problem. This further inspires the study of randomized policies and take on a policy
gradient approach for non-stationary CMDP.

Performance metrics. Suppose that the agent executes policy πm in episode m. We
now define the dynamic regret and the constraint violation in the long run as:

DR(M) ∶=
M

∑
m=1
(V π⋆,m,m

r,1 − V πm,m
r,1 ) , (3.4)

CV(M) ∶= [
M

∑
m=1
(bm − V

πm,m
g,1 )]

+
. (3.5)

There are two main reasons for considering the constraint violation in the long run. Firstly,
in many applications such as supply chain and energy systems, the requirements of balancing
the time-varying and unknown demands with the supply are formulated as some time-varying
constraints. As long as the supply and the demand can be balanced in the long run, the
policy is considered safe. Secondly, since the utility function gm

h is unknown a priori and
time-varying, the constraint V π,m

g,1 ≥ bm may not be satisfied in every episode m. Rather, the
agent strives to satisfy the constraints in the long run. In other words, the agent aims to
ensure the long-term constraint ∑M

m=1(V
π,m

g,1 − bm) ≥ 0 over some given period of episodes M .
Linear function approximation We focus on a class of CMDPs, where transition

kernels and reward/utility functions are linear in feature maps.

Assumption 5 (Linear Kernel CMDP). For every m ∈ [M], the CMDP(S,A,H,Pm, rm, gm)

satisfies the following conditions: (1) there exist a kernel feature map ψ ∶ S ×A×S → Rd1 and
a vector θm

h ∈ Rd1 with ∥θm
h ∥2 ≤

√
d1 such that

Pm
h (x

′ ∣ x, a) = ⟨ψ(x, a, x′), θm
h ⟩

for all (x, a, x′) ∈ S × A × S and h ∈ [H]; (2) there exist a feature map φ ∶ S × A → Rd2 and
vectors θm

r,h, θ
m
g,h ∈ Rd2 such that

rm
h (x, a) = ⟨φ(x, a), θ

m
r,h⟩ and gm

h (x, a) = ⟨φ(x, a), θ
m
g,h⟩

for all (x, a) ∈ S ×A and h ∈ [H], where max (∥θm
r,h∥2

, ∥θm
g,h∥2
) ≤
√
d2; (3) for every function

V ∶ S → [0,H], ∥∫S ψ(x, a, x′)V (x′)dx′∥ ≤
√
d1H for all (x, a) ∈ S ×A and max(d1, d2) ≤ d.

This assumption adapts the definition of linear kernel MDP [8, 21, 133] to CMDP and
has also been used in [34] for stationary constrained MDP problems. Some examples of linear
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kernel MDPs include tabular MDPs [133], feature embedded transition models [126], and
linear combinations of base models [90]. The linear kernal MDP defined in Assumption 5 is
different from linear MDP [127, 70] since they define transition dynamics using the different
feature maps, although both of them encapsulate the tabular MDP as the special case. They
are not comparable since one cannot be implied by the other [133].

Variation budget. Note that Pm
h and rm

h , g
m
h are determined by the unknown measures

{θm
h }h∈[H],m∈[M] and the latent vectors {θm

◇,h}h∈[H],m∈[M] for ◇ = r or g which can vary across
the indexes (m,h) ∈ [M] × [H] in general. We measure the non-stationarity of the CMDP in
terms of its variation in θm

h , θ
m
r,h and θm

g,h:

BP ∶= ∑
M
m=2∑

H
h=1 ∥θ

m
h − θ

m−1
h ∥2 , (3.6a)

B◇ ∶= ∑
M
m=2∑

H
h=1 ∥θ

m
◇,h − θ

m−1
◇,h ∥2 , for ◇ = r or g, (3.6b)

and denote B∆ = BP +Br +Bg. Note that our definition of variation only imposes restrictions
on the summation of non-stationarity across two different episodes, and it does not put any
restriction on the difference between two consecutive steps in the same episode. In addition
to the variations defined above, we introduce the total variation in the optimal policies of
adjacent episodes:

B⋆ ∶=
M

∑
m=2

H

∑
h=1

max
x∈S
∥π⋆,mh (⋅ ∣ x) − π

⋆,m−1
h (⋅ ∣ x)∥1 . (3.7)

The notion of B⋆ is also used for online convex optimization with a dynamic regret criterion
[14, 60, 61, 24] and for policy-based methods in non-stationary unconstrained MDPs [46,
132]. It is worth noting that the variations (BP,B◇) and B⋆ do not imply each other.

A special but important example of the non-stationarity is the system with piece-wise
constant dynamics and rewards/utilities where the number of switches is S. In this case, all
variation budgets (BP,B◇) and B⋆ can be upper bounded by O(SH). As one of the first
works to investigate the non-stationary CMDP, we assume that we have access to quantities
B∆ and B⋆ or some upper bounds on them via an oracle.

3.3 Assumptions on Time-Varying Constraints
In this chapter, we consider two scenarios for the non-stationary CMDPs, each requiring
some specific knowledge to enable safe exploration under the non-stationarity.

The first scenario assumes the knowledge of local variation budgets of constraints. We
first define local variation budgets of constraints. To adapt the non-stationarity, the restart
estimation of the value function is used, which breaks the M episodes into ⌈ML ⌉ epochs. For
every E ∈ [⌈ML ⌉], define Bg,E and BP,E to be the local variation budgets of the utility function
and transitions within epoch E . By definition, we have ∑⌈

M
L
⌉

E=1 Bg,E ≤ Bg and ∑⌈
M
L
⌉

E=1 BP,E ≤ BP.
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Assumption 6 (Local variation budgets of constraints). We have access to the local variation
budget Bg,E and BP,E for every E ∈ [⌈ML ⌉], and also the constrained optimization problems
given in (3.2) are uniformly feasible.

The second scenario extends the strict feasibility (also known as Slater condition) for
problem (3.2) to non-stationary constrained optimization problems.

Assumption 7 (Uniformly strict feasibility). We have access to a sequence of constraint
thresholds {bm}

M
m=1 and a constant γ such that the constrained optimization problems in (3.2)

are γ−uniformly strictly feasible, i.e., there exist γ > 0 and π̄m ∈ ∆(A ∣ S,H) such that
V π̄m,m

g,1 (x1) ≥ bm + γ for all m = 1, . . . ,M .

Under this assumption, one can establish the strong duality and the boundedness of the
optimal dual variable.

Lemma 6 (Lemma 1 in [34]). Under Assumption 7, it holds that V π⋆,m,m
r,1 (x1) = Dm (µ⋆,m)

and 0 ≤ µ⋆,m ≤H/γ for all m = 1, . . . ,M .

Remark 13. We require either Assumption 6 or Assumption (7), and both of them need not
hold simultaneously. Assumption 6 requires the local variation budgets of constraints, but
does not enforce every instance problem (3.2) to be strictly feasible. It is suitable for the case
with a forecasting oracle for the constraints. For example, in supply chain or energy systems,
the supply is desired to match the time-varying and unknown demands where a forecasting
oracle for the demands is usually available. In addition, it is also suitable for the case with
only non-stationary rewards such as collision avoidance in a maze with a moving target. On
the other hand, Assumption 7 needs the knowledge of strict feasible constraint thresholds, but
does not require the local variation budgets of constraints. It is suitable for the case with a
relatively large feasibility threshold γ.

3.4 Safe Exploration under The Non-Stationarity
In Algorithm 1, we develop a new efficient method named Periodically Restarted Optimistic
Primal-Dual Proximal Policy Optimization (PROPD-PPO) algorithm. In each episode, our
algorithm consists of three main stages: periodically restarted policy improvement, dual
update, and periodically restarted policy evaluation. We first present the high-level idea
behind our method.

High-Level Idea
Safe exploration in non-stationary CMDPs is more challenging in that we need to reduce
the constraint violation even when the constraints vary over the episodes. To overcome this
issue, we develop our method based on some assumed knowledge on the constraints. Under
Assumption 6, since the optimal dual variables may not be well-bounded, we need to add a
dual regularization to stabilize the dual updates and fully utilize the convexity of the dual
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Algorithm 1 Periodically Restarted Optimistic Primal-Dual Proximal Policy Optimization
1: Inputs: Time horizon M , restart period W,L, {Q0

r,h,Q
0
g,h}

H
h=1 and V 0

g,1 being zero func-
tions, initial policy {π0

h}h∈[H] being uniform distributions on A, initial dual variable µ0 = 0,
dual regularization parameter ξ, learning rates α, η > 0, χ.

2: for m = 1, . . . ,M do
3: Set the initial state xm

1 = x1, ℓm
π = (⌈

m
L ⌉ − 1)L + 1, ℓm

Q = (⌈
m
W ⌉ − 1)W + 1.

4: if m = ℓm
π then

5: Set {Qm−1
r,h ,Qm−1

g,h }
H
h=1 as zero functions and set {πm−1

h }H
h=1 as uniform distributions on

A.
6: end if
7: for h = 1,2, . . . ,H do
8: Update the policy πm

h (⋅ ∣ ⋅) ∝ πm−1
h (⋅ ∣ ⋅) exp (α (Qm−1

r,h + µ
m−1Qm−1

g,h ) (⋅, ⋅)).
9: Take an action am

h ∼ π
m
h (⋅ ∣ x

m
h ) and receive reward/utility rh(xm

h , a
m
h ), gh(xm

h , a
m
h ).

10: Observe the next state xm
h+1.

11: end for
12: Update the dual variable by µm = Proj[0,χ] (µ

m−1 + η (bm − V m−1
g,1 (x1) − ξµm−1)).

13: Estimate {Qm
r,h,Q

m
g,h}

H
h=1 and V m

g,1 via LSTD({xτ
h, a

τ
h, r

τ
h(x

τ
h, a

τ
h), g

τ
h(x

τ
h, a

τ
h)}

H,m
h=1,τ=ℓm

Q
).

14: end for

function. In addition, the knowledge of local variation of the constraints is needed to obtain
an optimistic estimator of constraint functions, so that a large dual variable cannot amplify
the estimation error of the constraint functions. This is different from the dual update that
has been used in Lagrangian-based stationary CMDPs under the strict feasible condition [33,
34, 128, 41, 83, 100]. On the other hand, under Assumption 7, the optimal dual variables can
be bounded by Lemma 6. Then, the dual regularization and an optimistic estimator for the
constraint functions are not necessary. Thus, a standard dual update will be enough.

Periodically Restarted Policy Improvement
One way to update the policy πm is to solve the Lagrangian-based policy optimization problem
maxπ∈∆(A∣S,H)L

m
ξ (π,µ

m−1), where Lm
ξ (π,µ

m−1) is defined in (3.9) and the dual variable µm−1

is from episode m − 1. Motivated by the policy improvement step in NPG [73], TRPO [108],
and PPO [107], we perform a simple policy update in the online mirror descent fashion by

arg max
π∈∆(A∣S,H)

H

∑
h=1
⟨(Qm−1

r,h + µ
m−1Qm−1

g,h ) (xh, ⋅), πh − π
m−1
h ⟩ −

1
α

H

∑
h=1

D (πh(⋅∣xh) ∣ π
m−1
h (⋅∣xh)) . (3.8)

Since the above update is separable over H steps, we can update the policy πm as line
8 in Algorithm 1, leading to a closed-form solution for each step h ∈ [H]. Furthermore, in
order to guarantee the policy to be exploratory enough in new environments, our policy
improvement step also features a periodic restart mechanism, which resets its policy to a
uniform distribution over the action space A every L episodes.
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Remark 14. Although policy improvement step (3.8) has been used in stationary CMDPs
[34], our method differs in the sense that we remove the requirement to mix the policy with
a uniform policy at every iteration. This is due to a technical improvement in the analysis
by replacing the “pushback property of KL-divergence lemma” (Lemma 14 in [34]) with the
“one-step descent lemma” for the KL-regularized optimization.

Dual Update
We first define the modified Lagrangian of (3.3) to be

Lm
ξ (π,µ) ∶= V

π,m
r,1 + µ (V

π,m
g,1 − bm) +

ξ

2 ∥µ∥
2
2 (3.9)

where ξ ≥ 0 is the dual regularization parameter to be determined later. Since the value
function V π,m

g,1 is unknown, in order to infer the constraint violation for the dual update, we
estimate V πm,m

g,1 (x1) via an optimistic policy evaluation. We update the Lagrange multiplier
µ by moving µm to the direction of minimizing the estimated Lagrangian L(π,µ):

L̃m
ξ (π,µ) ∶= V

m
r,1 + µ (V

m
g,1 − bm) +

ξ

2 ∥µ∥
2
2 . (3.10)

over µ ≥ 0 in line 14 of Algorithm 1, where η > 0 is a stepsize and Prof[0,χ] is a projection
onto [0, χ] with an upper bound χ on µm. The choices of the parameters χ and ξ depend on
the assumption:

ξ > 0, χ = ∞, under Assumption 6,

ξ = 0, χ = 2H
γ
,under Assumption 7.

Under Assumption 6, since the strictly feasibility may not hold for all episodes (corresponding
to γ = 0), we may not have a finite upper bound on the dual variable µ. Thus, a dual
regularization with ξ > 0 is needed to stabilize the dual updates under the non-stationarity.
The value of ξ depends on the number of episodes M and the variation budgets BP,Bg. On
the other hand, under Assumption 7, we choose χ = 2H

γ ≥ 2µ∗,m similarly as [34, 41], so that
the projection interval [0, χ] includes all optimal dual variables {µ∗,m}M

m=1 in light of Lemma
6.

Periodically Restarted Optimistic Policy Evaluation
To evaluate the policy under the unknown nonstationarity, we take the Least-Squares Temporal
Difference (LSTD) [20, 80] with UCB to properly handle the exploration-exploitation trade-off
and apply the restart strategy to adapt to the unknown nonstationarity. In particular, we
apply the restart strategy and evaluate the policy πm only based on the previous historical
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trajectories from the episode ℓm
Q to the episode m instead of the all previous historical

trajectories. The method is standard and summarized in Appendix.
After obtaining the estimates of Pm

h V
m
◇,h+1 and ◇m

h (⋅, ⋅) for ◇ = r or g, we update the
estimated action-value function {Qm

◇,h}
H

h=1 iteratively and add UCB bonus terms Γm
h (⋅, ⋅),

Γm
◇,h(⋅, ⋅) ∶ S × A → R+ so that

Ω1,◇ ∶= (φ
m)
⊺
um
◇,h + Γm

h and Ω2,◇ ∶= (ϕ
m
◇,h)

⊺
wm
◇,h + Γm

◇,h

all become upper bounds on Pm
h V

m
◇,h+1 and ◇m

h (⋅, ⋅) (up to some errors due to the non-
stationarity). Here, the weights um

◇,h,w
m
◇,h and the bonus terms Γm

h ,Γm
◇,h are defined in

Appendix. Moreover,

Qm
r,h(⋅, ⋅) =min (H − h + 1,Ω1,r(⋅, ⋅) +Ω2,r(⋅, ⋅))+ ,

Qm
g,h(⋅, ⋅) =min (H − h + 1,Ω1,g(⋅, ⋅) +Ω2,g(⋅, ⋅) +LV )+

where LV > 0 depends on the local variation budgets of the constraint BP,E , Bg,E under
Assumption 6, LV = 0 under Assumption 7, and (x)+ denotes the maximum between x and
0. The reason for introducing a positive LV term under Assumption 6 is to guarantee that
the model prediction error in Qm

g,h is non-positive when the dual variable µ is very large.

3.5 Main Results
We now present the dynamic regret and the constraint violation bounds for Algorithm 1
under the two alternative assumptions introduced in Section 3.3. The choices of the algorithm
parameters will depend on the assumption used for the analysis. When both assumptions are
satisfied, one can check which one yields a tighter bound, and this depends on the value of
the strict feasibility threshold γ (and the values of H,M if in the tabular CMDP setting).

Linear Kernal CMDP
We first present the results for linear Kernal CMDP under each of Assumptions 6 and 7.

Theorem 7 (Linear Kernal CMDP + Assumption 6). Let Assumptions 5 and 6 hold. Given p ∈
(0, 1), we set α =H−1M− 1

2 (
√
dB∆+B⋆)

1
3 , L =M 3

4 (
√
dB∆+B⋆)

− 2
3 , η =M− 1

2 , ξ = 2H(
√
dB∆+

B⋆)
1
3M− 1

2 , W = d− 1
4H−1M

1
2B
− 1

2
∆ , in Algorithm 1 and set set β = C1

√
dH2 log(dW /p), LV =

BP,EH2d1
√
d1W + Bg,E

√
d2W . Then, with probability 1 − p, the dynamic regret and the

constraint violation satisfy

DR(M) ≤ Õ (d 9
8H

5
2M

3
4 (
√
dB∆ +B∗)

1
3) ,

CV(M) ≤ Õ (d 9
8H

5
2M

3
4 (
√
dB∆ +B∗)

1
3) .
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Theorem 8 (Linear Kernal CMDP + Assumption 7). Let Assumptions 5 and 7 hold. Given
p ∈ (0,1), we set α = γH− 3

2M− 1
3 (
√
dB∆ + B⋆)

1
3 , L = M 2

3 (
√
dB∆ + B⋆)

− 2
3 , η = M− 1

2 , ξ = 0,
W = d−

1
4H−1M

1
2B
− 1

2
∆ in Algorithm 1 and set set β = C1

√
dH2 log(dW /p), LV = 0. Then, with

probability 1 − p, the dynamic regret and the constraint violation satisfy

DR(M) ≤ Õ (γ−1d
9
8H

5
2M

3
4 (
√
dB∆ +B∗)

1
3) ,

CV(M) ≤ Õ (γ−1d
9
8H

5
2M

3
4 (
√
dB∆ +B∗)

1
3) .

The proofs for Theorems 7 and 8 can be found in Appendix. Our dynamic regret bounds
in Theorems 7 and 8 have the optimal dependence on the total number of episodes M . This
matches the existing bounds in the general non-stationary linear kernel MDP setting without
any constraints [132, 134, 123]. The dependence on the variation budgets (B∆,B⋆) also
matches the existing bound in policy-based method for the non-stationary linear kernel
MDP setting [132]. Regarding the long-term safe exploration, we provide the first finite-time
constraint violation result in the non-stationary CMDP setting.

In the linear kernel CMDP setting, the same dynamic regret and constraint violation
bounds are obtained under either of Assumptions 6 and 7, except that the dynamic regret
and constraint violation under Assumption 7 also depend on the strict feasibility threshold γ.
When γ is small, i.e., there exist some episodes for which the CMDP problem (3.2) does not
have a large enough strict feasibility threshold, the dynamic regret and constraint violation
bounds in Theorem 8 may be large.

Tabular CMDP
A special case of the linear kernel CMDP in Assumption 5 is the tabular CMDP with
∣S∣ < ∞ and ∣A∣ < ∞. In the tabular case, improved results can be obtained by incorporating
Algorithm 1 with a variant of the optimistic policy evaluation method. We refer the reads to
Appendix for such procedures and state the result below:

Theorem 9 (Tabular CMDP + Assumption 6). Let Assumption 6 hold and consider a tabular
CMDP. Given p ∈ (0,1) and ρ ∈ [13 ,

1
2], we set α =H− 1

3M−ρ(B∆ +B⋆)
1
3 , L =H− 1

3M
1+ρ

2 (B∆ +

B⋆)
− 2

3 , η = H− 1
3M− 1

2 , ξ = 2H 5
3 (B∆ +B⋆)

1
3M−ρ, W = H 2

3 ∣S∣
2
3 ∣A∣

1
3 ( M

B∆
)

2
3 in Algorithm 1 and

β = C4H
√
∣S∣ log(∣S∣∣A∣W /p), LV = BP,EH +Bg,E . Then, with probability 1 − p, the dynamic

regret and the constraint violation satisfy

DR(M) ≤ Õ (∣S∣ 23 ∣A∣ 13H 5
3M

1+ρ
2 (B∆ +B∗)

1
3) ,

CV(M) ≤ Õ (∣S∣ 23 ∣A∣ 13H 5
3M

2−ρ
2 (B∆ +B∗)

1
3) .

Theorem 10 (Tabular CMDP + Assumption 7). Let Assumption 7 hold and consider a
tabular CMDP. Given p ∈ (0,1), we set α = γH− 3

2M− 1
3 (B∆ + B⋆)

1
3 , L = M 2

3 (B∆ + B⋆)
− 2

3 ,
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η = M− 1
2 , ξ = 0, W = ∣S∣

2
3 ∣A∣

1
3 ( M

B∆
)

2
3 in Algorithm 1 and β = C4H

√
∣S∣ log(∣S∣∣A∣W /p),

LV = 0. Then, with probability 1 − p, the dynamic regret and the constraint violation satisfy

DR(M)≤Õ (γ−1∣S∣
2
3 ∣A∣

1
3H

5
2M

2
3 (B∆ +B⋆)

1
3) ,

CV(M)≤Õ (γ−1∣S∣
2
3 ∣A∣

1
3H

5
2M

2
3 (B∆ +B⋆)

1
3) .

The proofs for Theorems 9 and 10 can be found in Appendix. For the tabular CMDP
under Assumption 6, there is a trade-off for the dependence on the total number of episodes
M between the dynamic regret and the constraint violation. This trade-off is controlled by
the primal update parameter α and the dual regularization parameter ξ. Such trade-off does
not appear in the linear kernel CMDP setting because the dynamic regret and constraint
violation in the linear kernel CMDP are bottlenecked by the error in the non-stationary policy
evaluation.

The dynamic regret and constraint violation bounds in Theorem 10 have an improved
dependence on the total number of episodes M compared to Theorems 7 and 8. This
improvement is due to the improved result of the policy evaluation step in the tabular setting.
The dependence on M in Theorem 10 is also better than that of Theorem 9. This is due to a
sharper analysis for the constraint violation under Assumption 7 based on [11, Proposition
3.60]. However, the dynamic regret and constraint violation bounds in Theorem 10 have
a worse dependence on the horizon H and are also dependent on the feasibility threshold
γ compared to Theorem 9. In addition, the dependence of the dynamic regret on M and
(B∆,B⋆) matches the existing bound in the non-stationary tabular MDP setting without
any constraints [86].

3.6 Summary
Our results are summarized in Table 3.6.1 and our method is the first provably efficient
algorithm for non-stationary CMDPs with safe exploration.
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Setting Dynamic regret Constraint violation

Tabular+ A6 Õ (∣S∣ 23 ∣A∣ 13 H
5
3 M

1+ρ
2 (B∆ +B∗)

1
3 ) Õ (∣S∣ 23 ∣A∣ 13 H

5
3 M

2−ρ
2 (B∆ +B∗)

1
3 )

Tabular+ A7 Õ (γ−1∣S∣ 23 ∣A∣ 13 H
5
2 M

2
3 (B∆ +B⋆)

1
3 ) Õ (γ−1∣S∣ 23 ∣A∣ 13 H

5
2 M

2
3 (B∆ +B⋆)

1
3 )

Linear kernel+A6 Õ (d 9
8 H

5
2 M

3
4 (
√

dB∆ +B∗)
1
3 ) Õ (d 9

8 H
5
2 M

3
4 (
√

dB∆ +B∗)
1
3 )

Linear kernel+A7 Õ (γ−1d
9
8 H

5
2 M

3
4 (
√

dB∆ +B∗)
1
3 ) Õ (γ−1d

9
8 H

5
2 M

3
4 (
√

dB∆ +B∗)
1
3 )

Table 3.6.1: We summarize the dynamic regrets and constraint violations obtained in this
chapter for tabular and linear kernel CMDPs under different assumptions. Here, A6 and A7
represent the assumption 6 and assumption 7 respectively, γ is the strict feasibility threshold
of the constraints and is defined in Assumption 7, H is the horizon of each episode, M is
the total number of episodes, d is the dimension of the feature mapping, ∣S∣ and ∣A∣ are the
cardinalities of the state and action spaces, and B∆,B∗ are the variation budgets defined in
(3.6) and (3.7). There is a trade-off controlled by ρ ∈ [13 ,

1
2] between the dynamic regret and

constraint violation for the tabular CMDP under Assumption 6.
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Appendix

Due to the space limit, we provide the proof for results related to the linear Kernel MDP
setting here ane the proofs for the tabular MDP setting is similar and can be found in [35].

3.A Policy Evaluation Algorithm

Policy Evaluation Algorithm for Linear Kernel MDP Setting
For episode m and each step h ∈ [H], we estimate Pm

h V
m

r,h+1 in the Bellman equation (3.1) by
ϕm

r,h
⊺wm

r,h, where wm
r,h is updated by the minimizer of the regularized least-squares problem

over w,

m−1
∑

τ=ℓm
Q

(V τ
r,h+1(x

τ
h+1) − ϕ

τ
r,h(x

τ
h, a

τ
h)
⊺w)

2
+ λ ∥w∥

2 (3.11)

where

ϕτ
r,h(⋅, ⋅) ∶= ∫S ψ(⋅, ⋅, x

′)V τ
r,h+1(x

′)dx′ (3.12a)
V τ

r,h+1(⋅) = ⟨Q
τ
r,h+1(⋅, ⋅), πh+1τ (⋅∣⋅)⟩A (3.12b)

for all h ∈ [H − 1] and V τ
r,H+1 = 0, and λ > 0 is the regularization parameter.

