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ABSTRACT OF THE DISSERTATION

Limitations of Trace Invariants to the Inverse Spectral Problem

By

Matthew West

Doctor of Philosophy in Mathematics

University of California, Irvine, 2024

Associate Professor Hamid Hezari, Chair

In this work we study inverse spectral problems for bounded domains, smooth closed mani-

folds, and semiclassical Schrödinger operators, with particular concern towards the latter. A

central tool in the analysis of inverse spectral problems are trace invariants, however these

are not without limitations. We show that there exist pairs of non-isometric potentials for

the 1D semiclassical Schrödinger operator whose spectra agree up to O(h∞), and hence have

the same semiclassical trace invariants, yet all corresponding eigenvalues differ no less than

exponentially. This result was conjectured in the work of Guillemin and Hezari [GH12],

where they prove a very similar result for the ground state eigenvalues, however cannot

remove the possibility of a subsequence hk → 0 where the ground state eigenvalues may

agree.
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Chapter 1

Introduction to the Semiclassical

Schrödinger Operator

1.1 Preliminary Spectral Theory

We begin with the basic setting for which we construct the spectral theory.

Definition 1.1. Let H be a vector space over C equipped with an inner product 〈·, ·〉. If H

is complete with respect to the topology induced by the norm, we say H is a Hilbert space.

From here on out, we assume that the Hilbert space H is separable, that is, H possesses a

countable dense subset. Operators on H fall into two categories, bounded and unbounded.

Fundamental definitions change and are considerably less intuitive in the latter case, and so

we will initially consider only bounded operators.
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1.1.1 Bounded Operators

Definition 1.2. Let A : H → H be a linear operator on a Hilbert space. We say that A is

bounded if

||A||op := sup
x∈H
||x||≤1

||Ax|| <∞.

We call ||·||op the operator norm.

Moreover, we will study a particular type of linear operator on H.

Definition 1.3. Let (H, 〈·, ·〉) be a Hilbert space. The adjoint of a bounded operator A :

H → H is the operator A∗ satisfying 〈Ax, y〉 = 〈x,A∗y〉 for all x, y ∈ H. We say the bounded

operator A : H → H is self-adjoint if A∗ = A, or equivalently 〈Ax, y〉 = 〈x,Ay〉 for all

x, y ∈ H.

We are interested the eigenvalues/eigenvectors of self-adjoint A, and the functional calculus

of A. The latter being the structure of “taking functions of an operator”. To build intuition,

let us first consider the analytic functional calculus for self-adjoint operators over finite

dimensional Hilbert spaces, starting with a structure theorem from self-adjoint operators on

finite dimensional Hilbert spaces.

Theorem 1.1 (The Spectral Theorem for Finite Dimensional Hilbert Spaces, [Art91]). Let

A be a self-adjoint operator on a finite dimensional Hilbert space. Then there exists a unitary

matrix U and real diagonal matrix such that A = UDU−1. Moreover, the jth column of U

and jth diagonal entry of D are the jth eigenvector and eigenvalue of A.

Let f : U → C be an analytic function f(z) =
∑∞

j=0 ajz
j, whose domain contains all of the

eigenvalues of A. Without loss of generality identify H = Cm, since H is finite dimensional.

2



We define the operator f(A) : H → H by

f(A) =
∞∑
j=0

aijA
j,

where the limit is understood in the sense of the operator norm, ||X||op := sup u∈H
||x||≤1

||Xu||.

Indeed, f(A) is well defined, taking A = UDU−1, we have

∣∣∣∣∣
∣∣∣∣∣
N∑

j=M

ajA
j

∣∣∣∣∣
∣∣∣∣∣
op

=

∣∣∣∣∣
∣∣∣∣∣U
(

N∑
j=M

ajD
j

)
U−1

∣∣∣∣∣
∣∣∣∣∣
op

=

∣∣∣∣∣
∣∣∣∣∣
(

N∑
j=M

ajD
j

)∣∣∣∣∣
∣∣∣∣∣
op

≤ max
k

N∑
j=M

ajλ
j
k < ε,

for M,N sufficiently large, since f is analytic over a set containing all eigenvalues {λk}.

Moreover, exchanging limits we have that

f(A) = U
∞∑
j=0

ajD
jU−1 = U


f(λ1) 0

. . .

0 f(λm)

U−1.

Remark 1.1. The above display equation reveals an important property of the functional

calculus. Since the columns of U are the orthonormal eigenvectors of A, and that U is

unitary (U−1 = U∗) we have that

f(A)ψj = f(λj)ψj,

where ψj is the jth eigenvector of A. Thus, for any x ∈ H, we have

f(A)x =
m∑
j=1

f(λj)〈x, ψj〉ψj.

Now, for finite dimensional operators A, eigenvalues are those complex numbers λ such that

A−λI is not invertible. By rank-nullity we have that A−λI not being invertible is equivalent

3



to A− λI being not-injective, and equivalent to A− λI being not surjective. We would like

to study the analog of eigenvalues, and hence the functional calculus for linear operators

on infinite dimensional spaces, however non-injectivity of an operator is not equivalent to

non-surjectivity of an operator. Take for example the left shift operator and its adjoint

σ, σ∗ : `2(R)→ `2(R)

σ(a1, a2, a3, . . . ) = (a2, a3, a4, . . . )

σ∗(a1, a2, a3, . . . ) = (0, a1, a2, . . . ).

The map σ is not injective, but is surjective, and σ∗ is not surjective, but is injective.

It turns out, for the infinite dimensional setting we study those complex numbers λ which

cause A− λI to be non-invertible.

Definition 1.4. Let A be an operator on H. A complex number is said to be in the resolvent

set ρ(A) of A if A−λI is a bijection with bounded inverse. The map Rλ(A) = (λI −A)−1 is

said to be the resolvent of A at λ. If λ /∈ ρ(A), then λ is in the spectrum Spec(A) of A.

An x 6= 0 satisfying Ax = λx for some λ ∈ C is called an eigenvector, or in the case

H = L2(Rn) an eigenfunction of A; λ is called the corresponding eigenvalue. If λ is an

eigenvalue, then A− λI is not injective, so λ ∈ Spec(A). The set of all eigenvalues is called

the point spectrum of A.

If λ is not an eigenvalue and if the range of A− λI is not dense, then λ is said to be in the

residual spectrum.

We will omit the precise discussion of the functional calculus for bounded self-adjoint oper-

ators on a Hilbert space, and move directly to the general case of self-adjoint operators.
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1.1.2 Unbounded Operators

Many operators that are of interest to mathematical physicists have a natural space of

definition that is not a Hilbert space, but rather a densely defined linear subspace.

Definition 1.5. Let H be a Hilbert space. We say that A is an operator on H if it is a

linear map from a dense subspace Dom(A) ⊆ H to H. Let Ã be a linear operator on H with

domain Dom(Ã) ) Dom(A) and Ã = A on Dom(A). We call Ã and extension of A.

Now, if an operator A is bounded, and hence continuous, on its dense domain of definition it

can be extended uniquely to a bounded operator over H. Thus, we are naturally interested

in those densely defined operators which are unbounded. Let us consider an important

example.

Example 1.1. Let V ∈ C∞(Rn) with lim|x|→∞ V (x) = +∞ and V (x) = O(|x|N), for some

N , and consider the operator P : C∞0 (Rn)→ L2(Rn), given by P = −∆+V (x). Note that P

is densely defined, that is, C∞0 (Rn) is dense in L2(Rn). Let ϕ ∈ C∞0 (Rn) such that ||ϕ||2 ≤ 1.

Then consider the sequence of translates ϕn(x) = ϕ(x − n) satisfying ||ϕn|| ≤ 1. Then by

the compact support of ϕ, Jensen’s inequality, and a change of variables

||Pϕn|| ≥ C

∣∣∣∣∫ V (x+ n)φ dx−
∫

∆φ dx

∣∣∣∣ .
The left term above grows unboundedly positive by the assumption on V , and the right term

is a fixed constant. Thus ||Pϕn|| diverges to infinity. And so,

sup
f∈C∞0 (Rn)
||f ||≤1

||Pf || =∞,

and we have that P is unbounded.

The operator from the above example satisfies 〈Pf, g〉 = 〈f, Pg〉, for f, g ∈ C∞0 (Rn), however

5



this is not enough to say that the operator P is “self adjoint”, when taking analogy from

the definition of self-adjoint for operators defined over the entirety of L2(Rn).

Definition 1.6. Let A be a densely defined operator on the Hilbert space H. Let Dom(A∗)

be the set of all φ ∈ H such that there exists an η ∈ H with

〈Aψ, φ〉 = (ψ, η).

For each ψ ∈ Dom(A∗), we define A∗φ = η. A∗ is called the adjoint of A,

Returning to the above example, we see that many elements of L2(Rn) are missing from

the domain Dom(P ) = C∞0 (Rn). Indeed, consider the Schwartz space S = {ϕ ∈ C∞(Rn) :

supRn |xα∂βϕ| < ∞}, and let χn ∈ C∞0 (Rn) be the cutoff functions satisfying χn(x) = 1 if

|x| ≤ n, and χn(x) = 0 if |x| ≥ n + 1. Then let ϕ ∈ S, and note that χnϕ ∈ Dom(P ),

χnϕ
L2(Rn)−−−−→ ϕ, and Pχnϕ

L2(Rn)−−−−→ Pϕ. In this sense, ϕ is missing from the domain of P ,

which motivates the following definition.

Definition 1.7. We say that a linear operator A on H is closed if its graph Γ(A) =

{(x,Ax) : x ∈ Dom(A)} is closed in H × H. Or equivalently, A is closed if for every

sequence (xn) in Dom(A) such that xn → x and Axn → y for some x, y ∈ H we necessarily

have x ∈ Dom(A) and Ax = y. An operator A is closable if Γ(A) is the graph of an

operator. We denote this operator A and call it the closure of A. Note that Γ(A) = Γ(A)

When is a densely defined operator closeable?

Proposition 1.1 ([RS81]). A is closable if and only if Dom(A∗) is dense, in which case

A = A∗∗.

A very important class of operators which we will consider are inspired by the definition of

bounded self-adjoint operators.
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Definition 1.8. A densely defined operator A on H is called symmetric if 〈Af, g〉 = 〈f, Ag〉

for all f, g ∈ Dom(A).

An immediate consequence of the above definition is that if A is symmetric, we have that

Dom(A) ⊆ Dom(A∗), and hence A is closable. Now, it is not always the case that this

subset inclusion is equality. In the example 1.1.2, we have that P is symmetric, hence

Dom(P ) ⊆ Dom(P ∗). However, this inequality is strict, because e−x
2 ∈ Dom(P ∗) \Dom(P ).

Indeed, by integration by parts,

〈Pφ, e−x2〉 = 〈φ,−∆e−x
2

+ V (x)e−x
2〉,

holding for each φ ∈ Dom(P ) = C∞0 (Rn).

Definition 1.9. A densely defined operator A on H is self-adjoint if A is both symmetric

and Dom(A) = Dom(A∗). The linear operator A is called essentially self-adjoint if it

possess a unique self-adjoint extension, or equivalently, A is closable and its unique closure

A is self adjoint. If A is closed, a subset C ⊆ Dom(A) is called a core for A if A|C = A.

The principle benefit of an operator being essentially self adjoint is that to specify the self

adjoint extension uniquely, one need not give the explicit domain, which may be difficult to

specify, but a core of the operator.

Just like in the bounded and finite dimensional cases, the spectrum of a self-adjoint operators

are purely real, and they have the following remarkable structure theorem.

Theorem 1.2 (The Spectral Theorem for Unbounded Self-Adjoint Operators, [RS81]). Let

A be a self-adjoint operator on a separable Hilbert space H, with domain Dom(A). Then there

is a measure space (M,µ) with µ a finite measure, a unitary operator U : H → L2(M,dµ),

and a real-valued function f on M which is finite a.e. so that

(a) ψ ∈ Dom(A) if and only if f(·)(Uψ)(·) ∈ L2(M,dµ)

7



(b) If φ ∈ U(Dom(A)), then(UAU−1φ)(m) = f(m)φ(m).

Remark 1.2. In the finite dimensional case, say H ∼= Cn, note that A admits an orthonor-

mal basis of eigenvectors. Interpreting the statement of the spectral theorem, we have that

M = {1, 2 . . . , n}, µ is the uniform atomic measure over M , f(m) is the mth eigenvalue of

A, and if ψm is the mth eigenvector of A, U(aψm) = aχ{m}.

In light of the spectral theorem and the above remark, there is a natural way to define Borel

functions of a self-adjoint operator. Let h : R→ C be Borel, then

h(A) = U−1Th(f)U,

Where Th(f) is the multiplication by h(f(·)) operator on L2(M,dµ). This is understood as

the Borel functional calculus.

