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Analyzing network diversity of
cell–cell interactions in
COVID-19 using single-cell
transcriptomics

Xinyi Wang1, Axel A. Almet 1,2* and Qing Nie1,2,3*
1Department of Mathematics, University of California, Irvine, Irvine, CA, United States, 2The NSF-
Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA,
United States, 3Department of Developmental and Cell Biology, University of California, Irvine, Irvine,
CA, United States

Cell–cell interactions (CCI) play significant roles in manipulating biological

functions of cells. Analyzing the differences in CCI between healthy and

diseased conditions of a biological system yields greater insight than

analyzing either conditions alone. There has been a recent and rapid growth

of methods to infer CCI from single-cell RNA-sequencing (scRNA-seq),

revealing complex CCI networks at a previously inaccessible scale. However,

the majority of current CCI analyses from scRNA-seq data focus on direct

comparisons between individual CCI networks of individual samples from

patients, rather than “group-level” comparisons between sample groups of

patients comprising different conditions. To illustrate new biological features

among different disease statuses, we investigated the diversity of key network

features on groups of CCI networks, as defined by different disease statuses. We

considered three levels of network features: node level, as defined by cell type;

node-to-node level; and network level. By applying these analysis to a large-

scale single-cell RNA-sequencing dataset of coronavirus disease 2019 (COVID-

19), we observe biologically meaningful patterns aligned with the progression

and subsequent convalescence of COVID-19.
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1 Introduction

Cell–cell interactions (CCI) manipulate multiple biological processes, including

organismal development, homeostasis, and immune responses (Armingol et al., 2021).

When cells do not interact properly, disease occurs (Armingol et al., 2021). The recent

advances in single-cell RNA-sequencing (scRNA-seq) offer great opportunities to

decipher CCI through coordinated gene expression of ligand–receptor pairs. Using a

diverse range of strategies, many tools have been designed to infer CCI from scRNA-seq

(Almet et al., 2021; Armingol et al., 2021). These computational tools can be grouped into

four categories: differential combination–based, network-based, permutation-based, and

array-based (Armingol et al., 2021). The majority of CCI inference methods are designed
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to analyze CCI for a single condition. As characterizing

differences in CCI activity across multiple conditions—for

example, between healthy and diseased tissue—helps elucidate

the diverse mechanisms of CCI-mediated responses to disease,

more so than analyzing condition-specific CCI networks in

isolation, recent efforts have focused on developing

methodologies to systematically study the differences in CCI

between multiple conditions (Xiong et al., 2019; Gibbs et al.,

2021; Wang et al., 2022). However, the majority of previous CCI

analyses that analyze differences between conditions tend to

analyze CCI networks inferred from a single scRNA-seq

sample from each condition or analyze CCI networks

constructed by aggregating several samples. These analyses

result in deterministic characterizations of CCI and fail to

take into account the underlying variability across the groups

of samples that constitute each biological condition.

As single-cell omics field is expanding, data are becoming

more readily accessible. Advances in sequencing technologies

have enabled more sample replicates to be obtained at cheaper

prices and a greater number of cells that can be sequenced per

replicate (Svensson et al., 2018). While including multiple

samples can obscure biological variation via batch effects

(Luecken et al., 2022), having multiple samples per condition

enables one to characterize the variability of key aspects such as

CCI at the “group level”, where multiple samples comprise a

single condition. Being able to account for variability across

samples, such as those sampled from human patients, is

particularly important for diseases where host response is

associated with severity of disease progression, such as

COVID-19 (Ong et al., 2020). Indeed, there are a number of

scRNA-seq studies of COVID-19 where multiple samples have

been obtained for both healthy and diseased status (Liao et al.,

2020; Zhang et al., 2020; Melms et al., 2021; Ren et al., 2021;

Stephenson et al., 2021; Kuchroo et al., 2022). In particular, Ren

et al. (2021) produced scRNA-seq data containing 1.5 million

cells from 196 patients across five COVID-19 conditions. As

more large-cohort scRNA-seq studies become available, it is

important to develop methodologies that account for and

analyze the sample-to-sample variability within and across

biological conditions.

Thus, in this article, we propose a study on diversities of three

classes of features of CCI networks within groups of different

conditions. More specifically, since a CCI network can be

represented as a directed weighted graph, where the nodes

correspond to cell states and edge weights correspond to

interaction strengths, we can extract CCI features at three

levels: single node, node-to-node, and whole graph. We apply

these methods to a large single-cell transcriptomic COVID-19

dataset comprising peripheral blood mononuclear cells (PBMC)

sampled from 181 patients and analyze CCI diversity patterns

under different COVID-19 conditions. By analyzing each specific

CCI feature and comparing its diversity across different sample

groups comprising biological conditions, we are able to observe

consistent and biologically meaningful patterns aligned with the

progression and subsequent convalescence of COVID-19.

2 Materials and methods

In this section, we have described the dataset we used, the

CCI analysis from CellChat, and the methods that we

implemented to analyze CCI diversity.

2.1 Data preparation

The scRNA-seq data of COVID-19 progression were

downloaded from the NCBI GEO database, accession number

GSE158055. The original scRNA-seq data consist of samples

taken from PMBCs, bronchoalveolar lavage fluid (BALF), and

sputum. To ensure consistency in biological sample type as well

as cell type, we only retained PBMCs. The considered data consist

of 181 COVID-19 patients and controls, including 25 healthy

controls, 18 patients with moderate symptoms, 43 patients with

severe symptoms, 57 patients in the convalescent stage from

moderate symptoms, and 38 patients in the convalescent stage

with severe symptoms. All single-cell preprocessing and analysis

were performed using Seurat (Hao et al., 2021). Quality control

was performed according to the original study (Ren et al., 2021).