Similarly, we estimate Pm
h V

m
g,h+1 by (ϕm

g,h)
⊺wm

g,h. We display the least-squares solution in
lines 3-5 of Algorithm 2 where the symbol ◇ denotes r or g. In addition, since we consider
the bandit reward/utility feedback in the linear function approximation setting, we also need
to estimate rm

h (⋅, ⋅) by (φm(⋅, ⋅))
⊺
um

r,h, where um
r,h is updated by the minimizer of another

regularized least-squares problem,

m−1
∑

τ=ℓm
Q

(rτ
h(x

τ
h, a

τ
h) − (φ

τ(xτ
h, a

τ
h))
⊺
u)

2
+ λ ∥u∥

2
2 (3.13)

where λ is the regularization parameter. Similarly, we estimate gm
h (⋅, ⋅) by (φm(⋅, ⋅))

⊺
um

g,h.
The least-squares solutions lead to lines 8-9 of Algorithm 2.
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Algorithm 2 Least-Squares Temporal Difference with UCB exploration (LSTD)
1: Inputs: {xτ

h, a
τ
h, r

τ
h(x

τ
h, a

τ
h), g

τ
h(x

τ
h, a

τ
h)}

H,m
h=1,τ=ℓm

Q
, regularization parameter λ, UCB parame-

ter β, local variation budgets BP,E ,Bg,E .
2: for h =H,H − 1, . . . ,1 do
3: Λm

◇,h = ∑
m−1
τ=ℓm

Q
ϕτ
◇,h (x

τ
h, a

τ
h)ϕ

τ
◇,h (x

τ
h, a

τ
h)
⊺
+ λI.

4: wm
◇,h = (Λm

◇,h)
−1
∑

m−1
τ=ℓm

Q
ϕτ
◇,h (x

τ
h, a

τ
h)V

τ
◇,h+1 (x

τ
h+1).

5: ϕm
◇,h(⋅, ⋅) = ∫S ψ (⋅, ⋅, x

′)V m
◇,h+1 (x

′)dx′.

6: Γm
◇,h(⋅, ⋅) = β (ϕ

m
◇,h(⋅, ⋅)

⊺ (Λm
◇,h)

−1
ϕm
◇,h(⋅, ⋅))

1/2
.

7: LV =

⎧⎪⎪
⎨
⎪⎪⎩

BP,EH2d1
√
d1W +Bg,E

√
d2W,Under Assumption 6,

0,Under Assumption 7.
8: Λm

h = ∑
m−1
τ=ℓm

Q
φ (xτ

h, a
τ
h)φ (x

τ
h, a

τ
h)
⊺
+ λI .

9: um
◇,h = (Λm

h )
−1
∑

m−1
τ=ℓm

Q
φ (xτ

h, a
τ
h) ◇

m
h (x

τ
h, a

τ
h).

10: Γm
h (⋅, ⋅) = β (φ(⋅, ⋅)

⊺ (Λm
h )
−1
φ(⋅, ⋅))

1/2
.

11: Qm
r,h(⋅, ⋅) =min (H − h + 1, φ(⋅, ⋅)⊺um

r,h + ϕ
m
r,h(⋅, ⋅)

⊺wm
r,h + (Γm

h + Γm
r,h) (⋅, ⋅))+,

Qm
g,h(⋅, ⋅) =min (H − h + 1, φ(⋅, ⋅)⊺um

g,h + ϕ
m
g,h(⋅, ⋅)

⊺wm
g,h + (Γm

h + Γm
g,h) (⋅, ⋅) +LV )+.

12: V m
◇,h(⋅) = ⟨Q

m
◇,h(⋅, ⋅), π

m
h (⋅ ∣ ⋅)⟩

+
A .

13: end for
14: Output: {Qm

r,h,Q
m
g,h}

H
h=1 and V m

g,1.

3.B Proof for Linear Kernel CMDP Case under
Assumption 6

Proof of Dynamic Regret Bound in Theorem 7
Our analysis for the dynamic regret begins with the decomposition of the regret given in
(3.4):

Lemma 7 (Dynamic regret decomposition). The dynamic regret in (3.4) can be expanded as

DR(M) =
M

∑
m=1

H

∑
h=1

Eπ⋆,ℓm
π ,Pℓm

π [⟨Q
m
r,h(xh, ⋅), π

⋆,m
h (⋅ ∣ xh) − π

m
h (⋅ ∣ xh)⟩]

+
M

∑
m=1

H

∑
h=1
(Eπ⋆,m,Pm − Eπ⋆,ℓm

π ,Pℓm
π ) [⟨Q

m
r,h(xh, ⋅), π

⋆,m
h (⋅ ∣ xh) − π

m
h (⋅ ∣ xh)⟩]

+
M

∑
m=1

H

∑
h=1

Eπ⋆,m,Pm [ιmr,h(xh, ah)] −
M

∑
m=1

H

∑
h=1

ιmr,h (x
m
h , a

m
h ) + S

M
r,H,2
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where {Sm
r,h,k}(m,h,k)∈[M]×[H]×[2] is a martingale.

Proof. We have

DR(M) =
M

∑
m=1
(V π⋆,m,m

r,1 (x1) − V
m

r,1(x1))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(R.I)

+
M

∑
m=1
(V m

r,1(x1) − V
πm,m

r,1 (x1))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(R.II)

, (3.14)

where the policy π⋆,m is the best policy in hindsight for the constrained optimization prob-
lem (3.2) at episode m; the policy πm is the policy updated in line 10 of Algorithm 1;
V π⋆,m,m

r,1 , V πm,m
r,1 (x1) are the value functions corresponding to the policies π⋆,m and πm, and the

value function V m
r,1(x1) is estimated from an optimistic policy evaluation by Algorithm 2. To

bound the total regret (3.14), we need to analyze the two terms (R.I) and (R.II) separately.
To analyze the first term (R.I), we define the model prediction error for the reward at

episode m as

ιmr,h ∶= r
m
h + Pm

h V
m

r,h+1 −Q
m
r,h (3.15)

for all (m,h) ∈ [M]×[H], which describes the error in the Bellman equation (3.1) using V m
r,h+1

instead of V πm,m
r,h+1 and using the sample estimation of Pm

h . With this notation, we expand the
term (R.I) in (3.14) into

M

∑
m=1

H

∑
h=1

Eπ⋆,m,Pm [⟨Qm
r,h(xh, ⋅), π

⋆,m
h (⋅ ∣ xh) − π

m
h (⋅ ∣ xh)⟩] +

M

∑
m=1

H

∑
h=1

Eπ⋆,m,Pm [ιmr,h(xh, ah)] (3.16)

where the first double sum is linear in terms of the policy difference and the second one
describes the total model prediction errors. The above expansion is proved in Lemma 20. We
can further decompose the first term in (3.16) as

M

∑
m=1

H

∑
h=1

Eπ⋆,m,Pm [⟨Qm
r,h(xh, ⋅), π

⋆,m
h (⋅ ∣ xh) − π

m
h (⋅ ∣ xh)⟩]

=
M

∑
m=1

H

∑
h=1

Eπ⋆,ℓm
π ,Pℓm

π [⟨Q
m
r,h(xh, ⋅), π

⋆,m
h (⋅ ∣ xh) − π

m
h (⋅ ∣ xh)⟩]

+
M

∑
m=1

H

∑
h=1
(Eπ⋆,m,Pm − Eπ⋆,ℓm

π ,Pℓm
π ) ⋅ [⟨Q

m
r,h(xh, ⋅), π

⋆,m
h (⋅ ∣ xh) − π

m
h (⋅ ∣ xh)⟩] . (3.17)

To analyze the second term (R.II) in (3.14), we will first introduce some notations. for
every (m,h) ∈ [M] × [H], we define Fm

h,1 as a σ−algebra generated by state-action sequences,
reward and utility functions,

{(xτ
i , a

τ
i )}(τ,i)∈[m−1]×[H]⋃{(x

m
i , a

m
i )}i∈[H] .
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Similarly, we define Fm
h,2 as an σ−algebra generated by

{(xτ
i , a

τ
i )}(τ,i)∈[m−1]×[H]⋃{(x

m
i , a

m
i )}i∈[H]⋃{x

m
h+1} .

Here, xm
H+1 is a null state for every m ∈ [M]. A filtration is a sequence of σ−algebras

{Fm
h,k}(k,h,m)∈[K]×[H]×[2] in terms of the time index

t(m,h, k) ∶= 2(m − 1)H + 2(h − 1) + k (3.18)

such that Fm
h,k ⊂ F

m′

h′,k′ for every t(m,h, k) ≤ t(m′, h′, k′). The estimated reward/utility
value functions V m

r,h, V
m

g,h and the associated Q-functions Qm
r,h,Q

m
g,h are Fm

1,1 measurable since
they are obtained from previous m − 1 historical trajectories. With these notations, we can
expand the term (R.II) in (3.14) into

−
M

∑
m=1

H

∑
h=1

ιmr,h (x
m
h , a

m
h ) + S

M
r,H,2 (3.19)

where {Sm
r,h,k}(m,h,k)∈[M]×[H]×[2] is a martingale adapted to the filtration {Fm

h,k}(m,h,k)∈[M]×[H]×[2]
in terms of the time index t. We define SM

r,H,2 and prove (3.19) in Lemma 15.

In the following proofs, we use the shorthand notation ⟨Qm−1
r,h + µ

m−1Qm−1
g,h , πh⟩ for

⟨(Qm−1
r,h + µ

m−1Qm−1
g,h ) (xh, ⋅) , πh (⋅ ∣ xh)⟩ and the shorthand notation D (πh ∣ πm−1

h ) for
D (πh (⋅ ∣ xh) ∣ πm−1

h (⋅ ∣ xh)) if dependence on the state-action sequence {xh, ah}
H
h=1 is clear

from the context.

Lemma 8 (Primal step for dynamic regret). Let Assumption 5 hold. For the primal update
rule in line 10 of Algorithm 1, we have

H

∑
h=1
⟨Qm−1

r,h , π⋆,m−1
h − πm−1

h ⟩ ≤ − µm−1
H

∑
h=1
⟨Qm−1

g,h , π⋆,m−1
h − πm−1

h ⟩ +
α(1 + µm−1)2H2

2

+
1
α

H

∑
h=1
[D (π⋆,m−1

h ∣ πm−1
h ) −D (π⋆,m−1

h ∣ πm
h )] (3.20)

Proof. This result follows immediately from the "one-step descent" lemma in Lemma 19 and
the fact Qm−1

r,h + µ
m−1Qm−1

g,h ∈ [0, (1 + µm−1)H].

Lemma 9 (Bound for the first term in (3.17)). Let Assumption 5 hold. Then
M

∑
m=1

H

∑
h=1

Eπ⋆,ℓm
π ,Pℓm

π [⟨Q
m
r,h, π

⋆,m
h − πm

h (⋅ ∣ xh)⟩]

≤ −
M

∑
m=1

µm
H

∑
h=1

Eπ⋆,ℓm
π ,Pℓm

π [⟨Q
m
g,h, π

⋆,m
h − πm

h ⟩] + αH
2

M

∑
m=1
(1 + ∣µm∣2) +

1
α
HML−1 log ∣A∣ +H2LB⋆
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Proof. By further decomposing the first term in (3.17), we obtain

M

∑
m=1

H

∑
h=1

Eπ⋆,ℓm
π ,Pℓm

π [⟨Q
m
r,h, π

⋆,m
h − πm

h (⋅ ∣ xh)⟩]

=
M

∑
m=1

H

∑
h=1

Eπ⋆,ℓm
π ,Pℓm

π [⟨Q
m
r,h, π

⋆,ℓm
π

h − πm
h (⋅ ∣ xh)⟩] +

M

∑
m=1

H

∑
h=1

Eπ⋆,ℓm
π ,Pℓm

π [⟨Q
m
r,h, π

⋆,m
h − π

⋆,ℓm
π

h (⋅ ∣ xh)⟩]

(3.21)

where π⋆,ℓ
m
π

h is the optimal policy at episode ℓm
π .

For the first term in (3.21), we have

M

∑
m=1

H

∑
h=1

Eπ⋆,ℓm
π ,Pℓm

π [⟨Q
m
r,h, π

⋆,ℓm
π

h − πm
h (⋅ ∣ xh)⟩]

≤ −
M

∑
m=1

µm
H

∑
h=1

Eπ⋆,ℓm
π ,Pℓm

π [⟨Q
m
g,h, π

⋆,m
h − πm

h ⟩] + αH
2

M

∑
m=1
(1 + ∣µm∣2)

+
1
α

H

∑
h=1

⌈M
L
⌉

∑
E=1

Eπ⋆,(E−1)L,P(E−1)L

⎡
⎢
⎢
⎢
⎢
⎣

EL

∑
m=(E−1)L

D (π⋆,mh ∣ πm
h ) −D (π

⋆,m
h ∣ πm+1

h )

⎤
⎥
⎥
⎥
⎥
⎦

≤ −
M

∑
m=1

µm
H

∑
h=1

Eπ⋆,ℓm
π ,Pℓm

π [⟨Q
m
g,h, π

⋆,m
h − πm

h ⟩] + αH
2

M

∑
m=1
(1 + ∣µm∣2)

+
1
α

H

∑
h=1

⌈M
L
⌉

∑
E=1

Eπ⋆,(E−1)L,P(E−1)L [D (π
⋆,(E−1)L
h ∣ π

(E−1)L
h )]

≤ −
M

∑
m=1

µm
H

∑
h=1

Eπ⋆,ℓm
π ,Pℓm

π [⟨Q
m
g,h, π

⋆,m
h − πm

h ⟩] + αH
2

M

∑
m=1
(1 + ∣µm∣2) +

1
α
HML−1 log ∣A∣

where the first inequality follows from Lemma 8 and the fact that (1+ ∣µm∣)2 ≤ 2+ 2∣µm∣2, the
second inequality results from the telescoping, and the last inequality is due to

D (π
⋆,(E−1)L
h ∣ π

(E−1)L
h ) = ∑

a∈A
π
⋆,(E−1)L
h ⋅ log (∣A∣ ⋅ π⋆,(E−1)L

h ) ≤ log ∣A∣.
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For the second term in (3.21), it holds that
M

∑
m=1

H

∑
h=1

Eπ⋆,ℓm
π ,Pℓm

π [⟨Q
m
r,h, π

⋆,m
h (⋅ ∣ xh) − π

⋆,ℓm
π

h (⋅ ∣ xh)⟩]

≤
M

∑
m=1

H

∑
h=1

Eπ⋆,ℓm
π ,Pℓm

π [H ∥π
⋆,m
h (⋅ ∣ xh) − π

⋆,ℓm
π

h (⋅ ∣ xh)∥
1
]

≤
M

∑
m=1

H

∑
h=1

Hmax
xh∈S
∥π⋆,mh (⋅ ∣ xh) − π

⋆,ℓm
π

h (⋅ ∣ xh)∥
1

≤

⌈M
L
⌉

∑
E=1

H

∑
h=1

EL

∑
m=(E−1)L+1

HB⋆,E

≤H2LB⋆

where the first policy holds by Holder’s inequality and the fact that ∥Qm
h (s, ⋅)∥∞ ≤ H, the

third step is due to the definition of B⋆,E = ∑EL
m=(E−1)L+1∑

H
h=1 ∥π

⋆,m
h − π⋆,m−1

h ∥∞ and the last
inequality follows from the definition of B⋆ = ∑M

m=1∑
H
h=1 ∥π

⋆,m
h − π⋆,m−1

h ∥∞. This completes the
proof.

Lemma 10 (Bound for the second term in (3.17)). Let Assumption 5 hold. Then
M

∑
m=1

H

∑
h=1
(Eπ⋆,m,Pm − Eπ⋆,ℓm

π ,Pℓm
π ) ⋅ [⟨Q

m
r,h(xh, ⋅), π

⋆,m
h (⋅ ∣ xh) − π

m
h (⋅ ∣ xh)⟩]

≤ 2H2L (
√
d1BP +B⋆) .

Proof. We denote by 1(xh) the indicator function for state xh. It holds that
M

∑
m=1

H

∑
h=1
(Eπ⋆,m,Pm − Eπ⋆,ℓm

π ,Pℓm
π ) ⋅ [⟨Q

m
r,h(xh, ⋅), π

⋆,m
h (⋅ ∣ xh) − π

m
h (⋅ ∣ xh)⟩]

≤
M

∑
m=1

H

∑
h=1
(Eπ⋆,m,Pm − Eπ⋆,ℓm

π ,Pℓm
π ) [2H1(xh)]

=2H
⌈M

L
⌉

∑
E=1

EL

∑
m=(E−1)L+1

H

∑
h=1

m

∑
j=(E−1)L+2

(Eπ⋆,j ,Pj − Eπ⋆,j−1,Pj−1) [1(xh)]

≤2HL
⌈M

L
⌉

∑
E=1

H

∑
h=1

EL

∑
j=(E−1)L+1

(Eπ⋆,j ,Pj − Eπ⋆,j−1,Pj−1) [1(xh)]

≤2H2L (
√
d1BP +B⋆)

where the first step follows from ∣⟨Qm
r,h(xh, ⋅), π

⋆,m
h (⋅ ∣ xh) − πm

h (⋅ ∣ xh)⟩∣ ≤ 2H1(xh), the third
steps holds by telescoping, and the last step follows from Lemma 21. This completes the
proof.
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Lemma 11 (Dual step for dynamic regret). It holds that

−
M

∑
m=1

µm (V π⋆,m,m
g,1 (x1) − V

m
g,1 (x1)) ≤ ηH

2(M + 1) +
M+1
∑
m=1
(ηξ2 − ξ)∣µm−1∣2.

Proof. By the dual update in line 14 in Algorithm 1 and χ = ∞, we have

0 ≤ (µm+1)
2

=
M+1
∑
m=1
((µm)

2
− (µm−1)

2
)

=
M+1
∑
m=1
((µm−1 + η (bm − ξµm−1 − V m−1

g,1 (x1)))
2
− (µm−1)

2

≤
M+1
∑
m=1

2ηµm−1 (V π⋆,m−1

g,1 (x1) − ξµ
m−1 − V m−1

g,1 (x1)) + η
2 (bm − ξµm−1 − V m−1

g,1 (x1))
2

where we use the feasibility of π⋆,m−1 in the last inequality. Since µ0 = 0 and ∣bm − V m−1
g,1 (x1)∣ ≤

H, the above inequality implies that

−
M

∑
m=1

µm−1 (V π⋆,m,m
g,1 (x1) − V

m
g,1 (x1))

≤
M+1
∑
m=1

η

2
(bm − ξµm−1 − V m−1

g,1 (x1))
2
−

M+1
∑
m=1

ξ∣µm−1∣2 (3.22)

≤
M+1
∑
m=1

η (bm − V m−1
g,1 (x1))

2
+

M+1
∑
m=1
(ηξ2 − ξ)∣µm−1∣2

≤ηH2(M + 1) +
M+1
∑
m=1
(ηξ2 − ξ)∣µm−1∣2. (3.23)

This completes the proof.

Lemma 12 (Model prediction error bound for dynamic regret). Let Assumption 5 and 6
hold. Fix p ∈ (0,1) and let E be the epoch that the episode m belongs to. If we set λ = 1,
LV = BP,EH2d1

√
d1W +Bg,E

√
d2W, and

Γm
h (⋅, ⋅) = β (φ(⋅, ⋅)

⊺ (Λm
h )
−1
φ(⋅, ⋅))

1/2
,

Γm
r,h = β ((ϕ

m
r,h)

⊺(Λm
r,h)

−1ϕm
r,h)

1/2
,

Γm
g,h = β ((ϕ

m
g,h)

⊺(Λm
g,h)

−1ϕm
g,h)

1/2
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with β = C1
√
dH2 log(dW /p) in Algorithm 2 , then with probability at least 1 − p/2 it holds

that
M

∑
m=1

H

∑
h=1
(Eπ⋆,m,Pm [ιmr,h (xh, ah) + µ

mιmg,h (xh, ah)] − ι
m
r,h (x

m
h , a

m
h ))

≤C2dH
2MW − 1

2

√

log (dH2W + 1) log (dW
p
) +BPH

3d1W
√
d1W +BrHW

√
d2W

where C1 and C2 are absolute constants.

Proof. By Lemma 17, for every (m,h) ∈ [M]×[H] and (x, a) ∈ S ×A, the following inequality
holds with probability at least 1-p/2:

−2 (Γm
h + Γm

r,h) (x, a) −BP,EH
2d1
√
d1W −Br,E

√
d2W

≤ ιmr,h(x, a) ≤ BP,EH
2d1
√
d1W +Br,E

√
d2W.

By the definition of ιmr,h(x, a), we have ∣ιmr,h(x, a)∣ ≤ 2H. Hence, it holds with probability
at least 1 − p/2 that

Eπ⋆,m,Pm [ιmr,h (xh, ah)] − ι
m
r,h(x, a)

≤2 min (H, (Γm
h + Γm

r,h) (x, a) +BP,EH
2d1
√
d1W +Br,E

√
d2W)

for every (m,h) ∈ [M] × [H] and (x, a) ∈ S × A, where Γm
h (⋅, ⋅) = β (φ(⋅, ⋅)

⊺ (Λm
h )
−1
φ(⋅, ⋅))

1/2

and Γm
r,h(⋅, ⋅) = β (ϕ

m
r,h(⋅, ⋅)

⊺ (Λm
r,h)

−1
ϕm

r,h(⋅, ⋅))
1/2

. Therefore, we have

M

∑
m=1

H

∑
h=1
(Eπ⋆,m,Pm [ιmr,h (xh, ah) ∣ x1] − ι

m
r,h (x

m
h , a

m
h ))

≤2
M

∑
m=1

H

∑
h=1

min (H, (Γm
h + Γm

r,h) (x
m
h , a

m
h ) +BP,EH

2d1
√
d1W +Br,E

√
d2W)

≤2
M

∑
m=1

H

∑
h=1

min (H, (Γm
h + Γm

r,h) (x
m
h , a

m
h )) + 2

⌈M
W
⌉

∑
E=1
(BP,EH

3d1W
√
d1W +Br,EHW

√
d2W)

≤2
M

∑
m=1

H

∑
h=1

min (H, (Γm
h + Γm

r,h) (x
m
h , a

m
h )) + 2BPH

3d1W
√
d1W + 2BrHW

√
d2W

where the last inequality follows from the definition of the variation budgets BP ∶= ∑
⌈M

W
⌉

E=1 BP,E
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and Br ∶= ∑
⌈M

W
⌉

E=1 Br,E . It results from the Cauchy-Schwartz inequality that

M

∑
m=1

H

∑
h=1

min (H, (Γm
h + Γm

r,h) (x
m
h , a

m
h ))

=

⌈M
W
⌉

∑
E=1

EW

∑
m=(E−1)W

H

∑
h=1

min (H, (Γm
h + Γm

r,h) (x
m
h , a

m
h ))

≤ β
⌈M

W
⌉

∑
E=1

EW

∑
m=(E−1)W

H

∑
h=1

min(H/β, (φ (xm
h , a

m
h )
⊺
(Λm

h )
−1
φ (xm

h , a
m
h ))

1/2 (3.24)

+(ϕm
r,h (x

m
h , a

m
h )
⊺
(Λm

r,h)
−1
ϕm

r,h (x
m
h , a

m
h ))

1/2
)

Since we take β = C1
√
dH2 log(dW /p) with C1 > 1, we have H/β ≤ 1. It remains to apply

Lemma 18. First, for every h ∈ [H] it holds that

M

∑
m=1

ϕm
r,h (x

m
h , a

m
h )
⊺
(Λm

r,h)
−1
ϕm

r,h (x
m
h , a

m
h ) ≤ 2 log

⎛

⎝

det (ΛM+1
r,h )

det (Λ1
r,h)

⎞

⎠
.

Due to ∥ϕm
r,h∥ ≤

√
dH in Assumption 5 and Λ1

r,h = λI in Algorithm 2, it is clear that for
every h ∈ [H],

ΛM+1
r,h =

M

∑
m=1

ϕm
r,h (x

m
h , a

m
h )ϕ

m
r,h (x

m
h , a

m
h )
⊺
+ λI ⪯ (dH2M + λ) I.

Thus,

log
⎛

⎝

det (ΛK+1
r,h )

det (Λ1
r,h)

⎞

⎠
≤ log(det ((dH2M + λ) I)

det(λI) ) ≤ d log (dH
2K + λ

λ
) .

Therefore,

M

∑
m=1

ϕm
r,h (x

m
h , a

m
h )
⊺
(Λm

r,h)
−1
ϕm

r,h (x
m
h , a

m
h ) ≤ 2d log (dH

2K + λ

λ
) . (3.25)

Similarly, one can show that

M

∑
m=1

φ (xm
h , a

m
h )
⊺
(Λm

h )
−1
φ (xm

h , a
m
h ) ≤ 2d log (dK + λ

λ
) . (3.26)
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Applying the Cauchy-Schwartz inequality and the inequalities (3.25) and (3.26) to (3.24)
leads to

⌈M
W
⌉

∑
E=1

EW

∑
m=(E−1)W

H

∑
h=1

min (H, (Γm
h + Γm

r,h) (x
m
h , a

m
h ))

≤ β
⌈M

W
⌉

∑
E=1

H

∑
h=1

min
⎛

⎝
W,

EW

∑
m=(E−1)W

(φ (xm
h , a

m
h )
⊺
(Λm

h )
−1
φ (xm

h , a
m
h ))

1/2

+(ϕm
r,h (x

m
h , a

m
h )
⊺
(Λm

r,h)
−1
ϕm

r,h (x
m
h , a

m
h ))

1/2
)

≤ β
⌈M

W
⌉

∑
E=1

H

∑
h=1

⎛
⎜
⎝

⎛

⎝
W

EW

∑
m=(E−1)W

φ (xm
h , a

m
h )
⊺
(Λm

h )
−1
φ (xm

h , a
m
h )
⎞

⎠

1/2

+

⎛

⎝
W

EW

∑
m=(E−1)W

ϕm
r,h (x

m
h , a

m
h )
⊺
(Λm

r,h)
−1
ϕm

r,h (x
m
h , a

m
h )
⎞

⎠

1/2
⎞
⎟
⎠

≤ βMW − 1
2H ((2d log (dW + λ

λ
))

1/2
+ (2d log (dH

2W + λ

λ
))

1/2
) .