Theorem 1.3 (Spectral Theorem - Functional Calculus Form, [RS81]). Let A be a self-

adjoint operator on H. Then there exists a unique map φ̂ from the bounded Borel functions

on R into the bounded operators on H with the following properties:

(a) φ̂ is a ∗-homomorphism, meaning

φ̂(fg) = φ̂(f)φ̂(g) φ̂(λf) = λφ̂(f)

φ̂(1) = I φ̂(f) = φ̂(f)∗

(b) φ̂ is norm continuous, meaning
∣∣∣∣∣∣φ̂(f)

∣∣∣∣∣∣
op
≤ ||f ||∞

(c) Let fn(x) be a sequence of bounded Borel functions with fn(x) → x pointwise and

|fn(x)| ≤ |x| for all x and n. Then, for any ψ ∈ Dom(A), limn→∞ φ̂(fn)ψ = Aψ.

(d) If fn → f pointwise and if the sequence ||fn||∞ is bounded, then φ̂(fn)→ φ̂(f) strongly.

8



(e) If Aψ = λψ, then φ̂(f) = f(λ)ψ

(f) If f ≥ 0, then φ̂(f) ≥ 0.

We are primarily interested in taking the complex exponential of self-adjoint operators.

Theorem 1.4 (Stone’s Theorem, [CR21]). Let A be a self-adjoint operator on the Hilbert

space H. There exists a unique C0-unitary group (Ut)t∈R such that

(i) Ut : Dom(A)→ Dom(A),

(ii) for all u ∈ Dom(A), Utu ∈ C1(R,H) ∩ C0(R,Dom(A))

(iii) for all u ∈ Dom(A), d
dt
Utu = iAUtu = iUtAu.

We denote Ut = eitA.

Conversely, if (Ut)t∈R is a C0-unitary group, then there exists a unique self-adjoint operator

A such that, for all t ∈ R, Ut = eitA, with domain

Dom(A) =

{
u ∈ H : sup

0<t≤1
t−1||Utu− u|| < +∞

}
.

Stone’s theorem gives us a way of reformulating certain partial differential equation in terms

of the action of a 1-D group of unitary bounded operators. For example, consider the

following Scrhödinger-like initial value problem


i∂tψ(x, t) = Hψ(x, t)

ψ(x, 0) = f(x)

H = −∆ + V (x)

9



where V : Rn → R is chosen to guarantee H is self-adjoint. Then, by Stone’s theorem

i∂t(e
−itHf(x)) = He−itHf(x),

and so ψ(x, t) = e−itHf(x) solves the given initial value problem.

1.2 The Semiclassical Schrödinger Operator

1.2.1 Connections to Quantum Mechanics

Before introducing the main operator of interest, the semiclassical Schrödinger operator, we

begin with a discussion of the elementary theory of quantum mechanics. The goal is to

provide a probabilistic interpretation of the time-evolution of a particle under the influence

of an external force. That is, suppose we have a particle of mass m, subject to a potential

energy V (x). We wish to determine the probability of the particle existing within a certain

subset of W ⊆ Rn at a time t. This is accomplished through the time-dependent Schrödinger

equation,

i~∂tψ = − ~2

2m
∆ψ + V (x)ψ, (1.1)

where ~ is a small universal constant referred to as Planck’s constant, and ∆ is the non-

positive Laplacian on Rn, ∆ = ∂2

∂x2
1

+ · · · + ∂2

∂x2
n
. We call the complex solutions to the

above equation, ψ(x, t), wave functions, and assume that they are L2 normalized in space,

i.e.
∫
Rn |ψ|

2 dx = 1. For a fixed point in time, the wave functions give rise to our desired

probability measure on Rn, Ψt(W ) =
∫
W
|ψ(x, t)|2 dx.

To physical quantities of a quantum system we associate self-adjoint operators, called ob-

servables. For example, position is an observable, with the corresponding operator Qj :

10



Dom(Qj) ⊆ L2(Rn) → L2(Rn), given by Qjf = xjf(x). To an observable A, we may com-

pute its expectation 〈A〉ψ(x,t) = 〈Aψ(x, t), ψ(x, t)〉. This computation provides the intuition

behind the naming of the position operator. Computing the expectation of Qj,

〈Qj〉ψ(x,t) =

∫
xj|ψ(x, t)|2 dx.

This is the expected value of the quantum particle’s location in the jth coordinate.

In what follows we are interested in what are called stationary states, that is, solutions to

(1.1) of the form

ψ(x, t) = e−
itE
~ ψ(x, 0), (1.2)

for some real constant E. Note that for any stationary state ψ(x, t), we have

Ψt(W ) =

∫
W

|ψ(x, t)|2 dx =

∫
W

|ψ(x, 0)|2 dx = Ψ0(W )

〈A〉ψ(x,t) =

∫
Aψ(x, t)ψ(x, t) dx =

∫
Aψ(x, 0)ψ(x, 0) dx = 〈A〉ψ(x,0).

Interpreted physically, the former says that the probability of finding a particle in the mea-

surable set W does not change with time, and the latter says that the expected value of

any observable A is independent of time. If we plug (1.2) into (1.1) we arrive at the time-

independent Schrödinger equation:

Eψ(x, t) =

(
− ~2

2m
∆ + V (x)

)
ψ(x, t). (1.3)

Define the time-independent Schrödinger operator P : Dom(P ) ⊆ L2(Rn)→ L2(Rn) by

P = − ~2

2m
∆ + V (x). (1.4)

11



With this in mind, we notice that (1.3) factors into the following eigenvalue equation:

Eψ(x) = Pψ(x).

Now, by Theorem 1.4 (Stone’s Theorem), we have that any solution to (1.1) is given by

the Schrödinger propagator ψ(x, t) = e−
it
~ Pψ(x, 0), and thus we may reduce the study of the

time-dependent Schödinger equation to the study of the eigenfunctions and eigenvalues of P .

Indeed, if P admits an orthonormal basis {ψj} of eigenfunctions with associated eigenvalues

{λj} for L2(Rn), by the Borel functional calculus (Theorem 1.3), we may represent solutions

to the Schrödginer equation (1.1) as

ψ(x, t) =
∞∑
j=0

aje
− it~ λjψj,

where ψ(x, 0) =
∑∞

j=0 ajψj(x). Note that the previous equality, and the equality above are

understood in the sense of L2.

1.2.2 Definition and Basic Properties of the Semiclassical Schrödinger

Operator

Consider the family of operators indexed by the parameter h > 0, H : C∞0 (R) → L2(R)

defined by H = −h2 d2

dx2 + V (x), where

V ∈ C∞(R), lim
|x|→∞

V (x) = +∞. (1.5)

Notice that H is the time-independent Schrödinger operator (1.4), with m = 1
2
, and letting

~ = h vary as a continuous, positive parameter. The operators H are symmetric, and

moreover, essentially self adjoint, which follows as a consequence of Sears theorem:

12



Theorem 1.5 ([BS12], §2.1). Let V satisfy V (x) ≥ −Q(x), where Q > 0 and even, satisfying

∫
R

1√
Q(2x)

dx =∞.

Then H is essentially self adjoint.

Indeed, taking Q(x) = C, for some C > 0, we have that H is essentially self adjoint, with

the unique self-adjoint extension H∗ : Dom(H∗) ⊂ L2(R) → L2(R). From here on out, we

will use H to denote the unique self adjoint extension formed by taking the closure of the

original operator.

Definition 1.10. Let h > 0, and V ∈ C∞(R) with lim|x|→∞ V (x) = +∞ and satisfying

the hypothesis of Theorem 1.5. The operator H : Dom(H) ⊆ L2(R) → L2(R) which is the

unique self-adjoint extension of the operator φ 7→ −h2φ′′ + V φ with core C∞0 (R), is called

the semiclassical Schrödinger operator with potential V .

We now consider the spectrum of H.

Theorem 1.6 ([BS12], §2.3). If V satisfies (1.5), then the spectrum of H is discrete, with

an associated orthonormal complete system of L2 eigenfunctions ψk, k = 0, 1, 2, . . . whose

eigenvalues λk satisfy λ0 ≤ λ1 ≤ λ2 ≤ · · · → ∞.

The eigenvalues and eigenfunctions above depend on the parameter h, we omit this depen-

dence in the notation for simplicity. Now, each eigenspace is of rank 1, and so the above

inequalities of eigenvalues are strict. This follows from the following general characterization

from Sturm-Liouville theory.

Theorem 1.7 ([BS12], §2.3). Let V (x) ≥ ε > 0 for x ≥ a. Then for any solution y to

−y′′ + V y = 0, one of the two limits holds

a) limx→∞ y(x) = +∞

13



b) limx→∞ y(x) = 0

A solution satisfying b) exists and is unique (up to a constant factor).

From here on out we restrict ourself to potentials V that satisfy the following growth condi-

tions:
|V (k)| ≤ Ck(1 + x2)

k
2 for each k ∈ Z≥0

V (x) ≥ c(1 + x2)
k
2 for |x| ≥ R, for some R > 0

(1.6)

We conclude with an important statement on the regularity of eigenfunctions of H.

Proposition 1.2 ([Zwo22]). Let uj denote the jth eigenfunction of the semiclassical Schrödinger

operator H, with potential satisfying growth conditions (1.6). Then uj is a member of the

Schwartz space.

1.2.3 The Classical Harmonic Oscillator and Quantization

Elementary Hamiltonian Mechanics

We call the Semiclassical Schrödinger operator semiclassical due to the connection it facili-

tates between quantum and classical dynamics. To see this, we first review the fundamental

of Hamiltonian mechanics. Consider an object of mass m, with displacement relative to

equilibrium given by x(t), subject to a force F (x(t)). Newton’s law tells us that

mẍ = F (x(t)).

14



We may rewrite this second order ODE as a system of equations, introducing the momentum

variable ξ = mẋ,


ẋ = 1

m
ξ

ξ̇ = F (x(t)),

(1.7)

which is known as Hamilton’s equations of motion. If F (x) is a smooth conservative vector

field, with potential function V (x) = −∂F (x), we may associate to the above differential

equation a functionH : R2n → R, given byH(x, ξ) = ξ2

2m
+V (x), referred to as a Hamiltonian,

which satisfies
ẋ = ∂ξH

ξ̇ = −∂xH.

By construction, we have that solutions to Hamilton’s equations (1.7) are constant along H,

that is d
dt
H(x(t), ξ(t)) = 0, and the value H takes on the given solution H(x(t), ξ(t)) = E is

known as a constant of motion. This fact is known as the conservation of energy, where E

represents the total energy of the traveling mass, ξ2

2m
is the kinetic energy, and V (x) is the

potential energy.

The HamiltonianH defines a vector field associated to Hamilton’s equations, XH = (∂ξH,−∂xH),

along with a flow Φt
H : R2n → R2n taking (x0, ξ0) 7→ (x(t), ξ(t)), where x(t), ξ(t) are solutions

to Hamilton’s equations (1.7) with initial condition (x0, ξ0).

The Harmonic Oscillator

We turn to a fundamental example from classical mechanics, the harmonic oscillator. Con-

sider a massive object moving along a frictionless track, subject to a restoring force inversely
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proportional to its distance from equilibrium. The displacement of this object from equilib-

rium, x(t), is modeled using Newton’s law

m
d2x

dt2
= −kx, (1.8)

wherem is the mass of the object, and k is the spring constant. The hamiltonian associated to

the above differential equation is H(x, ξ) = ξ2

2m
+ kx2

2
, with vector field XH =

(
ξ
m
,−kx

)
. The

flow of XH in phase-space, i.e. position-momentum space, is given by matrix exponentiation

Φt
H = exp (tA) , A =

 0 1
m

−k 0

 .

Note that A2n =
(
− k
m

)n
I, and A2n+1 =

(
− k
m

)n
A, hence

Φt
H = I

∞∑
n=0

(−1)n
(√

k
m

)2n

(2n)!
+

√
m

k
A
∞∑
n=0

(−1)n
(√

k
m

)2n+1

(2n+ 1)!
=

 cos
√

k
m
t 1√

mk
sin
√

k
m
t

−
√
km sin

√
k
m
t cos

√
k
m
t



And viewed in terms of initial conditions (x, ξ),

Φt
H(x, ξ) =

(
cos

(√
k

m
t

)
x+

1√
km

sin

(√
k

m
t

)
ξ,−
√
km sin

(√
k

m
t

)
x+ cos

(√
k

m
t

)
ξ

)
,

we see that Φt
H parameterizes the ellipse H(x, ξ) = ξ2

2m
+ kx2

2
= E. Note that the x coordinate

of Φt
H is the solution to (1.8) with initial condition (x, ξ/m), simple harmonic motion.

Quantization

Given a sufficiently regular Hamiltonian f : R2n → R there is a way of associating a linear

operator on an appropriate function space.
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Definition 1.11. Let f ∈ S(R2n). To f we associate the operators fw(x, hD), f(x, hD) :

S(Rn)→ S(Rn), given by

fw(x, hD)u(x) :=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉f

(
x+ y

2
, ξ

)
u(y) dydξ,

f(x, hD)u(x) :=
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉f (x, ξ)u(y) dydξ.

