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ARTICLE OPEN

Age estimation from sleep studies using deep learning predicts
life expectancy
Andreas Brink-Kjaer1,2,3✉, Eileen B. Leary3, Haoqi Sun 4, M. Brandon Westover 4, Katie L. Stone5,6, Paul E. Peppard7, Nancy E. Lane8,
Peggy M. Cawthon5,6, Susan Redline 9,10, Poul Jennum2,11, Helge B. D. Sorensen1,11 and Emmanuel Mignot 3,11✉

Sleep disturbances increase with age and are predictors of mortality. Here, we present deep neural networks that estimate age and
mortality risk through polysomnograms (PSGs). Aging was modeled using 2500 PSGs and tested in 10,699 PSGs from men and
women in seven different cohorts aged between 20 and 90. Ages were estimated with a mean absolute error of 5.8 ± 1.6 years,
while basic sleep scoring measures had an error of 14.9 ± 6.29 years. After controlling for demographics, sleep, and health
covariates, each 10-year increment in age estimate error (AEE) was associated with increased all-cause mortality rate of 29% (95%
confidence interval: 20–39%). An increase from −10 to +10 years in AEE translates to an estimated decreased life expectancy of
8.7 years (95% confidence interval: 6.1–11.4 years). Greater AEE was mostly reflected in increased sleep fragmentation, suggesting
this is an important biomarker of future health independent of sleep apnea.

npj Digital Medicine           (2022) 5:103 ; https://doi.org/10.1038/s41746-022-00630-9

INTRODUCTION
Sleep clinics throughout the world evaluate millions of patients
every year. The gold standard diagnostic test for this evaluation is
nocturnal polysomnography (PSG), a test comprised of multiple
physiological signals, i.e., electroencephalogram (EEG), electro-
cardiogram (ECG), electrooculogram (EOG), chin and leg electro-
myogram (EMG), breathing effort and airflow, all of which are
recorded overnight. The PSG provides recording of multiple
physiological measures during sleep, at a time when the individual
is mostly immobile and uncontaminated by sensory inputs. It thus
contains a wealth of information on the normal physiology of a
given individual (notably brain physiology).
Sadly, the millions of PSGs collected every year are primarily used

clinically to visually extract simple metrics such as sleep latency,
proportion of time in various sleep stages, rates of sleep apnea
events (apnea-hypopnea index, AHI), periodic leg movement (PLM),
and arousals (arousal index, ArI). Scoring is done manually by trained
technicians and supervised by medical doctors, according to
American Academy of Sleep Medicine (AASM) guidelines1. This
scoring is time-consuming and prone to inter- and intra-rater
variability2. Of particular clinical importance are measures of sleep
disordered breathing events such as the AHI or associated hypoxic
burden, which has been associated with daytime sleepiness3,
cognitive impairment, and increased risk of cardiovascular disease
such as development of high blood pressure and stroke in multiple
studies independent of age, sex and obesity4–9. Sleep apnea has also
been shown to be associated with increased mortality risk
independent of obesity, age, and sex10.
Although sleep apnea measures are currently the main rationale

for conducting clinical sleep studies, there is evidence that other
aspects of objective sleep influence mortality and health out-
comes. All-cause mortality has been associated with an increase in

arousal burden11 (a measure of sleep fragmentation), decreased
sleep efficiency (SE)12 and decreased rapid eye movement (REM)
sleep amounts13. Similarly, decreased slow-wave sleep and low SE
have been associated with hypertension incidence and a variety of
cardiovascular outcomes among participants in the Sleep Heart
Health Study (SHHS)14,15. Finally, specific abnormalities such as
REM sleep behavior disorder (RBD) and loss of sleep-stage specific
autonomic regulation during sleep are well established early
precursors of synucleinopathies16–18.
Recently, promising deep learning methods have been devel-

oped that efficiently and objectively assist PSG analyses19–21.
These algorithms provide added information such as higher
resolution sleep stages and probabilistic measures, in contrast to
manual scoring that only offers categorical classification. However,
these new methods have mostly been confined to replicating a
scoring practice that is limited by arbitrary definitions1 that may
not capture all relevant information available in the data. Further,
they merely imitate human scoring without attempting to capture
all the rich incipient information contained in a full night PSG
study discussed above. Deep learning methods that utilize all
relevant information in PSGs may provide additional useful clinical
insights such as important health outcomes.
Age is one of the strongest predictors of morbidity and mortality.