Therefore, by setting λ = 1, we have
M

∑
m=1

H

∑
h=1
(Eπ⋆,m,Pm [ιmr,h (xh, ah) ∣ x1] − ι

m
r,h (x

m
h , a

m
h ))

≤C2dH
2MW − 1

2

√

log (dH2W + 1) log (dW
p
) + 2BPH

3d1W
√
d1W + 2BrHW

√
d2W

where C2 is some constant. In addition, by Lemma 17, for every (m,h) ∈ [M] × [H] and
(x, a) ∈ S ×A, the following inequality holds with probability at least 1 − p/2:

− 2 (Γm
h + Γm

r,h) (x, a) − 2BP,EH
2d1
√
d1W − 2Br,E

√
d2W ≤ ι

m
r,h(x, a) ≤ 0.

Thus, it holds that
M

∑
m=1

H

∑
h=1

Eπ⋆,m,Pm [µmιmg,h (xh, ah)] ≤ 0.

Finally, by combining the above two inequalities, we obtain the desired result.

Lemma 13 (Martingale bound for dynamic regret). Fix p ∈ (0,1). In Algorithm 1, it holds
with probability at least 1 − p/2 that

∣SM
r,H,2∣ ≤ 4

√

H2T log (4
p
) (3.27)

where T =HM .
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Proof. In the expansion of the term (R.III) in (3.19) and Lemma 15, we introduce the
following martingale:

SM
r,H,2 =

M

∑
m=1

H

∑
h=1
(Dm

r,h,1 +D
m
r,h,2)

where
Dm

r,h,1 =(I
m
h (Q

m
r,h −Q

πm,m
r,h )) (xm

h ) − (Q
m
r,h −Q

πm,m
r,h ) (xm

h , a
m
h ) ,

Dm
r,h,2 =(P

m
h V

m
r,h+1 − Pm

h V
πm,m

r,h+1 ) (x
m
h , a

m
h ) − (V

m
r,h+1 − V

πm,m
r,h+1 ) (x

m
h+1)

and (Im
h f) (x) ∶= ⟨f(x, ⋅), π

m
h (⋅ ∣ x)⟩. Due to the truncation in line 10 of Algorithm 2, we

know that Qm
r,h,Q

πm,m
r,h , V m

r,h+1, V
πm,m

r,h+1 ∈ [0,H]. This shows that ∣Dm
r,h,1∣ ≤ 2H, ∣Dm

r,h,2∣ ≤ 2H for
all (m,h) ∈ [M] × [H]. The Azuma-Hoeffding inequality yields that,

P (∣SM
r,H,2∣ ≥ s) ≤ 2 exp( −s

2

16H2T
) .

For p ∈ (0,1), if we set s = 4H
√
T log(4/p), then the inequality (3.27) holds with probability

at least 1 − p/2.

Proof of dynamic regret in Theorem 7

By combining Lemmas 9 and 10, we can conclude that

DR(M)

≤
1
α
HML−1 log ∣A∣ + αH2

M

∑
m=1
(1 + ∣µm∣2) +H2LB⋆ + 2H2L (

√
d1BP +B⋆)

−
M

∑
m=1

µm
H

∑
h=1

Eπ⋆,m,Pm [⟨Qm
g,h(xh, ⋅), π

⋆,m
h (⋅ ∣ xh) − π

m
h (⋅ ∣ xh)⟩] +

M

∑
m=1

H

∑
h=1

Eπ⋆,m,Pm [ιmr,h(xh, ah)]

−
M

∑
m=1

H

∑
h=1

ιmr,h (x
m
h , a

m
h ) + S

M
r,H,2.

Then, by Lemma 20, the above inequality further implies that

DR(M)

≤
1
α
HML−1 log ∣A∣ + αH2

M

∑
m=1
(1 + ∣µm∣2) +H2LB⋆ + 2H2L (

√
d1BP +B⋆)

−
M

∑
m=1

µm (V π⋆,m,m
g,1 (x1) − V

m
g,1 (x1)) +

M

∑
m=1

H

∑
h=1

Eπ⋆,m,Pm [ιmr,h(xh, ah) + µ
mιmg,h(xh, ah)]

−
M

∑
m=1

H

∑
h=1

ιmr,h (x
m
h , a

m
h ) + S

M
r,H,2. (3.28)
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Due to the dual update in Lemma 11, we obtain

DR(M) ≤ 1
α
HML−1 log ∣A∣ + αH2M +H2LB⋆ + 2H2L (

√
d1BP +B⋆) (3.29)

+ ηH2(M + 1) +
M+1
∑
m=1
(αH2 + ηξ2 − ξ)∣∣µm∣2

+
M

∑
m=1

H

∑
h=1

Eπ⋆,m,Pm [ιmr,h(xh, ah) + µ
mιmg,h(xh, ah)]

−
M

∑
m=1

H

∑
h=1

ιmr,h (x
m
h , a

m
h ) + S

M
r,H,2.

Then, by controlling the model prediction error in Lemma 12 and the martingale bound in
Lemma 13, we have

DR(M) ≤ 1
α
HML−1 log ∣A∣ + αH2M +H2L (2

√
d1BP + 3B⋆) + ηH2(M + 1)

+
M+1
∑
m=1
(αH2 + ηξ2 − ξ)∣∣µm∣2 + 4

√

H2T log (4
p
)

+C2dH
2MW − 1

2

√

log (dH2W + 1) log (dW
p
)

+BPH
3d1W

√
d1W +BrHW

√
d2W

with probability at least 1−p. Finally, by setting α =H−1M− 1
2 (
√
dB∆+B⋆)

1
3 , L =M 3

4 (
√
dB∆+

B⋆)
− 2

3 , η =M− 1
2 , ξ = 2H(

√
dB∆ +B⋆)

1
3M− 1

2 , W = d− 1
4H−1M

1
2B
− 1

2
∆ , it holds that

D-Regret(M) ≤Õ (d 9
8H

5
2M

3
4 (
√
dB∆ +B∗)

1
3)

with probability at least 1 − p. This completes the proof.

3.C Proof for Linear Kernel CMDP Case under
Assumption 7

Model Prediction Error
Lemma 14 (Model prediction error bound for dynamic regret under uniform Slater condition).
Let Assumption 5 and 7 hold. Fix p ∈ (0, 1) and let E be the epoch that the episode m belongs
to. If we set λ = 1, LV = 0 and

Γm
h (⋅, ⋅) = β (φ(⋅, ⋅)

⊺ (Λm
h )
−1
φ(⋅, ⋅))

1/2
,

Γm
r,h = β ((ϕ

m
r,h)

⊺(Λm
r,h)

−1ϕm
r,h)

1/2
,

Γm
g,h = β ((ϕ

m
g,h)

⊺(Λm
g,h)

−1ϕm
g,h)

1/2
,
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with β = C1
√
dH2 log(dW /p) in Algorithm 2, then with probability at least 1 − p/2 it holds

that
M

∑
m=1

H

∑
h=1
(Eπ⋆,m,Pm [ιmr,h (xh, ah) + µ

mιmg,h (xh, ah)] − ι
m
r,h (x

m
h , a

m
h ))

≤C2dH
2MW − 1

2

√

log (dH2W + 1) log (dW
p
)

+ (2 + χ)BPH
3d1W

√
d1W + (2Br + χBg)HW

√
d2W

where C1 and C2 are absolute constants and µm ≤ χ.

Proof. By Lemma 16, for every (m,h) ∈ [M]×[H] and (x, a) ∈ S ×A, the following inequality
holds with probability at least 1-p/2:

− 2 (Γm
h + Γm

◇,h) (x, a) −BP,EH
2d1
√
d1W −B◇,E

√
d2W

≤ ιm◇,h(x, a) ≤ BP,EH
2d1
√
d1W +B◇,E

√
d2W.

for ◇ = r or g. The rest of the proof is similar to Lemma 12 and is thus omitted.

Proof of Dynamic Regret in Theorem 8
From equation (3.29), we have

DR(M) ≤ 1
α
HML−1 log ∣A∣ + αH2

M

∑
m=1
(1 + ∣µm∣2)

+H2L (2
√
d1BP + 3B⋆) + ηH2(M + 1) +

M+1
∑
m=1
(ηξ2 − ξ)∣µm−1∣2

+
M

∑
m=1

H

∑
h=1

Eπ⋆,m,Pm [ιmr,h(xh, ah) + µ
mιmg,h(xh, ah)] −

M

∑
m=1

H

∑
h=1

ιmr,h (x
m
h , a

m
h ) + S

M
r,H,2

≤
1
α
HML−1 log ∣A∣ + αH2

M

∑
m=1
(1 + χ2) +H2L (2

√
d1BP + 3B⋆) (3.30)

+ ηH2(M + 1) +
M+1
∑
m=1
(ηξ2 − ξ)χ2

+
M

∑
m=1

H

∑
h=1

Eπ⋆,m,Pm [ιmr,h(xh, ah) + µ
mιmg,h(xh, ah)] −

M

∑
m=1

H

∑
h=1

ιmr,h (x
m
h , a

m
h ) + S

M
r,H,2
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where the second inequality follows from the fact µm ≤ χ for all m ∈ [M] under the uniform
Slater condition. Then, by Lemma 14, it holds that

DR(M) ≤ 1
α
HML−1 log ∣A∣ + αH2

M

∑
m=1
(1 + χ2) +H2L (2

√
d1BP + 3B⋆) (3.31)

+ ηH2(M + 1) +
M+1
∑
m=1
(ηξ2 − ξ)χ2

+C2dH
2MW − 1

2

√

log (dH2W + 1) log (dW
p
)

+ (2 + χ)BPH
3d1W

√
d1W + (2Br + χBg)HW

√
d2W.

Furthermore, by substituting the parameters α = γH− 3
2M− 1

3 (
√
dB∆+B⋆)

1
3 , L =M 2

3 (
√
dB∆+

B⋆)
− 2

3 , η =M− 1
2 , ξ = 0, W = d− 1

4H−1M
1
2B
− 1

2
∆ , we obtain

DR(M) ≤Õ (γ−1d
9
8H

5
2M

3
4 (
√
dB∆ +B∗)

1
3) . (3.32)

This completes the proof.

Proof of Constraint Violation in Theorem 8
By the dual update in line 14 in Algorithm 1 and ξ = 0 , for any µ ∈ [0, χ] we have

∣µm+1 − µ∣
2
= ∣Proj[0,χ] (µ

m + η (bm − V
m

g,1 (x1))) −Proj[0,χ](µ)∣
2

≤ ∣µm + η (bm − V
m

g,1 (x1)) − µ∣
2

≤ (µm − µ)
2
+ 2η (bm − V

m
g,1 (x1)) (µ

m − µ) + η2H2

where we apply the non-expansiveness of projection in the first inequality and ∣bm − V m
g,1 (x1)∣ ≤

H for the last inequality. By summing the above inequality from m = 1 to m =M , we have

0 ≤ ∣µM+1 − µ∣
2
= ∣µ1 − µ∣

2
+ 2η

M

∑
m=1
(bm − V

m
g,1 (x1)) (µ

m − µ) + η2H2M

which implies that

M

∑
m=1
(bm − V

m
g,1 (x1)) (µ − µ

m) ≤
1
2η
∣µ1 − µ∣

2
+
η

2H
2M

≤
1
2ηµ

2 +
η

2H
2M. (3.33)



CHAPTER 3. NON-STATIONARY CONSTRAINED MDPS 64

In addition, from equation (3.28), we obtain
M

∑
m=1
(V π⋆,m,m

r,1 (x1) − V
m

r,1 (x1)) +
M

∑
m=1

µm (bm − V
m

g,1 (x1))

≤
1
α
HML−1 log ∣A∣ + αH2

M

∑
m=1
(1 + ∣µm∣2) +H2L (2

√
d1BP + 3B⋆) (3.34)

+
M

∑
m=1

H

∑
h=1

Eπ⋆,m,Pm [ιmr,h(xh, ah) + µ
mιmg,h(xh, ah)] −

M

∑
m=1

H

∑
h=1

ιmr,h (x
m
h , a

m
h ) + S

M
r,H,2

≤
1
α
HML−1 log ∣A∣ + αH2

M

∑
m=1
(1 + χ2) +H2L (2

√
d1BP + 3B⋆)

+C2dH
2MW − 1

2

√

log (dH2W + 1) log (dW
p
) + (2 + χ)BPH

3d1W
√
d1W

+ (2Br + χBg)HW
√
d2W

≤Õ (γ−1d
9
8H

5
2M

3
4 (
√
dB∆ +B∗)

1
3) ,

where the second inequality follow from Lemma 14 and the last inequality follows by substi-
tuting the parameters α = γH− 3

2M− 1
3 (
√
dB∆ +B⋆)

1
3 , L =M 2

3 (
√
dB∆ +B⋆)

− 2
3 , η =M− 1

2 , ξ = 0,
W = d−

1
4H−1M

1
2B
− 1

2
∆ . Then, by combining the above inequality with (3.33) and setting µ = χ,

it holds that
M

∑
m=1
(V π⋆,m,m

r,1 (x1) − V
m

r,1 (x1)) +
M

∑
m=1

χ (bm − V
m

g,1 (x1))

≤Õ (γ−1d
9
8H

5
2M

3
4 (
√
dB∆ +B∗)

1
3 +M

1
2χ2) .

Finally, by Corollary 22, we obtain

[
M

∑
m=1

bm − V
πm,m

g,1 (x1)]
+
≤ Õ (γ−1d

9
8H

5
2M

3
4 (
√
dB∆ +B∗)

1
3) .

This completes the proof.

3.D Auxiliary Lemmas

Model Prediction Error
We first show that the prediction error in the value function can be expanded as the summation
of the model prediction error and a martingale.

Lemma 15 (Value prediction error expansion, Lemma 26 in [35]). It holds that
M

∑
m=1
(V m

r,1 (x1) − V
πm,m

r,1 (x1)) = −
M

∑
m=1

H

∑
h=1

ιmr,h (x
m
h , a

m
h ) + S

M
r,H,2.
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Lemma 16 (Lemma 30 in [35]). Let Assumption 5 hold. Fix p ∈ (0, 1) and let E be the epoch
that the episode m belongs to. If we set λ = 1, LV = 0 and

Γm
h (⋅, ⋅) = β (φ(⋅, ⋅)

⊺ (Λm
h )
−1
φ(⋅, ⋅))

1/2
,

Γm
r,h = β ((ϕ

m
r,h)

⊺(Λm
r,h)

−1ϕm
r,h)

1/2
,

Γm
g,h = β ((ϕ

m
g,h)

⊺(Λm
g,h)

−1ϕm
g,h)

1/2
,

with β = C1
√
dH2 log(dW /p) in Algorithm 2, then it holds that

− 2 (Γm
h + Γm

◇,h) (x, a) −BP,EH
2d1
√
d1W −B◇,E

√
d2W

≤ ιm◇,h(x, a) ≤ BP,EH
2d1
√
d1W +B◇,E

√
d2W

with probability at least 1 − p/2 for every (m,h) ∈ [M] × [H] and (x, a) ∈ S × A, where the
symbol ◇ is equal to r or g.

Lemma 17 (Lemma 31 in [35]). Let Assumptions 5 and 6 hold. Fix p ∈ (0,1) and let E be
the epoch that the episode m belongs to. If we set λ = 1, LV = BP,EH2d1

√
d1W +Bg,E

√
d2W,

and

Γm
h (⋅, ⋅) = β (φ(⋅, ⋅)

⊺ (Λm
h )
−1
φ(⋅, ⋅))

1/2
,

Γm
r,h = β ((ϕ

m
r,h)

⊺(Λm
r,h)

−1ϕm
r,h)

1/2
,

Γm
g,h = β ((ϕ

m
g,h)

⊺(Λm
g,h)

−1ϕm
g,h)

1/2

with β = C1
√
dH2 log(dW /p) in Algorithm 2, then it holds that

− 2 (Γm
h + Γm

r,h) (x, a) −BP,EH
2d1
√
d1W −Br,E

√
d2W

≤ ιmr,h(x, a) ≤ BP,EH
2d1
√
d1W +Br,E

√
d2W

− 2 (Γm
h + Γm

g,h) (x, a) − 2BP,EH
2d1
√
d1W − 2Bg,E

√
d2W

≤ ιmg,h(x, a) ≤ 0

with probability at least 1 − p/2 for every (m,h) ∈ [M] × [H] and (x, a) ∈ S ×A.

Lemma 18 (Elliptical Potential Lemma, Lemma D.2 in [70] or [21]). Let {ϕt}
∞
t=1 be a sequence

of functions in Rd and Λ0 ∈ Rd×d be a positive definite matrix. Let Λt = Λ0 +∑
t−1
i=1 ϕiϕ

⊺
i . Assume

that ∥ϕt∥2 ≤ 1 and λmin (Λ0) ≥ 1. For every t ≥ 1, it holds that

log(det (Λt+1)

det (Λ1)
) ≤

t

∑
i=1
ϕ⊺i Λ−1

i ϕi ≤ 2 log(det (Λt+1)

det (Λ1)
) .
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Performance Difference Lemmas
Lemma 19 (One-step descent lemma, Lemma 3.3 in [21]). For every two distributions π⋆ and
π supported on A, state s ∈ S and function Q ∶ S ×A → [0,H], it holds that for a distribution
π′ supported on A with π′(⋅) ∝ π(⋅) ⋅ exp{αQ(s, ⋅)} we have

⟨Q(s, ⋅), π⋆(⋅) − π(⋅)⟩ ≤
1
2αH

2 +
1
α
[D(π⋆(⋅) ∣ π(⋅)) −D(π⋆(⋅) ∣ π′(⋅))] .

We then introduce a variation of the performance difference lemma with the model
prediction error.

Lemma 20 (Performance difference lemma with model prediction error, Lemma 26 in [35]).
For ◇ = r or g, it holds that

V π⋆,m

◇,1 (x1) − V
m
◇,1(x1)

=
H

∑
h=1

Eπ⋆,m,Pm [⟨Qm
◇,h (xh, ⋅) , π

⋆,m
h (⋅ ∣ xh) − π

m
h (⋅ ∣ xh)⟩] +

H

∑
h=1

Eπ⋆,m,Pm [ιm◇,h (xh, ah)] .

Smoothness Property for The Visitation Measure
We recall the operator (Ĩ⋆,mh f) (x) = ⟨f(x, ⋅), π⋆,mh (⋅ ∣ x)⟩ and note that (Ĩ⋆,mh Pm

h ) (x
′ ∣ x) =

∑a∈APm
h (x

′ ∣ x, a)πh(a ∣ x) is the transition kernel in step h under policy π at the episode m.
We fix h ∈ [H]. Under policies {πm

h }
H
h=1, the distribution of xh conditional on x1 is given by

Ĩ
⋆,m
1 Pm

1 Ĩ
⋆,m
2 Pm

2 ⋯Ĩ
⋆,m
h−1 Pm

h−1(xh ∣ x1) ∶= ∑
x2,...,xh−1

∏
i∈[h−1]

(Ĩ
⋆,m
i Pm

i ) (xi+1 ∣ xi).

We have the following smoothness property for the visitation measure Ĩ⋆,m1 Pm
1 Ĩ
⋆,m
2 Pm

2 ⋯

Ĩ
⋆,m
h−1 Pm

h−1(xh ∣ x1).

Lemma 21 (Lemma 41 in [35]). Under Assumption 5, it holds that
M

∑
m=2

H

∑
h=1
(Eπ⋆,m,Pm − Eπ⋆,m−1,Pm−1) [1(xh)] ≤H (

√
d1BP +B⋆) ,

where 1(xh) denotes the indicator function for the state xh and d1 > 0 is a constant defined
in Assumption 5.

Constraints Violation under Uniform Slater Condition
Lemma 22 (Constraint Violation under Uniform Slater Condition, Lemma 47 in [35]). Let
the uniform Slater condition hold and µ⋆,m ∈ Λ⋆,m. Let C̄⋆ ≥ 2 maxm∈[M] µ⋆,m. Assume that
{πm}M

m=1 satisfies
M

∑
m=1

V π⋆,m,m
r,1 (x1) − V

πm,m
r,1 (x1) + C̄

⋆
M

∑
m=1
(bm − V

πm,m
g,1 (x1)) ≤ δ.
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Then,
M

∑
m=1
(bm − V

πm,m
g,1 (x1)) ≤

2δ
C̄⋆

.
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Chapter 4

Non-Stationary Risk-Sensitive RL

Risk-sensitive RL considers problems in which the objective takes into account risks that
arise during the learning process, in contrast to the typical expected accumulated reward
objective. Effective management of the variability of the return in RL is essential in various
applications in finance [88], autonomous driving [52] and human behavior modeling [94].

While classical risk-sensitive RL assumes that an agent interacts with a time-invariant
(stationary) environment, both the reward functions and the transition kernels can be time-
varying for many risk-sensitive applications. For example, in finance [88], the federal reserve
adjusts the interest rate or the balance sheet in a non-stationary way and the market
participants should adjust their trading policies accordingly. In the medical treatments [85],
the patient’s health condition and the sensitivity of the patient’s internal body organs to the
medicine vary over time. This non-stationarity should be accounted for to minimize the risk
of any potential side effects of the treatment. A similar requirement holds for the power grid
control [37] where the power grid contingency needs to be prepared with the time-varying
electricity loads.

Despite the importance and ubiquity of non-stationary risk-sensitive RL problems, the
literature lacks provably efficient algorithms and theoretical results. In this work, we study
risk-sensitive RL with an entropic risk measure [65] under episodic Markov decision processes
with unknown and time-varying reward functions and state transition kernels.

The non-stationary RL problem with an entropic risk measure has the following technical
challenges. (1) Due to the non-stationarity of the model, any estimation error of the
expectation operator may be tremendously amplified in the value function when the risk
parameter β is small. (2) In addition, the exponential Bellman equation (see Equation (4.2))
used in our risk-sensitive analysis associates the instantaneous reward and value function
of the next step in a multiplicative way [47]. However, this multiplicative feature of the
exponential Bellman equation will also involve the policy evaluation errors due to the non-
stationary drifting as multiplicative terms, which makes it more difficult to gauge the bounds
than the risk-neural non-stationary setting in which all policy evaluation errors are in an
additive way. (3) Furthermore, the non-linearity of the objective function (see Equation
(4.1a)) makes it difficult to obtain an unbiased estimation of the value function, which is
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needed in the design of a non-stationary detection mechanism in risk-neutral non-stationary
RL [124]. (4) It is unclear whether the risk control and the handling of the non-stationarity
can be separately designed when achieving the optimal dynamic regret. To address these
difficulties, we develop a novel analysis to carefully quantify the effect of the non-stationarity
in risk-sensitive RL. Our main theoretical contributions are as follows

• When the variation budget is known a prior, we propose two provably efficient restart
algorithms, namely Restart-RSMB and Restart-RSQ, and establish their dynamic regrets.
The stationary version of the model-based method Restart-RSMB is also the first model-
based risk-sensitive algorithm in the stationary setting in the literature.

• When the variation budget is unknown (parameter-free), we propose a meta-algorithm that
adaptively detects the non-stationarity of the exponential value functions. The proposed
adaptive algorithms, namely Adaptive-RSMB and Adaptive-RSQ, can achieve the (almost)
same dynamic regret as the algorithms requiring the knowledge of the variation budget.

• We establish a lower bound result for non-stationary RL with entropic risk measure that
certifies the near-optimality of our upper bounds.

• Our results also show that the risk control and the handling of the non-stationarity can
be separately designed if the variation budget is known a prior, while the non-stationary
detection mechanism in the adaptive algorithms depends on the risk parameter.

4.1 Related Work
Many risk-sensitive objectives have been investigated in the literature and applied to RL,
such as the entropic risk measure, Markowitz mean-variance model, Value-at-Risk (VaR), and
Conditional Value at Risk (CVaR) [91, 28, 30, 77, 31, 117, 118, 65]. Our work is closely related
to the entropic risk measure. Following the seminal paper [65], this line of work includes [10,
17, 19, 18, 25, 29, 32, 49, 51, 64, 96, 50, 109, 48, 45, 47]. In particular, when transitions are
unknown and simulators of the environment are unavailable, the first non-asymptotic regret
guarantees are established under the tabular setting in [48] and the function approximation
setting in [45]. Then, a simple transformation of the risk-sensitive Bellman equations is
proposed in [47], which leads to improved regret upper bounds. However, the above papers
all assume that the environment is stationary, and therefore their results may quickly collapse
in a non-stationary environment.