We call fw(x, hD), f(x, hD) the Weyl quantization and standard quantization of the

symbol f .

The standard quantization of a symbol f can be realized as the conjugation of f with the

following transformation.

Definition 1.12. Let Fh,F−1
h : S(Rn)→ S(Rn) be given by

(Fhϕ)(ξ) :=

∫
Rn
e−

i
h
〈x,ξϕ(x) dx,

(F−1
h ψ)(x) :=

1

(2πh)n

∫
Rn
e
i
h
〈x,ξψ(ξ) dξ.

We call Fh,F−1
h the semiclassical Fourier transform and the semiclassical inverse

Fourier transform.

Indeed, conjugating a symbol f by the semiclassical Fourier transform yields the standard

quantization, f(x, hD)u = F−1
h (f(x, ·)(Fhu)(·)).

Now, if we relax the requirement that our symbol is Schwarz class, we do not know the exact

mapping properties of the associated quantization. However, for the familiar example of the

symbol f(x, ξ) = ξ2 + x2, where f is the Hamiltonian of the harmonic oscillator with mass

m = 1
2

and spring constant k = 2, we recover a well known self-adjoint operator. Let us
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compute its Weyl quantization.

fwu =
1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉

(
ξ2 +

(
x+ y

2

)2
)
u(y) dydξ.

The first term simplifies to

1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉ξ2u(y) dydξ = −h2∆u(x),

where we used the fact that F−1
h (ξjFh(g)) = −hDxjg(x). The second term simplifies as

follows

1

(2πh)n

∫
Rn

∫
Rn
e
i
h
〈x−y,ξ〉

(
x2

4
+
xy

2
+
y2

4

)
u(y) dydξ =

x2

4
+
x2

2
+
x2

4
= x2.

Thus, the Weyl quantization of the classical harmonic oscillator is fw = −h2∆ + x2. Note

that the standard quantization of the classical harmonic oscillator yields the same result.

Definition 1.13. Let H0 : Dom(H0) ⊆ L2(Rn)→ L2(Rn) be given by H0u = −h2∆u+ x2u,

where x2 is understood as the multiindex summation x2 := (x2
1 + . . . x2

n). We call H0 the

semiclassical harmonic oscillator.

The symbol p(x) = ξ2 + V (x) of the semiclassical Schrödinger operator tells us a lot of

interesting information about the associated eigenvalues and eigenfunctions. We will con-

clude this section with theorem regarding the asymptotic distribution of eigenvalues of the

semiclassical Schrödinger operator H = p(x, hD), using this correspondence.

Theorem 1.8 (Weyl’s Law, [Zwo22]). Let 0 ≤ a < b, and let E denote an eigenvalue of

the semiclassical Schrödinger operator H = p(x, hD), where p(x) = ξ2 + V (x), and V (x) is

smooth potential satisfying the growth conditions (1.6). Then

#{E : a ≤ E ≤ b} =
1

(2πh)n
(|{a ≤ p(x, ξ) ≤ b}|+ o(1))
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as h→ 0. Here |{a ≤ p(x, ξ) ≤ b}| denotes the volume of the set between the level curves of

the hamiltonian p(x, ξ) = a and p(x, ξ) = b.

1.2.4 Bohr-Sommerfeld Rules

We are interested in approximating the eigenvalues of a semiclassical Schrödinger operator

as we let the semiclassical parameter tend towards zero.

Definition 1.14. Let f(h) be a function of the semiclassical parameter h. We say that f

is of order O(h∞), or f = O(h∞)as h → 0, if for each positive integer N there exists a

constant CN such that

|f | ≤ CNh
N for all h > 0.

One can recover the eigenvalues of the semiclassical Schrödinger operator H = p(x, hD) up

to order O(h∞) by way of an asymptotic expansion in h, known as the Bohr-Sommerfeld

rules.

Theorem 1.9 ([CdV05]). Let En denote the nth eigenvalue (index n ∈ {1, 2, . . . }) of the

1-D Schrödinger operator H = p(x, hD) = −h2 d2

dx2 + V (x), with potential satisfying growth

conditions (1.6). Let C > 0, then En ∈ (0, C] satisfies the Bohr-Sommerfeld rules,

Sh(En)− 2πnh = O(h∞),

where

Sh(E) =
∞∑
j=0

Sj(E)hj. (1.9)

We call Sh the semiclassical action, and the terms are given by
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• S0(E) =
∫
γE
ξ dx =

∫
p−1([0,E])

dxdξ is the action integral.

• S1(E) = π.

• S2j+1 = 0 for j > 0.

• S2j =
∑

2≤l≤L(2j)
(−1)l−1

(l−1)!

(
d
dE

)l−2 ∫
γE
P2j,l(x, ξ) dt

where γE level set p(x, ξ) = E, parameterized in the direction of the Hamiltonian flow, an

the Pj,l are universal polynomials evaluated on the partial derivatives of the hamiltonian ∂αp.

We will be interested in the eigenvalues of perturbed harmonic oscillators, and so to build

intuition, let us first consider the Bohr-Sommerfeld rules for the unperturbed harmonic

oscillator. Recall, the Hamiltonian for this operator is p(x, ξ) = x2 + ξ2. Computing the

action integral:

S0(E) = 2

∫ √E
−
√
E

√
E − x2 dx = πE

Thus the Bohr-Sommerfeld rules tell us that

πEn + hπ +
∞∑
j=2

Sj(En)hj − 2πnh = O(h∞). (1.10)

As computed in Lemma 3.2, the nth eigenvalue of the semiclassical harmonic oscillator is

h(2n+ 1). However, the result of Colin de Verdiere indexes eigenvalues starting at n = 1, so

in the above discussion we take En = h(2n − 1). Thus we have cancellation in (1.10), and

all other action terms vanish to order O(h∞),

∞∑
j=2

Sj(En)hj = O(h∞).

And so we have the rather simple expression of the semiclassical action of the quantum

harmonic oscillator, Sh(En) = πEn + hπ +O(h∞).
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Now, consider perturbations to the harmonic oscillator, with hamiltonian

p(x, ξ) = x2 + γ(x) + ξ2, γ ∈ C∞0 (R \ {0}),

where γ is small enough so as to maintain monotonicity in a neighborhood of its support. For

E < inf{|x| : x ∈ supp(γ)} we have that principle action integral S0 of the perturbed har-

monic oscillator coincides with the unperturbed harmonic oscillator, and hence, eigenvalues

of the perturbed oscillator agree with the unperturbed oscillator modulo O(h∞).
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Chapter 2

Inverse Spectral Problems

Given a sufficiently regular set Ω, for example a smooth bounded subset of euclidean space

or the entirety a Riemannian manifold, and self-adjoint operator A : Dom(A) ⊆ L2(Ω) →

L2(Ω), when does the spectrum of A prescribe the geometry of A, or another geometrical

aspect of the operator A? Questions of this form are known as inverse spectral geometry

problems. Interest in these types of questions grew rapidly after Mark Kac’s seminal work

Can One Hear the Shape of the Drum? [Kac66], where he explores the following question:

The Inverse Spectral Problem for Bounded Plane Domains

Let Γ1,Γ2 ⊆ R2 be two simple closed curves bounding domains Ω1,Ω2. If the spec-

trum of the Laplacians ∆1 : Dom(∆1) ⊆ L2(Ω1)→ L2(Ω1) and ∆2 : Dom(∆2) ⊆

L2(Ω2) → L2(Ω2) with either Dirichlet or Neumann boundary conditions are

equal, is it necessarily the case that Ω1 = Ω2 up to isometry?

This is known as the inverse spectral problem for bounded plane domains. Before we begin

on the discussion of the state of the art on the above problem and related questions, let us

connect the problem to its provocative title.
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Consider the bounded plane domain Ω and the wave initial value problem with Dirichlet

boundary conditions



∂2F
∂t2

= c2∆F

F |∂Ω = 0

F (x, 0) = f(x)

Ft(x, 0) = g(x).

(2.1)

Interpreted physically, solutions to this problem model the motion of a membrane stretched

taught and held fixed along the boundary curve ∂Ω, subject to initial profile f(x) and velocity

g(x). Of interest to the physicist are the normal modes, those solutions to (2.1) of the form

F (x, t) = U(x)eicωt.

The oscillation of the membrane in a normal mode produces compression waves of frequency

ω, which is then propagated to the human ear and transduced as a tone of frequency ω. If we

plug the normal mode into the the wave equation (2.1), we arrive at the Laplace eigenvalue

equation on Ω with Dirichlet boundary conditions


−∆ΩU = ω2

ΩU

U |∂Ω = 0.

And so, the eigenvalues of the Laplacian on Ω with Dirichlet boundary conditions are the

square of the tones of which the drum Ω produces.
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2.1 Bounded Domains in Euclidean Space

Let us broaden Kac’s question to higher dimensions and introduce some notation. Let

0 ≤ λ0 < λ1 ≤ λ2 ≤ . . . be the eigenvalues of the nonnegative Euclidean Laplacian on

the smooth bounded domain Ω ⊆ Rn, ∆Ω = −
(
∂2

∂x2
1

+ · · ·+ ∂2

∂x2
n

)
, with either Dirichlet or

Neumann boundary conditions.

A natural starting point for this problem is to ask what quantitative aspects of the geometry

are spectral invariants? A first result of this sort, known as Weyl’s law for the Laplacian on

bounded Euclidean domains, preceded Kac’s paper by roughly 50 years. Weyl’s law is the

following asymptotic statement

N(λ) = #{λj : λj ≤ λ} =
ωnVol(Ω)

(2π)n
λ
n
2 (1 + o(1)) as λ→ +∞ (2.2)

where N(λ) is the number of eigenvalues less than λ and ωn is the volume of the unit ball.

This was first conjectured by Hilbert, and then several years later proven by Hermann Weyl

in the case for planar domains [Wey11]. The above asymptotic shows that the volume of

the domain is a spectral invariant. Moreover, the perimeter [Ple54] of the domain and Euler

characteristic [MJS67] were proven to be spectral invariants. These geometric quantities,

among others, are contained in the asymptotic expansion of what is known as the heat trace

of ∆Ω.

It turns out that Kac’s inverse spectral problem cannot be answered in the affirmative. Gor-

don, Webb, and Wolpert gave examples of distinct planar domains with the same spectrum

[GWW92]. These examples are non-convex and non-smooth, and to the knowledge of the

author it remains an open question if there exists a pair of non-isometric smooth and convex

domains with the same eigenvalues.
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2.1.1 Heat Trace Invariants

An elementary tool in the study of inverse spectral geometry is the heat trace. Before we

begin, we need a definition from the theory of distributions.

Definition 2.1. Let D(Ω) be the vector space of functions C∞0 (Ω) endowed with the following

notion of convergence: ϕm ∈ C∞0 (Ω) converges to ϕ ∈ C∞0 (Ω) if there exists a compact

subdomain B ⊆ Ω such that suppϕn ⊆ B and that ∂kϕm
∂xk

→ ∂kϕ
∂xk

uniformly on B for all

0 ≤ |k| < ∞. The space of distributions over Ω, D′(Ω), is the space of continuous linear

functionals over D(Ω).

Definition 2.2. Let λj be the eigenvalues of the Laplacian ∆Ω on the bounded domain

Ω ⊆ Rn with either Dirichlet or Neumann boundary conditions. The heat trace of ∆Ω is

the distribution Tr e−t∆Ω ∈ D′(R>0) given by

Tr e−t∆Ω :=
∞∑
j=0

e−tλj ,

where convergence of the above sum is understood in the space of distributions. Meaning, for

each ϕ(t) ∈ C∞0 (R>0),
∫∞

0

∑∞
j=0 e

−tλjϕ(t) dt = limN→∞
∫∞

0

∑N
j=0 e

−tλjϕ(t) dt.

Note that the heat trace distribution is well defined as a consequence of Weyl’s law (2.2).

For planar domains (n = 2) Kac reformulated the area spectral invariant of Weyl and the

perimeter spectral invariant of Pleijel in terms of small t asymptotic of the heat trace.

Theorem 2.1 ([Kac66]). For smooth planar domains, the heat trace admits the following

asymptotic expansion

Tr e−t∆Ω ∼ t−1

∞∑
j=0

ajt
j/2, t→ 0+,
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with first coefficients

a0 =
vol(Ω)

2π

a1 =
per(Ω)

4
√

2π
.

where vol(Ω) is the volume of the domain Ω, and per(Ω) is the length of ∂Ω.

We note here that the heat trace in dimensions n ≥ 2 admits the following expansion,

Tr e−t∆Ω ∼ t−n/2
∞∑
j=0

ajt
j/2, t→ 0+,

where again the first and second coefficients are proportional to the n-dimensional volume

of Ω, and the (n− 1)-dimensional volume of ∂Ω.