Specifically, cells with fewer than 1,000 unique molecular

identifier (UMI) counts and 500 detected genes were removed,

as well as cells with more than 10% of gene counts arising from

mitochondrial genes. To remove potential doublets, we also

filtered out cells that contained more than 25,000 UMI counts

and 5,000 detected genes. In addition, we used Scrublet (Wolock

et al., 2019) to identify doublets. The expected doublet rate was

set to 0.08, and cells predicted to be doublets were removed. Prior

to dimensionality reduction, we determined the 1,500 most

highly variable genes. Gene expression counts were

normalized to 10,000 counts per cell, log-transformed, and

then scaled. We used the original clustering metadata to label

B cells, T cells, and myeloid cells (Ren et al., 2021).

2.2 CCI analysis by CellChat

To infer significant CCI from the patient-specific scRNA-seq

data, we used CellChat (Jin et al., 2021). CellChat infers

significant CCI activity from scRNA-seq data between

identified cell groups, such as cell states or cell types. CellChat

calculates an interaction score based on mass action kinetics that

reflects the likelihood of CCI by integrating gene expression with

prior knowledge of the interactions between signaling ligands,

receptors, and their cofactors (Jin et al., 2021). CCI is identified at

two levels: at the level of single ligand–receptor pairs and at the

aggregate level of signaling pathways that consist of multiple
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ligand–receptor interactions. The calculated interaction strength

between cell group i and cell group j between a particular

ligand–receptor pair is between 0 and 1. Assuming N cell

types have been identified in the data, the result of the

inference is a CCI network where each node i ∈ {1, 2, . . . , N}

represents a cell type and interactions are encoded by the

weighted adjacency matrix, A. Therefore, each entry, Aij, is a

directed weighted edge that represents the strength of interaction

from the sender cell type i to the receiver cell type j.

CellChat provides functionality to quantify and compare

relevant biological features of a single CCI network and

between pairs of networks. For this study, we used CellChat

to calculate the information flow, network centrality, functional

similarity, and structural similarity between pairs of CCI

networks. Here, we briefly describe each method.

The information flow of a network in CellChat is computed

by the following formula:

If � − log ∑N
i,j�1

Aij
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦−1, (1)

where the log is taken to amplify small differences in interaction

scores. The information flow, If, quantifies the total strength of

interactions in a network.

CellChat also allows for a network centrality analysis on the

CCI networks. In each directed and weighted CCI network, the

in-degree centrality, out-degree centrality, flow betweenness

centrality, and information centrality measure can be

calculated to identify important receivers, senders, mediators,

and influencers in the network (Jin et al., 2021).

The functional similarity between two networks is calculated

using the Jaccard similarity (Jin et al., 2021):

S � E G( ) ∩ E G′( )∣∣∣∣ ∣∣∣∣
E G( ) ∪ E G′( )∣∣∣∣ ∣∣∣∣, (2)

where G and G′ are two signaling networks and E(G) and E (G′)
are the edge sets describing the set of interactions in signaling

networks G and G′, respectively. It quantifies the similarity of

major sender and receivers of each network. The structural

similarity is used to measure a topological similarity between

the structures of two networks. It is based on a previous measure

on topological similarity (Schieber et al., 2017).

The structural similarity, S, between two graphs, G and G′,
with N and M cell types, respectively, is defined with respect to

the structural dissimilarity, S (G, G′) = 1 − D (G, G′), which is

defined as follows:

D G,G′( ) � w1

���������������
JSD uG, uG′( )/log 2√

+ w2|
��������
NND G( )√ −

���������
NND G′( )√

|
+w3

2

�����������������
JSD PαG, PαG′( )/log 2√

+
������������������
JSD PαGc , PαGc′( )/log 2√( ),

(3)

where w1, w2, and w3 are the weights such that w1 + w2 + w3 = 1.

The Jensen–Shannon divergence, JSD, is defined across N

probability distributions, P1, . . . , PN, as follows:

JSD P1, . . . , PN( ) � 1
N

∑N
i,j

pi j( )log pi j( )
uj

( ),
uj � 1

N
∑N
i�1

pi j( ), . (4)

where uj is the average across the N probability distributions.

In Eq. 3, JSD (uG, uG’) is the Jensen–Shannon divergence

between the averages of the cell type distance distributions of

signaling graphs; JSD (PαG, PαG′) is the Jensen–Shannon

divergence between the α-centrality (Katz centrality) values of

G and G′; and JSD(PαGc , PαGc′ ) is the Jensen–Shannon

divergence between the α-centrality values of the graph

complements of G and G′ and Gc and Gc’, respectively, where

for a graph, G, with N vertices, the graph complement, Gc, is

defined by the same vertex set, V (Gc) = V(G), but the edge set is

constructed by E (Gc) = E (KN)\E(G), where the complete graph,

KN, is the graph constructed by connecting all distinct pairs of

vertices.

Finally, NND is the network node dispersion (Schieber et al.,

2017) defined over the distance distributions of the N cell types,

Pi = {pi(j)}, encoded by G:

NND G( ) � JSD P1, . . . , PN( )
log d + 1( ) , (5)

where d is the diameter of the network.

Next, to learn a shared space for pathway classification,

manifold learning of different signaling CCI networks is

performed through the following steps. First, a shared nearest-

neighbor similarity network, Gs, of CCI networks is constructed

by calculating the k-nearest signaling pathways of each pathway

with respect to the functional or structural similarity matrix, S.

The weights of the shared nearest-neighbor network are

calculated as the fraction of shared nearest signaling pathways

between a given pathway and its neighbors. Next, the similarity

matrix, S, is smoothed by calculating Gs × S. Finally, uniform

manifold approximation and projection (UMAP) is performed

on the smoothed similarity matrix.

To adapt these methods and analyze the differences across

the five considered COVID-19 conditions, we first combined

scRNA-seq data of all patients in each condition group as a

single aggregated sample. We interpret the resulting CCI

network as describing the CCI within an average patient in

each group.