4.2 Problem formulation

Episodic MDP and Risk-Sensitive Objective
In this chapter, we study risk-sensitive RL in non-stationary environments via episodic MDPs
with adversarial bandit-information reward feedback and unknown adversarial transition
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dynamics. At each episode m, an episodic MDP is defined by the finite state space S, the
finite action space A, a collection of transition probability measure {Pm

h }
H
h=1 specifying the

transition probability Pm
h (s

′ ∣ s, a) from state s to the next state s′ under action a ∈ A, a
collection of reward functions {rm

h }
H
h=1 where rm

h ∶ S × A → [0,1] , and H > 0 as the length of
episodes. In this chapter, we focus on a bandit setting where the agent only observes the
values of reward functions, i.e., rm

h (s
m
h , a

m
h ) at the visited state-action pair (sm

h , a
m
h ). We also

assume that reward functions are deterministic to streamline the presentation, while our
analysis readily generalizes to the setting where reward functions are random.

For simplicity, we assume the initial state sm
1 to be fixed as s1 in different episodes. We

use the convention that the episode terminates when a state sH+1 at step H + 1 is reached, at
which the agent does not take any further action and receives no reward.

A policy πm = {πm
h }h∈[H] of an agent is a sequence of functions πm

h ∶ S → A, where πm
h (s)

is the action that the agent takes in state s at step h at episode m. For each h ∈ [H] and
m ∈ [M], we define the value function V π,m

h ∶ S → R of a policy π as the expected value of
the cumulative rewards the agent receives under a risk measure of exponential utility by
executing π starting from an arbitrary state at step h. Specifically, we have

V π,m
h (s) ∶=

1
β

log{Eπ,Pm [exp(β
H

∑
i=h
rm

i (si, ai)) ∣ sh = s]}

where the expectation Eπ,Pm is taken over the random state-action sequence {(xm
i , a

m
i )}

H
i=h,

the action am
i follows the policy πm

i (⋅ ∣ x
m
i ), and the next state xi+1 follows the transition

dynamics Pm
i (⋅ ∣ x

m
i , a

m
i ). Here β ≠ 0 is the risk parameter of the exponential utility: β > 0

corresponds to a risk-seeking value function, β < 0 corresponds to a risk-averse value function,
and as β → 0 the agent tends to be risk-neutral and we recover the classical value function
V π,m

h (s) = Eπ,Pm [∑
H
t=1 r

m
h (st, at) ∣ s0 = s] in standard RL.

We further define the action-value function Qπ,m
h ∶ S × A → R, for each h ∈ [H] and

m ∈ [M], which gives the expected value of the risk measured by the exponential utility when
the agent starts from an arbitrary state-action pair and follows the policy π afterwards; that
is,

Qπ,m
h ∶=

1
β

log{exp (β ⋅ rm
h (s, a))E [exp(β

H

∑
i=h
rm

i (st, at)) ∣sh = s, ah = a]}

=rm
h (s, a) +

1
β

log{E [exp(β
H

∑
i=h+1

rm
i (st, at)) ∣sh = s, ah = a]}

for all (s, a) ∈ S ×A. Under some mild regularity conditions [10], for each episode m, there
always exists an optimal policy, denoted as π∗,m, that yields the optimal value V π∗,m,m

h (s) ∶=

supπ V
π,m

h (s) for all (h, s) ∈ [H]×S. For convenience, we denote V π∗,m,m
h (s) as V ∗,mh (s) when

it is clear from the context.
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Exponential Bellman Equation
For all (s, a, h,m) ∈ S ×A × [H] × [M], the Bellman equation associated with π is given by

Qπ,m
h (s, a) = r

m
h (s, a) +

1
β

log {Es′∼P m
h
(⋅∣s,a) [e

β⋅V π,m
h+1 (s

′)]} , (4.1a)

V π,m
h (s) = Qπ,m

h (s, π(s)), V π,m
H+1(s) = 0. (4.1b)

In Equation (4.1), it can be seen that the action value Qπ,m
h of step h is a non-linear function

of the value function V π,m
h+1 of the later step. Based on Equation (4.1), for h ∈ [H] and

m ∈ [M], the Bellman optimality equation is given by

Q∗,mh (s, a) = r
m
h (s, a) +

1
β

log {Es′∼P m
h
(⋅∣s,a) [e

β⋅V ∗,m
h+1 (s

′)]} ,

V ∗,mh (s) =max
a∈A

Q∗,mh (s, a), V ∗,mH+1(s) = 0.

It has been recently shown in [47] that under the risk-sensitive measurement, it is easier to
analyze a simple transformation of the Bellman equation (by taking exponential on both
sides of (4.1)), which is called exponential Bellman equation: for every policy π and tuple
(s, a, h,m), we have

eβ⋅Qπ,m
h
(s,a) = Es′∼P m

h
(⋅∣s,a) [e

β(rm
h (s,a)+V π,m

h+1 (s
′))] . (4.2)

When π = π∗,m, we obtain the corresponding optimality equation

eβ⋅Q∗,m
h
(s,a) = Es′∼P m

h
(⋅∣s,a) [e

β(rm
h (s,a)+V ∗,m

h+1 (s
′))] . (4.3)

Note that Equation (4.2) associates the current and future cumulative utilities (Qπ,m
h and

V π,m
h+1 ) in a multiplicative way, rather than in an additive way as in the standard Bellman

equations (4.1).

Non-stationarity and Variation Budget
In this work, we focus on a non-stationary environment where the transition function Pm

h

and reward functions rm
h can vary over the episodes. We measure the non-stationarity of

the MDP over an interval I in terms of its variation in the reward functions and transition
kernels:

Br,I ∶= ∑
m∈I

H

∑
h=1

sup
s,a
∣rm

h (s, a) − r
m+1
h (s, a)∣ ,

BP,I ∶= ∑
m∈I

H

∑
h=1

sup
s,a
∥Pm

h (⋅ ∣ s, a) − P
m+1
h (⋅ ∣ s, a)∥1 .

Note that our definition of variation only imposes restrictions on the summation of non-
stationarity across different episodes, and does not put any restriction on the difference
between two steps in the same episode. We further let Br ∶= Br,[1,M], Bp ∶= Bp,[1,M], and
B ∶= Br +Bp, and assume B > 0.
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Performance Metrics
Since both the reward and the transition dynamics vary over the episodes and are revealed
only after a policy is decided, the agent aims to ensure the long-term optimality guarantee
over some given period of episodes M . Suppose that the agent executes policy πm in episode
m. We now define the dynamic regret as the difference between the total reward value of
policy {π⋆,m}M

m=1 and that of the agent’s policy πm over M episodes:

D-Regret(M) ∶=
M

∑
m=1
(V ∗,m1 − V πm,m

1 ) .

4.3 Restart Algorithms with The Knowledge of
Variation Budget

Periodically Restarted Risk-Sensitive Model-Based Method
We first present the Periodically Restarted Risk-sensitive Model-based method (Restart-
RSMB) in Algorithm 3. It consists of two main stages: estimation of value function (line
7-13) with the periodical restart (line 5) and the policy execution (line 15).

To estimate the value function under the unknown non-stationarity, we take the optimistic
value evaluation to properly handle the exploration-exploitation trade-off and apply the restart
strategy to adapt to the unknown non-stationarity. In particular, we reset the visitation
counters Nm

h (s, a, s
′) and Nm

h (x, a) to zero every W episodes (line 5). Then, the reward and
transition dynamics are estimated using only the data from the episode ℓm = (⌈m

W ⌉ − 1)W + 1
to the episode m by

P̂m
h (s

′ ∣ s, a) =
Nm

h (s,a,s′)+ λ
∣S∣

Nm
h
(s,a)+λ , for all (s, a, s′) ∈ S ×A × S, (4.4a)

r̂m
h (s, a) =

∑m−1
τ=ℓm 1{(s,a)=(sτ

h,aτ
h)}rτ

h(sτ
h,aτ

h)
Nm

h
(s,a)+λ , for all (s, a) ∈ S ×A, (4.4b)

which are used to compute the estimated cumulative rewards at step h (line 9). To encourage
a sufficient exploration in the uncertain environment, Algorithm 3 applies the counter-based
Upper Confidence Bound (UCB). Under the entropic risk measure, this bonus term takes the
form

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

C1 ((eβ(H−h+1) − 1) + eβ(H−h+1)β)
√
∣S∣ log(6W H ∣S∣∣A∣/p)

Nm
h
(s,a)+1 , if β > 0,

C1 ((1 − eβ(H−h+1)) − β)
√
∣S∣ log(6W H ∣S∣∣A∣/p)

Nm
h
(s,a)+1 , if β < 0,

(4.5)

for some constant C1 > 1. Bonus terms of the form (4.5) are called “doubly decaying bonus”
since they shrink deterministically and exponentially across the horizon steps due to the
term eβ(H−h+1), apart from decreasing in the visit count. We refer the reader to [45] for more
discussion.
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Algorithm 3 Periodically Restarted Risk-sensitive Model-based RL (Restart-RSMB)
1: Inputs: Time horizon M , restart period W ;
2: for m = 1, . . . ,M do
3: Set the initial state xm

1 = x1 and ℓm = (⌈m
W ⌉ − 1)W + 1;

4: if m = ℓm then
5: Qm

h (s, a), V
m

h (s) ←H − h + 1 if β > 0, Qm
h (s, a), V

m
h (s) ← 0 if β < 0,

Nm
h (s, a) ← 0,Nm

h (s, a, s
′) ← 0 for all (s, a, s′, h) ∈ S ×A × S × [H] ;

6: end if
7: for h =H, . . . ,1 do
8: for (s, a) ∈ S ×A do
9: wm

h (s, a) = ∑s′ P̂
m
h (s

′ ∣ s, a) [eβ[r̂m
h (s,a)+V m

h+1(s′)]] where P̂m
h , r̂m

h are defined in (4.4);

10: Gm
h (s, a) ←

⎧⎪⎪
⎨
⎪⎪⎩

min{eβ(H−h+1),wm
h (s, a) + Γm

h (s, a)} , if β > 0;
max {eβ(H−h+1),wm

h (s, a) − Γm
h (s, a)} , if β < 0;

where Γm
h is defined in (4.5);

11: V m
h (s) ←maxa′∈A

1
β logGm

h (s, a
′);

12: end for
13: end for
14: for h = 1,2, . . . ,H do
15: Take an action am

h ← arg maxa′∈A
1
β log{Gm

h (s
m
h , a

′)}, and observe rh(sm
h , a

m
h ) and

sm
h+1;

16: Nm
h (s

m
h , a

m
h ) ← Nm

h (s
m
h , a

m
h ) + 1; Nm

h (s
m
h , a

m
h , s

m
h+1) ← Nm

h (s
m
h , a

m
h , s

m
h+1, ) + 1;

17: end for
18: end for

Periodically Restarted Risk-Sensitive Q-Learning
Next, we introduce Periodically Restarted Risk-sensitive Q-learning (Restart-RSQ) in Algo-
rithm 4, which is model-free and inspired by RSQ2 in [47]. Similar to Algorithm 3, we use
the optimistic value evaluation to handle the exploration-exploitation trade-off and apply the
restart strategy to adapt to the unknown non-stationarity. In particular, we re-initialize the
value functions Qm

h (s, a), V
m

h (s) and reset the visitation counter Nm
h (x, a) to zero every W

episodes (line 5). The algorithm then updates the exponential Q values using the Q-learning
style update (line 11-12) for the state action pair that just visited (line 8). The learning rate
αt is defined as H+1

H+t , which is motivated by [69] and ensures that only the last O( 1
H ) fraction

of samples in each epoch is given non-negligible weights when used to estimate the optimistic
Q-values under the non-stationarity. Algorithm 4 also applies the UCB by incorporating a
“doubly decaying bonus” term that takes the form

Γm
h,t(s

m
h , a

m
h ) ← C2 ∣e

β(H−h+1) − 1∣
√
∣S∣ log(MH ∣S∣∣A∣/δ)

t
(4.6)

for some constant C2 > 1.
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Algorithm 4 Periodically Restarted Risk-sensitive Q-learning (Restart-RSQ)
1: Inputs: Time horizon M , restart period W ;
2: for m = 1, . . . ,M do
3: Set the initial state xm

1 = x1 and ℓm = (⌈m
W ⌉ − 1)W + 1;

4: if m = ℓm then
5: Qm

h (s, a), V
m

h (s) ←H − h + 1 if β > 0, Qm
h (s, a), V

m
h (s) ← 0 if β < 0, Nm

h (s, a) ← 0 for
all (s, a, h) ∈ S ×A × [H] ;

6: end if
7: for h = 1,2, . . . ,H do
8: Take an action am

h ← arg maxa′∈A
1
β log{Gm

h (s
m
h , a

′)}, and observe rm
h (s

m
h , a

m
h ) and

sm
h+1;

9: Nm
h (s

m
h , a

m
h ) ← Nm

h (s
m
h , a

m
h ) + 1; t← Nm

h (s
m
h , a

m
h );

10: Set αt =
H+1
H+t and define Γm

h,t(s
m
h , a

m
h ) as in (4.6);

11: wm
h (s

m
h , a

m
h ) = (1 − αt) ⋅Gh(sm

h , a
m
h ) + αt ⋅ [e

β[rm
h (sm

h ,am
h )+V m

h+1(s′)]] ;

12: Gm
h (s

m
h , a

m
h ) ←

⎧⎪⎪
⎨
⎪⎪⎩

min{eβ(H−h+1),wm
h (s

m
h , a

m
h ) + αtΓm

h,t(s
m
h , a

m
h )} , if β > 0;

max {eβ(H−h+1),wm
h (s

m
h , a

m
h ) − αtΓm

h,t(s
m
h , a

m
h )} , if β < 0;

13: V m
h (s

m
h ) ←maxa′∈A

1
β logGm

h (s
m
h , a

′);
14: end for
15: end for

Theoretical Results and Discussions
We now present our main theoretical results for Algorithms 3 and 4.

Theorem 11. For every δ ∈ (0,1], with probability at least 1 − δ there exists a universal
constant c1 > 0 (used in Algorithm 3) such that the dynamic regret of Algorithm 3 with
W =M

2
3B−

2
3 ∣S∣

2
3 ∣A∣

1
3 is bounded by

D-Regret(M) ≤Õ (e∣β∣H ∣S∣ 23 ∣A∣ 13H2M
2
3B

1
3) .

Theorem 12. For every δ ∈ (0,1], with probability at least 1 − δ there exists a universal
constant c2 > 0 (used in Algorithm 4) such that the dynamic regret of Algorithm 4 with
W =M

2
3H−

3
4B−

2
3 ∣S∣

2
3 ∣A∣

1
3 is bounded by

D-Regret(M) ≤Õ (e∣β∣H ∣S∣ 13 ∣A∣ 13H 9
4M

2
3B

1
3) .

The proofs of the two theorems are provided in Appendices 4.A and 4.B, respectively.
Note that the above results generalize those in the literature of risk-neutral non-stationary
RL. In particular, when β → 0, we recover the regret bounds with the same dependence on
M and B for the restart model-based RL [38] and restart Q-learning [87].
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Algorithm 5 Risk-sensitive MALG with Stationary Tests and Restarts (Adaptive-ALG)
1: Inputs: ALG and its associated ρ(⋅), n̂ = log2M + 1, ρ̂(m) = 6n̂ log(M

δ )ρ(m);
2: for n = 0,1, . . . , do
3: Set mn ←m and run MALG-Initialization (Algorithm 6) for the block [mn,mn+2n−1];

4: while m <mn + 2n do
5: Identify the unique active instance covering the episode m and denote it as alg;
6: Construct the optimistic estimator gm for the active instance alg;
7: Follow alg’s decision πm, receive estimated value Rm = eβ∑H

h=1 rm
h , and update alg;

8: Set Um =

⎧⎪⎪
⎨
⎪⎪⎩

minτ∈[mn,m] gτ , if β > 0,
maxτ∈[mn,m] gτ , if β < 0;

9: Perform Test1 and Test2; Increment t← t + 1;
10: If either test returns fail, then restart from Line 2.
11: end while
12: end for
13: Test1: Return fail if m = alg.e for some order-k alg and
⎧⎪⎪
⎨
⎪⎪⎩

1
2k ∑

alg.e
τ=alg.sRτ −Ut ≥ 9ρ̂(2k), if β > 0,

Ut −
1

2k ∑
alg.e
τ=alg.sRτ ≥ 9ρ̂(2k), if β < 0;

14: Test2: Return fail if
⎧⎪⎪
⎨
⎪⎪⎩

1
m−mn+1 ∑

m
τ=mn
(gτ −Rτ) ≥ 3ρ̂(m −mn + 1), if β > 0,

1
m−mn+1 ∑

m
τ=mn
(Rτ − gτ) ≥ 3ρ̂(m −mn + 1), if β < 0,

4.4 Adaptive Algorithm without The Knowledge of
Variation Budget

In Theorems 11 and 12, we need to set the restart period to W = O(B− 2
3M

2
3 ), which clearly

requires the variation budget B in advance. To overcome this limitation, we propose a
meta-algorithm that adaptively detects the non-stationarity without the knowledge of B,
while still achieving the similar dynamic regret as in Theorems 11 and 12. In particular,
we generalize the black-box approach [124] to the risk-sensitive RL setting and design a
non-stationarity detection based on the exponential Bellman equations (4.2).

Risk-Sensitive Non-Stationary Detection
We first sketch the high-level idea of the black-box reduction approach for risk-sensitive
non-stationary RL with β > 0. Note that the dynamic regret can be bounded and decomposed
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as follows:

D-Regret(M) ≤ 1
β

M

∑
m=1
(eβV ∗,m

1 − eβV m
1 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R1

+
1
β

M

∑
m=1
(eβV m

1 − eβV πm,m
1 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R2

(4.7)

where V m
1 is an UCB-based optimistic estimator of the value function as constructed in

Algorithms 3 and 4. In a stationary environment with β > 0, the base algorithms, such as
Algorithms 3 and 4 without the restart mechanism (that is, W =M), ensure that R1 is simply
non-positive and R2 is bounded by Õ(M 1

2 ). However, in a non-stationary environment, both
terms can be substantially larger. Thus, if we can detect the event that either of the two
terms is abnormally larger than the promised bound for a stationary environment, we learn
that the environment has changed substantially and should restart the base algorithm. This
detection can be easily performed for R2 since both eβV m

1 and eβV πm,m
1 are observable 1, but

not for R1 since V ∗,m1 is unknown. To address this issue, we fully utilize the fact that eβV m
1

is a UCB-based optimistic estimator to facilitate non-stationary detection.

(a) β > 0 (b) β < 0

Figure 4.4.1: An illustration of the risk-sensitive non-stationarity detection. The green
curves represent the learner’s average performance in new ALG. Since both Um and learner’s
average performance depend on the risk-sensitive parameter β in a non-linear way. The
non-stationarity detection relies on the choice of β and thus the risk control and the handling
of the non-stationarity can not be separately designed.

We illustrate the idea of non-stationary detection for risk-sensitive RL in Figure 4.4.1.
Here, the value of V ∗,m1 drastically increases which results to an increase in eβV ∗,m

1 for β > 0
and an decrease in eβV ∗,m

1 for β < 0. If we start running another instance of base algorithm
after this environment change, then its performance will gradually approach due to its
regret guarantee in a stationary environment. Since the optimistic estimators should always
be an upper bound of the learner’s average performance in a stationary environment for

1More precisely, ∑M
m=1 eβV πm,m

1 can be estimated from ∑M
m=1 eβ∑H

h=1 rm
h using the Azuma’s inequality.
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β > 0 or a lower bound of the learner’s average performance in a stationary environment for
β < 0, if, at some point, we find that the new instance of the base algorithm significantly
outperformances/underperformances (depending on the value of β) this quantity, we can
infer that the environment has changed.

Multi-Scale ALG (MALG) and Non-Stationarity Tests
To detect the non-stationarity at different scales, we schedule and run instances of the base
algorithm ALG in a randomized and multi-scale manner. In particular, Adaptive-ALG runs
MALG in a sequence of blocks with doubling lengths. Within each block, Adaptive-ALG first
initializes a MALG schedule (Algorithm 6 in Appendix 4.C), and then interacts the unique
active instance at each episode with the environment (lines 5-7 in Algorithm 5). At the end
of each episode, Adaptive-ALG performs two non-stationarity tests (line 10 in Algorithm 5),
and if either of them returns fail, the restart is triggered. We now describe these three parts
in detail below.

MALG-initialization. MALG is run for an interval of length 2n (unless it is terminated
by the non-stationarity detection), which is called a block. During the initialization, MALG
partions the block equally into 2n−k sub-intervals of length 2k for k = 0,1, . . . , n, and an
instance of based algorithm (denoted by ALG) is scheduled for each of these sub-intervals
with probability ρ(2n)

ρ(2k) , where ρ is a non-increasing function associated with the bound on
R2 for ALG in a stationary environment (see Appendix 4.C). We refer to these instances of
length 2k as order-k instances.

MALG-interaction. After the initialization, MALG starts interacting with the environ-
ment as follows. In each episode m, the unique instance alg that covers this episode with
the shortest length is considered as active, while all others are regarded as inactive. MALG
follows the decision of the active instance alg and updates it after receiving the feedback
from the environment. All inactive instances do not make any decisions or updates, that is,
they are paused but may be resumed at some future episode. We refer the read to Appendix
4.C for an illustrative example for MALG procedure.

Non-stationarity detection For β > 0, two non-stationarity tests are performed for the
two terms in the decomposition (4.7). In particular, Test1 prevents R1 from growing too
large by testing if there is some order−k instance’s interval during which the learner’s average
performance 1

2k ∑
alg.e
τ=alg.sRτ is larger than the promised optimistic estimator Um =minτ∈[mn,m] gτ

(for a stationary environment) by a certain amount. On the other hand, Test2 prevents R2
from growing too large by directly testing if its average is large than the promised regret
bound. The two non-stationarity tests for β < 0 are similar but with 1

2k ∑
alg.e
τ=alg.sRτ and Um

exchanged in TEST1, as well as with gτ and Rτ exchanged in TEST2.

Theoretical Results and Discussions
For simplicity, we denote the revised Algorithms 3 and 4 without the restart mechanism (that
is, W =M) as RSMB and RSQ, respectively. We now present our main theoretical result for
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Algorithm 5 when the base algorithms are RSMB and RSQ, respectively.

Theorem 13. For every δ ∈ (0, 1], with probability at least 1 − δ it holds for Algorithm 5 that

D-Regret(M) ≤
⎧⎪⎪
⎨
⎪⎪⎩

Õ (e∣β∣H ∣S∣
2
3 ∣A∣

1
3H2M

2
3B

1
3) , if ALG is RSMB,

Õ (e∣β∣H ∣S∣
2
3 ∣A∣

1
3H

5
3M

2
3B

1
3) , if ALG is RSQ.

The above results show that the dynamic regret bound of the adaptive Algorithm 5 (almost)
matches that of the restart Algorithms 3-4 that require the knowledge of the variation budget.
The proof of Theorem 13 relies on the results in Theorems 11-4 and is provided in Appendix
4.C.

4.5 Lower Bound
We now present a lower bound on the dynamic regret which complements the upper bounds
in Theorems 11, 12 and 13.

Theorem 14. For sufficiently large M , there exists an instance of non-stationary MDP with
H horizons, state space S, action space A and variation budget B such that

D-Regret(M) ≥Ω
⎛

⎝

e
2∣β∣H

3 − 1
∣β∣

∣S∣
1
3 ∣A∣

1
3M

2
3B

1
3
⎞

⎠
.

Theorem 14 shows that the exponential dependence on ∣β∣ and H in Theorems 11, 12
and 13 is essentially indispensable and that the results in Theorems 11, 12 and 13 are nearly
optimal in their dependence on ∣A∣,M and B. When β → 0, we recover the existing lower
bound for the non-stationary risk-neutral episodic MDP problems [87].

The proof is given in Appendix 4.C. In the proof, the hard instance we construct is
a non-stationary MDP with piecewise constant dynamics on each segment of the horizon,
and its dynamics experience an abrupt change at the beginning of each new segment. In
each segment, we construct a ∣S∣∣A∣-arm bandit model with Bernoulli reward for each arm.
This bandit model can be seen as a special case of our episodic MDP problem, and then we
show the expected regret, in terms of the logarithmic-exponential objective, that any bandit
algorithm has to incur.