The most basic inverse spectral result for bounded plane domains is the spectral uniqueness

of balls.

Remark 2.1. Let Ω ⊆ Rn be a smooth, bounded plane domain. Then Spec(∆Ω) = Spec(∆B),

for some ball B ⊆ Rn if and only if Ω = B up to isometry. To see this, we use the

isoperimetric inequality:

per(Ω) ≥ n (vol(Ω))(n−1)/n ω1/n
n ,

where ωn is the volume of the unit ball, and vol(·), per(·) are the n and (n− 1)-dimensional

volume measures on the interior and boundary of Ω, respectively. Note that the above in-

equality is equality only when Ω is a ball. Using the first two heat trace invariants, we must

have that the perimeter and volume of Ω are equal to that of the ball B. But then equality

holds in the isoperimetric inequality for Ω, and thus Ω must be a ball, and hence isomorphic

to B.
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The above result is quite strong, it states that a specific geometry is spectrally unique

amongst the quite broad class of smooth functions. In fact, the result can be further

strengthened to the case of Lipschitz domains. Brown [Bro93] establishes asymptotic for-

mulas analogous to Theorem 2.1 for Lipschitz domains with boundaries of integer Hausdorff

dimension.

For over a half century there has not been a new result as strong as Remark 2.1, until in

2022 Hezari and Zelditch prove that nearly circular ellipses are spectrally unique amongst all

smooth bounded plane domains [HZ22], making no assumptions about analyticity, symmetry,

or closeness to the ellipse on the class of domains. Their result combines the theory of billiard

dynamics and microlocal analysis, in particular using an asymptotic expansion of the wave

trace Tr cos(t
√

∆Ω).

2.1.2 Wave Trace Invariants

One of the most fruitful techniques in the study of inverse spectral problems is the analysis

of singularity expansions of the wave trace Tr cos(t
√

∆Ω).

Definition 2.3. Let λj be the eigenvalues of the Laplacian ∆Ω on the smooth bounded domain

Ω ⊆ Rn. The wave trace of ∆Ω is the distribution Tr cos(t
√

∆Ω) ∈ D′(R>0) given by

Tr cos(t
√

∆Ω) :=
∞∑
j=0

cos(t
√
λj).

Guillemin and Melrose [GM79] show that the singular support of the wave trace is contained

in the closure of the length spectrum of Ω, denoted Lsp(Ω), which is the set of all lengths of

periodic billiard trajectories on Ω. Additionally, they provide a singularity expansion near

lengths of simple, non-degenerate periodic billiard trajectories T .
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Theorem 2.2 ([GM79]).

Tr cos(t
√

∆Ω)

= Re

[
iσT

T#√
| det(I − PT )|

(t− T + i0)−1

(
1 +

∞∑
j=1

aj(t− T )j log(t− T + i0)

)]
+ S(t)

(2.3)

where S is smooth near T , T# is the primitive length of T , and σT is the Maslov index

of γT (see [GM79]). Simple trajectories meaning there exists a single periodic trajectory of

this length, up to time reversal, and non-degenerate meaning the trajectory γT of length T

intersects the boundary transversally, and that PT , the linearized Poincaré map does not have

eigenvalue 1, where the Poincaré maps is the derivative of the first return map.

The singularity expansion (2.3) has been used primarily to study analytic domains, or

piecewise-analytic symmetric domains. This is due to the fact that the wave invariants aj

are polynomials in the Taylor coefficients centered at the points of reflection of the billiard

trajectory. Leveraging this , Zelditch [Zel09] proves that piecewise-analytic plane domains

possessing a Z2 symmetry, along with a few other conditions, are spectrally determined in

this class. Specifically, if Ω1,Ω2 satisfy

1. Ωi is simply connected, symmetric about the x-axis, and ∂Ωi is analytic on {y 6= 0}

2. There is a non-degenerate vertical bouncing ball orbit γ of length T such that both T

and 2T are simple lengths in the length spectrum

3. The endpoints of γ are not critical points of the curvature of ∂Ωi

then if Spec(Ω1) = Spec(Ω2), we must have Ω1 = Ω2, up to isometry. The proof recovers

the wave trace invariants from the common spectrum using the expansion (2.3) along the

bouncing ball orbit, and then determines the Taylor coefficients from the wave invariants.
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Most results of this type require strong assumptions on the domain under consideration, such

as analyticity, symmetry, convexity, etc. For example, for bounded analytic domains Ω ⊆ Rn

with ± reflection symmetries across all axes, with one axis height fixed, and some generic

non-degeneracy conditions, Hezari and Zelditch [HZ12] prove that domains of this type are

spectrally determined using similar techniques to that of [Zel09]. A natural question to ask

is if wave trace invariants can be used to solve the inverse spectral problem for smooth, but

not necessarily analytic domains. It turns out that one cannot use these invariants.

2.1.3 Wave Trace Invariant Limitations

Zelditch in [Zel04] asks the question, does there exist a pair of non-isometric smooth planar

domains with the same wave trace invariants? Fulling-Kuchment in [FK05] answer the

question in the affirmative. The non-isometric smooth planar domains Ω,Ω′ satisfying this

property are called Penrose-Lifshits mushrooms (Figure 2.1). Specifically, the associated

wave traces are equal modulo a smooth function, Tr(cos(t
√

∆Ω))−Tr(cos(t
√

∆Ω′)) ∈ C∞(R).

This means that the wave traces possess the same singular structure, hence, the same wave

trace invariants, rendering wave trace methods unable to distinguish these domains.

The Penrose-Lifshits mushrooms are constructed as follows, take an ellipse and flatten it

along its major axis. Smooth out the flattening at either end with perturbations A,B. To

obtain Ω, in between the foci of the ellipse, insert a perturbation C. To obtain Ω′, reflect C

about the midpoint of the foci to get C ′. That these two domains possess the same wave-

trace invariants follows from an analysis of the billiard trajectories. The idea behind this

result is that a billiard trajectory γ on the ellipse falls into one of three categories:

(1) γ crosses the x-axis between the two foci, in which case γ is periodically tangent to a

hyperbolic caustic
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Figure 2.1: Two non-isometric domains with the same wave trace invariants.

(2) γ crosses the x-axis outside of the two foci, and so γ is periodically tangent to a elliptic

caustic

(3) γ only crosses the x-axis through the foci.

With this characterization in mind, we see that if γ is a trajectory of type (1) in Ω, then

that exact same geodesic lies within Ω′, since γ does not pass between the foci. A similar

argument holds for trajectories of type (3). If γ is a trajectory of type (2) in Ω, then the

reflection about the vertical axis of γ is a geodesic of type (2) in Ω′, and vice versa. This

tells us that the points of reflection of the periodic geodesics of a given length of Ω and Ω′

have the same Taylor coefficients, and hence the same wave trace invariants.

2.2 Closed Manifolds

An analogous question can be asked for spaces more general than bounded domains in Rn.

Let M be a smooth closed manifold, which is a compact smooth manifold without boundary.

Moreover, equip M with a Riemannian metric g, which is a smooth symmetric covariant 2-
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tensor field that is positive definite in the sense of gp(v, v) ≥ 0 for each p ∈ M and each

v ∈ TpM , with equality if and only if v = 0. If M is expressed locally in coordinates (xi),

we may write the metric in the form g = gijdx
i ⊗ dxj, adopting the Einstein summation

convention. Alternatively, in local coordinates one may view the metric as a matrix

g(v, w) = vT (gij)w.

The metric g gives rise to notion of divergence, and hence a Laplacian on M .

Definition 2.4. Let (M, g) be a Riemannian Manifold with or without boundary, and let

(xi) be any smooth local coordinates on an open set U ⊆ M . The coordinate representation

of the Laplacian or Laplace-Beltrami operator is as follows

∆gu =
1√

det g

∂

∂xi

(
gij
√

det g
∂u

∂xj

)
,

where gij is the ijth component of the inverse of the component matrix g.

This leads us to the analogous inverse spectral problem

The Inverse Spectral Problem for Closed Manifolds

Let (M1, g1), (M2, g2) be two Riemannian manifolds. If Spec(∆g1) = Spec(∆g2),

is it necessarily the case that there exists an isometry between M1 and M2? An

isometry between Riemannian manifolds is a diffeomorphism F : M1 →M2 that

that preserves the metric, i.e. g1(v, w) = g2(F (v), F (w)).

It appears that the only spectral uniqueness results for closed manifolds are for surfaces

of revolution, and there are two known approaches to the problem. The first approach is

to separate variables in the eigenvalue equation of ∆g, and obtain eigenvalue equations of

a Schrödinger operator in terms of an arc length, and spherical harmonics in the rotation
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parameter. Then one asks if you can determine the metric from the joint spectrum. Bérard

[Bér76] and Gurarie [Gur95] show that the joint spectrum of a smooth surface of revolution

determines the metric. The second approach, taken by Zelditch [Zel98], is to consider analytic

surfaces of revolution (satisfying a non-degeneracy condition) and show that the singularity

expansion of the wave trace determines the quantum normal form of ∆g, which in turn

determines the metric.

2.2.1 Trace Invariant Limitations

The wave trace (2.3) singularity expansion of Guillemin and Melrose [GM79] was initially

explored in the setting of a closed manifold M (without boundary) first by Chazarain [Cha74]

and then Duistermatt and Guillemin [DG75], where they provide an explicit formula for

the leading order term. A more detailed analysis of the higher order terms appears in

the set of lecture notes by Zelditch [Zel99]. Common to these formulas is the simplifying

assumption that one expands the wave trace around simple lengths in the length spectrum,

that is lengths which correspond to a single geodesic. Expanding along lengths corresponding

to many distinct geodesics is a complicated, and virtually unexplored problem. However,

Zelditch [Zel98] studies these singularity expansions for surfaces of revolution of simple type,

which possess many one-parameter families of closed geodesics of a common length. Zelditch

studies analytic surfaces of revolution with a single closed equatorial geodesic. However, if

we remove the analyticity assumption, does Zelditch’s result still hold?

Conjecture 2.1. There exists a pair of smooth, non-isomorphic surfaces of revolution with

the same wave-trace invariants.

In chapter 4 we explore the above conjecture, by way of constructing surfaces of revolution

analogous to those of Fulling-Kuchment [FK05].
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2.3 Inverse Potential Problems

We now let the underlying domain be the entirety of Euclidean space, and consider the

semiclassical Schrödinger operator. Let us ask the analogous question, can one hear the shape

of the potential? Or from the perspective of quantum mechanics, do the energy levels of

the stationary states of a quantum system determine the potential? Since we are concerning

ourselves with the semiclassical Schrödinger operator, we often only make assumptions on

the small h asymptotic behavior of the spectrum.

Definition 2.5. Let j = 1, 2, and Hj be two semiclassical Schrödinger operators with spectra

Spec(Hj) = {Ej,0, Ej,1, Ej,2, . . . }, and let N = 1, 2, . . . ,∞. Their spectra agree up to order

o(hN), or Spec(H1) = Spec(H2) + o(hN), if there exists E > 0, such that for k = 0, 1, 2, . . .

lim
h→0+

E1,k − E2,k

hN
= 0,

uniformly for E·,k < E, in the case that N 6= ∞. In the case that N = ∞ the above limit

must hold uniformly for E·,k < E and for all N .

We also consider the following stronger asymptotic classification.

Definition 2.6. Let N = 1, 2, . . . ,∞. The spectra of the semiclassical Schrödinger operators

H1, H2 agree up to order O(hN), or Spec(H1) = Spec(H2) + O(hN), if there exists an

E > 0 such that for each k = 0, 1, 2, . . . we have a positive constant Ck satisfying

sup
{E·,k<E}

|E1,k − E2,k| ≤ Ckh
N , for all 0 < h,

in the case that N 6= ∞. In the case that N = ∞ the above inequality must hold for all N

with constants Ck,N

With these definitions in mind, we may phrase the corresponding inverse problem.
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The Inverse Spectral Problem for Semiclassical Schrödinger Operators

Let j = 1, 2, and let Vj ∈ C∞(Rn;R), with lim|x|→∞ Vj(x) =∞ define semiclassi-

cal Schrödinger operators Hj = −h2∆ + Vj(x). If Spec(H1) ∼ Spec(H2), must it

be the case that V1(x) = V2(x), up to isometry? The equivalence ∼ above may

be taken to be equivalence modulo o(hN) or O(hN), for some N = 1, . . . ,∞, or

equality.

Before discussing the above question, we briefly consider the analogous non-semiclassical

problem, that is, do the eigenvalues of the operator −∆ +V (x), with the above assumptions

on V , uniquely determine V ? McKean and Trubowitz [MT82] answered this question in

the negative, providing an infinite-dimensional family of smooth potentials isospectral to the

harmonic oscillator −∆ + x2.