Sleep architecture and subjective sleep complaints are also affected
by aging22,23. As people age, sleep becomes shorter23, more
fragmented24, exhibits fewer sleep spindles25, includes less slow
wave sleep, and, to a lesser extent, less REM sleep26. Moreover,
several of these changes have been linked to increased mortality,
even after controlling for the effects of age11–13.
A recent study modeled the age of subjects based on automatic

sleep-stage features from EEG recordings27. Furthermore, this
model’s age estimate (AE) error (AEE), the model residual that
represented a brain aging index, was associated with increased
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risk of mortality28, dementia29, and human immunodeficiency
virus (HIV)30. However, as the authors pointed out, this approach
was still limited by the use of hand-crafted features, and used only
the EEG signal, whereas other physiological signals also carry
important information about health and life expectancy. None-
theless, since age is readily available in all subjects, (unlike
mortality or other outcomes) predicting age may be a reasonable
first proxy to predicting poor outcomes in a variety of disease area.
In this study, we built on this previous study aiming by (1)

modeling age, as a proxy for mortality risk, directly using deep
learning models; (2) interpreting the features learned by the
models; and (3) investigating associations between the AEE of the
models and both all-cause and cardiovascular mortality.

RESULTS
Performance of age estimation models
In this study, we used a combined sample of 13,332 PSGs from
seven cohorts: the Stanford Technology Analytics and Genomics
of Sleep (STAGES)31,32, the Stanford Sleep Cohort (SSC)33,34, the
Wisconsin Sleep Cohort (WSC)4,34, the SHHS35,36, the Osteoporotic
Fractures in Men (MrOS) Sleep Study36–38, the Cleveland Family
Study (CFS)36,39, and the Home Positive Airway Pressure (Home-
PAP) Study36,40.
A set of AE models, comprised of deep neural networks, were

trained on 2500 PSGs from subjects with a close to uniform age
distribution between 6 and 90 years. These AE models each used a
set of input PSG signals: (a, Central EEG) C3-M2, C4-M1; (b, EEG+
EOG+ EMG) C3-M2, C4-M1, L-EOG, R-EOG, chin EMG; (c, ECG) ECG;
(d, respiratory) airflow, nasal pressure, thoracic and abdominal
belts, blood oxygen saturation. Finally, an ensemble model (e,
Ensemble–Avg.) was developed based on the average AE of
models (a), (b), (c), and (d). A validation set of 200 PSGs were used
to optimize hyperparameters of the AE models, of which the final
hyperparameter tunings are shown in Supplementary Table 1.
Performance of various AE models (based on EEG alone or

various components of the PSG, see Table 1) was evaluated as
mean absolute error (MAE) stratified by 5-year age intervals, as
shown in Supplementary Table 2 for the first test set, and in
Supplementary Table 3 for the HomePAP study (a second test
dataset with an age range from 20 to 80 years). The stratification
weighs each age interval equally despite a non-uniform age
distribution. Table 1 shows MAE for each data subset averaged
across all 5-year age groups ranging from 20 to 90 years. The best
performing model on the test set was the (e, Ensemble–Avg.)
model, which averages model (a–d), while the (a, Central EEG)
model generalized best to the HomePAP dataset. As a compar-
ison, we also report performance of using basic sleep study