4.6 Summary
Our main theoretical contributions are summarized in Table 4.6.1.
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Algorithm D-Regret Parameter-free Model-free Separation
Restart-RSMB Õ (e∣β∣H ∣S∣ 23 ∣A∣ 13 H2M

2
3 B

1
3 ) ✗ ✗ ✓

Restart-RSQ Õ (e∣β∣H ∣S∣ 13 ∣A∣ 13 H
9
4 M

2
3 B

1
3 ) ✗ ✓ ✓

Adaptive-RSMB Õ (e∣β∣H ∣S∣ 23 ∣A∣ 13 H2M
2
3 B

1
3 ) ✓ ✗ ✗

Adaptive-RSQ Õ (e∣β∣H ∣S∣ 13 ∣A∣ 13 H
5
3 M

2
3 B

1
3 ) ✓ ✓ ✗

Lower bound Ω( e
2∣β∣H

3 −1
∣β∣ ∣S∣

1
3 ∣A∣ 13 M

2
3 B

1
3) N/A N/A N/A

Table 4.6.1: We summarize the dynamic regrets and lower bound obtained in this paper.
Here, β is the risk parameter, H is the horizon of each episode, M is the total number of
episodes, B is the total variation measurement, and ∣S∣ and ∣A∣ are the cardinalities of the
state and action spaces.
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Appendix

4.A Proof of Theorem 11

Preliminaries
First, we set some notations and definitions. Define ι ∶= log(6H ∣S∣∣A∣W /p) for a given p ∈ (0, 1].
We adopt the shorthand notations 1m

h (s, a) ∶= 1{(sm
h , a

m
h ) = (s, a)} and rm

h ∶= rh (sm
h , a

m
h ) for

(m,h) ∈ [M] × [H]. The epoch is defined as an interval that starts at the first episode after
a restart and ends at the first time when the restart is triggered. In Algorithm 3, the restart
mechanism divides M episodes into ⌈M

W ⌉ epochs.
For every (m,h) ∈ [M] × [H], and (s, a, s′) ∈ S ×A × S, we define two visitation counters

Nm
h (s, a, s

′) and Nm
h (x, a) at step h in episode m as follows:

Nm
h (s, a, s

′) =
m−1
∑

τ=ℓm

1{(s, a, s′) = (sτ
h, a

τ
h, s

τ
h+1)} ,

Nm
h (s, a) =

m−1
∑

τ=ℓm

1{(s, a) = (sτ
h, a

τ
h)} .

(4.8a)

This allows us to estimate the transition kernel Pm
h and reward function rm for episode m

using only the data from the episode ℓm = (⌈m
W ⌉ − 1)W + 1 to the episode m by

P̂m
h (s

′ ∣ s, a) =
Nm

h (s,a,s′)+ λ
∣S∣

Nm
h
(s,a)+λ , for all (s, a, s′) ∈ S ×A × S (4.9a)

r̂m
h (s, a) =

1
Nm

h
(s,a)+λ ∑

m−1
τ=ℓm 1{(s, a) = (sτ

h, a
τ
h)} r

τ
h (s

τ
h, a

τ
h) , for all (s, a) ∈ S ×A, (4.9b)

where λ > 0 is the regularization parameter. We denote by V m
h , Gm

h ,Γm
h the values of Vh,Gh,Γh

after the updates in step h of episode m, respectively. We also set Qm
h =

1
β log {Gm

h } .

Let us fix a pair (s, a) ∈ S ×A. Recall from Algorithm 3 that

wm
h (s, a) = ∑

s′
P̂m

h (s
′ ∣ s, a) [eβ[r̂m

h (s,a)+V m
h+1(s′)]] .
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We define

qm,+
h,1 (s, a) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

wm
h (s, a) + Γm

h (s, a), if β > 0
wm

h (s, a) − Γm
h (s, a), if β < 0

qm
h,1(s, a) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

min{qm,+
h,1 (s, a), e

β(H−h+1)} , if β > 0
max {qm,+

h,1 (s, a), e
β(H−h+1)} , if β < 0

and

qm
h,2(s, a) ∶= Es′∼Pm

h
(⋅∣s,a) [e

β[rm
h (s,a)+V m

h+1(s′)]] , (4.10)

as well as the following for a policy π,

qm,π
h,3 (s, a) ∶= Es′∼Pm

h
(⋅∣s,a) [e

β[rm
h (s,a)+V π,m

h+1 (s
′)]] (4.11)

Model Prediction Errors
Lemma 23. Define Vh+1 ∶= {V̄h+1 ∶ S → R ∣ ∀s ∈ S, V̄h+1(s) ∈ [0,H − h]}. For any p ∈ (0,1],
with probability 1 − p/2, we have

∣∑
s′∈S
(P̂m

h (s
′ ∣ s, a) eβ[rm

h (s,a)+V̄ (s′)] − Pm
h (s

′ ∣ s, a) eβ[rm
h (s,a)+V̄ (s′)])∣

≤Γm
h + ∣e

β(H−h+1) − 1∣BP,E

for every (s, a,m,h) ∈ S ×A × [M] × [H] and V̄ ∈ Vh+1, where Γm
h is defined in (4.5).

Proof. For the ease of notation, we denote∑s′∈S P
m
h (s

′ ∣ s, a) eβ[rm
h (s,a)+V̄ (s′)] as (Pm

h e
β[rm

h +V̄ ]) (s, a).
Then, for every V̄ ∈ Vh+1, we consider the difference between ∑s′∈S P̂

m
h (s

′ ∣ ⋅, ⋅) eβ[rm
h (s,a)+V̄ (s′)]
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and ∑s′∈S P
m
h (s

′ ∣ ⋅, ⋅) eβ[rm
h (s,a)+V̄ (s′)] as follows:

(Nm
h (s, a) + λ) ∣∑

s′∈S
(P̂m

h (s
′ ∣ s, a) eβ[rm

h (s,a)+V̄ (s′)] − Pm
h (s

′ ∣ s, a) eβ[rm
h (s,a)+V̄ (s′)])∣ (4.12)

= ∣∑
s′∈S
(Nm

h (s, a, s
′) +

λ

∣S∣
) eβ[rm

h (s,a)+V̄ (s′)] − (Nm
h (s, a) + λ) (P

m
h e

β[rm
h +V̄ ]) (s, a)∣

≤ ∣∑
s′∈S

Nm
h (s, a, s

′) eβ[rm
h (s,a)+V̄ (s′)] −Nm

h (s, a) (P
m
h e

β[rm
h +V̄ ]) (s, a)∣

+ λ ∣
1
∣S∣
∑
s′∈S

eβ[rm
h (s,a)+V̄ (s′)] − Pm

h e
β[rm

h +V̄ ](s, a)∣

=

RRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτ
h, a

τ
h)} (e

β[rm
h (sτ

h,aτ
h)+V̄ (sτ

h+1)] − (Pm
h e

β[rm
h +V̄ ]) (s, a))

RRRRRRRRRRRR

+ λ ∣
1
∣S∣
∑
s′∈S

eβ[rm
h (s,a)+V̄ (s′)] − Pm

h e
β[rm

h +V̄ ](s, a)∣

=

RRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτ
h, a

τ
h)} e

βrm
h (sτ

h,aτ
h) (eβV̄ (sτ

h+1) − (Pm
h e

βV̄ ) (s, a))

RRRRRRRRRRRR

+ λ ∣
1
∣S∣
∑
s′∈S

eβ[rm
h (s,a)+V̄ (s′)] − Pm

h e
β[rm

h +V̄ ](s, a)∣

≤

RRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτ
h, a

τ
h)} e

βrm
h (sτ

h,aτ
h) (eβV̄ (sτ

h+1) − (Pτ
he

βV̄ ) (s, a))

RRRRRRRRRRRR

(4.13)

+

RRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτ
h, a

τ
h)} e

βrm
h (sτ

h,aτ
h) ((Pτ

he
βV̄ ) (s, a) − (Pm

h e
βV̄ ) (s, a))

RRRRRRRRRRRR

(4.14)

+ λ ∣
1
∣S∣
∑
s′∈S

eβ[rm
h (s,a)+V̄ (s′)] − Pm

h e
β[rm

h +V̄ ](s, a)∣ (4.15)

for every (m,h) ∈ [M] × [H] and (s, a) ∈ S ×A.
To analyze the term in (4.13), we let ητ

h ∶= e
β[rm

h (sτ
h,aτ

h)+V̄ (sτ
h+1)] − (Pτ

he
β[rm

h +V̄ ]) (sτ
h, a

τ
h).

Conditioning on the filtration Fm
h,1, the term ητ

h is a zero-mean and ∣eβ(H−h+1) − 1∣-sub-Gaussian
random variable. By Lemma 44, we use Y = λI and Xτ = 1{(s, a) = (sτ

h, a
τ
h)} and thus with
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probability at least 1 − δ it holds for every m ∈ [M] that

(Nm
h (s, a) + λ)

−1/2
RRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτ
h, a

τ
h)} (e

β[rm
h (sτ

h,aτ
h)+V̄ ](sτ

h+1) − (Pτ
he

β[rm
h +V̄ ]) (sτ

h, a
τ
h))

RRRRRRRRRRRR

≤

¿
Á
Á
Á
ÁÀ
(eβ(H−h+1) − 1)2

2 log
⎛
⎜
⎝

(Nm
h (s, a) + λ)

1/2
λ−1/2

δ

⎞
⎟
⎠

≤

√
(eβ(H−h+1) − 1)2

2 log (W
δ
)

where W is the restart period.
For the term in (4.14), by the definition of BP,E and Nm

h , we have
RRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτ
h, a

τ
h)} ((P

τ
he

β[rm
h +V̄ ]) (s, a) − (Pm

h e
β[rm

h +V̄ ]) (s, a))

RRRRRRRRRRRR

=

RRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτ
h, a

τ
h)} ((P

τ
h (e

β[rm
h +V̄ ] − 1)) (s, a) − (Pm

h (e
β[rm

h +V̄ ] − 1)) (s, a))
RRRRRRRRRRRR

≤

RRRRRRRRRRRR

m−1
∑

τ=ℓm
Q

1{(s, a) = (sτ
h, a

τ
h)}

RRRRRRRRRRRR

∣eβ(H−h+1) − 1∣BP,E

≤(Nm
h (s, a) + λ) ∣e

β(H−h+1) − 1∣BP,E .

where the first equality is due to Pm
h 1 = Pτ

h1 for all τ ∈ [ℓm,m− 1]. For the term in (4.15), we
have

λ ∣
1
∣S∣
∑
s′∈S

eβ[rm
h (s,a)+V̄ (s′)] − Pm

h e
β[rm

h +V̄ ](s, a)∣ ≤
λ

∣S∣
∑
s′∈S
∣eβ[rm

h (s,a)+V̄ (s′)] − Pm
h e

β[rm
h +V̄ ](s, a)∣

≤λ ∣eβ(H−h+1) − 1∣ .

By returning to (4.12) and setting λ = 1, with probability at least 1 − δ it holds that

∣∑
s′∈S
(P̂m

h (s
′ ∣ s, a) eβ[rm

h (s,a)+V̄ (s′)] − Pm
h (s

′ ∣ s, a) eβ[rm
h (s,a)+V̄ (s′)])∣

≤ (Nm
h (s, a) + λ)

− 1
2 ∣eβ(H−h+1) − 1∣

√
1
2 (log (W

δ
)) + ∣eβ(H−h+1) − 1∣BP,E + ∣e

β(H−h+1) − 1∣

≤C1 (N
m
h (s, a) + λ)

− 1
2 ∣eβ(H−h+1) − 1∣

√

(log (W
δ
)) + ∣eβ(H−h+1) − 1∣BP,E

for all m ∈ [M] and for some constant C1 > 1.
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Furthermore, let d (V,V ′) =maxs∈S ∣V (s) − V ′(s)∣ be a distance on Vh+1. For every ϵ, an
ϵ-covering Vϵ

h+1 of Vh+1 with respect to distance d(⋅, ⋅) satisfies ∣Vϵ
h+1∣ ≤ (

1
ϵ
)
∣S∣
. Then, for every

V ∈ Vh+1, there exists V ′ ∈ Vϵ
h+1 such that maxs∈S ∣V (s) − V ′(s)∣ ≤ ϵ, which further implies

that

max
s,a,s′
∣eβ[rm

h (s,a)+V (s′)] − eβ[rm
h (s,a)+V ′(s′)]∣ ≤gh(β)ϵ,

where

gh(β) =

⎧⎪⎪
⎨
⎪⎪⎩

eβ(H−h+1)β, if β > 0,
−β, if β < 0.

(4.16)

Thus, by the triangle inequality and (4.12), we have

∣∑
s′∈S
(P̂m

h (s
′ ∣ s, a) eβ[rm

h (s,a)+V (s′)] − Pm
h (s

′ ∣ s, a) eβ[rm
h (s,a)+V (s′)])∣

≤ ∣∑
s′∈S
(P̂m

h (s
′ ∣ s, a) eβ[rm

h (s,a)+V ′(s′)] − Pm
h (s

′ ∣ s, a) eβ[rm
h (s,a)+V ′(s′)])∣ + 2gh(β)βϵ

≤C1 (N
m
h (s, a) + λ)

−1/2
∣eβ(H−h+1) − 1∣

√

log (W
δ
) + ∣eβ(H−h+1) − 1∣BP,E + 2gh(β)ϵ.

Then, by choosing δ = (p/2)/ (∣Vϵ
h+1∣H ∣S∣ ∣A∣), ϵ = 1

4
√

W
, and taking a union bound over

V ∈ Vϵ
h+1 and (s, a, h) ∈ S ×A × [H], it holds with probability at least 1 − p/2 that

sup
V ∈Vh+1

{∣∑
s′∈S
(P̂m

h (s
′ ∣ s, a) eβ[rm

h (s,a)+V (s′)] − Pm
h (s

′ ∣ s, a) eβ[rm
h (s,a)+V (s′)])∣}

≤C1 (N
m
h (s, a) + λ)

−1/2
∣eβ(H−h+1) − 1∣

¿
Á
Á
ÁÀ
⎛

⎝
log
⎛

⎝

6W ∣Vϵ
h+1∣H ∣S∣ ∣A∣

p

⎞

⎠

⎞

⎠
+ ∣eβ(H−h+1) − 1∣BP,E

+ 2gh(β)ϵ

≤C1 (N
m
h (s, a) + λ)

−1/2
∣eβ(H−h+1) − 1∣

√

∣S∣ (log (6WH ∣S∣ ∣A∣

p
)) + ∣eβ(H−h+1) − 1∣BP,E

+ gh(β)W
−1/2

≤(C1 ∣e
β(H−h+1) − 1∣ + gh(β)) (N

m
h (s, a) + λ)

−1/2
√

∣S∣ (log (6WH ∣S∣ ∣A∣

p
)) + ∣eβ(H−h+1) − 1∣BP,E

≤C1 (∣e
β(H−h+1) − 1∣ + gh(β)) (N

m
h (s, a) + λ)

−1/2
√

∣S∣ (log (6WH ∣S∣ ∣A∣

p
)) + ∣eβ(H−h+1) − 1∣BP,E
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for every (s, a,m,h) ∈ S × A × [M] × [H]. By our choice of Γm
h , with probability at least

1 − p/2 it holds that

∣∑
s′∈S
(P̂m

h (s
′ ∣ s, a) eβ[rm

h (s,a)+V̄ (s′)] − Pm
h (s

′ ∣ s, a) eβ[rm
h (s,a)+V̄ (s′)])∣

≤ Γm
h + ∣e

β(H−h+1) − 1∣BP,E

for every (s, a,m,h) ∈ S ×A × [M] × [H].

Lemma 24. For every (s, a,m,h) ∈ S ×A × [M] × [H] and V̄ ∈ Vh+1, we have

∣∑
s′∈S
(P̂

m

h (s
′ ∣ s, a) eβ[r̂m

h (s,a)+V̄ (s′)] − P̂m
h (s

′ ∣ s, a) eβ[rm
h (s,a)+V̄ (s′)])∣ ≤ Γm

h + gh(β)Br,E

where gh(β) is defined in (4.16).

Proof. Since

∣eβx − eβy ∣ ≤

⎧⎪⎪
⎨
⎪⎪⎩

βeβu∣x − y∣, if β > 0,
−β∣x − y∣, if β < 0

for every 0 ≤ x ≤ u and 0 ≤ y ≤ u where u > 0 is some constant, it holds that

∣∑
s′∈S
(P̂

m

h (s
′ ∣ s, a) eβ[r̂m

h (s,a)+V̄ (s′)] − P̂m
h (s

′ ∣ s, a) eβ[rm
h (s,a)+V̄ (s′)])∣

≤gh(β) ∣r̂
m
h (s, a) − r

m
h (s, a)∣ . (4.17)

Furthermore, by our estimation r̂m
h (x, a), we have

∣r̂m
h (x, a) − r

m
h (x, a)∣

= ∣r̂m
h (x, a) − r

m
h (x, a)∣

= (nm
h (x, a) + λ)

−1
∣

m−1
∑

τ=ℓm

1{(x, a) = (xτ
h, a

τ
h)} (r

τ
h(x

τ
h, a

τ
h) − r

m
h (x, a)) − λr

m
h (x, a)∣

≤Br,E + (n
m
h (x, a) + λ)

−1
∣λrm

h (x, a)∣

≤Br,E + (n
m
h (x, a) + λ)

−1
λ

≤Br,E + (n
m
h (x, a) + λ)

−1/2
λ

By substituting the above inequality into (4.17) and setting λ = 1, we obtain the desired
results.

Lemma 25. For every p ∈ (0,1], with probability 1 − p/2, we have

∣∑
s′∈S
(P̂m

h (s
′ ∣ s, a) eβ[r̂m

h (s,a)+V̄ (s′)] − Pm
h (s

′ ∣ s, a) eβ[rm
h (s,a)+V̄ (s′)])∣

≤2Γm
h + ∣e

β(H−h+1) − 1∣BP,E + gh(β)Br,E

where gh(β) is defined in (4.16), for every (s, a,m,h) ∈ S ×A × [M] × [H] and V̄ ∈ Vh+1.
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Proof. The proof follows from Lemma 23, Lemma 24 and Cauchy-Schwartz inequality.

Value Difference Bounds
Lemma 26. Recall the definition of Γm

h from Algorithm 3. For all (m,h, s, a) ∈ [M] × [H] ×
S ×A, the following statement holds with probability at least 1 − p/2:

• If β > 0:

− ∣eβ(H−h+1) − 1∣BP,E − gh(β)Br,E ≤(q
m
h,1 − q

m
h,2) (s, a)

≤4Γm
h + ∣e

β(H−h+1) − 1∣BP,E + gh(β)Br,E .

• If β < 0:

− ∣eβ(H−h+1) − 1∣BP,E − gh(β)Br,E ≤(q
m
h,2 − q

m
h,1) (s, a)

≤4Γm
h + ∣e

β(H−h+1) − 1∣BP,E + gh(β)Br,E .

(Note that gh(β) is defined in (4.16)).

Proof. We focus on the case of β > 0 since the proof for β < 0 is similar. We first fix a tuple
(m,h, s, a) ∈ [M] × [H] × S ×A. By the definitions of qm,+

h,1 and qm
h,2, one can compute

∣(qm,+
h,1 − 2Γm

h − q
m
h,2) (s, a)∣

= ∣(wm
h − q

m
h,2) (s, a)∣

= ∣∑
s′∈S
(P̂m

h (s
′ ∣ s, a) eβ[r̂m

h (s,a)+V̄ (s′)] − Pm
h (s

′ ∣ s, a) eβ[rm
h (s,a)+V̄ (s′)])∣

≤ 2Γm
h + ∣e

β(H−h+1) − 1∣BP,E + gh(β)Br,E

where the last step holds by Lemma 23. Then, we have

− ∣eβ(H−h+1) − 1∣BP,E − gh(β)Br,E ≤(q
m,+
h,1 − q

m
h,2) (s, a)

≤4Γm
h + ∣e

β(H−h+1) − 1∣BP,E + gh(β)Br,E .

Furthermore, if qm,+
h,1 ≤ e

β(H−h+1), one can write

qm,+
h,1 − q

m
h,2 = q

m
h,1 − q

m
h,2 ≥ − ∣e

β(H−h+1) − 1∣BP,E − gh(β)Br,E .

If qm,+
h,1 ≥ e

β(H−h+1), we have qm,+
h,1 − q

m
h,2 = e

β(H−h+1) − qm
h,2 ≥ 0. In addition, since qm,+

h,1 ≥ q
m
h,1, it

holds that qm
h,1 − q

m
h,2 ≤ q

m,+
h,1 − q

m
h,2. This completes the proof.

Lemma 27. On the event of Lemma 26, for all (m,h, s, a) ∈ [M] × [H] × S ×A and every
policy π:
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• If β > 0:
eβ⋅Qm

h (s,a) − eβ⋅Qπ,m
h
(s,a) ≥ −(H − h + 1) [∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E] .

• If β < 0:
eβ⋅Qm

h (s,a) − eβ⋅Qπ,m
h
(s,a) ≤ (H − h + 1) [∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E] .

Proof. We focus on the case of β > 0 since the proof for β < 0 is similar. For the purpose of
the proof, we set Qπ,m

H+1(s, a) = Q
∗,m
H+1(s, a) = 0 for all (s, a) ∈ S ×A. We fix a tuple (m,s, a) ∈

[M] × S × A and use strong induction on h. The base case for h = H + 1 is satisfied since
eβ⋅Qm

H+1(s,a) = eβ⋅Qπ,m
H+1(s,a) = 1 for all m ∈ [M] by definition. Now, we fix an index h ∈ [H] and

assume that
eβ⋅Qm

h+1(s,a) − eβ⋅Qπ,m
h+1 (s,a) ≥ −(H − h) [∣eβ(H−h) − 1∣BP,E + gh(β)Br,E] .

Moreover, by the induction assumption, we have
eβ⋅V m

h+1(s) =max
a′∈A

eβ⋅Qm
h+1(s,a′)

≥max
a′∈A

eβ⋅Qπ,m
h+1 (s,a′) − (H − h) [∣eβ(H−h) − 1∣BP,E + gh(β)Br,E]

≥ eβ⋅V π,m
h+1 (s) − (H − h) [∣eβ(H−h) − 1∣BP,E + gh(β)Br,E] . (4.18)

By the definitions of qm
h,2 and qm,π

h,3 , it follows from (4.18) that

qm
h,2 − q

m,π
h,3 ≥ −(H − h) [∣e

β(H−h+1) − 1∣BP,E + gh(β)Br,E] .

In addition, on the event of Lemma 26, we also have
qm

h,1 − q
m
h,2 ≥ − [∣e

β(H−h+1) − 1∣BP,E + gh(β)Br,E] .

Therefore, it follows that
(eβ⋅Qm

h − eβ⋅Qπ,m
h ) (s, a) = (qm

h,1 − q
m,π
h,3 ) (s, a)

= (qm
h,1 − q

m
h,2) (s, a) + (q

m
h,2 − q

m,π
h,3 ) (s, a)

≥ − (H − h + 1) [∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E]

which completes the induction.

Lemma 28. For all (m,h, s) ∈ [M] × [H] ×S, policy π and δ ∈ (0, 1], with probability at least
1 − δ/2:

• If β > 0:
eβ⋅V m

h (s,a) − eβ⋅V π,m
h
(s,a) ≥ −(H − h + 1) [∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E] .

• If β < 0:
eβ⋅V m

h (s,a) − eβ⋅V π,m
h
(s,a) ≤ (H − h + 1) [∣eβ(H−h+1) − 1∣BP,E + gh(β)Br,E] .

Proof. The result follows from Lemma 27 and Equation (4.18).
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Proof of Theorem 11
We first consider β > 0. For h ∈ [H], we define

δm
h ∶= e

βV m
h (sm

h ) − eβV πm,m
h

(sm
h ), (4.19a)

ζm
h+1 ∶= q

m
h,2 − q

m
h,3 − e

βrm
h (sm

h ,am
h )δm

h+1 (4.19b)

= [Pm
h (e

β[rm
h (sm

h ,am
h )+V m

h+1(s′)] − eβ[rm
h (sm

h ,am
h )+V πm,m

h+1 (s′)]
)] (sm

h , a
m
h ) − e

βrm
h (sm

h ,am
h )δm

h+1,

where [Pm
h f] (s, a) ∶= Es′∼P m

h
(∣⋅∣s,a) [f (s′)] for every f ∶ S → R and (s, a) ∈ S × A. Then, for

every (m,h) ∈ [M] × [H], we have

δm
h

(i)
= (eβ⋅Qm

h − eβ⋅Qπm,m
h ) (sm

h , a
m
h )

(ii)
= qm

h,1 (s
m
h , a

m
h ) − q

m
h,2 (s

m
h , a

m
h ) + q

m
h,2 (s

m
h , a

m
h ) − q

m
h,3 (s

m
h , a

m
h )

(iii)
≤ 4Γm

h + ∣e
β(H−h+1) − 1∣BP,E + gh(β)Br,E + q

m
h,2 (s

m
h , a

m
h ) − q

m
h,3 (s

m
h , a

m
h )

=4Γm
h + ∣e

β(H−h+1) − 1∣BP,E + gh(β)Br,E + e
β⋅rm

h (sm
h ,am

h )δm
h+1 + ζ

m
h+1. (4.20)

In the above equation, step (i) holds by the construction of Algorithm 3 and the definition
of V πm

h in Equation (4.1b); step (ii) holds by Equations (4.10) and (4.11); step (iii) holds on
the event of Lemma 26; the last step follows from the definition of δm

h and ζm
h in Equations

4.19a and 4.19b.
Using the fact that V m

H+1(s) = V
πm

H+1(s) = 0, we can expand the recursion in Equation (4.20)
to obtain

δm
1 ≤ ∑

h∈[H]
eβ∑h−1

i=1 rm
i ζm

h+1 + ∑
h∈[H]

eβ∑h−1
i=1 rm

i (4Γm
h + ∣e

β(H−h+1) − 1∣BP,E + gh(β)Br,E)

≤ ∑
h∈[H]

eβ∑h−1
i=1 rm

i ζm
h+1 + ∑

h∈[H]
eβ(h−1) (4Γm

h + ∣e
β(H−h+1) − 1∣BP,E + gh(β)Br,E) .

where the last step follows from rm
h (⋅, ⋅) ∈ [0,1]. Summing the above display over m ∈ [M]

gives

∑
m∈[M]

δm
1

≤ ∑
m∈[M]

∑
h∈[H]

eβ∑h−1
i=1 rm

i ζm
h+1 + ∑

m∈[M]
∑

h∈[H]
eβ(h−1) (4Γm

h + ∣e
β(H−h+1) − 1∣BP,E + gh(β)Br,E)

=

⌈M
W
⌉

∑
E=1

EW

∑
m=(E−1)W

∑
h∈[H]

(eβ∑h−1
i=1 rm

i ζm
h+1 + e

β(h−1) (4Γm
h + ∣e

β(H−h+1) − 1∣BP,E + gh(β)Br,E))

=

⌈M
W
⌉

∑
E=1

EW

∑
m=(E−1)W

∑
h∈[H]

(eβ∑h−1
i=1 rm

i ζm
h+1 + 4eβ(h−1)Γm

h ) +WH (∣eβH − 1∣BP + g1(β)Br) . (4.21)
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We aim to control the terms in (4.21). Since {eβ∑h−1
i=1 rm

i ζm
h+1} is a martingale difference

sequence satisfying ∣eβ∑h−1
i=1 rm

i ζm
h+1∣ ≤ 2∣eβH − 1∣ for all (m,h) ∈ [M] × [H], by the Azuma-

Hoeffding inequality, we have:

P
⎛

⎝
∑

m∈[M]
∑

h∈[H]
eβ∑h−1

i=1 rm
i ζm

h+1 ≥ t
⎞

⎠
≤ exp(− t2

8HM (eβH − 1)2
) , ∀t > 0.