Returning to the semiclassical problem, there have been several positive results for radially

symmetric potentials. These results are analogous to the spectral uniqueness of balls in

the class of bounded domains. Colin de Verdiére [CdV11] proves that a one-dimensional

semiclassical Schrödginer operator with smooth potential having a non-degenerate unique

local minimum (and root) at x = 0, satisfying a symmetry defect, is determined by its

spectrum up tor order o(h2) in an interval (−∞, E], for some E > 0, amongst all smooth

potentials. In particular, even potentials are determined by their spectral modulo o(h2).

Guillemin and Wang [GW12] explore this result and show in the case of dimension 2, radially

symmetric potentials are spectrally determined amongst all smooth potentials by their low-

lying eigenvalues, up to order o(h2). Datchev, Hezari, and Ventura [DHV11] prove spectral

uniqueness up to o(h2) of smooth radial potentials in dimension n ≥ 2, with a more general

result that if the potential is radially symmetric in a ball around the minimum, then the the

potential is spectrally determined within this ball.

There are no other known results that are as strong as the case for radially symmetric
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potentials; all other known results determine the potential only among a class of potentials

defined by an analyticity or symmetry requirement. Guillemin and Uribe [GU07] consider

potentials V in Rn with unique non-degenerate local minimum at 0 is symmetric with respect

to all coordinate axes, V −1([0, ε]) is compact for some ε > 0, and that the square root of all

2nd order Taylor coefficients are linearly independent over Q. They show that the Taylor

coefficients of potentials of this form are determined by their low-lying eigenvalues, and hence

if V is analytic, then the low lying eigenvalues determine V . Hezari [Hez09] replaces the

symmetry assumption with, in the case dimension n = 1, V ′′′(0) 6= 0, and for n ≥ 2 the

potential V (x) = f(x2
1, . . . , x

2
n) + x3

ng(x2
1, . . . , x

2
n) for some smooth f, g.

2.3.1 Semiclassical Trace Invariants

The proofs of [Hez09], [CdV11], [DHV11], and [GW12] rely on spectral invariants derived

from trace formulas analogous to (2.3). In particular, the wave invariants used in [Hez09]

are obtained by localizing the Schrödinger propagator to the low-lying eigenvalues by way

of a cutoff Θ(x) ∈ C∞0 (R) which is equal to 1 on a neighborhood of 0

Tr(Θ(P )e−
it
h
P ) =

∞∑
j=0

aj(t)h
j +O(h∞),

where P = −h2

2
∆ + V (x) is the semiclassical Schrödinger operator associated to V , and the

sum is understood in the sense of distributions. For appropriate potentials, Hezari provides

explicit formulas for the aj, and shows that the aj is a polynomial in the Taylor coefficients

of V at its minimum.

In [CdV11], [DHV11], and [GW12], the authors take advantage of different spectral invariants

arising from a different trace formula. Let f ∈ C∞0 ((−∞, E]), for some E > 0 guaranteeing

that V −1((−∞, E]) is compact. Then, letting H be the semiclassical Schrödinger operator

35



associated to V , we consider the asymptotic expansion

Tr f(H) =
∞∑
j=0

νj(f)hj +O(h∞).

In [DHV11], the authors take advantage of the first two invariants above, and in [GW12],

the authors provide an algorithm for computing the higher order terms.

Remark 2.2. If H,H ′ are semiclassical Schrödinger operators satisfying

Spec(H) = Spec(H ′) +O(h∞),

then they have the same semiclassical invariants. Indeed, let f ∈ C∞0 ((−∞, E]), for the

E > 0 guaranteeing O(h∞) agreement of spectra, then

|Tr f(H)− Tr f(H ′)| =

∣∣∣∣∣
Mh∑
j=0

f(Ej(h))− f(E ′j(h)))

∣∣∣∣∣ ,
where by Weyl’s law (Theorem 1.8) we have that 1

Mh
is a polynomial in h. Since f is

Lipschitz, we have

|Tr f(H)− Tr f(H ′)| ≤ C ·
Mh∑
j=0

∣∣Ej(h)− E ′j(h)
∣∣ .

Since Spec(H) = Spec(H ′) +O(h∞),

|Tr f(H)− Tr f(H ′)| ≤ CM ·Mhh
M ,

for any M . Finally, since 1
Mh

is a polynomial in h, for a sufficiently large choice of M we

have that Tr f(H) = Tr f(H ′)+O(h∞), and so H,H ′ have the same semiclassical invariants.

A similar argument holds for the invariants of [Hez09].
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Following the above remark, we note that arguments using the above trace invariants fail

to distinguish potentials if one is working within a class of potentials that contains pairs of

non-isomorphic potentials with spectra agreeing up to O(h∞). Guillemin and Hezari provide

a counterexample in the spirit of Fulling-Kuchment [FK05],

Theorem 2.3 ([GH12]). There exists a pair of smooth, non-analytic potentials V ±(x),

V (x) ≥ 0, such that the operators

H± = −h2 d
2

dx2
+ V ±(x)

satisfy Spec(H+) = Spec(H−) + O(h∞), yet their ground state eigenvalues differ for h > 0,

except for possibly a subsequence hk → 0+.

The potentials, V± are constructed by taking the harmonic oscillator potential x2 and adding

two bumps, then reflecting the outer most bump across the y-axis (Figure 2.2). Note that

the bumps in Figure 2.2 are highly exaggerated to provide visual intuition, we must make

the bumps small enough so as to not introduce any new local minima, and to maintain

monotonicity away from 0.

-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 -1 0 1 2 3 4

Figure 2.2: Two potential functions V ± whose corresponding semiclassical spectra agree up
to O(h∞), yet whose eigenvalues are distinct (V − left, V + right).

Guillemin and Hezari establish their result by way of analyzing the ground state eigenfunc-

tions of the associated non-semiclassical Schrödinger operator obtained by setting h = 1. By
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taking the perturbations to be small enough, they show by way of Hadamard’s variational

formula that ground state eigenvalues for h = 1 disagree. Then, by the Kato-Rellich theorem

([RS78], Theorem XII.8) the ground state eigenvalues are analytic functions of h > 0, and

so they can only agree possibly on a discrete set hk → 0. In Chapter 3, the author improves

Theorem 2.3 of Guillemin and Hezari with the follow result.

Theorem 2.4. There exist pairs of non-isometric potentials V ±(x) ∈ C∞(R) with V (x) ≥ 0

defining Schrödinger operators H± = −h2 d2

dx2 + V ±(x) whose semiclassical spectra agree

modulo O(h∞), yet their eigenvalues E±j differ for all h > 0, and j ∈ Z≥0. Moreover,

Dje
−
dj
h ≤ E−j − E+

j ≤ Cje
−
cj
h ,

for constants cj, dj, Cj, Dj > 0, holding for all 0 < h < hj with hj → 0.
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Chapter 3

Semiclassical Trace Invariant

Limitations

3.1 Exponential Estimates for Eigenfunctions

In this section we will restrict our attention to perturbations of the semiclassical harmonic

oscillator:

H = −h2 d
2

dx2
+ x2 + γ(x), γ ∈ C∞0 (R \ {0}),

where γ is chosen so that the potential V (x) = x2 + γ(x) has a unique global minimum

at 0 and is monotonic away from 0. Denote the semiclassical harmonic oscillator H0 =

−h2 d2

dx2 +x2. We will develop upper and lower locally uniform estimates for the ground states

of these operators, which we will ultimately transfer to eigenvalue bounds using Hadamard’s

variational formula. Theorem 2.4 will follow from a judicious choice of γ, analogous to the

domains shown in Figure 2.1.
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To begin we require the following characterization of the perturbed harmonic oscillator spec-

tra,

spec(H) = spec(H0) +O(h∞) = {h, 3h, 5h, 7h, . . . }+O(h∞).

Using the methods of quantom-birkhoff normal forms at the bottom of a potential well

established by Sjöstrand [Sjö92], or Borh-Sommerfeld quantization to all orders given by

Colin de Verdiere in Theorem 1.9, one can see that the above holds. Moreover, any two

perturbations of the harmonic oscillator have spectra which agree up to O(h∞). This fact is

underpinned by the observation that the level sets of the Hamiltonians corresponding to H±

enclose the same area, see Figure 3.1. Thus, all semiclassical action terms Sj from (1.9) are

the same, when considering eigenvalues in an interval (0, E] bounded away from the support

of the perturbation.

Figure 3.1: Level sets of the Hamiltonians corresponding to H± (H− left, H+ right).

Proposition 3.1. Let H = −h2 d2

dx2 + V (x) be a semiclassical Schrödinger operator with

real valued potential of the form V (x) = x2 + γ(x), for some γ ∈ C∞0 (R) supported away

from the origin. Let ψj(x) denote the L2 normalized eigenfunctions of H. Then, for any

δ, r, R ∈ (0,∞) with r < R, there exist constants Cj, Dj > 0 such that for all h > 0
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sufficiently small, the following estimates hold uniformly on r < |x| < R

(i) |ψj(x)| ≤ Cje
− 1
h

(1−δ)2
∣∣∣∫ x0 √V (x) dx

∣∣∣
(ii) |ψj(x)| ≥ Dje

− 1
h

(1+δ)2
∣∣∣∫ x0 √V (x) dx

∣∣∣

Remark 3.1. A similar proposition appears in the work of Simon [Sim84], with some impor-

tant differences. Simon studies the ground state eigenfunctions of the double well potential,

in contrast to this paper where we study the single well potential. Additionally, the above

result holds for each eigenfunction, whereas in the paper of Simon, the analogous result was

only established for the ground state.

Proof of Proposition 3.1.(i). Define ϕ̃(x) =
∣∣∣∫ x0 √V (t) dt

∣∣∣. Note that for each choice of

positive constants σ, r, R, δ there exists a smooth mollifier f which satisfies the following:

(1) on the annulus r < |x| < R, f ∗ ϕ̃ ≤ ϕ̃+ σ and f ∗ (ϕ̃′) ≤ ϕ̃′ + σ

(2) there exists positive constants a, k with a < r, such that for all |y| ≤ a and

r < |x| < R, we have δ(f ∗ ϕ̃)(x)− (f ∗ ϕ̃)(y) ≥ k > 0.

Let ε > 0 and define A = inf

{
(1− ε)

√
V (x)√

V (x)+σ
: r < |x| < R

}
. Finally, define ϕ = (Af) ∗ ϕ̃.

We may choose ε, σ sufficiently small so that

(1− δ)ϕ̃ ≤ (1− δ)(f ∗ ϕ̃) ≤ A(f ∗ ϕ̃),

and

A(f ∗ ϕ̃) ≤ A(ϕ̃+ σ) ≤ ϕ̃+ σ ≤ ϕ̃+ δϕ̃ = (1 + δ)ϕ̃.
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Thus,

(1− δ)ϕ̃ ≤ ϕ ≤ (1 + δ)ϕ̃. (3.1)

Also,

|ϕ′(x)| ≤ A(
√
V (x) + σ) ≤ (1− ε)

√
V (x). (3.2)

Without loss of generality we will smoothly re-define ϕ such that for |x| ≥ 2R, ϕ′(x) = 0.

Recall that Ej is the jth eigenvalue of H, and let ψ be any smooth function. We will now

introduce the key object which gives us the upper bound of Proposition 3.1.(i):

〈
e
ϕ
hψ, (H − Ej)e−

ϕ
hψ
〉

= 〈ψ, (V − Ej)ψ〉 −

〈
ψ,

(
h
d

dx
− ϕ′

)2

ψ

〉
.

By the fundamental theorem of calculus, and that ϕ′ is eventually 0, we have that

〈
ψ,

[(
h
d

dx

)
ϕ′ + ϕ′

(
h
d

dx

)]
ψ

〉
= 0.

So

〈
e
ϕ
hψ, (H − Ej)e−

ϕ
hψ
〉

=

〈
ψ,

[(
−h2 d

2

dx2
− (ϕ′)2

)
+ V − Ej

]
ψ

〉
.

By bound (3.2), and since − d2

dx2 is positive definite we arrive at the following bound:

〈
e
ϕ
hψ, (H − Ej)e−

ϕ
hψ
〉
≥ 〈ψ, [εV − Ej]ψ〉 .

Recall that the eigenvalue Ej = h(2j + 1) + O(h∞), so for all |x| > a/2 and h sufficiently

small, there exist a C > 0 satisfying εV (x)−Ej ≥ 1
C
> 0. Taking ψ supported in |x| > a/2,
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we get

||ψ||22 ≤ C
〈
e
ϕ
hψ, (H − Ej)e−

ϕ
hψ
〉
. (3.3)

Let ψ = e
ϕ
h ηψj, where η(x) = 0 if |x| < a

2
and η(x) = 1 if |x| > a, and is smooth. Using the

above bound,

∫
|x|>a

e
2ϕ
h ψ2

j dx ≤ C
〈
e

2ϕ
h ψj, (H − Ej)ηψj

〉
.