metrics for age estimation, which includes ArI, AHI, total sleep time
(TST), wake after sleep onset (WASO), and percentage of NREM
stages (N1, N2, N3), and REM sleep.
A scatterplot of AE for model (e, Ensemble–Avg.) and

chronological age for the test set and HomePAP data is shown
in Fig. 1.
Night-to-night variability was investigated in the STAGES

dataset (n= 42). MAE was 5.93 years and 7.31 years during night
1 and 2, respectively. The difference between night 2 and 1 was
−1.17 ± 5.71 (mean ± standard deviation), which was not signifi-
cantly different from 0 (p= 0.19). The absolute difference between
nights were 4.42 ± 3.74 years (p= 2∙10−9).
The reliability of the AEs in longitudinal data was investigated in

the WSC (n= 505) with a time of 4.08 ± 1.02 years between visits.
The MAE was 4.34 ± 3.07 years for the first visit and 4.51 ±
3.32 years for the second visit. The AE increased by 3.37 ± 4.05
between visits. Hence, the average increase was 0.7 years higher
than for the chronological age (p= 0.00016).

Interpretation of deep learning framework and of age
estimation errors
The age difference obtained between the various AE models and
chronological age, i.e., AEE, can be considered a measure of how
much “younger” or “older” sleep in a PSG appears. As a sanity
check, we first examined associations between AEE of the models
with basic sleep measures, which are shown in Supplementary
Table 4. In general, higher AEE was associated with worse sleep
based on metrics related to sleep fragmentation [ArI, SE, WASO,
TST, and N1%]. The respiratory-based AEE shows a very strong
association with the AHI (b= 1.5, p= 4.7∙10−76), suggesting that it
indeed captures information about sleep disordered breathing,
which is known to increase with age.
Associations between AEE and sex, body mass index (BMI),

medication use (antidepressants and benzodiazepines), and
morbidities [hypertension, history of heart attack, congestive
heart failure (CHF), chronic obstructive pulmonary disease (COPD),
type 2 diabetes (T2D), and stroke] are shown in Supplementary
Table 5. Presence of T2D was associated with a higher AEE (b=
1.6, p= 9.0∙10−7) for the (a, Central EEG) model and (b= 1.2, p=
7.7∙10−5) for the (b, EEG+ EOG+ EMG) model. For the (c, ECG)
model, all heart related comorbidities were associated with a
higher AEE (hypertension: 2.2 years, p= 8.8∙10−24; CHF: 3.1 years,
p= 5.1∙10−7; history of heart attack: 1.8 years, p= 3.3∙10−6).
Moreover, hypertension was associated with higher AEE in all
but the (d, respiratory) model. Sex and BMI was associated with
higher AEE in the (d, respiratory) model (sex: b= 3.6, p= 3.5∙10−96;
BMI: b= 1.2, p= 2.0∙10−54). As for the stroke, COPD, and use of
benzodiazepines, no significant associations to AEE were found.

Table 1. Mean absolute error of age estimation models.