Hence, with probability 1 − δ/2, it holds that

∑
k∈[K]

∑
h∈[H]

eβ(h−1)ζm
h+1 ≤ (e

βH − 1)
√

2HM log(2/δ) ≤ 2 (eβH − 1)
√

2HMι, (4.22)

where ι = log(6H ∣S∣ ∣A∣W /δ). Furthermore, recall the definition of Γm
h , we can derive

EW

∑
m=(E−1)W

∑
h∈[H]

eβ(h−1)Γm
h

≤
EW

∑
m=(E−1)W

∑
h∈[H]

(C1 ∣e
β(H−h+1) − 1∣ + gh(β))

√
∣S∣ ι

¿
Á
ÁÀ

1
Nm

h (s
m
h , a

m
h ) + 1

≤ (C1 ∣e
βH − 1∣ + g1(β))

√
∣S∣ ι

EW

∑
m=(E−1)W

∑
h∈[H]

¿
Á
ÁÀ

1
Nm

h (s
m
h , a

m
h ) + 1

(i)
≤ (C1 ∣e

βH − 1∣ + g1(β))
√
∣S∣ ι ∑

h∈[H]

√
W

¿
Á
Á
ÁÀ

EW

∑
m=(E−1)W

1
Nm

h (s
m
h , a

m
h ) + 1

≤ (C1 ∣e
βH − 1∣ + g1(β))

√
∣S∣ ι
√

2H2∣S∣∣A∣Wι

where step (i) follows the Cauchy-Schwarz inequality and the last step holds by the pigeonhole
principle. Thus, it holds that

∑
m∈[M]

∑
h∈[H]

eβ(h−1)Γm
h ≤ (C1 ∣e

βH − 1∣ + eβH ∣β∣)
√

2H2∣S∣2∣A∣ι2
M
√
W
. (4.23)

Substituting (4.22) and (4.23) into (4.21) yields that

∑
m∈[M]

δm
1 ≤2 ∣eβH − 1∣

√
2HMι + (C1 ∣e

βH − 1∣ + g1(β))
√

2H2∣S∣2∣A∣ι2
M
√
W

(4.24)

+WH (∣eβH − 1∣BP + g1(β)Br)
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For β > 0, we have that g1(β) = eβHβ and the dynamic regret can be decomposed based
on Lemma 43:

D-Regret(M)

≤ ∑
m∈[M]

1
β
[eβ⋅V ∗,m

1 (sm
1 ) − eβ⋅V m

1 (sm
1 )] + ∑

m∈[M]

1
β
[eβ⋅V m

1 (sm
1 ) − eβ⋅V πm,m

1 (sm
1 )]

≤
1
β

⌈M
W
⌉

∑
E=1

EW

∑
m=(E−1)W

H (∣eβH − 1∣BP,E + g1(β)Br,E) + ∑
m∈[M]

1
β
[eβ⋅V m

1 (sm
1 ) − eβ⋅V πm,m

1 (sm
1 )]

≤
1
β
WH (∣eβH − 1∣BP + g1(β)Br) +

1
β
∑

m∈[M]
δm

1

≤
1
β
(2 (eβH − 1)

√
2HMι + (C1 (e

βH − 1) + eβHβ)
√

2H2∣S∣2∣A∣ι2
M
√
W

+WH ((eβH − 1)BP + eβHβBr))

≤2eβHH
√

2HMι + eβH (C1H + 1)
√

2H2∣S∣2∣A∣ι2
M
√
W
+WHeβH (HBP +Br)

≤2eβHH
√

2HMι + (C1 + 1)eβHH
√

2H2∣S∣2∣A∣ι2
M
√
W
+WH2eβH (BP +Br) (4.25)

where the second inequality follows from Lemma 28, the third inequality holds because of
the definition of BP , Br and δm

1 , the forth inequality is due to (4.24), and the fifth inequality
follows from eβH − 1 ≤ βHeβH for β > 0.

Finally, by setting W =M 2
3 (BP +Br)

− 2
3 ∣S∣

2
3 ∣A∣

1
3 , we conclude that

D-Regret(M) ≤Õ (eβH ∣S∣
2
3 ∣A∣

1
3H2M

2
3 (BP +Br)

1
3) .

The proof of β < 0 follows a similar procedure and is therefore omitted.

4.B Proof of Theorem 12

Preliminaries
We first lay out some additional notations to facilitate our proof. Let Nm

h ,G
m
h , V

m
h be

Nh,Gh, Vh at the beginning of episode m, before t is updated. We also set Qm
h ∶=

1
βG

m
h . Let

P̂m
h (⋅ ∣ s, a) denote the delta function centered at sm

h+1 for all (m,h, s, a) ∈ [M] × [H] × S ×A.
This means that Es′∼P̂ m

h
(⋅∣s,a) [f (s

′)] = f (sm
h+1) for every f ∶ S → R. Denote by nm

h ∶=

Nm
h (s

m
h , a

m
h ). Recall from Algorithm 4 that the learning rate is defined as

αt ∶=
H + 1
H + t
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for t ∈ Z. We also define

α0
t ∶=

t

∏
j=1
(1 − αj) , αi

t ∶= αi

t

∏
j=i+1
(1 − αj) (4.26)

for integers i, t ≥ 1. We set α0
t = 1 and ∑i∈[t]α

i
t = 0 if t = 0, and αi

t = αi if t < i + 1.
The epoch is defined as an interval that starts at the first episode after a restart and ends

at the first time when the restart is triggered. In Algorithm 4, the restart mechanism divides
M episodes into ⌈M

W ⌉ epochs.
Define the shorthand notation ι ∶= log(∣S∣∣A∣MH/δ) for δ ∈ (0,1]. We fix a tuple

(m,h, s, a) ∈ [M] × [H]× S ×A with mEi ≤M being the episode in which (s, a) is visited the
i-th time at step h in epoch E . Let us define

qm,+
h,1 (s, a) ∶= α

0
t e

β(H−h+1) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑i∈[t]α
i
t

⎡
⎢
⎢
⎢
⎢
⎣

e
β[rmEi

h
(s,a)+V

mEi
h+1 (s

mEi
h+1)]

+ Γh,i

⎤
⎥
⎥
⎥
⎥
⎦

, if β > 0,

∑i∈[t]α
i
t

⎡
⎢
⎢
⎢
⎢
⎣

e
β[rmEi

h
(s,a)+V

mEi
h+1 (s

mEi
h+1)]

− Γh,i

⎤
⎥
⎥
⎥
⎥
⎦

, if β < 0,

qm
h,1(s, a) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

min{qm,+
h,1 (s, a), e

β(H−h+1)} , if β > 0,
max {qm,+

h,1 (s, a), e
β(H−h+1)} , if β < 0,

and

qm,○
h,2 (s, a) ∶= α

0
t e

β(H−h+1) + ∑
i∈[t]

αi
t

⎡
⎢
⎢
⎢
⎢
⎣

e
β[rmEi

h
(s,a)+V

∗,mEi
h+1 (smEi

h+1)]
⎤
⎥
⎥
⎥
⎥
⎦

qm,+
h,2 (s, a) ∶= α

0
t e

β(H−h+1) +

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑i∈[t]α
i
t

⎡
⎢
⎢
⎢
⎢
⎣

e
β[rmEi

h
(s,a)+V

∗,mEi
h+1 (smEi

h+1)]
+ Γh,i

⎤
⎥
⎥
⎥
⎥
⎦

, if β > 0

∑i∈[t]α
i
t

⎡
⎢
⎢
⎢
⎢
⎣

e
β[rmEi

h
(s,a)+V

∗,mEi
h+1 (smEi

h+1)]
− Γh,i

⎤
⎥
⎥
⎥
⎥
⎦

, if β < 0

qm
h,2(s, a) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

min{qm,+
h,2 (s, a), e

β(H−h+1)} , if β > 0
max {qm,+

h,2 (s, a), e
β(H−h+1)} , if β < 0

and
qm

h,3(s, a) ∶= α
0
t e

β⋅Q∗,m
h
(s,a) + ∑

i∈[t]
αi

t [Es′∼P m
h
(⋅∣s,a)e

β[rm
h (s,a)+V ∗,m

h+1 (s
′)]] .

By the definition of qm,○
h,2 , qm,+

h,2 and qm
h,2, it can be seen that qm,○

h,2 ≤ q
m
h,2 if β > 0, and qm,○

h,2 ≥ q
m
h,2

if β < 0. In addition, by definition, we have (eβ⋅Qm
h − eβ⋅Q∗,m

h ) (s, a) = (qm
h,1 − q

m
h,3) (s, a).
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Value Difference Bounds
Lemma 29. For every triple (s, a, h) and episodes m1,m2 in the epoch E, it holds that
∣V ∗,m1

h (s) − V ∗,m2
h (s)∣ ≤ Br,E +HBP,E .

Proof. Let a1 = arg maxaQ
∗,m1
h (s, a) and a2 = arg maxaQ

∗,m2
h (s, a), it holds that

V ∗,m1
h (s) = Q∗,m1

h (s, a1) ≥ Q
∗,m1
h (s, a2) ≥Q

∗,m2
h (s, a2) −Br,E −HBP,E

=V ∗,m2
h (s) −Br,E −HBP,E

where the second inequality follows from [87, Lemma 1]. Similarly, we have

V ∗,m2
h (s) ≥ V ∗,m1

h (s) −Br,E −HBP,E .

This completes the proof.

Lemma 30. For every (m,h, s, a) ∈ [M]× [H]×S ×A and m1, . . . ,mt <m with t = Nm
h (s, a),

we have
RRRRRRRRRRRR

∑
i∈[t]

αi
t

⎡
⎢
⎢
⎢
⎢
⎣

e
β[rmEi

h
(s,a)+V

∗,mEi
h+1 (smEi

h+1)]
− Es′∼P m

h
(⋅∣s,a) [e

β[rm
h (s,a)+V ∗,m

h+1 (s
′)]]

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

≤Γh,t + 2gh(β)Br,E + (gh(β)H + ∣e
β(H−h+1) − 1∣)BP,E

with probability at least 1 − δ, and

∑
i∈[t]

αi
tΓh,i ∈ [Γh,t,2Γh,t] ,

where Γh,t is defined in (4.6).

Proof. For every (m,h, s, a) ∈ [M] × [H] × S ×A, we have the following decomposition:

e
β[rmEi

h
(s,a)+V

∗,mEi
h+1 (smEi

h+1)]
− Es′∼P m

h
(⋅∣s,a) [e

β[rm
h (s,a)+V ∗,m

h+1 (s
′)]]

=e
β[rmEi

h
(s,a)+V

∗,mEi
h+1 (smEi

h+1)]
− e

β[rm
h (s,a)+V

∗,mEi
h+1 (smEi

h+1)] (4.27a)

+ e
β[rm

h (s,a)+V
∗,mEi

h+1 (smEi
h+1)]

− e
β[rm

h (s,a)+V ∗,m
h+1 (s

mEi
h+1)] (4.27b)

+ e
β[rm

h (s,a)+V ∗,m
h+1 (s

mEi
h+1)]

− E
s′∼P

mE
i

h
(⋅∣s,a)

[eβ[rm
h (s,a)+V ∗,m

h+1 (s
′)]] (4.27c)

+ E
s′∼P

mE
i

h
(⋅∣s,a)

[eβ[rm
h (s,a)+V ∗,m

h+1 (s
′)]] − Es′∼P m

h
(⋅∣s,a) [e

β[rm
h (s,a)+V ∗,m

h+1 (s
′)]] . (4.27d)

For the terms in (4.27a), it holds that
RRRRRRRRRRRR

e
β[rmEi

h
(s,a)+V

∗,mEi
h+1 (smEi

h+1)]
− e

β[rm
h (s,a)+V

∗,mEi
h+1 (smEi

h+1)]
RRRRRRRRRRRR

≤gh(β) ∣r
mEi
h (s, a) − r

m
h (s, a)∣

≤gh(β)Br,ϵ, (4.28)
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where the first inequality follows from the Lipschitz continuity of eβx with respect to x and
the second inequality is due to the definition of the local variation budget Br,ϵ.

For the terms in (4.27b), it holds that

RRRRRRRRRRRR

e
β[rm

h (s,a)+V
∗,mEi

h+1 (smEi
h+1)]

− e
β[rm

h (s,a)+V ∗,m
h+1 (s

mEi
h+1)]
RRRRRRRRRRRR

≤gh(β) ∣V
∗,mEi

h+1 (s
mEi
h+1) − V

∗,m
h+1 (s

mEi
h+1)∣

≤gh(β) (Br,E +HBP,E) (4.29)

where the second inequality follows from Lemma 29.
For the terms in (4.27d), we have

∣E
s′∼P

mE
i

h
(⋅∣s,a)

[eβ[rm
h (s,a)+V ∗,m

h+1 (s
′)]] − Es′∼P m

h
(⋅∣s,a) [e

β[rm
h (s,a)+V ∗,m

h+1 (s
′)]]∣

= ∣E
s′∼P

mE
i

h
(⋅∣s,a)

[eβ[rm
h (s,a)+V ∗,m

h+1 (s
′)] − 1] − Es′∼P m

h
(⋅∣s,a) [e

β[rm
h (s,a)+V ∗,m

h+1 (s
′)] − 1]∣

≤ ∣eβ(H−h+1) − 1∣BP,E (4.30)

where the first step follows from Pm
h 1(s, a) = Pτ

h1(s, a) for all τ ∈ [ℓm,m− 1] and the last step
holds by the definition of BP,E .

We now analyze the terms in (4.27c). For every (m,h, s, a) ∈ [M] × [H] ×S ×A, we define

ψ(i,m,h, s, a) ∶= e
β[rm

h (s,a)+V ∗,m
h+1 (s

mEi
h+1)]

− E
s′∼P

mE
i

h
(⋅∣s,a)

[eβ[rm
h (s,a)+V ∗,m

h+1 (s
′)]] .

For a fix tuple (m,h, s, a) ∈ [M] × [H] × S ×A, {ψ(i,m,h, s, a)}i∈[t] with t = Nm
h (s, a) is a

martingale difference sequence. By the Azuma-Hoeffding inequality, with probability at least
1 − δ/(HM ∣S∣∣A∣), it holds that

RRRRRRRRRRR

∑
i∈[t]

αi
t ⋅ ψ(i,m,h, s, a)

RRRRRRRRRRR

≤
C2

2
∣eβ(H−h+1) − 1∣

√

ι∑
i∈[t]
(αi

t)
2
≤ C2 ∣e

β(H−h+1) − 1∣
√

Hι

t

where C2 > 0 is some universal constant, the first step holds since rh(s, a) + V ∗h+1 (s
′) ∈

[0,H −h+1] for s′ ∈ S, and the last step follows from the second property in Lemma 45. Then,
applying the union bound over (m,h, s, a) ∈ [M] × [H] × S ×A, we have that the following
holds for all (m,h, s, a) ∈ [M] × [H] × S ×A with probability at least 1 − δ :

RRRRRRRRRRR

∑
i∈[t]

αi
t ⋅ ψ(i,m,h, s, a)

RRRRRRRRRRR

≤ C2 ∣e
β(H−h+1) − 1∣

√
Hι

t
, (4.31)

where t = Nm
h (s, a).
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Finally, by combining Equations (4.28)-(4.31) and noticing that ∑i∈[t]α
i
t = 1 from the

forth property in Lemma 45, we have
RRRRRRRRRRRR

∑
i∈[t]

αi
t

⎡
⎢
⎢
⎢
⎢
⎣

e
β[rmEi

h
(s,a)+V

∗,mEi
h+1 (smEi

h+1)]
− Es′∼P m

h
(⋅∣s,a) [e

β[rm
h (s,a)+V ∗,m

h+1 (s
′)]]

⎤
⎥
⎥
⎥
⎥
⎦

RRRRRRRRRRRR

≤C2 ∣e
β(H−h+1) − 1∣

√
Hι

t
+ 2gh(β)Br,E + (gh(β)H + ∣e

β(H−h+1) − 1∣)BP,E

For bounds on ∑i∈[t]α
i
tΓh,i, we recall the definition of {Γh,t} in (4.6) and compute

∑
i∈[t]

αi
tΓh,i = C2 ∣e

β(H−h+1) − 1∣ ∑
i∈[t]

αi
t

√
Hι

i

∈

⎡
⎢
⎢
⎢
⎢
⎣

C2 ∣e
β(H−h+1) − 1∣

√
Hι

t
,2C2 ∣e

β(H−h+1) − 1∣
√

Hι

t

⎤
⎥
⎥
⎥
⎥
⎦

where the last step holds by the first property in Lemma 45.

Lemma 31. For all (m,h, s, a) and δ ∈ (0,1], the following statements hold with probability
at least 1 − δ:

• If β > 0:

− 2eβ(H−h+1)βBr,E − (e
β(H−h+1)βH + (eβ(H−h+1) − 1))BP,E ≤ q

m
h,2(s, a) − q

m
h,3(s, a)

≤ α0
t (e

β(H−h+1) − 1) + 2∑
i∈[t]

αi
tΓh,i + 2eβ(H−h+1)βBr,E + (e

β(H−h+1)βH + (eβ(H−h+1) − 1))BP,E .

• If β < 0:

2βBr,E − (−βH + (1 − eβ(H−h+1)))BP,E ≤ q
m
h,3(s, a) − q

m
h,2(s, a)

≤ α0
t (1 − eβ(H−h+1)) + 2∑

i∈[t]
αi

tΓh,i − 2βBr,E + (−βH + (1 − eβ(H−h+1)))BP,E .

Proof. We focus on the case where β > 0 and the case for β < 0 can be proved similarly. By
the definition of qm,+

h,2 and qm
h,3, it holds that

qm,+
h,2 − q

m
h,3 =α

0
t (e

β(H−h+1) − eβQ∗,m
h
(s,a))

+ ∑
i∈[t]

αi
t

⎡
⎢
⎢
⎢
⎢
⎣

e
β[rmEi

h
(s,a)+V

∗,mEi
h+1 (smEi

h+1)]
+ Γh,i − Es′∼P m

h
(⋅∣s,a)e

β[rm
h (s,a)+V ∗,m

h+1 (s
′)]
⎤
⎥
⎥
⎥
⎥
⎦

.

Due to eβ(H−h+1) ≥ eβQ∗,m
h
(s,a) ≥ 1 and Lemma 30, we have

qm,+
h,2 − q

m
h,3 ≥ − 2gh(β)Br,E − (gh(β)H + ∣e

β(H−h+1) − 1∣)BP,E
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and

qm,+
h,2 − q

m
h,3 ≤α

0
t (e

β(H−h+1) − 1) + 2∑
i∈[t]

αi
tΓh,i

+ 2gh(β)Br,E + (gh(β)H + ∣e
β(H−h+1) − 1∣)BP,E .

Furthermore, if qm,+
h,2 ≤ e

β(H−h+1), then we have qm
h,2 = q

m,+
h,2 . On the other hand, if qm,+

h,2 ≥

eβ(H−h+1), then qm
h,2 = e

β(H−h+1) ≤ qm,+
h,2 . Thus, it holds that 0 ≤ qm

h,2 − q
m
h,3 ≤ q

m,+
h,2 − q

m
h,3. This

completes the proof.

The next two lemmas compare the iterate eβ⋅Qm
h (and eβ⋅V m

h ) with the optimal exponential
value function eβ⋅Q∗,m

h (and eβ⋅V ∗,m
h ).

Lemma 32. For all (m,h, s, a) and δ ∈ (0,1], it holds with probability at least 1 − δ:

• If β > 0:

(eβQm
h − eβQ∗,m

h )(s, a)

≥ − (H − h + 1) (2eβ(H−h+1)βBr,E + (e
β(H−h+1)βH + (eβ(H−h+1) − 1))BP,E) .

• If β < 0:

(eβQm
h − eβQ∗,m

h )(s, a) ≤ (H − h + 1) (−2βBr,E + (−βH + (1 − eβ(H−h+1)))BP,E) .

Proof. We focus only on the case where β > 0 since the proof for β < 0 is similar. For the
purpose of the proof, we set Qm

H+1(s, a) = Q
∗
H+1(s, a) = 0 for all (m,s, a) ∈ [M] × S ×A. We

fix a pair (s, a) ∈ S ×A and use strong induction on m and h. Without loss of generality, we
assume that there exists a pair (m,h) such that (s, a) = (sm

h , a
m
h ) (that is, (s, a) has been

visited at some point in Algorithm 4), since otherwise eβ⋅Qm
h (s,a) = eβ(H−h+1) ≥ eβ⋅Q∗h(s,a) for all

(m,h) ∈ [M] × [H] and we are done.
The base case for m = 1 and h = H + 1 is satisfied since eβ⋅Qm′

H+1(s,a) = eβ⋅Q∗,m
H+1(s,a) for

m′ ∈ [M] by definition. We fix a pair (m,h) ∈ [M] × [H] and assume that

eβ⋅QmEi
h+1(s,a) − eβ⋅Q∗,mEi

h+1 (s,a) ≥ −(H − h) (2eβ(H−h)βBr,E + (e
β(H−h)βH + (eβ(H−h) − 1))BP,E)

for each mE1 , . . . ,m
E
t (here t = Nm

h (s, a) ). We have for i ∈ [t] that

eβ⋅V mEi
h+1 (s) =max

a′∈A
eβ⋅QmEi

h+1(s,a′) − (H − h) (2eβ(H−h)βBr,E + (e
β(H−h)βH + (eβ(H−h) − 1))BP,E)

≥max
a′∈A

eβ⋅Q∗,mEi
h+1 (s,a′) − (H − h) (2eβ(H−h)βBr,E + (e

β(H−h)βH + (eβ(H−h) − 1))BP,E)

=eβ⋅V ∗,mEi
h+1 (s) − (H − h) (2eβ(H−h)βBr,E + (e

β(H−h)βH + (eβ(H−h) − 1))BP,E) (4.32)
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where the first equality holds by the update procedure in Algorithm 4. Then, it holds that

(qm,+
h,1 − q

m
h,2)(s, a) ≥ (q

m,+
h,1 − q

m,+
h,2 )(s, a)

≥ ∑
i∈[t]

αi
t

⎡
⎢
⎢
⎢
⎢
⎣

e
β[rmEi

h
(s,a)+V

mEi
h+1 (s

mEi
h+1)]

− e
β[rmEi

h
(s,a)+V

∗,mEi
h+1 (smEi

h+1)]
⎤
⎥
⎥
⎥
⎥
⎦

= ∑
i∈[t]

αi
te

βr
mEi
h
(s,a)
⎡
⎢
⎢
⎢
⎢
⎣

e
β[V mEi

h+1 (s
mEi
h+1)]

− e
β[V ∗,mEi

h+1 (smEi
h+1)]
⎤
⎥
⎥
⎥
⎥
⎦

≥ −(H − h) ∑
i∈[t]

αi
te

β (2eβ(H−h)βBr,E + (e
β(H−h)βH + (eβ(H−h) − 1))BP,E)

≥ −(H − h) ∑
i∈[t]

αi
t (2eβ(H−h+1)βBr,E + (e

β(H−h+1)βH + (eβ(H−h+1) − 1))BP,E)

≥ −(H − h) (2eβ(H−h+1)βBr,E + (e
β(H−h+1)βH + (eβ(H−h+1) − 1))BP,E)

where the first inequality follows from the definitions of qm,+
h,1 , qm,+

h,2 , the second inequality holds
by the induction hypothesis, the third inequality follows from eβ > 1 for β > 0, and the last
inequality holds by ∑i∈[t]α

i
t ≤ 1 from Lemma 45. Furthermore, when qm

h,1 = e
β(H−h+1) ≤ qm,+

h,1 ,
we have qm

h,1 − q
m
h,2 ≥ 0 since qm

h,2 ≤ e
β(H−h+1) by definition. Thus, we can conclude that

(qm
h,1 − q

m
h,2)(s, a) ≥ −(H − h) (2eβ(H−h+1)βBr,E + (e

β(H−h+1)βH + (eβ(H−h+1) − 1))BP,E) (4.33)

In addition, from Lemma 31 , we also have

(qm
h,2 − q

m
h,3)(s, a) ≥ −2eβ(H−h+1)βBr,E − (e

β(H−h+1)βH + (eβ(H−h+1) − 1))BP,E (4.34)

Finally, by combining (4.33) and (4.34), we obtain

(eβQm
h − eβQ∗,m

h )(s, a)

=(qm
h,1 − q

m
h,2)(s, a) + (q

m
h,2 − q

m
h,3)(s, a)

≥ − (H − h + 1) (2eβ(H−h+1)βBr,E + (e
β(H−h+1)βH + (eβ(H−h+1) − 1))BP,E) .