2.3 Measures of graph features

In this section, we devise and implement measures of single

node and between-node features of a CCI network to compare

the diversity of these features across all COVID-19 conditions.

Rather than using the methods described in Section 2.2 for

aggregated scRNA-seq data, we used CellChat to obtain the

Frontiers in Genetics frontiersin.org03

Wang et al. 10.3389/fgene.2022.948508

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.948508


CCI network for each individual patient, and the following

analysis was performed based on these 181 data points.

2.3.1 Single node features in the CCI network
For each sender or receiver cell type, we considered three

measures of diversity:

1) Node degree. The weighted out-degree of a sender cell type is

the total amount of interactions of the sender cell type. For

receiver cell types, we considered the weighted in-degree.

2) Node diversity. The diversity of a sender cell type is the

number of different receiver cell types with which it interacts.

Conversely, the diversity of a receiver cell type is the number

of different receivers with which it interacts.

3) Node entropy. The entropy of a sender (receiver) cell type

measures how balanced or uniform the distribution of its

outgoing (incoming) interactions are (Shannon, 1948). This

measure of how balanced or uniform the relevant outgoing

(incoming) interactions are depends on the relative

interaction strengths between one sender cell type and

relevant different receiver (sender) cell types. For example,

if the outgoing interaction strengths of one sender are spread

evenly across all receivers, then the entropy will be low. On

the contrary, if the outgoing interactions from a sender are

highly concentrated toward one receiver, then the entropy

will be high. As entropy depends on the relative strengths,

rather than absolute strengths, we first normalized the

interaction strengths of each sender cell type i:

~Aij � Aij∑n
j�1Aij

. (6)

For the case when a sender cell does not interact with any

receivers, we defined ~Aij � 0. The (outgoing) entropy of a sender

cell type, i, is then calculated using Shannon entropy (Shannon,

1948):

Hsender i( ) � −∑n
j�1

~Aij log ~Aij( ), (7)

The (incoming) entropy of receiver cell types is calculated

similarly:

Hreceiver i( ) � −∑n
j�1

~Aji log ~Aji( ), (8)

We noted that the entropy is always positive. For cases where

a sender (receiver) has no outgoing (incoming) interactions, we

treat its entropy as zero.

2.3.2 Proximity measures between CCI node
pairs

In this section, we have described three measures for node-

to-node or cell-type-to-cell-type features.

2.3.2.1 Information flow proximity matrix

Cell signaling can be interpreted as the flow of biochemical

information between cells (Azeloglu and Iyengar, 2015). Thus,

based on several assumptions, we can consider the CCI network

as an information exchange network. As the communication

score is based on the level of relevant gene expression and a

higher level of relevant ligand and receptor expression reflects

more significant interaction, a higher interaction, in turn, implies

that more information from sender cell type i flows to receiver

cell type j. Furthermore, we assumed that if the interaction

strength between cell type i and type j is 1, then the quantity

of information flow reaches its maximum. For a network

described by the directed, weighted adjacency matrix, A, each

interaction strength, Aij, can be viewed as a proportion in the

maximal amount of information that cell type i can send to cell

type j. Second, we assumed that the information flow does not

only happen within a direct neighborhood of cells but may also

flow through intermediate cell types. For example, some

information from cell type i to cell type k can first flow to cell

type j and then arrive at cell type k. Therefore, it is natural to

assume that the information flow can be aggregated among all

paths from cell i to j.

Now, we may consider the information flow from cell type i

to j along all possible (directed) paths within the network. Such a

propagation of information can take n steps with n − 1

intermediate nodes; in general, (An)ij measures the

information flow from node i to node j in n steps. Note that

we may sum the information flow along all paths from i to j, since

flows along each path are independent of each other. Under this

framework, to measure the total amount of information

exchange from any cell type i to cell type j across the

network, we can define the information flow proximity

matrix, S, as follows:

S � ∑∞
n�1

An � I − A( )−1 − I, (9)

where I is the identity matrix. Each entry, Sij, measures the total

informationflowfromnode i to j. Itmeasureshowmuch information

is lost to node j if node i is removed from the network. Thus, we

interpret the information flow as a network-level measure of

importance of cell type i to j, as opposed to individual-level

importance, which is characterized by the CCI strength.

2.3.2.2 Modified Canberra proximity matrix

It is fair to assume that the interactions of a sender with

different receivers are mutually independent. Thus, a more

reasonable way to compare the differences in outgoing

interactions between two senders with each individual receiver

is to consider the relative difference between each interaction,

instead of the absolute differences. We measured the relative

difference of two senders or receivers using the modified

Canberra distance.
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For two sender cell types, we can represent all outgoing

interactions by interaction vectors, u = (Ai1, . . . ,Ain), v = (Aj1, . . .

, Ajn). The original Canberra distance is defined as the sum of all

relative pairwise distances between two interaction vectors

(Lance and Williams, 1966):

dCan u, v( ) � ∑
k

|Aik − Ajk|
|Aik| + |Ajk|, (10)

where k is summed over all entries of the interaction vectors such

that Aik ≠ 0 and Ajk ≠ 0. However, in practice, the interaction

vectors are often sparse. Therefore, when both u and v are zero

for the same entry, that is, Aik = Ajk = 0 for some k, the receiver k

does not provide information about sender similarity. Therefore,

we choose to use the modified Canberra distance. The modified

Canberra distance between two sender cell types is defined as

follows:

dModCan u, v( ) � 1
m
dCan u, v( ), (11)

where 0 ≤m ≤ n is the number of terms in the summation of Eq.

10. Canberra distance is sensitive to small changes when both

entries are near zero (Kaur, 2014), and the modified Canberra

distance inherits this characteristic straightforwardly. A small

modified Canberra distance between two sender cell types can be

interpreted as the two senders having similar outgoing

interaction strengths across all other cell types.