Using the eigenvalue equation, bounding the derivatives of η on a/2 < |x| < a, and using

monotonicity of ϕ on |x| > a/2, we get

∫
|x|>a

e
2ϕ
h ψ2

j dx ≤ h2Ce
2ϕ(a)
h

∫
a
2
<|x|<a

(Kψ′jψj +Dψ2
j ).

Applying Cauchy-Schwarz, using that Ej = h(2j+1)+O(h∞) and the eigenvalue equation to

see that for some constantKj, ||ψ′j|| =
Kj
h

+O(h∞), along with the fact that the eigenfunctions

are L2 normalized we have

∫
|x|>a

e
2ϕ
h ψ2

j dx ≤ Ce
2ϕ(a)
h (Kjh+ h2D).

Finally, for h sufficiently small, we get the following estimate:

∫
|x|>a

e
2ϕ
h ψ2

j dx ≤ e
2ϕ(a)
h C. (3.4)

We will now use bound (3.4) to achieve the desired pointwise bound on r < |x| < R by

using convexity of |ψj| in the forbidden region |x| >
√
h(2j + 1) +O(h∞). Without loss of

generality assume that r < x < R, then for all b satisfying 0 < b < r − a and h sufficiently

43



small we have

ψ2
j (x) ≤ 1

2b

∫ x+b

x−b
e−2ϕ

h e2ϕ
hψ2

j dt.

By the monotonicity of ϕ in |x| > a and applying bound (3.4) we get

ψ2
j (x) ≤ 1

2b
e−2

ϕ(x−b)
h e

2ϕ(a)
h C.

Let M = maxa<|x|<R ϕ
′(x). Then using −ϕ(x− b) ≤ −ϕ(x) + bM we get

ψ2
j (x) ≤ C

2b
e−2

ϕ(x)
h e2 bM

h e
2ϕ(a)
h .

By our choice of a which guarantees δϕ(x)− ϕ(a) ≥ k > 0, we get

ψ2
j (x) ≤ C

2b
e−2(1−δ)ϕ(x)

h e2 bM−k
h .

Taking b < k/M and using bound (3.1) establishes the upper bound of Proposition 3.1:

|ψj(x)| ≤ Ce−(1−δ)2 ϕ̃(x)
h .

Take note that the above lemma only holds for those h satisfying 0 < h < hj = E−1
j (εV

(
a
2

)
),

otherwise the estimate (3.3) would not hold. Now, the proof of Proposition 3.1.(ii) is more

difficult. We will first need to establish a lower bound for ψj on the boundary of the allowed

region {−
√
Ej,
√
Ej}. To achieve this we need a fact about the L2(R) convergence of

rescaled eigenfunctions of H.

Lemma 3.1. Let H̃ = − d2

dx2 + x2 + h−1γ(
√
hx) be the rescaled perturbed semiclassical har-

monic oscillator, and ψ̃j(x) be the eigenfunctions of H̃. Let H̃0 = − d2

dx2 +x2 be the harmonic
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oscillator, and let κ̃j denote its eigenfunctions. Then ψ̃j(x)→ κ̃j(x) in L2(R) as h→ 0.

Proof. Define (Uφ)(x) := h−
1
2φ(h−

1
2x), and notice that H̃ = h−1U−1HU (and H̃0 = h−1U−1H0U).

Let Ẽj denote the eigenvalues of H̃. The rescaling operator U gives us a relationship between

the eigenfunctions and eigenvalues of H̃ and H:

Ej = hẼj, ψj = Uψ̃j.

From this, and the fact that spec(H) = {h, 3h, 5h, . . . }+O(h∞), we get that

spec(H̃) = {1, 3, 5, . . . }+O(h∞).

Note by a similar rescaling, we get that spec(H̃0) = {1, 3, 5, 7, . . . }.

We define the projections PH̃ and PH0 as follows:

PH̃ =
1

2πi

∮
∂D(Ẽj ,ε)

(z − H̃)−1 dz, PH0 =
1

2πi

∮
∂D(2j+1,ε)

(z −H0)−1 dz,

where D(z, ε) is the disc centered at z of radius ε, sufficiently small so as to contain a single

Ej. Note that these projections are rank one, onto the subspaces spanned by ψ̃j and κ̃j

respectively, see [BS12]. Now, for all ε > 0 and h > 0 sufficiently small, we have that

|Ẽj−1 − (2j − 1)| < ε, |Ẽj − (2j + 1)| < ε, and |Ẽj+1 − (2j + 3)| < ε so we may write the

difference of the projections under the same integrand:

PH̃0
− PH̃ =

1

2πi

∮
∂D(2j+1,ε)

(z − H̃0)−1(H̃0 − H̃)(z − H̃)−1 dz.
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Now, applying this difference to the eigenfunction ψ̃j yields:

∣∣∣∣∣∣(PH̃0
− PH̃)ψ̃j

∣∣∣∣∣∣
2
≤ 1

2π

∣∣∣∣∣∣∣∣∮
∂D(2j+1,ε)

(z − Ẽ1(h))−1(z −H0)−1 dz

∣∣∣∣∣∣∣∣
op

∣∣∣∣∣∣(h−1γ(
√
hx))ψ̃j

∣∣∣∣∣∣
2
.

Bounding by the distance to the spectrum along the contour, and that γ ∈ C∞0 (R \ {0}), we

get

∣∣∣∣∣∣(PH̃0
− PH̃)ψ̃j

∣∣∣∣∣∣
2
≤ C

∣∣∣∣∣∣h−1ψ̃j

∣∣∣∣∣∣
L2(supp(γ(

√
hx)))

.

One can see that limh→0

∣∣∣∣∣∣h−1ψ̃j

∣∣∣∣∣∣
L2(supp(γ(

√
hx)))

= 0 by Proposition 3.1.(i), and that

lim
h→0

inf supp(γ(
√
hx)) =∞.

Some algebra yields the desired results:

1− 〈ψ̃j, κ̃j〉2 =
∣∣∣∣∣∣(PH̃0

− PH̃)ψ̃j

∣∣∣∣∣∣2
2
,

so limh→0〈ψ̃j, κ̃j〉 = 1. Finally

∣∣∣∣∣∣ψ̃j − κ̃j∣∣∣∣∣∣2
2

= 2(1− 〈ψ̃j, κ̃j〉),

which tends to 0 in the limit as h→ 0.

The above lemma tells us that in the semiclassical limit, the L2 mass of the perturbed

eigenfunctions are distributed in the same way as the non-perturbed eigenfunctions. In fact,

a stronger result holds, the perturbed eigenfunctions converge locally uniformly to the non-

perturbed eigenfunctions. This is proven along the way to establishing lemma 3.3. However,

before we can prove the lemma, we require a bound on the roots of κ̃j, which, in turn requires

a theorem of Gershgorin.
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Theorem 3.1 ([BB11], §9.1). Let A be an n × n matrix and Ri denote the circle in the

complex plane with center aii, and radius
∑n

j=1,j 6=i |aij|. The eigenvalues of A are contained

within the union of these circles. Moreover, the union of any k of the circles that do not

intersect the remaining (n− k) contains precisely k (counting multiplicities) of the eigenval-

ues.

Lemma 3.2. For each j ∈ Z≥0, max{|r| : κ̃j(r) = 0} ≤
√

2j − 2.

Proof. Let A∗ := (x − d
dx

) and A := (x + d
dx

) be the creation and annihilation operators

associated to H̃0, satisfying AA∗ − Id = A∗A+ Id = H̃0. We first aim to show that

κ̃j =
1√
2jj!

A∗jκ̃0, κ̃0 = π−
1
4 e−

x2

2 .

First, we have that [A,A∗] = 2Id. Note that [A,A∗j] = 2kA∗j−1, which holds for the base

case j = 1. Suppose this commutator identity holds for j, then

[A,A∗j+1] = [A,A∗j]A∗ + 2A∗j = 2(j + 1)A∗j,

Satisfying the inductive hypothesis. Now, we have the following two relationships between

the creation and annihilation operators, and the eigenfunctions of the harmonic oscillator:

A∗κ̃j =
√

2(j + 1)κ̃j+1, Aκ̃j =
√

2jκ̃j−1.

The first equation above is an immediate consequence of the commutator identity above.

The second, follows from the fact that Aκ̃0 = 0, and that

Aκ̃j =
1√
2jj!

([A,A∗j] + A∗jA)κ̃0 =
2j√
2jj!

A∗j−1κ̃0

Hence, H̃0κ̃j = (A∗A + Id)κ̃j = (2j + 1)κ̃j, that is, κ̃j satisfies the eigenvalue equation
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H̃0κ̃j = (2j + 1)κ̃j. By Theorem 1.6, we have that the κ̃j are a complete, orthonormal

sequence of eigenvectors.

More explicitly,

κ̃j(x) =
1√

2jj!
√
π
Pj(x)e−

x2

2 ,

where Pj(x) are the physicist’s Hermite polynomials, which are defined by the recurrence

relation Pj+1(x) = 2xPj(x)− d
dx
Pj(x), P0(x) = 1. Indeed, from the form of κ̃j,

Pj+1(x)e−
x2

2 = A∗j+1e−
x2

2 = A∗Pj(x)e−
x2

2 =

(
2xPj(x)− d

dx
Pj(x)

)
e−

x2

2 .

By induction, we show that d
dx
Pj(x) = 2jPj−1(x), and so we have the modified recurrence

relation

Pj+1(x) = 2xPj(x)− 2jPj−1(x). (3.5)

Indeed, the base case holds by computation, and the inductive step is as follows

d

dx
Pj+1 =

d

dx
(2xPj(x)− d

dx
Pj(x)) =

d

dx
(2xPj(x)− 2jPj−1(x)).

Taking derivatives and using the inductive hypothesis we arrive at

d

dx
Pj+1 = 2Pj(x) + 2j

(
2xPj−1 −

d

dx
Pj−1

)
= 2Pj(x) + 2jPj(x) = 2(j + 1)Pj(x)
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Define the tridiagonal symmetric matrices

Cj =



0
√

1
2

0 0 0 · · · 0 0√
1
2

0
√

2
2

0 0 · · · 0 0

0
√

2
2

0
√

3
2

0 · · · 0 0

...
. . .

...
...

0 0 0 0 0 · · · 0
√

j−1
2

0 0 0 0 0 · · ·
√

j−1
2

0


.

We claim that Pj(x) = 2jdet(xI −Cj). To see this, we show that the expression satisfies the

recurrence relation (3.5). Expanding along the the bottom row of (xI − Cj), we get

Pj(x) = 2jx det(xI − Cj−1) + 2j
√
j − 1

2
detAj,j−1,

where Aj,j−1 is the (j, j − 1)th cofactor of det(xI − Cj). Expanding along the rightmost

column of Aj,j−1, we get

Pj(x) = 2jx det(xI − Cj−1)− 2j
j − 1

2
det(xI − Cj−2).

Finally, recognize that this satisfies the recurrence relation (3.5):

Pj(x) = 2x ·
(
2j−1 det(xI − Cj−1)

)
− 2(j − 1)

(
2j−2 det(xI − Cj−2)

)
.

Thus the roots of Pj(x) are exactly the eigenvalues of Cj. Applying Theorem 3.1 we may

bound the eigenvalues of Cj, hence the roots of Pj which are exactly the roots of κ̃j:

max{|r| : κ̃j(r) = 0} ≤
√
j − 2

2
+

√
j − 1

2
≤
√

2j − 2.
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Lemma 3.3. For all h sufficiently small, |ψj(±
√
Ej)| ≥ Dj√

h
≥ 1.

Proof. We will first get the bound on the rescaled eigenfunction ψ̃j, then transfer this bound

to ψj. Let θ = ψ̃j − κ̃j. Lemma 3.1 establishes that θ → 0 in L2(R). Now, let I ⊆ R be any

bounded interval. Then θ′′ → 0 in L2(I), since

||θ′′||L2(I) ≤
∣∣∣∣∣∣h−1γ(

√
hx)ψ̃j(x)

∣∣∣∣∣∣
L2(R)

+
∣∣∣∣∣∣x2(ψ̃j(x)− κ̃j(x))

∣∣∣∣∣∣
L2(I)

+
∣∣∣∣∣∣Ẽjψ̃j(x)− (2j − 1)κ̃j(x)

∣∣∣∣∣∣
L2(R)

,

where the first term vanishes by Proposition 3.1.(i) and that limh→0 inf supp(γ(
√
hx)) =∞,

the second term vanishes due to Lemma 3.1, and the third term vanishes due to lemma 3.1

and since limh→0 Ẽj = 2j − 1.

Let η ∈ C∞0 (R) and consider the following identity: η(θ′)2 +ηθθ′′− 1
2
θ2η′′ = d

dx
(ηθθ′− 1

2
θ2η′).