The induction is completed.

Lemma 33. For all (m,h, s, a) and δ ∈ (0,1], it holds with probability at least 1 − δ:

• If β > 0:

(eβQm
h − eβQ∗,m

h )(s, a)

≤ ∑
i∈[t]

αi
te

βr
mEi
h
(s,a)
⎡
⎢
⎢
⎢
⎢
⎣

e
β[V mEi

h+1 (s
mEi
h+1)]

− e
β[V ∗,mEi

h+1 (smEi
h+1)]
⎤
⎥
⎥
⎥
⎥
⎦

+ 3∑
i∈[t]

αi
tΓh,i

+ α0
t (e

β(H−h+1) − 1) + 2eβ(H−h+1)βBr,E + (e
β(H−h+1)βH + (eβ(H−h+1) − 1))BP,E .
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• If β < 0:

(eβQm
h − eβQ∗,m

h )(s, a)

≥ ∑
i∈[t]

αi
te

βr
mEi
h
(s,a)
⎡
⎢
⎢
⎢
⎢
⎣

e
β[V ∗,mEi

h+1 (smEi
h+1)]

− e
β[V mEi

h+1 (s
mEi
h+1)]
⎤
⎥
⎥
⎥
⎥
⎦

− 3∑
i∈[t]

αi
tΓh,i

− α0
t (1 − eβ(H−h+1)) + 2βBr,E − (−βH + (1 − eβ(H−h+1)))BP,E .

Proof. We focus on the case where β > 0 since the case for β < 0 can be proved similarly. By
the definition of qm

h,1 and qm
h,2, we have

(qm
h,1 − q

m
h,2) (s, a) ≤ (q

m,+
h,1 − q

m,○
h,2 ) (s, a)

≤ ∑
i∈[t]

αi
t

⎡
⎢
⎢
⎢
⎢
⎣

e
β[rmEi

h
(s,a)+V

mEi
h+1 (s

mEi
h+1)]

− e
β[rmEi

h
(s,a)+V

∗,mEi
h+1 (smEi

h+1)]
⎤
⎥
⎥
⎥
⎥
⎦

+ ∑
i∈[t]

αi
tΓh,i

= ∑
i∈[t]

αi
te

βr
mEi
h
(s,a)
⎡
⎢
⎢
⎢
⎢
⎣

e
β[V mEi

h+1 (s
mEi
h+1)]

− e
β[V ∗,mEi

h+1 (smEi
h+1)]
⎤
⎥
⎥
⎥
⎥
⎦

+ ∑
i∈[t]

αi
tΓh,i

where the first inequality follows from qm
h,1 ≤ q

m,+
h,1 and qm

h,2 ≥ q
m,○
h,2 , and the second inequality

holds by the definition of qm,+
h,1 and qm,○

h,2 . Then, by Lemma 31, we obtain

(eβQm
h − eβQ∗,m

h )(s, a)

=(qm
h,1 − q

m
h,2)(s, a) + (q

m
h,2 − q

m
h,3)(s, a)

≤ ∑
i∈[t]

αi
te

βr
mEi
h
(s,a)
⎡
⎢
⎢
⎢
⎢
⎣

e
β[V mEi

h+1 (s
mEi
h+1)]

− e
β[V ∗,mEi

h+1 (smEi
h+1)]
⎤
⎥
⎥
⎥
⎥
⎦

+ 3∑
i∈[t]

αi
tΓh,i

+ α0
t (e

β(H−h+1) − 1) + 2eβ(H−h+1)βBr,E + (e
β(H−h+1)βH + (eβ(H−h+1) − 1))BP,E .

This completes the proof.

Proof of Theorem 12
For now, we consider the case for β > 0. We define the following quantities to ease the
notations for the proof:

δm
h ∶= e

β⋅V m
h (sm

h ) − eβ⋅V πm

h (sm
h ),

ϕm
h ∶= e

β⋅V m
h (sm

h ) − eβ⋅V ∗,m
h
(sm

h ),

ξm
h+1 ∶= [(P

m
h − P̂

m
h ) (e

β⋅V ∗,m
h+1 − eβ⋅V πm

h+1 )] (sm
h , a

m
h )
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For each fixed (m,h) ∈ [M] × [H], we let t = Nm
h (s

m
h , a

m
h ). Then, it holds that

δm
h

(i)
= eβ⋅Qm

h (sm
h ,am

h ) − eβ⋅Qπm,m
h

(sm
h ,am

h )

= [eβ⋅Qm
h (sm

h ,am
h ) − eβ⋅Q∗,m

h
(sm

h ,am
h )] + [eβ⋅Q∗,m

h
(sm

h ,am
h ) − eβ⋅Qπm

h (sm
h ,am

h )]

(ii)
= [eβ⋅Qm

h (sm
h ,am

h ) − eβ⋅Q∗,m
h
(sm

h ,am
h )] + eβ⋅rm

h (sm
h ,am

h ) [Pm
h (e

β⋅V ∗,m
h+1 − eβ⋅V πm,m

h+1 )] (sm
h , a

m
h )

(iii)
≤ [eβ⋅Qm

h (sm
h ,am

h ) − eβ⋅Q∗,m
h
(sm

h ,am
h )] + eβ [Pm

h (e
β⋅V ∗,m

h+1 − eβ⋅V πm,m
h+1 )

) (sm
h , a

m
h )

= [eβ⋅Qm
h (sm

h ,am
h ) − eβ⋅Q∗,m

h
(sm

h ,am
h )] + eβ (δm

h+1 − ϕ
m
h+1 + ξ

m
h+1)

(iv)
≤ α0

t (e
β(H−h+1) − 1) + 3∑

i∈[t]
αi

tΓh,i + ∑
i∈[t]

αi
t ⋅ e

β⋅rmEi
h
(sm

h ,am
h )
⎡
⎢
⎢
⎢
⎢
⎣

e
β⋅V mEi

h+1 (s
mEi
h+1)
− e

β⋅V ∗h+1(s
mEi
h+1)
⎤
⎥
⎥
⎥
⎥
⎦

+ 2eβ(H−h+1)βBr,E + (e
β(H−h+1)βH + (eβ(H−h+1) − 1))BP,E

+ eβ (δm
h+1 − ϕ

m
h+1 + ξ

m
h+1)

=α0
t (e

β(H−h+1) − 1) + ∑
i∈[t]

αi
t ⋅ e

β⋅rmEi
h
(sm

h ,am
h )ϕ

mEi
h+1 + e

β (δm
h+1 − ϕ

m
h+1 + ξ

m
h+1) (4.35)

+ 3∑
i∈[t]

αi
tΓh,i + 2eβ(H−h+1)βBr,E + (e

β(H−h+1)βH + (eβ(H−h+1) − 1))BP,E (4.36)

where step (i) holds since V m
h (s

m
h ) = maxa′∈AQm

h (s
m
h , a

′) = Qm
h (s

m
h , a

m
h ) and V πm,m

h (sm
h ) =

Qπm,m
h (sm

h , π
m
h (s

m
h )) = Q

πm,m
h (sm

h , a
m
h ); step (ii) holds by the exponential Bellman equation

(4.2); step (iii) holds since V ∗,mh+1 ≥ V
πm,m

h+1 implies eβ⋅V ∗,m
h+1 ≥ eβ⋅V πm,m

h+1 given that β > 0; step (iv)
holds on the event of Lemma 33.

We bound each term in (4.35) and (4.36) one by one. First, we have

∑
m∈[M]

α0
nm

h
(eβ(H−h+1) − 1) = (eβ(H−h+1) − 1) ∑

m∈[M]
1{nm

h = 0}

≤ (eβ(H−h+1) − 1) ∣S∣∣A∣.

To bound the second term in (4.35), we first define

ϕ̂
mEi (sm

h ,am
h )

h+1 ∶= ϕ
mEi (sm

h ,am
h )

h+1 + (H − h) (2eβ(H−h)βBr,E + (e
β(H−h)βH + (eβ(H−h) − 1))BP,E)

which is non-negative from Lemma 32 and (4.32):

∑
m∈[M]

⎛

⎝
∑
i∈[t]

αi
t ⋅ e

β⋅rmEi
h
(sm

h ,am
h )ϕ

mEi
h+1
⎞

⎠
= ∑

m∈[M]

⎛
⎜
⎝
∑

i∈[nm
h
]
αi

nm
h
⋅ eβ⋅rmEi

h
(sm

h ,am
h )ϕ

mEi (sm
h ,am

h )
h+1

⎞
⎟
⎠

≤eβ
∑

m∈[M]

⎛
⎜
⎝
∑

i∈[nm
h
]
αi

nm
h
ϕ̂

mEi (sm
h ,am

h )
h+1

⎞
⎟
⎠
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where mEi (sm
h , a

m
h ) denotes the episode in which (sm

h , a
m
h ) was taken at step h for the

i-th time in the epoch E . We re-group the above summation by changing the order of the
summation. For every m̂E in the epoch E , the term ϕm̂E

h+1 appears in the summand with
m > m̂E if and only if (sm

h , a
m
h ) = (s

m′

h , am′

h ) and the episode m is in the epoch E . Since the
inverse of the mapping i→mEi (s

m
h , a

m
h ) is m̂E → nm̂E

h , we can continue the above display as

eβ
∑

m∈[M]

⎛
⎜
⎝
∑

i∈[nm
h
]
αi

nm
h
ϕ̂

mEi (sm
h am

h )
h+1

⎞
⎟
⎠
≤ eβ

⌈M
W
⌉

∑
E=1

EW

∑
m=(E−1)W

⎛
⎜
⎝
∑

i∈[nm
h
]
αi

nm
h
ϕ̂

mEi (sm
h am

h )
h+1

⎞
⎟
⎠

≤ eβ
⌈M

W
⌉

∑
E=1

EW

∑
m′=(E−1)W

ϕ̂m′

h+1

⎛
⎜
⎝
∑

t≥nm′
h
+1
α

nm′

h
t

⎞
⎟
⎠

≤ eβ (1 + 1
H
)

⌈M
W
⌉

∑
E=1

EW

∑
m′=(E−1)W

ϕ̂m′

h+1

where the last step follows the third property in Lemma 45. Collecting the above results and
substituting them into (4.35)-(4.36), we have

∑
m∈[M]

δm
h ≤(e

β(H−h+1) − 1) ∣S∣∣A∣ + (1 + 1
H
) eβ

⌈M
W
⌉

∑
E=1

EW

∑
m=(E−1)W

ϕ̂m
h+1

+

⌈M
W
⌉

∑
E=1

EW

∑
m=(E−1)W

eβ (δm
h+1 − ϕ

m
h+1 + ξ

m
h+1) + 3

⌈M
W
⌉

∑
E=1

EW

∑
m=(E−1)W

∑
i∈[t]

αi
tΓh,i

+

⌈M
W
⌉

∑
E=1

EW

∑
m=(E−1)W

(2eβ(H−h+1)βBr,E + (e
β(H−h+1)βH + (eβ(H−h+1) − 1))BP,E)

≤ (eβ(H−h+1) − 1) ∣S∣∣A∣ + (1 + 1
H
)

⌈M
W
⌉

∑
E=1

EW

∑
m=(E−1)W

eβδm
h+1

+

⌈M
W
⌉

∑
E=1

EW

∑
m=(E−1)W

⎛

⎝
3∑

i∈[t]
αi

tΓh,i + e
βξm

h+1
⎞

⎠

+ 3(H − h)
⌈M

W
⌉

∑
E=1

EW

∑
m=(E−1)W

(2eβ(H−h+1)βBr,E + (e
β(H−h+1)βH + (eβ(H−h+1) − 1))BP,E)

≤ (eβ(H−h+1) − 1) ∣S∣∣A∣ + (1 + 1
H
) ∑

m∈[M]
eβδm

h+1

+ 3
⌈M

W
⌉

∑
E=1

EW

∑
m=(E−1)W

∑
i∈[t]

αi
tΓh,i + ∑

m∈[M]
eβξm

h+1

+ 3(H − h) (2eβ(H−h+1)βWBr + (e
β(H−h+1)βH + (eβ(H−h+1) − 1))WBP)
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where the second step holds since δm
h+1 ≥ ϕ

m
h+1 (due to the fact that β > 0 and V ∗,mh+1 ≥ V

πm,m
h+1 )

and the definition of ϕ̂m
h+1; the last step follows from the definition of Br and BP . Now, we

unroll the quantity ∑m∈[M] δ
m
h recursively in the form of Equation (36), and get

∑
m∈[M]

δm
1 (4.37)

≤ ∑
h∈[H]

[(1 + 1
H
) eβ]

h−1 ⎡⎢
⎢
⎢
⎢
⎣

(eβ(H−h+1) − 1) ∣S∣∣A∣ + 3
⌈M

W
⌉

∑
E=1

EW

∑
m=(E−1)W

∑
i∈[t]

αi
tΓh,i + ∑

m∈[M]
(eβξm

h+1)

+3(H − h) (2eβ(H−h+1)βWBr + (e
β(H−h+1)βH + (eβ(H−h+1) − 1))WBP)]

≤ ∑
h∈[H]

(1 + 1
H
)

h−1 ⎡⎢
⎢
⎢
⎢
⎣

(eβH − 1) ∣S∣∣A∣ + 3
⌈M

W
⌉

∑
E=1

EW

∑
m=(E−1)W

eβ(h−1)
∑
i∈[t]

αi
tΓh,i + ∑

m∈[M]
eβhξm

h+1

+3(H − h) (2eβHβWBr + (e
βHβH + (eβH − 1))WBP)]

≤e

⎡
⎢
⎢
⎢
⎢
⎣

(eβH − 1)H ∣S∣∣A∣ + 3e
⌈M

W
⌉

∑
E=1

EW

∑
m=(E−1)W

∑
h∈[H]

eβ(h−1)
∑
i∈[t]

αi
tΓh,i

⎤
⎥
⎥
⎥
⎥
⎦

+ ∑
h∈[H]

∑
m∈[M]

(1 + 1
H
)

h−1
eβhξm

h+1

+ 3eH2 (2eβHβWBr + (e
βHβH + (eβH − 1))WBP)

where the first step uses the fact that δm
H+1 = 0 for m ∈ [M]; the last step holds since

(1 + 1/H)h ≤ (1 + 1/H)H ≤ e for all h ∈ [H]. Furthermore, the definition of Γh,i and Lemma
45 imply that

∑
i∈[t]

αi
tΓh,i ≤ C2 (e

β(H−h+1)−1)

√
Hι

t
.

for some constant C2 > 0. By the pigeonhole principle, for any h ∈ [H] we have

⌈M
W
⌉

∑
E=1

EW

∑
m=(E−1)W

∑
h∈[H]

eβ(h−1)
∑
i∈[t]

αi
tΓh,i ≤ C2 (e

βH − 1)
⌈M

W
⌉

∑
E=1

EW

∑
m=(E−1)W

√
Hι

nm
h

≤ C2 (e
βH − 1)

⌈M
W
⌉

∑
E=1

√
W

¿
Á
Á
ÁÀ

EW

∑
m=(E−1)W

Hι

nm
h

≤ C2 (e
βH − 1)M

√
H ∣S∣∣A∣ι/W (4.38)

where the second step follows from the Cauchy-Schwarz inequality, the third step holds
since ∑(s,a)∈S×AN

m
h (s, a) =W and the right-hand side of the second step is maximized when

Nm
h (s, a) =W /(∣S∣∣A∣) for all (s, a) ∈ S ×A. Finally, the Azuma-Hoeffding inequality and the

fact that ∣(1 + 1
H
)

h−1
eβhξm

h+1∣ ≤ e (e
βH − 1) for h ∈ [H] together imply that with probability at
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least 1 − δ, we have
RRRRRRRRRRR

∑
h∈[H]

∑
m∈[M]

(1 + 1
H
)

h−1
eβhξm

h+1

RRRRRRRRRRR

≤ C3 (e
βH − 1)

√
HMι (4.39)

for some constant C3 > 0. Plugging Equations (4.38) and (4.39) into (4.37), we have

∑
m∈[M]

δm
1 ≤O ((e

βH − 1)M
√
H ∣S∣∣A∣ι/W + (eβH − 1)

√
HMι

+H2 (2eβHβWBr + (e
βHβH + (eβH − 1))WBP)) (4.40)

when M is large enough. Invoking Lemma 43 yields that

D-Regret(M)

≤ ∑
m∈[M]

1
β
[eβ⋅V ∗,m

1 (sm
1 ) − eβ⋅V m

1 (sm
1 )] + ∑

m∈[M]

1
β
[eβ⋅V m

1 (sm
1 ) − eβ⋅V πm,m

1 (sm
1 )]

≤
1
β

⌈M
W
⌉

∑
E=1

EW

∑
m=(E−1)W

H (2eβHβBr,E + (e
βHβH + (eβH − 1))BP,E)

+ ∑
m∈[M]

1
β
[eβ⋅V m

1 (sm
1 ) − eβ⋅V πm,m

1 (sm
1 )]

≤
1
β
WH (2eβHβBr + (e

βHβH + (eβH − 1))BP) +
1
β
∑

m∈[M]
δm

1

≤
1
β
WH (2eβHβBr + (e

βHβH + (eβH − 1))BP)

+
1
β
O((eβH − 1)M

√
H ∣S∣∣A∣ι/W + (eβH − 1)

√
HMι

+ H2 (2eβHβWBr + (e
βHβH + (eβH − 1))WBP))

≤O (eβHHM
√
H ∣S∣∣A∣ι/W + eβHH

√
HMι +H2eβHW (Br +HBP)) (4.41)

≤Õ (eβHM
√
H3∣S∣∣A∣/W + eβH

√
H3M +H3eβHW (Br +BP)) (4.42)

where the second step holds by (4.32), the third inequality holds because of the definition of
BP , Br and δm

1 , the forth inequality is due to (4.40), and the fifth inequality follows from
eβH −1 ≤ βHeβH for β > 0. Finally, by setting W =M 2

3H−
3
4 (BP +Br)

− 2
3 ∣S∣

1
3 ∣A∣

1
3 , we conclude

that

D-Regret(M) ≤Õ (eβH ∣S∣
1
3 ∣A∣

1
3H

9
4M

2
3 (BP +Br)

1
3) .
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The proof is similar for the case of β < 0, and one only needs to exchange the role of V m
h ,

V πm,m
h and V ∗,mh in the definitions of δm

h , ϕ
m
h , ξ

m
h :

δm
h ∶= e

β⋅V πm

h (sm
h ) − eβ⋅V m

h (sm
h ),

ϕm
h ∶= e

β⋅V ∗,m
h
(sm

h ) − eβ⋅V m
h (sm

h ),

ξm
h+1 ∶= [(P

m
h − P̂

m
h ) (e

β⋅V πm

h+1 − eβ⋅V ∗,m
h+1 )] (sm

h , a
m
h )

to derive the counterparts of (4.35) and (4.36), and complete the remaining analysis.

4.C Proof of Theorem 13

Multi-Scale ALG Initialization

Algorithm 6 Multi-scale ALG Initialization (MALG-initialization)
1: Inputs: ALG and its associated ρ(⋅), n;
2: for τ = 0, . . . ,2n − 1 do
3: for k=n,n-1,. . . ,0 do
4: If τ is a multiple of 2k, with probability ρ(2n)

ρ(2k) , schedule a new instance alg of ALG
that starts at alg.s = τ + 1 and ends at alg.e = τ + 2k

5: end for
6: end for

An Illustrative Example
For better illustration, we give an example with n = 4. This example has also been shown
in [124] and we present here for completeness. By Algorithm 6, one possible realization
of the MALG initialization is shown in Figure 4.C.1 with one order-4 instance (red), zero
order-3 instance, two order-2 instances (green), two order-1 instances (purple) and five order-0
instances (blue). The bolder part of the segment indicates the period of time when the
instances are active, while the thinner part indicates the inactive period. At any point of time,
the active instance is always the one with the shortest length. The dashed arrow marked
with 1 indicates that ALG is executed as of the two sides of the arrow are concatenated. On
the other hand, the two blue instances on the two sides of the dashed line marked with 2
are two different order-0 instances, so the second one should start from scratch even though
they are consecutive.

Preliminaries
Similar to [124], our approach takes a base algorithm that tackles the risk-sensitive RL
problem when the environment is (near-)stationary, and turns it into another algorithm that
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Figure 4.C.1: An illustrate example of MALG with n = 4.

can deal with non-stationary environments. The base algorithm is assumed to satisfy the
following requirement:

Assumption 8. ALG outputs an auxiliary quantity eβV m
1 (s1) ∈ [0, eβH] at the beginning of

each round m. There exist a non-stationarity measure ∆ and a non-increasing function
ρ ∶ [M] → R such that running ALG satisfies the following: for all m ∈ [M], as long as
∆[1,m] ≤ ρ(m), without knowing ∆[1,m] ALG ensures with probability at least 1 − δ

M : if β > 0,
it holds that

eβV m
1 (s1) ≥ min

τ∈[1,m]
eβV ∗,τ

1 (s1) −∆[1,m] and 1
m

m

∑
τ=1
(eβV τ

1 (s1) − eβ∑H
h=1 rτ

h) ≤ ρ(m) +∆[1,m],

and if β < 0, it holds that

max
τ∈[1,m]

eβV ∗,τ
1 (s1) ≥ eβV m

1 (s1) −∆[1,m] and 1
m

m

∑
τ=1
(eβ∑H

h=1 rτ
h − eβV τ

1 (s1)) ≤ ρ(m) +∆[1,m],

Furthermore, we assume that ρ(m) ≥ 1√
m

and C(m) =mρ(m) is a non-decreasing function.

Under Assumption 8, the multi-scale nature of MALG allows the learner’s regret to also
enjoy a multi-scale structure, as shown in the next lemma:

Lemma 34. Let n̂ = log2M + 1 and ρ̂(m) = 6n̂ log(M/δ)ρ(m). MALG with input n ≤
log2M guarantees the following: for every instance alg that MALG maintains and every
m ∈ [alg.s, alg.e], as long as ∆[alg.s ,t] ≤ ρ (m′) where m′ = m − alg.s + 1, we have with
probability at least 1 − δ

M : if β > 0, it holds that

gm ≥ min
τ∈[alg.s,m]

eβV ∗,τ
1 (s1) −∆[alg.s ,t],

1
m′

m

∑
τ=alg.s

(gτ − e
β∑H

h=1 rτ
h) ≤ ρ̂ (m′) + n̂∆[alg.s,m],
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and if β < 0, it holds that

max
τ∈[alg.s,m]

eβV ∗,τ
1 (s1) ≥ gm −∆[alg.s ,t],

1
m′

m

∑
τ=alg.s

(eβ∑H
h=1 rτ

h − gτ) ≤ ρ̂ (m
′) + n̂∆[alg.s,m],

where gm is the UCB-based optimistic estimator eβV m
1 (s1) for the unique active instance alg

at the episode m, and the number of instances started within [alg.s,m] is upper bounded by
6n̂ log(M/δ)C(m′)

C(1) .

Proof. The proof is similar to that of Lemma 3 in [124] with the standard value functions
replaced by the exponential value functions and is thus omitted.

Lemma 34 states that even if there are multiple instances interleaving in a complicated
way, the regret for a specific interval is still almost the same as running ALG alone on this
interval, due to the carefully chosen probability ρ(2n)

ρ(2k) in Algorithm 6. Built on Lemma 34,
the regret on a single block [mn,En], where En is either mn + 2n − 1 or something smaller in
the case where a restart is triggered, is bounded in the following lemma:

Lemma 35. For Algorithm 5 with ALG satisfying Assumption 8 and on every block J =
[mn,En] where En ≤mn + 2n − 1, it holds with high probability that:

⎧⎪⎪
⎨
⎪⎪⎩

∑τ∈J (e
βV ∗,τ

1 (s1) −Rτ) ≤ Õ (∑
ℓ
i=1C (∣I

′
i ∣) + ∑

n
m=0

ρ(2m)
ρ(2n)C (2m)) , if β > 0,

∑τ∈J (Rτ − eβV ∗,τ
1 (s1)) ≤ Õ (∑

ℓ
i=1C (∣I

′
i ∣) + ∑

n
m=0

ρ(2m)
ρ(2n)C (2m)) , if β < 0,

where {I ′1, . . . ,I ′ℓ} is any partition of J such that ∆I′i ≤ ρ (∣I
′
i ∣) for all i.

Proof. The proof is similar to that of Lemma 4 in [124] with the standard value functions
replaced by the exponential value functions and is thus omitted.

Built on the dynamic regret over a block, we can further bound the dynamic regret over
a single-epoch. The epoch is defined as an interval that starts at the first episode after a
restart and ends at the first time when the restart is triggered.