We then define the modified Canberra similarity between u

and v as 1 − dModCan(u, v). By considering all pairwise modified

Canberra similarities between sender cells, we can construct the

modified Canberra sender proximity matrix, DModCan(s), where

the entries (DModCan(s))ij represent the modified Canberra

similarities between sender cell type i and j. We defined

modified Canberra receiver proximity matrix, DModCan(r),

similarly.

2.3.2.3 Weighted cosine proximity matrix

As signaling pathways consist of multiple interacting

ligand–receptor pairs, it is natural to expect that not all

ligands, or receptors, contribute equally to CCI activity. To

characterize the similarity of outgoing (incoming) interactions

between two senders (receivers), we may ask if both senders

(receivers) contain a similar composition of pathway-specific

ligands (receptors) but only differs in the level of expression. To

quantify this similarity, we used the interaction strength between

a sender and all receivers, as inferred from CellChat. For sender

cell types, i and j, we represent the outgoing interactions by the

vectors, u = (Ai1, . . . , Ain) and v = (Aj1, . . . , Ajn), respectively.

Similarly, if i and j were both receivers, the incoming interactions

can be represented by the two vectors, u = (A1i, . . . , Ani) and v =

(A1j, . . . , Anj), respectively. If u and v lie in the same direction,

meaning that the outgoing interactions from sender i and j to all

receivers are similar, then it is reasonable to believe that sender i

and j express the same composition of ligands. To characterize

the similarity of directions between u, v, we used the cosine

similarity. However, in practice, the interaction vectors u and

v are often sparse. Therefore, when both u and v are zero for

the same entry, that is, Aik = Ajk = 0 for some k, the receiver k

does not provide information about sender similarity. This

observation motivates the use of the weighted cosine

similarity:

Cosweighted u, v( ) � m

n
· u · v
‖u‖‖v‖, (12)

where 0 ≤ m ≤ n is the total number of non-zero entries.

Compared with the traditional unweighted cosine similarity,

the weighted cosine similarity characterizes the certainty of

the similarity measure between two interaction vectors,

providing a more reliable measure of node-to-node similarity.

The weighted cosine sender proximity matrix consists of

pairwise (sender cell type to sender cell type) weighted cosine

similarities; that is, the i-jth entry represents the weighted cosine

similarity between sender cell type i and j. We defined the

weighted cosine receiver proximity matrix in a similar manner.

2.3.3 Variability measures of CCI network groups
In this section, we introduced different ways to measure

distance between CCI networks. Using these distance measures,

we calculated the variability of networks within each group of

COVID-19 conditions correspondingly.

2.3.3.1 Root euclidean distance between proximity

matrices

Having defined node-to-node similarity measures, it is

valuable to have a measure of network-to-network similarity.

We used the root Euclidean distance to measure the distance

between node-to-node proximity matrices S(1) and S(2) (Koutra

et al., 2013):

dr S 1( ), S 2( )( ) � ������������������∑n
i,j�1

���
S 1( )
ij

√
−

���
S 2( )
ij

√( )2

√√
. (13)

Compared to the traditional Euclidean distance, dr enlarges

the difference when the entries are close to zero. This property of

the root Euclidean distance allows one to discern differences

between networks even when the interactions are small.

Based on the root Euclidean distance, we studied the

variability of CCI networks under different disease conditions.

For a condition-specific group of patients with CCI networksA(1),

A(2), . . ., A(k), we used the following definition as the measure of

within-group variability:

Varr A 1( ), A 2( ), . . . , A k( )( ) � 1
k − 1

min
i�1,...,k

∑
j≠i

dr S i( ), S j( )( ), (14)

where S(i) can be either the information flow, modified Canberra,

or weighted cosine proximity matrix of A(i).
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2.3.3.2 Modified Canberra distance between networks

The modified Canberra distance between two CCI networks

represented by adjacency matrices A and B across the same cell

types is defined as follows:

dModCan A, B( ) � 1
m

∑
i,j

|Aij − Bij|
|Aij| + |Bij|, (15)

where the summation is over i and j such that Aij ≠ 0 or Bij ≠ 0,

and m is the number of non-zero entries. Similar to the previous

definition of modified Canberra distance for sender cell types

(Equation (11)), a small modified Canberra distance implies that

two CCI networks are similar with respect to their interaction

strengths.

Based on the modified Canberra distance between networks,

we studied the variability of CCI networks under different disease

conditions. For a condition-specific group of patients with CCI

networks A(1), A(2), . . ., A(k), where A(i) is the adjacency matrix of

ith network, we used the following definition as the measure of

within-group variability:

VarModCan A 1( ), A 2( ), . . . , A k( )( ) � 1
k − 1

min
i�1,...,k

∑
j≠i

dModCan A i( ), A(j)( ).
(16)

3 Results

We applied the methods described to analyze the diversity of

CCIs across different COVID-19 conditions. We first applied the

analysis from CellChat to analyze difference of conditions

comprising aggregated samples. We then analyzed the within-

condition heterogeneity of CCI networks using the three

categories of our developed measures: single node level, node-

to-node level, and whole graph level.

3.1 Analysis of CCI across different
COVID-19 conditions

To study CCI differences across COVID-19 patients under

different disease conditions, such as healthy, moderate disease,

severe disease, convalescent from moderate disease, and

convalescent from severe disease, we used CellChat and

studied the interactions among all 3 cell types: myeloid,

B cells, and T cells.

CCI between any two cell types consist of interactions via

different signaling pathways. First, we compared the CCIs of each

cell pair in five groups (Figure 1A). We observed that autocrine

signaling of T cells only exists in moderate and severe groups.