Integrating yields

∫
η(θ′)2 dx =

1

2

∫
η′′θ2 dx−

∫
ηθθ′′ dx,

which tends to 0 as h → 0 since θ, θ′′ → 0 in L2(I), thus θ′ → 0 in L2(I). Now let

x ∈ [b, c] = I . Then, for each a < b, by the fundamental theorem of calculus

|θ(x)− θ(a)| ≤
√
x− a||θ′||L2([a,c]).

By a 2-ε argument, since lima→−∞ θ(a) = 0 and that limh→0 ||θ′||L2([a,c]) = 0 we must have

that limh→0 ||θ(x)||L∞(I) = 0, or equivalently ψ̃j → κ̃j in L∞(I).

Now, we pass to the unscaled semiclassical operator. Working in the allowed region C =
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[
−
√
Ej,
√
Ej
]
:

∣∣∣∣∣∣ψj(x)− h−
1
2 κ̃j(h

− 1
2x)
∣∣∣∣∣∣
L∞(C)

= h−
1
2

∣∣∣∣∣∣ψ̃j(x)− κ̃j(x)
∣∣∣∣∣∣
L∞

([
−
√
Ẽj ,
√
Ẽj

]) .

Multiplying the above equation by
√
h, and recalling that

√
Ẽj =

√
2j + 1 +O(h∞) yields

lim
h→0

∣∣∣∣∣∣√hψj(x)− κ̃j(h−
1
2x)
∣∣∣∣∣∣
L∞(C)

= 0.

Lemma 3.2 establishes that |κ̃j(±
√

2j + 1)| > 0, and since
√
Ej =

√
h(2j + 1) +O(h∞) for

all h sufficiently small there is a constant Dj > 0 satisfying,

|κ̃j(±h−
1
2

√
Ej)| ≥ Dj.

Thus by the above limit, for sufficiently small h, |ψj(±
√
Ej)| ≥ Dj√

h
.

The final lemma that we require gives us a way to transfer the lower bound of Lemma 3.3

outward from the boundary of the allowed region [−
√
Ej,
√
Ej].

Lemma 3.4. Consider the interval I = [x1, x2(1+ε)] with
√
Ej ≤ x1. Let v = supt∈I

√
V (t).

Then

|ψj(x2)| ≥ e−
v
h

(x2−x1)
(
1− e−2ε v

h
x2
)
|ψj(x1)|.

Proof. Define φ(x) =
(
e−

v
h

(x−x1) − e−2 v
h

(x2(1+ε)−x1)e
v
h

(x−x1)
)
|ψj(x1)|. Notice that φ(x2(1 +

ε)) = 0, and

φ(x1) = (1− e−2 v
h

(x2(1+ε)−x1))|ψj(x1)| ≤ |ψj(x1)|.
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Thus, on ∂I, φ ≤ |ψj|. We claim that on the interior of I, φ ≤ |ψj|. Let η = |ψj| − φ and

define I0 = {x : η(x) < 0} ⊆ I. Now, since η ≥ 0 on ∂I, η = 0 on ∂I0. Let W (x) = V (x)−Ej

and note by choice of lower bound on I we have that W ≥ 0 on I. Then on I0:

d2

dx2
η = Wη −

((v
h

)2

−W
)
φ,

which is less than zero for all h sufficiently small. Thus, η is concave on I0, and so it attains

is minimum on ∂I0. So η ≥ 0 on I0, and I0 is empty, i.e. φ ≤ |ψj| on I. With this, evaluating

φ at x2 yields |ψj(x2)| ≥ e−
v
h

(x2−x1)(1− e−2ε v
h
x2)|ψj(x1)|.

Finally, we are able to prove Proposition 3.1.(ii), which will involve propagating the bound

from Lemma 3.3, using Lemma 3.4.

Proof of Proposition 3.1.(ii). Let
√
Ej < |x| < R, and without loss of generality, assume x

is positive. Let 0 = x0 < x1 =
√
Ej < x2 < · · · < xn = x be a partition of [0, x] such that

the upper Darboux sum of
∫ x

0

√
V (x) dx satisfies

n∑
i=1

sup
t∈[xi−1,xi]

√
V (t)|xi − xi−1| ≤

(
1 +

δ

2

)∫ x

0

√
V (t) dt.

for some δ > 0. Let ε > 0 be small enough such that if we define Di = [xi−1, xi(1 + ε))], and

vi = supt∈Di
√
V (t), we get

n∑
i=1

vi|xi − xi−1| ≤ (1 + δ)

∫ x

0

√
V (t) dt. (3.6)

Next, applying Lemma 3.4 iteratively on this partition, we get that

|ψj(x)| ≥ e−
∑n
i=2

vi
h

(xi−xi−1)

n∏
i=2

(
1− e−2ε

vi
h
xi
)
|ψj(x1)|.

Lemma 3.3 guarantees (for h > 0 sufficiently small), |ψj(x1)| = |ψj(
√
Ej)| ≥ 1, so we recover
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the full sum

|ψj(x)| ≥ e−
∑n
i=1

vi
h

(xi−xi−1)

n∏
i=1

(
1− e−2ε

vi
h
xi
)
.

Since vi = O(1) for i 6= 1, and v1 = O(
√
h), for all h sufficiently small, we estimate∏n

i=1

(
1− e−2ε

vi
h
xi

)
≥ 2−n. Using this along with bound (3.6), we get the final desired

bound:

|ψj(x)| ≥ De−(1+δ)2 1
h |
∫ x
0

√
V dt|.

To get uniformity in r < |x| < R, extend the partition.

3.2 Proof of the Main Result

To prove Theorem 2.4 we will construct the desired potential functions V ±. Let α, β ∈

C∞0 (R) with supp(α) ⊆ (1, 2) and supp(β) ⊆ (3, 4) and set V ±(x) = x2 + α(x) + β(±x).

To recover the sub O(h∞) differences between the eigenvalues of the associated operators

H± = −h2 d2

dx2 + x2 +α(x) + β(±x), we will apply a variation in β(±x). Define the following

family of operators

H±t = −h2 d
2

dx2
+ x2 + α(x) + tβ(±x),

and notice that H±1 = H±. Denote the corresponding eigenfunctions and eigenvalues

ψ±j (t, x), E±j (t).

Proof of Theorem 2.4. The following equation, known as Hadamard’s variational formula,
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will be useful

d

dt
E±j (t) =

∫
β(±x)(ψ±j (t, x))2 dx.

The proof of this formula for the one dimensional case is elementary, see [GH12]. Now, with

Hadamard’s variational formula and the fundamental theorem of calculus, we have

E±j (t)− E±j (0) =

∫ t

0

∫
β(±x)(ψ±j (s, x))2 dx ds.

Using Proposition 3.1 and the above equation, and that E±j (1) = E±j gives us the following

bounds:

E±j − E±j (0) ≥
∫ 1

0

∫
β(±x)De

− (1+δ)2

h

∣∣∣∫ x0 √a2+α(a)+sβ(±a) da
∣∣∣
dx ds (3.7)

E±j − E±j (0) ≤
∫ 1

0

∫
β(±x)Ce

− (1−δ)2
h

∣∣∣∫ x0 √a2+α(a)+sβ(±a) da
∣∣∣
dx ds (3.8)

Notice that the minus version of lower bound (3.7) avoids integrating in the exponent through

the support of α. This allows us to express the difference of the minus version of (3.7) with

the plus version of (3.8) as

E−j − E+
j ≥

∫ 1

0

∫
β(x)

(
De−

(1+δ)2

h

∫ x
0

√
a2+sβ(a) da − Ce−

(1−δ)2
h

∫ x
0

√
a2+α(a)+sβ(a) da

)
dxds

Factoring, recalling that β is supported in (3, 4), and recognizing that the integrals in the

exponent are monotonic in x gives

E−j − E+
j

≥
∫ 1

0

e−
(1+δ)2

h

∫ 4
0

√
a2+sβ(a) da

∫
β(x)

(
D − Ce−

1
h

∫ x
0 (1−δ)2

√
a2+α(a)+sβ(a)−(1+δ)2

√
a2+sβ(a) da

)
dxds.

54



The bounds of Proposition 3.1 hold for any choice of δ, so we may take δ small enough to

satisfy for each x ∈ (3, 4)

∫ x

0

(1− δ)2
√
a2 + α(a) + sβ(a)− (1 + δ)2

√
a2 + sβ(a) da > 0.

With this choice of delta, and again using monotonicity of the integral in the exponent, we

have

E−j − E+
j ≥ e−

(1+δ)2

h

∫ 4
0

√
a2+β(a) da

(
D − Ce−

1
h

∫ 3
0 (1−δ)2

√
a2+α(a)−(1+δ)2

√
a2 da

)∫
β(x) dx.

For all h sufficiently small, this then reduces to the inequality E−j − E+
j ≥ De

−d
h , for some

positive constants c, C > 0. To prove the upper bound E−j −E+
j ≤ Ce

−c
h , a similar argument

is used where we instead take the difference of the minus version of (3.8) with the positive

version of (3.7).
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Chapter 4

Compact Manifold Trace Invariant

Limitations

We ask the same question of compact manifiolds: do there exist non-isometric compact man-

ifolds with the same wave-trace invariants? Inspired by the results of Fulling and Kuchment

[FK05], we study radially perturbed surfaces of revolution. In this chapter we first collect

some useful classical geometric facts about surfaces of revolution, and use these to prove that

there exists two radially perturbed surfaces of revolution with the same length spectrum.

However, it remains an open question to whether or not these surfaces of revolution possess

the same Laplace spectrum, or even the same wave-trace invariants. In the last section of

this chapter we detail the process of reducing the study of the Laplace spectrum on sur-

faces of revolution to the study of the spectrum of an associated 1-dimensional semiclassical

Schrödinger operator. It was initially thought that the estimates from Theorem 2.4 could

be applied to show that certain surfaces of revolution have the same wave-trace invariants,

however such an argument has been found to fail due to limitations on the semiclassical

parameter for large eigenvalues. We conclude the chapter with this discussion.
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4.1 Surfaces of Revolution

Let σ : (0, π) → R+ × R be a curve with parametric equations σ(s) = (f(s), h(s)), sat-

isfying f(0) = f(π) = 0 and that f ′(t) > 0 on (0, π/2), f ′(π/2) = 0, and f ′(t) < 0 on

(π/2, π). For example, see Figure 4.1. The surface of revolution, symmetric about the z-

axis, generated by this curve, is given by the parameterization X : [0, 2π] × [0, π] → R3,

X(u, v) = (f(v) cosu, f(v) sinu, h(v)).

Figure 4.1: A curve which generates a surface of revolution, satisfying desired constraints.

Let g be the pullback the euclidean metric g through X (cf. [Lee18], §2):

g = X∗g = f 2 du2 + |σ′|2 dv2.

Definition 4.1. Let X be the parameterization defined by the generating curve σ, and let S

be the image of X. We call (S, g) the surface of revolution generated by σ.

Definition 4.2. A curve of constant v coordinate is called a parallel, and curves of constant

u coordinates are called meridians.
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In the context of terrestrial navigation, meridians are referred to as longitudinal lines, and

parallels, latitudinal lines.

Specified in the coordinates u, v, given by the parameterization X, we recover two geodesic

equations (cf. [DCFF92], §3) for the geodesic γ(t) = (u(t), v(t))

d2u

dt2
+

2ff ′

f 2

du

dt

dv

dt
= 0 (4.1)

d2v

dt2
− ff ′

|σ′|2

(
du

dt

)2

+
f ′f ′′ + h′h′′

|σ′|2

(
dv

dt

)2

= 0 (4.2)

We now state and provide proofs of two requisite lemmas that appear as exercises in

([DCFF92], §3).

Lemma 4.1. Geodesics on the surface of revolution (X, g) are of constant speed.

Proof. Consider the time derivative of the speed of the geodesic γ(t) = (u(t), v(t)),

d

dt
||(u′(t), v′(t))||g = 2ff ′

dv

dt

(
du

dt

)2

+f 22
du

dt

d2u

dt2
+ 2(ff ′+hh′)

dv

dt

(
dv

dt

)2

+ |σ′|22
dv

dt

d2v

dt2

Factoring and using (4.1) gives

d

dt
||(u′(t), v′(t))||g = 2

dv

dt
|σ′|2

(
d2

dt2
− ff ′

|σ′|2

(
du

dt

)2

+
ff ′ + hh′

|σ′|2

(
dv

dt

)2
)
.

To finish the proof, we recognize that the parenthetical expression is the left hand side of

(4.2) .

Lemma 4.2. To each geodesic we assign a constant of motion C, satisfying

f(v(t)) cos θ(t) = C, (4.3)

where θ(t) is the oriented angle made with γ′ and the parallel of radius f(v(t)). Equation
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(4.3) is known as Clairaut’s relation.