Lemma 36. Assume that C(m) takes the form of C(m) = c1m
1
2 for some constant c1. Then,

for Algorithm 5 with ALG satisfying Assumption 8 and on every epoch E , it holds with high
probability that:

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

∑τ∈E (e
βV ∗,τ

1 (s1) −Rτ) ≤ Õ (c
2
3
1 ∆

1
3
E ∣E ∣

2
3 + c1∣E ∣

1
2) , if β > 0,

∑τ∈E (Rτ − eβV ∗,τ
1 (s1)) ≤ Õ (c

2
3
1 ∆

1
3
E ∣E ∣

2
3 + c1∣E ∣

1
2) , if β < 0,

Proof. The proof is similar to that of Lemma 22 in [124] with the standard value functions
replaced by the exponential value functions and is thus omitted.



CHAPTER 4. NON-STATIONARY RISK-SENSITIVE RL 105

Finally, we have the following bound on the number of epoch:

Lemma 37 (Lemma 24 in [124]). Assume that C(m) takes the form of C(m) = c1m
1
2 for

some constant c1. Then, with high probability, the number of epoch is upper-bounded by
1 + 2(c−

1
3

1 ∆ 2
3M

1
3 ).

Proof of Theorem 13
We first focus on the case for β > 0. Let E1, . . . ,EN be epochs in [1,M]. If Assumption 8
holds, by Lemma 36, the dynamic regret of the exponential value functions over M episodes
is upper-bounded by

M

∑
m=1
(eβV ∗,m

1 (s1) −Rm) ≤Õ (
N

∑
i=1
(c

2
3
1 ∆

1
3
Ei
∣Ei∣

2
3 + c1∣Ei∣

1
2))

≤Õ (c
2
3
1 ∆ 1

3M
2
3 + c1N

1
2M

1
2)

≤Õ (c
2
3
1 ∆ 1

3M
2
3) . (4.43)

where the second inequality follows from Hölder’s inequality and the facts that ∑N
i=1 ∆Ei

≤∆
and ∑N

i=1 ∣Ei∣ ≤M , the last step holds by the bound on N from Lemma 37.
Now, it remains to show that the base algorithms RSVI and RSQ satisfy Assumption 8

and provide the concrete form of ∆(m), ρ(m), c1 and c2.

• RSVI as the base algorithm: it has been shown in Lemma 28 and (4.24) in the proof of
Theorem 11 that RSVI satisfies Assumption 8 with the following choices:

∆(m) =H (∣eβH − 1∣BP,m + g1(β)Br,m) ,

ρ(m) = O ((∣eβH − 1∣ + g1(β))
√
H2∣S∣2∣A∣ι2/m) ,

c1 = (∣e
βH − 1∣ + g1(β))

√
H2∣S∣2∣A∣ι2.

Then, by plugging in the form of ∆ and c1 in (4.43), and using eβH − 1 ≤ βHeβH for
β > 0, we have

M

∑
m=1
(eβV ∗,m

1 (s1) −Rm) ≤Õ (βe
βHH2∣S∣

2
3 ∣A∣

1
3B

1
3M

2
3) .

Invoking the above inequality with Lemma 43 and applying Azuma’s inequality to
bound ∑M

m=1(Rm − eβV πm,m
1 ) yield that:

D-Regret(M) ≤Õ (eβHH2∣S∣
2
3 ∣A∣

1
3B

1
3M

2
3) .
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• RSQ as the base algorithm: it has also been shown in Lemma 32 and (4.40) in the
proof of Theorem 12 that RSQ satisfies Assumption 8 with the following choices:

∆(m) =H (2g1(β)Br,m + (g1(β)H + ∣e
βH − 1∣)BP,m)

ρ(m) = O (∣eβH − 1∣
√
H ∣S∣∣A∣ι/m) ,

c1 = O (∣e
βH − 1∣

√
H ∣S∣∣A∣ι) .

Then, by plugging in the form of ∆ and c1 in (4.43), and using eβH − 1 ≤ βHeβH for
β > 0, we have

M

∑
m=1
(eβV ∗,m

1 (s1) −Rm) ≤Õ (βe
βHH

5
3 ∣S∣

1
3 ∣A∣

1
3B

1
3M

2
3) .

Invoking the above inequality with Lemma 43 and applying Azuma’s inequality to
bound ∑M

m=1(Rm − eβV πm,m
1 ) yield that:

D-Regret(M) ≤Õ (eβHH
5
3 ∣S∣

1
3 ∣A∣

1
3B

1
3M

2
3) .

For the case of β < 0, note that from Lemma 43, the dynamic regret can be bounded and
decomposed as follows:

D-Regret(M) ≤ e
−βH

(−β)
∑

m∈[M]
[eβ⋅V m

1 (sm
1 ) − eβ⋅V ∗,m

1 (sm
1 )] +

e−βH

(−β)
∑

m∈[M]
[eβ⋅V πm,m

1 (sm
1 ) − eβ⋅V m

1 (sm
1 )] .

Then, following a procedure similar to the one used for the case β > 0 and noticing that
g1(β)H = −βH ≥ 1 − eβH for β < 0, we obtain the desired result.

4.D Proof of Theorem 14

Case β > 0
Consider a stochastic k-arm and M horizons bandit environment ν, where the reward for
pulling arm j ∈ {1,2, . . . , k} is given by the scaled Bernoulli random variable Ber(pj)

Xj =

⎧⎪⎪
⎨
⎪⎪⎩

H, with probability pj,

0, with probability 1 − pj

where H ≥ 1 specifies the range of the reward. We let the arm i be the unique optimal arm
and all the other k − 1 arms have the same pj, that is, p1 = p2 = ⋯ = pi−1 = pi+1 = ⋯ = pk = p
and pi = p +∆ for some constants p > 0 and ∆ > 0. Define Xm

j to be the outcome of arm j (if
pulled) in round m, and Y m to be the outcome of arm actually pulled in round m.
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Lemma 38. For the Bernoulli bandit ν described above, if p = e−βH , ∆ ≤ e−βH and H ≥ log 2
β ,

then for every policy π, the regret with the entropic risk measure in ν satisfies

Regret(M) ∶=
M

∑
m=1

1
β
(log [E[exp (βXm

1 )]] − log [E[exp (βY m)]])

≥ ∑
j∈[k]/ i

E [Tj(M)]
∆(eβH − 1)

4β

Proof. By the definition of Regret(M), we have

Regret(M) =
M

∑
m=1

1
β
(log [E[exp (βXm

1 )]] − log [E[exp (βY m)]])

= ∑
j∈[k]/ i

Ti(M)

β
(log [E[exp (βX1)]] − log [E[exp (βXi)]]) (4.44)

where the last step holds because of the independence among {Xm
1 }

M
m=1 and the independence

among {Y m}M
m=1. Taking the expectation over M on both sides of (4.44), we have

E [Regret(M)] = ∑
j∈[k]/ i

E [Ti(M)]

β
(log [E[exp (βXi)]] − log [E[exp (βXj)]])

= ∑
j∈[k]/ i

E [Tj(M)]

β
log((p +∆)eβH + (1 − p −∆)

peβH + (1 − p) )

= ∑
j∈[k]/ i

E [Tj(M)]

β
log(1 + ∆(eβH − 1)

peβH + (1 − p))

= ∑
j∈[k]/ i

E [Tj(M)]

β
log(1 + ∆(eβH − 1)

2 − e−βH
)

≥ ∑
j∈[k]/ i

E [Tj(M)]

β
log(1 + ∆(eβH − 1)

2 )

≥ ∑
j∈[k]/ i

E [Tj(M)]
∆(eβH − 1)

4β

where the forth equality holds since p = e−βH , the first inequality follows from eβH ≥ 2, and
the second inequality holds since ∆ ≤ e−βH and log(1 + x) ≥ x

2 for x ∈ [0,1].

Lemma 39. Let k > 1. For every policy π and sufficiently large M and H, there exists a
k-arm bandit instance such that

Ep⃗ [Regret(M)] >e
βH/2 − 1
β

√
Mk

64e .
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Proof. Fix a policy π. Let ∆ ∈ [0, e−βH] be some constant to be chosen later. We start with a
Bernoulli bandit where the reward of each arm is a scaled Bernoulli random variable Ber(pi)

with p⃗ ∶= (p1, . . . , pk) = (∆ + p, p, . . . , p). This environment and the policy π give rise to the
probability measure Pp⃗ on the canonical bandit model (Section 4.6 in [78]) induced by the
M -round interconnection of π and ν. Expectation under Pp⃗ will be denoted as Ep⃗. To choose
the second environment, let

i = arg min
j>1

Ep⃗ [Tj(M)] .

Since ∑k
j=1 Ep⃗ [Tj(M)] =M , it holds that

Ep⃗ [Ti(M)] ≤
M

k − 1 (4.45)

The second bandit is also a Bernoulli bandit where the reward of each arm is a scaled
Bernoulli random variable Ber(p′i) with p⃗′ ∶= (p′1, . . . , p

′
k) = (∆ + p, p, . . . ,2∆ + p, p, . . . , p),

where specifically p′i = 2∆ + p. Therefore, pj = p′j except at index i and the optimal arm in νp⃗

is the first arm, while in νp⃗′ arm i is optimal. Then, Lemma 38 and a simple calculation lead
to

Ep⃗ [Regret(M)] ≥ Pp⃗(T1(M) ≤
M

2 )
M∆(eβH − 1)

8β ,

Ep⃗′ [Regret(M)] > Pp⃗′(T1(M) >
M

2 )
M∆(eβH − 1)

8β .

Then, applying the Bretagnolle-Huber inequality in Lemma 46 leads to

Ep⃗ [Regret(M)] + Ep⃗′ [Regret(M)]

>
M∆(eβH − 1)

8β (Pp⃗(T1(M) ≤
M

2 ) + Pp⃗′(T1(M) >
M

2 ))

≥
M∆(eβH − 1)

8β exp (−DKL(Pp⃗ ∣ Pp⃗′))

It remains to upper-bound DKL(Pp⃗ ∣ Pp⃗′). For this, we use Lemma 48:

DKL (Pν ∣ Pν′) =EPp⃗
[Ti(M)]DKL (Ber(pi) ∣ Ber(p′i)) (4.46)

=EPp⃗
[Ti(M)]DKL (p ∣ 2∆ + p))

≤EPp⃗
[Ti(M)] ⋅

4∆2

(2∆ + p)(1 − 2∆ − p)

≤
M

k − 1 ⋅
4∆2

(2∆ + p)(1 − 2∆ − p)

≤
16M∆2

kp

≤
16eβHM∆2

k
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where the first inequality follows from Lemma 47, the second inequality holds by (4.45), the
third step follows from 1 − 2∆ − p ≥ 1

2 and k ≥ 3, and the last step holds by p = e−βH .
Substituting this into the previous expression, we find that

Ep⃗ [Regret(M)] + Ep⃗′ [Regret(M)] >M∆(eβH − 1)
8β exp(−16eβHM∆2

k
)

>
eβH/2 − 1

β

√
Mk

32e

where the second inequality holds by choosing ∆ =
√
k/(16MeβH) ≤ e−βH with M sufficiently

large. This result is completed by using 2 max(a, b) ≥ a + b.

Lemma 40. For every policy π and sufficiently large M and H, there exists a MDP instance
with horizon H, S ≥ 3 states and A actions such that

E [Regret(M)] >e
βH/2 − 1
β

√
MSA

64e .

Proof. Note that the M -round k-arm bandit model described in Lemma 39 is a special case
of an M -episode (H + 2)-horizon MDP with S states and S−1

2 actions where S ≥ 3 is odd.
Let s1 be the initial state, and all other states be absorbing regardless of actions taken. At
the initial state s1, we may choose to take action a1, a2, . . . , aS−1

2
. If aj is taken at state

s1, then we transition to state s1+2(j−1)+1 with probability pj and to state s1+2(j−1)+2 with
probability 1−pj . The reward function satisfies rh(s1+2(j−1)+1, a) = 1, rh(s1+2(j−1)+2, a) = 0 and
rh(s1, a) = 0 for all h ∈ [H + 2], a ∈ A and j = 1, . . . , S−1

2 .

Based on Lemma 40, let us now incorporate the non-stationarity of the MDP and derive
a lower bound for the dynamic regret D-Regret(M). We will construct the non-stationary
environment as a switching-MDP. For each segment of length M0, the environment is held
constant, and the regret lower bound for each segment isO( eβH/2−1

β

√
SAM0). At the beginning

of each new segment, we uniformly sample a new action at random at the state s1 from the
action space A to be the optimal action at the state s1 for the new segment. In this case, the
learning algorithm cannot use the information it learned during its previous interactions with
the environment, even if it knows the switching structure of the environment. Therefore, the
algorithm needs to learn a new (static) MDP in each segment, which leads to a dynamic
regret lower bound of

O(
eβH/2 − 1

β
L
√
SAM0) = O(

eβH/2 − 1
β

√
SAML) ,

where L is the number of segments. Every time that the optimal action at the state s1 varies,
it will cause a variation of magnitude 2∆ =

√
SA/(4M0eβH) in the transition kernel. The

constraint of the overall variation budget requires that

2∆L =
√

SA

4M0eβH
L =

√
SAL3

4MeβH
≤ B,
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which in turn requires L ≤ 4 1
3B

2
3M

1
3 e

βH
3 S−

1
3A−

1
3 . Finally, by assigning the largest possible

value to L subject to the variation budget, we obtain a dynamic regret lower bound of

O
⎛

⎝

e
2βH

3 − 1
β

S
1
3A

1
3B

1
3M

2
3
⎞

⎠
.

This completes the proof of Theorem 14 for the case β > 0.

Case β < 0
The proof of the base β < 0 is similar to that of the case β > 0. For β < 0, consider a
stochastic k-arm and M horizons bandit environment ν, where the reward for pulling arm
j ∈ {1,2, . . . , k} is given by the scaled Bernoulli random variable Ber(1 − pj)

Xj =

⎧⎪⎪
⎨
⎪⎪⎩

0, with probability pj,

H, with probability 1 − pj

where H ≥ 1 specifies the range of the reward. We let the arm i be the unique optimal arm
and all the other k − 1 arms have the same pj, that is, p1 = p2 = ⋯ = pi−1 = pi+1 = ⋯ = pk = p
and pi = p +∆ for some constants p > 0 and ∆ < 0. Define Xm

j to be the outcome of arm j (if
pulled) in round m, and Y m to be the outcome of arm actually pulled in round m.

Lemma 41. For the Bernoulli bandit ν described above, if p = eβH and ∆ ≥ −eβH , then for
every policy π, the regret with the entropic risk measure in ν satisfies

Regret(M) ∶=
M

∑
m=1

1
β
(log [E[exp (βXm

1 )]] − log [E[exp (βY m)]])

≥ ∑
j∈[k]/ i

E [Tj(M)]
∆(e−βH − 1)

2β

Proof. Taking the expectation over M on both sides of (4.44), we have

E [Regret(M)] = ∑
j∈[k]/ i

E [Ti(M)]

β
(log [E[exp (βXi)]] − log [E[exp (βXj)]])

= ∑
j∈[k]/ i

E [Tj(M)]

β
log((1 − p −∆)eβH + (p +∆)

(1 − p)eβH + p
)

= ∑
j∈[k]/ i

E [Tj(M)]

β
log(1 + ∆(1 − eβH)

(1 − p)eβH + p
)

≥ ∑
j∈[k]/ i

E [Tj(M)]

β
log(1 + ∆(1 − eβH)

2eβH
)

≥ ∑
j∈[k]/ i

E [Tj(M)]
∆(e−βH − 1)

2β
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where the first inequality holds since p = eβH , the second inequality holds since ∆ ≤ e−βH and
log(1 + x) ≤ x for x > −1.

Lemma 42. Let k > 1. For every policy π and sufficiently large M and H, there exists a
k-arm bandit instance such that

Ep⃗ [Regret(M)] >e
−βH/2 − 1
−β

√
Mk

64e .

Proof. The proof is similar to that of Lemma 39 by replacing Lemma 38 with Lemma 41,
replacing (4.46) by

DKL (Pν ∣ Pν′) =EPp⃗
[Ti(M)]DKL (Ber(1 − pi) ∣ Ber(1 − p′i))

and by choosing ∆ = −
√
k/(16Me−βH) ≥ −eβH .

The rest of the proof is similar to that for the case β > 0 and is thus omitted.

4.E Auxiliary lemmas
Lemma 43. For β > 0, the dynamic regret is bounded by

D-Regret(M) ≤ ∑
m∈[M]

1
β
[eβ⋅V ∗1 (sm

1 ) − eβ⋅V m
1 (sm

1 )] + ∑
m∈[M]

1
β
[eβ⋅V m

1 (sm
1 ) − eβ⋅V πm,m

1 (sm
1 )] ,

and for β < 0, the dynamic regret is bounded by

D-Regret(M) ≤ ∑
m∈[M]

e−βH

(−β)
[eβ⋅V m

1 (sm
1 ) − eβ⋅V ∗,m

1 (sm
1 )] + ∑

m∈[M]

e−βH

(−β)
[eβ⋅V πm,m

1 (sm
1 ) − eβ⋅V m

1 (sm
1 )] .

Proof. For β > 0, we have

D-Regret(M)
= ∑

m∈[M]
(V ∗,m1 − V πm,m

1 ) (sm
1 )

= ∑
m∈[M]

(V ∗,m1 − V m
1 ) (s

m
1 ) + ∑

m∈[M]
(V m

1 − V
πm

1 ) (s
m
1 )

= ∑
m∈[M]

[
1
β

log {eβ⋅V ∗,m
1 (sm

1 )} −
1
β

log {eβ⋅V m
1 (sm

1 )}] + ∑
m∈[M]

[
1
β

log {eβ⋅V m
1 (sm

1 )} −
1
β

log {eβ⋅V πm

1 (sm
1 )}]

≤ ∑
m∈[M]

1
β
[eβ⋅V ∗,m

1 (sm
1 ) − eβ⋅V m

1 (sm
1 )] + ∑

m∈[M]

1
β
[eβ⋅V m

1 (sm
1 ) − eβ⋅V πm,m

1 (sm
1 )]

where the last step holds by the 1-Lipschitzness of the function f(x) = logx for x ≥ 1.
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For β < 0, we similarly have

D-Regret(M)
= ∑

m∈[M]
(V ∗,m1 − V πm,m

1 ) (sm
1 )

= ∑
m∈[M]

(V ∗,m1 − V m
1 ) (s

m
1 ) + ∑

m∈[M]
(V m

1 − V
πm

1 ) (s
m
1 )

= ∑
m∈[M]

[
1
−β

log {eβ⋅V m
1 (sm

1 )} −
1
−β

log {eβ⋅V ∗,m
1 (sm

1 )}]

+ ∑
m∈[M]

[
1
−β

log {eβ⋅V πm,m
1 (sm

1 )} −
1
−β

log {eβ⋅V m
1 (sm

1 )}]

≤ ∑
m∈[M]

e−βH

(−β)
[eβ⋅V m

1 (sm
1 ) − eβ⋅V ∗,m

1 (sm
1 )] + ∑

m∈[M]

e−βH

(−β)
[eβ⋅V πm,m

1 (sm
1 ) − eβ⋅V m

1 (sm
1 )]

where the last step holds by the (e−βH)-Lipschitzness of the function f(x) = logx for
x ≥ eβH .

Lemma 44 (Theorem 1 in [1]). Let {Ft}
∞
t=0 be a filtration and {ηt}

∞
t=1 be a R-valued stochastic

process such that ηt is Ft-measurable for every t ≥ 0. Assume that for every t ≥ 0, conditioning
on Ft, ηt is a zero-mean and σ-subGaussian random variable with the variance proxy σ2 > 0,
i.e., E [eληt ∣ Ft] ≤ eλ2σ2/2 for every λ ∈ R. Let {Xt}

∞
t=1 be an Rd-valued stochastic process such

that Xt is Ft-measurable for every t ≥ 0. Let Y ∈ Rd×d be a deterministic and positive-definite
matrix. For every t ≥ 0, we define

Ȳt ∶= Y +
t

∑
τ=1

XτX
⊺
τ and St =

t

∑
τ=1

ητXτ .

Then, for every fixed δ ∈ (0,1), it holds with probability at least 1 − δ that

∥St∥
2
(Ȳt)−1 ≤ 2σ2 log

⎛
⎜
⎝

det (Ȳt)
1/2 det(Y )−1/2

δ

⎞
⎟
⎠

for every t ≥ 0.

Lemma 45 (Fact 1 in [45]). The following properties hold for αi
t defined in (4.26):

1. 1√
t
≤ ∑i∈[t]

αi
t√
i
≤ 2√

t
for every integer t ≥ 1.

2. maxi∈[t]α
i
t ≤

2H
t and ∑i∈[t] (α

i
t)

2
≤ 2H

t for every integer t ≥ 1.

3. ∑∞t=iαi
t = 1 + 1

H for every integer i ≥ 1.

4. ∑i∈[t]α
i
t = 1 and α0

t = 0 for every integer t ≥ 1, and ∑i∈[t]α
i
t = 0 and α0

t = 1 for t = 0.
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Lemma 46 (Lemma 14.2 in [78]). Let P,Q be probability measures on the same measurable
space (Ω,F), and let A ∈ F be an arbitrary event. Then,

P (A) +Q(Ac) ≥
1
2 exp (−DKL(P ∣ Q)) ,

where DKL denotes the KL divergence and Ac = Ω/ A is the complement of A.

Lemma 47 (Lemma 14 in [48]). Let p, p′ ∈ (0,1) be such that p > p′. We have

DKL (Ber (p′) ∥Ber(p)) ≤ (p − p
′)

2

p(1 − p) .

Lemma 48 (Divergence decomposition, Lemma 15.1 in [78]). Let ν = (P1, . . . , Pk) be the
reward distributions associated with one k-armed bandit, and let ν′ = (P ′1, . . . , P ′k) be the reward
distributions associated with another k-armed bandit. Fix some policy π and let Pν = Pνπ

and Pν′ = Pν′π be the probability measures on the canonical bandit model (Section 4.6 in [78])
induced by the M-round interconnection of π and ν (respectively, π and ν′ ). Then,

DKL (Pν ,Pν′) =
k

∑
i=1

Eν [Ti(M)]DKL (Pi, P
′
i )
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Chapter 5

Conclusions

This thesis aims to develop a set of computational tools with a rigorous analysis for the
design of safe online decision-making algorithms in the presence of non-stationarity. In each
of the three chapters, we take into account the underlying non-stationarity and the safety
requirements of real-world problems. In what follows, we briefly summarize our contributions
and future directions.

In Chapter 2, we study the landscape of time-varying nonconvex optimization problems.
The objective is to understand when simple local search algorithms can find (and track)
time-varying global solutions of the problem over time. We introduce a time-varying projected
gradient flow system with controllable inertia as a continuous-time limit of the optimality
conditions for discretized sequential optimization problems with proximal regularization and
online updating scheme. Via a change of variables, the time-varying projected gradient flow
system is regarded as a composition of a time-varying projected gradient term, a time-varying
constraint-driven term and an inertia term due to the time variation of the local minimum
trajectory. We show that the time-varying perturbation term due to the inertia encourages the
exploration of the state space and reshapes the landscape by potentially making it one-point
strongly convex over a large region during some time interval. We introduce the notions
of jumping and escaping, and use them to develop sufficient conditions under which the
time-varying solution escapes from a poor local trajectory to a better (or global) minimum
trajectory over a finite time interval. We illustrate in a benchmark example with many
shallow minimum trajectories that the natural time variation of the problem enables escaping
spurious local minima over time. Avenues for future work include the characterization of the
class of problems in which all spurious local minimum trajectories are shallow compared with
the global minimum trajectory.

In Chapter 3, we formulate a general non-stationary safe RL problem as a non-stationary
episodic CMDP. To solve this problem, we identify two alternative conditions on the time-
varying constraints under which we can guarantee the safety in the long run. We also develop
a new algorithm named PROPD-PPO, which consists of three main mechanisms: periodic-
restart-based policy improvement, dual update with dual regularization, and periodic-restart-
based optimistic policy evaluation. We establish the dynamic regret bound and constraint
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violation bounds for the proposed algorithm in both the linear kernel CMDP function
approximation setting and the tabular CMDP setting under two alternative assumptions.
This paper provides the first provably efficient algorithm for non-stationary CMDPs with
safe exploration. An interesting future direction is to relax the assumption on the prior
knowledge of the variation budgets and generalize the non-stationarity detection mechanism
to our CMDP setting.

In Chapter 4, we provide strong theoretical analyses for the non-stationary risk-sensitive
RL problem, which is motivated by various risk-sensitive applications. We propose two restart
based algorithms that require the knowledge of the variation budget, as well as a black-box
approach to turn a certain risk-sensitive RL algorithm in a (near-)stationary environment
into another algorithm in a non-stationary environment without requiring the knowledge of
the variation budge. The dynamic regret bounds of these algorithms are obtained and a lower
bound is established to verify the near-optimality of the proposed upper bounds. Our results
also reveal the condition under which the risk control and the handling of the non-stationarity
can be separately designed in the algorithm. One important future direction lies in extending
our results to other notions of risk, such as the general coherent risk measures. Furthermore,
it is useful to study how to adjust the risk sensitivity parameter adaptively in a non-stationary
environment.
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