Myeloid autocrine signaling decreased in severe samples,

compared to healthy controls and moderate samples. In

samples in the convalescence stage from severe disease,

myeloid autocrine was recovered compared to the severe

group. Compared to healthy controls and moderate patients,

signaling from T cells to B cells was decreased in the rest of the

condition groups. Interestingly, interaction strengths from T cells

to myeloid cells were consistent over all the five groups. We then

examined the differences in total interaction strengths in the five

groups (Figure 1B) and found that the interaction strengths were

higher in the control and moderate groups and the lowest in the

severe group. We also compared the incoming and outgoing

interaction strengths of different cell types (Figure 1C). The total

interaction strength of B cells as a receiver is always stronger than

as a sender, while the total interaction strength of T cells as a

sender is always stronger than as a receiver. Myeloid cells interact

similarly in strengths as senders and receivers.

Having obtained a general knowledge on CCI strengths

across five conditions, we then investigated upregulated and

downregulated signaling in each group compared with the

remaining four groups (Figure 1D). CellChat predicted

significant upregulation of three ligand–receptor pairs in

control patients, consisting of the ligands TNFSF13, IL16, and

TNFSF13B, which were sent by B cells and received by B cells;

significant downregulation of ligand–receptor in control

patients, consisting of the ligands CCL3 and TNFSF13B,

which are sent from myeloid cells to B cells and from T cells

to B cells. We also observed five upregulated ligand–receptor

pairs in severe patients, with the corresponding ligands being

IL1B, ANXA1, CCL3, TNFSF13B, and MIF, and two

dowregulated ligand–receptor pairs, where the ligands are

IL16 and LGALS9. Interestingly, there were no upregulated

ligand–receptor pairs in the severe convalescence group.

Next, we examined functional and structural similarities of

different signaling pathways in five disease conditions (Figures

1E,F). We observed that most pathways were grouped together

under both similarity measures even if they were of different

disease conditions.

To test robustness of CCI output and the conclusions from

CellChat, we downsampled the original data to 80% of each

original condition groups. We found that the CCI networks were

robust to downsampling (Figure 1A, Supplementary Figure S1A),

as had been found previously in Jin et al. (2021). The majority of

conclusions from CellChat hold under downsampling. However,

the upregulated and downregulated ligands change (Figure 1D,

Supplementary Figure S1C). Specifically, the upregulated genes

all disappear in the downsampled version, and downregulated

ligands in moderate and convalescence from severe group are

different.

3.2 Analysis of the MIF signaling pathway

The log-scaled information flow calculated by CellChat is

shown in Figure 2A. We observed that the MIF pathway contains

the highest total interactions over all signaling pathways, while

other pathways contain little amount of interactions. We then

calculated the percentage of patients in different groups using
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each pathway (Figure 2B). Out of all pathways, we found that the

GALECTIN, MIF, ANNEXIN, BAFF, and IL16 pathways were

present in more than 60% of patients, while other inferred

pathways were present in fewer than 60% of patients in each

condition. To find the most differential pathway across

conditions among these popular pathways, we calculated

FIGURE 1
CCI analysis using CellChat. (A)CCI strengths. Each edge represents an interaction; the color of the edgematches with the sending cell type. (B)
Total interaction strength in different groups. Control and moderate groups have higher total interaction strength. (C) Total incoming and outgoing
signaling strengths in different groups. B cells interact stronger as receivers than as senders, while T cells interact stronger as senders than as
receivers. (D) Upregulated and downregulated ligands in different groups. (E) Using UMAP to project signaling pathways on a two-dimensional
manifold according to their functional similarity. Each dot represents the interaction network of one signaling pathway. Different colors represent
different groups of signaling pathways. (F) Using UMAP to project signaling pathways on a two-dimensional manifold according to their structural
similarity. Each dot represents the interaction network of one signaling pathway. Different colors represent different groups of signaling pathways.
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FIGURE 2
CCI analysis using CellChat focused on the MIF pathway. (A) Information flow (total interaction strengths) of each pathway. The MIF pathway
contains the most amount of information. (B) Proportion of people using each pathway in different groups. The majority of CCI occurs through
GALECTIN, MIF, ANNEXIN, and BAFF. (C) Average pairwise Canberra distance of CCI across conditions in the popular pathways. (D). CCI strengths in
the MIF pathway. Each edge represents an interaction; the color of the edge matches with the sending cell type. (E) Relative contribution of
ligand–receptor pairs in the MIF pathway. (F) Network centrality scores of the MIF pathway. In severe and convalescence from severe groups,
myeloid cells lose its function as a mediator.
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pairwise Canberra distance of CCI in these pathways between

each condition and took average among all pairs. We observed

that the MIF pathway is also the most differential pathway across

conditions (Figure 2C). Furthermore, as recent studies have

shown that there is a strong correlation between the MIF

serum level and COVID-19 severity, suggesting that the MIF

serum level may be a useful predictor of COVID-19 disease

severity (Aksakal et al., 2021; Bleilevens et al., 2021; Dheir et al.,

2021), we focused our analysis on CCI diversities in the MIF

pathway for the remainder of this study.

We observed that in the MIF pathway, autocrine signaling of

T cells only exists in two diseased groups, which indicates thatmost

Tcells’autocrinesignalingintotalCCIcomesfromtheMIFpathway

(Figure 2D). We found that unlike the rest of the groups, myeloid

cells exhibitnoautocrinesignaling insevereandconvalescence from

severegroups.Wealsoobservedan interaction fromBcells toTcells

occurring in the severe group, which does not exist in the rest of the

groups. We found that in the MIF pathway, the interaction from

Tcells toBcellswas thehighest interaction, except forconvalescence

from severe group in which it is the second highest. This indicates

that T to B signaling functions as the major interaction in the MIF

pathway.Themost active ligand–receptor pairs in theMIFpathway

are then compared across conditions (Figure 2E). In the control,

moderate,andconvalescencefromsevereconditions,themostactive

multi-receptor unit is the heteromeric complex containing

CD74 and CD44. However, in the severe and convalescence from

moderate conditions, the most active multi-receptor unit is the

heteromeric complex containing CD74 and CXCR4, indicating

differences in the types of MIF-specific interactions across

COVID-19 conditions.