Proof. Multiplying both sides of equation (4.1) by f 2, and integrating yields

f 2du

dt
=

∫
d

dt

(
f 2(v(t))

du

dt

)
dt = C. (4.4)

Without loss of generality, by Lemma 4.1 we may assume that γ is of unit speed. Interpreting

equation (4.4) using the metric g, we have

1 · f · cos θ(t) = ||γ′||g · ||(1, 0)||g · cos θ = 〈γ′(t), (1, 0)〉g = f 2du

dt
= C (4.5)

where θ(t) is the angle made with γ′(t) and the parallel of radius f(v(t)). The above equation

is indeed Clairaut’s relation.

In the hemi-spheroidal polar coordinates, Clairaut’s relation can be used to reduce the

geodesic equations to quadrature, see [GS79]. In our coordinates, we arrive at a similar

result.

Proposition 4.1. Let γ(t0) = (u0, v0) and γ(t1) = (u1, v1) be points on the geodesic γ so

that on [t0, t1], dv
dt

does not change sign. Then, for t ∈ [t0, t1],

u(t) = u0 +

∫ t

t0

C|σ′(v(s))|
f(v(s))

√
f 2(v(s))− C2

dv

ds
ds if

dv

dt
≥ 0

u(t) = u0 −
∫ t

t0

C|σ′(v(s))|
f(v(s))

√
f 2(v(s))− C2

dv

ds
ds if

dv

dt
≤ 0,

where C is the constant of motion given by Clairaut’s relation. Moreover, since v(t) is
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monotonic on [t0, t1], we may eliminate the parameter

u(v) = u0 +

∫ v

v0

C|σ′(v)|
f(v)

√
f 2(v)− C2

dv if
dv

dt
≥ 0 (4.6)

u(v) = u0 −
∫ v

v0

C|σ′(v)|
f(v)

√
f 2(v)− C2

ds if
dv

dt
≤ 0. (4.7)

Proof. Without loss of generality, by Lemma 4.1 we may assume that γ is of unit speed.

Then, from the metric

1 = ||γ||g = f 2

(
du

dt

)2

+ |σ′|2
(
dv

dt

)2

Using equation (4.4), we have

1 =
C2

f 2
+ |σ′|2

(
dv

dt

)2

With some algebraic manipulation, taking square roots, and again applying equation (4.4),

we have

du

dt
=

∣∣∣∣dvdt
∣∣∣∣C |σ′|

f
√
f 2 − C2

Integrating, and performing a change of variables, yields the desired expressions.

4.2 A Pair of Rotationally Symmetric Perturbations

Let (S±, g±) be radially perturbed unit spheres, given by the generating curves

σ+(v) =

(
sin(v)(1 + α(v) + β(v)), cos(v)(1 + α(v) + β(v))

)
σ−(v) =

(
sin(v)(1 + α(v) + β(π − v)), cos(v)(1 + α(v) + β(π − v))

)
,

(4.8)
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where α ∈ C∞0 ([π/4, 3π/8]) and β ∈ C∞0 ([0, π/8]), (see Figure 4.2).

Figure 4.2: A pair of rotationally symmetric smooth perturbations of the sphere
(S+ left, S− right).

Lemma 4.3. Let γ be a geodesic on either S±. Then γ intersects the equator X([0, 2π], π/2),

and the oriented angle of intersection uniquely determines the constant of motion C, and

uniquely determines γ up to rotations in the u coordinate.

Proof. We will prove the case for S+, the case for S− will follow similarly. Let γ(t) = u(t), v(t)

be specified in u, v coordinates. First, we establish that the geodesic must intersect the

equator. To do so, we analyze the critical values of the v coordinate of γ. Let dv
dt

= 0,

assume we are working with a unit speed geodesic, and using the metric equations we have

1 = f 2(v(t))

(
du

dt

)2

.

Equation (4.5) allows us to refine the above equation

f(v(t)) = C.

Finally, in terms of our explicit surface of revolution

sin(v)(1 + α(v) + β(±v)) = C.
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Taking α, β sufficiently small, we have that sin(v)(1 + α(v) + β(±v)) is strictly increasing

for 0 ≤ v < π/2, and monotonically decreasing for π/2 < v ≤ π. Hence, v(t) has one

critical value for v ∈ (0, π/2) and one critical value for v ∈ (π/2, π), or the critical value π/2,

trivially, in the case that γ parameterizes the equator (C = 0). Thus, since S± is of positive

Gaussian curvature, we must have that v(t) oscillates between these two critical values, and

hence γ intersects the equator.

Now, let φ be the angle of intersection of γ with the equator. Note, that by Clairaut’s relation

(4.3), we have that the constant of motion C = arcsinφ. Moreover, any other geodesic that

intersects the equator at this angle is locally a portion of a great circle, that when rotated,

coincides with the given geodesic. Uniqueness follows from uniqueness of solutions to the

geodesic equations.

4.2.1 Coincidence of Length Spectra

In this section we prove that the length spectra of S± coincide. The proof hinges on a

fact of surface of revolution with rotationally symmetric perturbations: passing through

such a perturbation, when compared to the unperturbed surface, amounts to a rotation

in the azimuth direction. This was observed in [GS79], where they establish this fact of

perturbations for a different class of surfaces of revolution.

Proposition 4.2. The length spectrum of S+ and S− coincide.

Proof. Let γ±(t) = (u±(t), v±(t)) be unit speed, closed geodesics on S±, with common

equatorial angle. Assume without loss of generality γ± is oriented upwards, that is γ±(0)

lies on the equator, and dv±
dt

(0) < 0. Note, the geodesic equations for S± agree for all

v ∈ [0, π] \ (supp(β(·)) ∪ supp(β(π − ·)) = [π/8, 7π/8], so if the geodesics do not encounter

the perturbation β, γ± coincide.
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From here on out, we assume that the critical values of v±(t) lie above/below the perturbation

β. The case that the critical values of v±(t) lie within the perturbation β follows similarly,

and the case that the critical values lie below β is trivial. Note, that between perturbations,

the geodesics lie on the surface of a sphere, and hence are locally segments of great circles.

Clairaut’s relation says that necessarily, between perturbations, the great circle segments

make the same angle with the equator. Thus, passing through a perturbation results in a

rotation in the azimuth angle u. Quantitatively, from equations (4.6) and (4.7), the difference

in rotation after γ+ passes through β twice is given by

δ1 = 2

∫ π
8

0

C|σ′+(s)|
f+(s)

√
f 2

+(s)− C
−

C|σ′−(s)|
f−(s)

√
f 2
−(s)− C

ds.

After γ+ passes through β, γ± both pass through α and receive a common rotation uα.

Finally, γ− encounters β(π−·), and after γ− exits this perturbation, the difference in rotation

is

δ2 = 2

∫ π

7π
8

C|σ′+(s)|
f+(s)

√
f 2

+(s)− C
−

C|σ′−(s)|
f−(s)

√
f 2
−(s)− C

ds.

Performing the change of variables s 7→ π − s, we have

δ2 = −2

∫ 0

π
8

C|σ′−(s)|
f−(s)

√
f 2
−(s)− C

−
C|σ′+(s)|

f+(s)
√
f 2

+(s)− C
ds.

So δ1+δ2 = 0, thus after both γ+, γ− travel through β(·), β(π − ·) (respt.), their u coordinates

coincide, and hence both travel along the same great circle, returning to the equator. This

process happens finitely many times until the geodesics return to their initial value.

The geodesics γ± consist of a sequence of great circles, segments traveling through α, and

segments traveling through β(·), β(π − ·). In total, by rotational symmetry of the surface, γ±

will travel along a great circle of common angle, for the same amount of arc length, through

α, β at the same angle (and hence contribute to the same amount of arc length).
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4.3 Separating the Laplacian on a Surface of Revolu-

tion

In this section we discuss how, through separation of variables, one can separate the Laplacian

(Laplace-Beltrami operator) on our surfaces of revolution (S±, g±), and reduce the eigenvalue

analysis to a problem of semiclassical analysis. It was thought that one could use this

technique, along with the estimates of Theorem 2.4 to show that (S±, g±) have the same

wave trace invariants, which was unfortunately incorrect.

We begin with finding the expression of the Laplacian in the elevation/azimuth coordinates.

Expressed in coordinates ∂
∂xi

, the Laplacian is defined as

∆gφ =
1√

det g

∂

∂xi

(
gij
√

det g
∂φ

∂xj

)
,

using Einstein summation notation. In what follows, we drop the ± subscripts for ease of

notation. Now, In azimuth/elevation coordinates, the Laplacian takes the form

∆gφ =
1

f(v)|σ′(v)|

(
∂

∂u

(
|σ′(v)|
f(v)

∂φ

∂u

)
+

∂

∂v

(
f(v)

|σ′(v)|
∂φ

∂v

))
.

Expanded yields

∆g =
1

f 2

∂2

∂u2
+
f ′|σ′| − f |σ′|′

f |σ′|3
∂

∂v
+

1

|σ′|2
∂2

∂v2
, (4.9)

with

f = f±(v) = sin v(1 + α(v) + β±(v))

|σ′| = |σ′±(v)| =
√

(1 + α(v) + β±(v))2 + (α′(v)± β±(v))2.
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From here on out, we will pass to the unit speed parameter s. Explicitly, let

l(s) =

∫ s

0

|σ′(w)| dw,

and define the unit speed generating curve σ̃ :
(
0,
∫ π

0
|σ′(v)| dv

)
→ R+ × R, given by

σ̃(s) = (f̃(s), g̃(s)) = ( f(l−1(s)), g(l−1(s)) ).

Note l−1 is well defined because |σ′| > 0. This parameterization yields |σ̃′(s)| = 1, and so

the Laplacian above simplifies to

∆g̃ =
1

f̃ 2

∂2

∂u2
+
f̃ ′

f̃

∂

∂s
+

∂2

∂s2
,

where the ′ denote differentiation with respect to the arc-length parameter s. We will drop

the tilde notation, again, for simplicity.

We are interested in eigenvalues/eigenfunctions of the negative Laplacian, that is, functions

Ψ, λ such that −∆gΨ = λΨ. By separating variables, that is letting Ψ(u, s) = U(u)S(s), we

substitute into (4.9) and obtain two ordinary differential equations

U ′′ = −m2U (4.10)

−f 2S ′′ − ff ′S ′ − f 2λS = −m2S. (4.11)

From (4.10) we have that U are complex exponentials with frequencies m = 0,±1,±2, . . . .

Rearranging (4.11) and setting h = 1
m

, we obtain

−h2S ′′ − h2f
′

f
S ′ +

1

f 2
S = h2λS = E(h)S.

Conjugating Ĥ = −h2 d2

ds2
− h2 f ′

f
d
ds

+ 1
f2 by a multiplication operator does not change the
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spectrum, and in particular, conjugating Ĥ by
√
f yields

H = f 1/2Ĥf−1/2 = −h2 d
2

ds2
+

1

f 2
+ h2

(
1

2

(
f ′

f

)′
− 1

4

(
f ′

f

)2
)
,

which is a perturbed semiclassical Schrödinger operator. Following the analysis of Gurarie

[Gur95] we drop the perturbation and study

Hh = −h2 d
2

ds2
+

1

f 2
.

Thus, the study of the eigenvalues of ∆g is reduced to the study of eigenvalues H. That is,

there exists a 1-to-1 map σ(i, j) : Z≥0 × Z≥0 → Z≥0 such that λσ(m,j) = m2Ej(m), where

Ej(m) is the jth eigenvalue of H 1
m

.

Returning to the pair of surfaces (S±, g±), we associate the semiclassical Schródinger opera-

tors

H± = −h2 d
2

ds2
+

1

f 2
±
,

where f± are given by (4.8). That Spec(H+) = Spec(H−) + O(h∞) is a consequence of the

Bohr-Sommerfeld quantization rules (Theorem 1.9). Note that Theorem 1.9 is for semiclassi-

cal Schrödinger operators defined over R, whereas H± are defined over an interval. However,

the result of [CdV05] is established by the geometry of f near the global minimum, and so

the analysis carries over to the interval case.

We would like to show that (S±, g±) have the same wave trace invariants, that is

∞∑
j=0

cos
(√
−λ+

j t
)
−
∞∑
j=0

cos
(√
−λ−j t

)
∈ C∞(R),
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or in terms of the eigenvalues of H±h

∞∑
m=0

∞∑
j=0

cos
(
m
√
−E+

j (m)t
)
−
∞∑
m=0

∞∑
j=0

cos
(
m
√
−E−j (m)t

)
∈ C∞(R), (4.12)

however, we run into an issue when translating over the analysis of Chapter 3 to H±h . The

exponential bounds for the jth eigenvalue of H±h only hold for 0 < h < hj. And in particular,

the sequence hj → 0+. Thus, for a given eigenvalue E±j (·), we may not obtain bounds for

the first finitely many Ej(1), Ej(2), . . . , Ej(mj). This amounts to infinitely many terms in

(4.12) which we cannot control.
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