Next, applying the network centrality analysis of the MIF

signaling network shows that in severe and convalescence from

severe groups, myeloid cells lose their function as a mediator

(Figure 2F). This indicates that in those two groups, the myeloid

cells have a diminished role as a gatekeeper of CCI.

To validate the robustness of these results, we repeated the

analysis of CCI after downsampling the original data to 80% of the

sample sizes for each condition group. We observed that the CCI

networks and network centrality conclusions of MIF pathways are

robust to downsampling (Figure 2, Supplementary Figure S2).

3.3 Cell type diversity of CCIs in the MIF
pathway

We applied three cell type diversity statistics of CCIs,

including degree, diversity, and entropy, to study the diversity

in interactions of each cell type across five groups in COVID-19.

We first calculated the cell type diversity to measure the

number of different cell types with which sender or receiver

interacts (Figures 3C,D). A higher cell type diversity means the

cell type interacts with more cell types, indicating a higher

variability of interactions. We observed that T cells are the

cell type with the highest mean cell type diversity as receivers

but the lowest cell type diversity as senders. When comparing

between groups of conditions, when myeloid cells or B cells are

senders, we found a clear decrease in mean diversity from control

to moderate to severe groups. Also, when these two cell types are

senders, mean diversity decreases from the moderate

convalescence group to the severe convalescence group. These

findings indicate that as disease progresses, myeloid and B cells as

senders tend to interact with fewer receivers. When T cells are

sender cells, there is an increase in diversity from control to

moderate to severe groups and an increase from the moderate

convalescence group to the severe convalescence group. This

means that unlike myeloid and B cells, T cells tend to interact

with more cell types in severe patients. Interestingly, when T cells

are sender cells, we observed that the mean of cell type diversity

in moderate and severe convalescence groups are less than

moderate and severe groups respectively, which indicates a

loss of interaction diversity in convalescent stages. Looking at

diversity of receiver cell types, we observed a decreasing pattern

of diversity of myeloid as receiver cells from control and

moderate groups to severe groups, and the diversity in two

convalescence groups are less than their corresponding groups

in disease. This indicates that receiver diversity decreased in the

severe group and the convalescence groups. We also observed

that when B or T cells are receiver cell types, the variation of

diversity is the highest in the convalescence from severe group.

We then calculated the cell type entropy to measure whether a

sender interacts evenly with different receivers in strengths (Figures

3E,F). A high cell type entropy means the cell type interacts evenly

with different cell types, while a lower entropy means the

interactions of a sender are concentrated on few receivers.

Comparing the cell type entropy across different COVID-19

conditions, we observed that both diversity and entropy had a

similar trend. For example, the decreases in diversity in myeloid

and B cells as senders from control tomoderate to severe also occur

in entropy. This means that a sender (receiver) in a typical sample

will not have extremely uneven interactions with its receivers

(senders). Otherwise, if myeloid cells are communicating with

all three cell types but the interactions are concentrated towards

T cells, then its entropy will be close to minimum but diversity will

be three, which is maximum, causing the two measures to be

significantly different.

As a standard measure of interaction strength, the in-degree

and out-degree for all nodes (cell types) across all five condition

groups are also calculated. The in-degree of a node is the total

amount of interactions a receptor receives from all senders.

Similarly, out-degree is the total amount of interactions a

sender sends to all receivers. Interestingly, the trends we

observed in cell type diversity and entropy were similar in

senders but not so in receivers. When T cells are receiver

cells, we observed a decrease from control to moderate to

severe groups and from moderate convalescence to severe

convalescence groups. But the consistent decreasing pattern
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from control to moderate to severe groups does not occur in

receiver diversity nor receiver entropy of T cells. When B cells are

receiver cells, there is a consistent decrease from control all the way

to severe convalescence groups, which does not occur in the

previous measures either. The aforementioned analysis implies

that the three cell type diversity statistics can be used together to

reveal a comprehensive picture of its interactions from three angles:

interaction strength, number of senders or receivers the cell type

interacts with, and the evenness of distribution of interaction with

different senders or receivers. We applied these three cell type

diversity metrics on a COVID-19 dataset to summarize the

overall diversity trend of cell types in different disease conditions.

3.4 Node-to-node information flow in CCI
networks in the MIF pathway

To study the total amount of information flow among

different nodes in CCI graphs, we calculated the information

flow proximity matrix of each patient in the COVID-19 dataset.

Comparing the distributions of node-to-node or cell-type-to-

cell-type information flow across the five groups of different

disease conditions, we observed several patterns (Figure 4A).

When myeloid cells are sender cells, there is a decrease in mean

information flow from control to moderate to severe groups and

from moderate convalescence to severe convalescence groups.

This observation indicates that the importance of myeloid cells as

sender cells in a network decreases in these groups. The mean

information flow from B cells to each cell type is lower in severe

patients than in healthy and moderate COVID-19 patients and is

lower in severe convalescence patients than in moderate

convalescence patients. We also made an interesting

observation that when B is the sender cell type, in each of five

groups of conditions, mean and variance of information flow

increases frommyeloid to B cells and frommyeloid cells to T cells

as receivers. We found that T cells mainly function as receivers

rather than senders, and there is almost no information sending

from T cells to myeloid in all five groups.

FIGURE 3
Distribution of cell type diversity statistics in differentCOVID-19 conditions are visualized. (A)Distributionof sender diversity inMIF pathway. There is
a consistent pattern of decreasing diversity from control tomoderate to severe groups and frommoderate convalescent to severe convalescent groups
in myeloid and B cell types as senders. The pattern in T cell type is different from the patterns in myeloid and B cell types. (B) Distribution of receiver
diversity in theMIF pathway. There is a decreasing pattern of diversity fromcontrol tomoderate to severe tomoderate convalescence and to severe
convalescence groups in myeloid as a receiver. (C) Distribution of sender entropy in the MIF pathway. The patterns are similar to sender diversity. (D)
Distribution of receiver entropy in theMIF pathway. The patterns are similar to receiver diversity. (E)Distribution of sender degree in theMIF pathway. The
patterns are similar to sender diversity and sender entropy. (F)Distribution of receiver degree in theMIF pathway.WhenB cells are receiver cells, there is a
consistent decreasing trend of receiver degree from control all the way to severe convalescence groups.
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A principal component analysis (PCA) is then performed

on the information flow proximity matrices of each patient.

Patients are then visualized with respect to the first two

principal components (Figure 4B). While nonlinear

projection methods, such as t-distributed stochastic

neighbor embedding (tSNE) or UMAP can be used, we

used linear PCA for visualization to maximize

interpretability, as tSNE and UMAP require careful

calibration of hyperparameters to ensure robust results

(Supplementary Figure S3). We can see that with respect to

information flow, severe patients differentiate from healthy

controls and moderate patients.

FIGURE 4
Distribution of cell-type-to-cell-type features. (A) Distribution of information flow between cell types of five COVID-19 conditions in the MIF
pathway. When B cells are the sender cell type in each group of condition, mean and variance of information flow increases frommyeloid to B cells to
T cells as receiver cell types. (B) PCA of information flow proximity matrices of five COVID-19 conditions in the MIF pathway. There is a clear pattern
that differentiates severe patients from healthy controls and moderate patients. (C) Distribution of cell-type-to-cell-type modified Canberra
similarity between sender cell type pairs of five COVID-19 conditions in the MIF pathway. Myeloid and B cell types are similar as senders. (D)
Distribution of cell-type-to-cell-typemodifiedCanberra similarity between receiver cell type pairs of five COVID-19 conditions in theMIF pathway. B
and T cell types are similar as receivers. (E) Distribution of cell-type-to-cell-type weighted cosine similarity between sender cell type pairs of five
COVID-19 conditions in the MIF pathway. When comparing myeloid and B as sender pairs, there is a decreasing pattern from control to moderate to
severe and from moderate convalescence to severe convalescence groups. On the contrary, when comparing myeloid and T cells or B cells and
T cells sender pairs, the patterns are the opposite. (F)Distribution of cell-type-to-cell-typeweighted cosine similarity between receiver cell type pairs
of five COVID-19 conditions in the MIF pathway. When comparing myeloid and B as receiver pairs, there is a decreasing pattern from control and
moderate groups to severe and to moderate convalescence and to severe convalescence groups.
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3.5 Modified Canberra node-to-node
similarity in CCI networks via the MIF
pathway

To study how similar two cell types as senders (receivers) are

with respect to their interaction strength with each receiver

(sender), we calculated the modified Canberra proximity

matrix for each patient and plotted the distribution of

modified Canberra similarity of each pair of senders or

receivers (Figures 4C,D). There are several interesting

observations we can make. First, myeloid cells and B cells as

senders have the highest similarity among sender pairs in all five

groups. Second, myeloid cells and T cells as senders have a similar

pattern with B cells and T cells as senders across different groups.

These two findings may indicate that for each receiver, myeloid

cells and B cells are very similar as senders, but T cells seem to

function differently as senders. We also observed that of all

possible receiver pairs, B cells and T cells have the highest

similarity. Myeloid cells and B cells or myeloid cells and

T cells as receivers have similar patterns of similarity across

different groups. Similarly, this indicates that for each sender,

B cells and T cells as receivers act similarly, but myeloid cells may

function differently. We then compared the differences in five

different groups of conditions. When comparing myeloid cells

and T cells as senders, or B cells and T cells as senders, there is an

increase of mean modified Canberra similarity from control to

moderate to severe groups and from moderate convalescence to

severe convalescence. This indicates that as disease progresses,

the relative difference of interactions of myeloid cells and T cells

as senders tend to decrease as a response to disease. Similarly for

B cells and T cell types, when observing patterns in receiver pairs,

we found that severe group has the lowest similarity between

myeloid cells and B cells and between myeloid cells and T cells.

Thus in severe patients, the relative difference of interactions

FIGURE 5
Network variability based on four distancemeasures. (A)Network variability based on information flow distance. The variability in moderate and
severe groups is higher than that in the control group. The variability in the severe convalescence group is higher than that in the moderate
convalescence group. (B)Network variability based on cell-type-to-cell-typemodifiedCanberra distance. There is an increasing pattern of variability
from control to moderate to severe groups and from moderate convalescence to the severe convalescence group. (C) Network variability
based on cell-type-to-cell-type weighted cosine similarity. There is an increasing pattern of variability from control to moderate to severe groups
and from moderate convalescence to the severe convalescence group. (D) Network variability based on graph-to-graph modified Canberra
distance. There is an increasing pattern of variability from control to moderate to severe groups and from moderate convalescence to the severe
convalescence group.
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between myeloid cells and B cells or between myeloid cells and

T cells as receivers decreases.

3.6 Weighted cosine node-to-node
similarity in CCI networks in the MIF
pathway

The weighted cosine similarity between two senders

measures if the senders have similar relative composition of

ligands. A high similarity between two senders indicates that

interactions of both senders with the same receiver are highly

positively correlated. We also have a similar interpretation for

weighted cosine similarity of two receivers. We calculated

weighted cosine proximity matrices of each patient in the

dataset and plotted the distribution of similarity of each pair

of senders and receivers (Figures 4E,F). In comparing myeloid

and B as both senders and receivers, we observed a decrease in

mean similarity from control to moderate to severe groups and

from moderate convalescent to severe convalescent groups. This

means that in the progression of disease, the relative composition

of ligand genes in myeloid cells and B cells start to differ. On the

contrary, when comparing myeloid cells and T cells or B cells and

T cells as senders, we found an increase from control to moderate

to severe groups and from moderate convalescent to severe

convalescent groups. This suggests that as disease progresses,

myeloid cells and T cells and B cells and T cells start to recruit

similar receivers. These trends also indicates that while the

functions of myeloid and B cells as senders alters across

COVID-19 progression, their function approaches that of

sender T cells.

We also observed a significant decrease in of mean weighted

cosine similarity of myeloid cells and T cells as receivers in severe

patient group, compared to control and moderate groups. Thus,

as disease progresses, the relative composition of receptor genes

changes dramatically in myeloid cells and T cells. Overall, we

found that myeloid cells and B cells as senders and B cells and

T cells as receivers are still the most similar pairs of senders and

receivers under this measure, as they have the highest mean

weighted cosine similarity in all the five groups.

3.7 Diversity of CCI networks in the MIF
pathway

Following Section 2.3.3, we used the following distances to

characterize distance between CCI networks:

1) Apply root Euclidean distance between information flow

proximity matrices;

2) Apply root Euclidean distance to sender and receiver node-

to-node modified Canberra proximity matrices and take d ��������������
d2sender + d2receiver

√
as the combined distance.

3) Apply root Euclidean distance to sender and receiver

weighted cosine proximity matrices and use d ��������������
d2sender + d2receiver

√
as the combined distance.

4) Modified Canberra distance between CCI adjacency matrices.

The measures (1), (2), and (3) measure the root Euclidean

distances between node-to-node affinity matrices, thus

quantifying the overall cell-type-to-cell-type differences.

Then we calculated variations of network measures within

each health condition group (Figure 5). In the case of information

exchange, we can interpret a higher variation within a condition

as a larger difference in network level node-to-node importance.

We observed a consistent increase in network diversity from

healthy controls to severe patients. These findings indicate that

CCI patterns in COVID-19 patients are more diverse compared

with healthy controls. Under the aforementioned measures, we

also observed a higher variation in the convalescent group from

severe symptoms than that in the moderate convalescent group.

4 Discussion

As more large-cohort scRNA-seq studies, both in terms of

the number of cells and the number of tissue samples, become

available, it is important to account for and analyze the

individual-sample heterogeneity, both within and across the

relevant biological groups, such as disease status. To this end,

we derived different diversity measures of CCI and used them to

study the diversity of CCI in a scRNA-seq dataset of COVID-19

that was sampled from 181 patients across five conditions,

focusing in particular on the MIF pathway. By representing

CCC networks as networks, where cell types are nodes and

interaction scores are directed, weighted edges, we studied

three categories of network features: single node (cell type),

node-to-node level, and network-level. We then studied

variations across networks in different groups of conditions.

At the node level, we analyzed both sender and receiver

variation and entropy. The sender (receiver) variation measures

the number of receivers with which (sender) a sender (receiver)

cell type interacts, while sender (receiver) entropy measures the

uniformity of outgoing (incoming) interaction strengths with

different receivers (senders). Together with sender (receiver)

degrees, these three diversity measures provide a

comprehensive picture of diversity at the cell type (node) level.

Next, we studied pairwise node-to-node or cell-type-to-cell-

type level features, which measures either amount of total

information exchange from one type to another or the

similarity of two senders (receivers). The first measure,

information flow from cell type i to j, measures the total

amount of information sending from cell type i that is received

by j. The second measure, modified Canberra node-to-node

similarity, measures the relative difference of interactions

between two senders (receivers). The third measure, weighted
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cosine node-to-node, measures if the senders (receivers) have

similar relative composition of ligands (receptors). The

modified Canberra and weighted cosine node-to-node

similarities can serve as complementary measures of node-to-

node similarities. The former provides similarity in relative

interaction strengths, and the latter provides similarity in

relative composition of relevant ligands or receptors.

Finally, using different metrics between CCI graphs, we

studied total variation across graphs in different patient

groups comprising conditions. We found that there was a

consistent pattern in an increase of variation in COVID-19

groups than in control groups, suggesting a more diverse CCI

reaction pattern in diseased patients. The aforementioned

analysis of CCI networks from three angles, namely, single

node, node-to-node, and network levels, can be applied to

analyze any other pathways in COVID-19. These proposed

methods on analyzing CCI diversities within different groups

of conditions could also be applied to sub cell types to reveal

biologically meaningful results, with the caveat that introducing

more cell types can increase the amount of noise from CCI

output (Supplementary Figure S4-S8). We noted that using

different CCI tools, such as CellCall (Zhang et al., 2021), may

result in different CCI output for individual patients, and the

overall trend of patient-to-patient variability in CCI will remain,

emphasizing the importance of methodologies and analyses that

measure the diversity of CCI across cohorts of networks.

One technical limitation of the diversity measures proposed

for CCI is that the majority of networks identified signaling

pathways were sparse, indicating very few interactions. As cell

types were more isolated for these pathways, the node-to-node

analyses fail to recognize meaningful patterns. For example, the

cosine similarity between two sender cell types is almost

exclusively 0 and 1, and the majority of interactions do not

overlap. This phenomenon pertains even with weighted cosine

similarity for very sparse networks. As a result, the diversity of

sparse networks based on these measures cannot be interpreted

meaningfully, in the way that dense networks can be. One can use

hand-selected features in sparse networks to condense the

interaction information, but this may result in loss of

biological interpretation after feature selection. In this

direction, future work will be needed to address this

limitation of sparsity when studying sample-to-sample graph

diversity, while retaining biological interpretability of these

methods.
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