MAE

Model Train set n= 2500 Val set n= 200 Test set n= 10,509 HomePAP* n= 190

Basic sleep measures 14.9 ± 6.08 14.9 ± 6.53 14.6 ± 5.91 12.5 ± 4.06

(a) Central EEG 5.43 ± 1.25 6.52 ± 2.48 6.77 ± 2.2 7.65 ± 2.7

(b) EEG+EOG+EMG 5.35 ± 0.96 5.88 ± 2.09 6.81 ± 1.84 8.62 ± 2.92

(c) ECG 9.11 ± 1.89 11 ± 4.05 10.4 ± 2.23 13.9 ± 6.74

(d) Respiratory 8.87 ± 2.2 9.31 ± 2.39 8.09 ± 1.89 13.7 ± 6.05

(e) Ensemble–Avg. 5.4 ± 1.01 6.11 ± 1.84 5.8 ± 1.16 8.16 ± 3.75

The MAE is reported as mean ± standard deviation and was averaged across age intervals ([20, 25], [25, 30], …, [85–89]), which are reported for the test and
HomePAP set in Supplementary Tables 2 and 3. *The training and validation set includes no PSGs from the HomePAP study, thus it represents expected
performance in a new unseen cohort with a different technical setup. Basic sleep measures denote a linear regression model with the following predictive
variables: arousal index, apnea-hypopnea index, total sleep time, wake after sleep onset, and percentage of N1, N2, N3, and REM sleep. MAE: mean
absolute error.
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Gradient SHAP41,42 (SHapley Additive exPlanations) was used to
attribute relevance scores of the AE to input PSG signal samples.
For a given PSG, each signal sample was attributed with a
relevance score that add up the AE for all samples in that PSG.
Visual interpretation of relevance attribution, as shown in Fig. 2,
shows that model (b, EEG+ EOG+ EMG) AE is increased in the
presence of arousals and decreased in the presence of slow-wave
oscillations. Furthermore, as shown in Supplementary Fig. 1,
model (d, respiratory) AE is elevated in the presence of sleep
apnea, and model (c, ECG) AE indicates that arrhythmias
contribute to its AE.

The relationship between relevance scores and manually scored
sleep events was investigated to validate that these are mean-
ingful to the AE models. Relevance scores were averaged around
transitions of manually scored hypnograms, arousal, and apnea/
hypopnea events in PSGs from the CFS, the MrOS, and SHHS
cohort in the training set. In Fig. 3, relevance scores of model (b;
EEG+ EOG+ EMG) time-locked to sleep-stage transitions are
shown. On average, the relevance scores of model (b; EEG+
EOG+ EMG) are increased when transitioning to lighter sleep or
wakefulness. Furthermore, as shown in Supplementary Fig. 2, the
average relevance scores are affected by arousal and apnea.
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Fig. 2 Example of model (b; EEG+EOG+EMG) interpretation through relevance attribution of samples. The top plot shows relevance
scores averaged across channels (C3-A2, C3-A1, EOGL, EOGR, Chin EMG). The second plot shows EEG power in the δ-band (0–4 Hz) and the
combined α- and β-bands (>8 Hz). Red and blue indicate positive and negative attribution to the age estimate, respectively. Relevance
attribution was computed using gradient SHAP.

Fig. 1 Scatterplot of age estimate and chronological age in the test sets for model (e, Ensemble–Avg.). a The test set (n= 9899). The
dotted line indicates the standard error of the mean (SEM) calculated as σ=

ffiffiffi
n

p
. b The HomePAP test set (n= 190). The red line indicates the

optimal age estimate; the magenta lines indicate 5th, 50th, and 95th percentiles of age estimate in 5-year intervals. r is Pearson’s correlation
coefficient between age estimate and chronological age. MAE: mean absolute error.
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Association between age estimate error and mortality
Older age is the major predictor of mortality, an obvious
application of our AEE calculation was to explore whether a
positive AEE predicts increased mortality.
The combined dataset of subjects with both a PSG and

associated mortality data consisted of 9386 subjects from the
SHHS (n= 5696, deaths= 1285), the MrOS (n= 2781, deaths=
1662), and the WSC (n= 909, deaths= 98). This subset of data was
also used in the training, validation, and test set for age
estimation. The combined sample of subjects had a mean age
of 66.0 ± 11.1 years at baseline and was followed for a median of
12.1 ± 3.7 years.
Supplementary Table 6 shows the association between all-cause

mortality and a set of demographic, lifestyle, and health
characteristics that we investigated with Cox proportional hazard
models adjusted for age, sex, BMI, and cohort. The table also
displays the proportion of missing data, which was imputed for
further analyses.
The distributions of all demographics, lifestyle, and health

characteristics across quartiles of the corrected AEE (AEEc, which is
AEE corrected for age bias) for model (e, Ensemble–Avg.) are
shown in Supplementary Tables 7–9 for the SHHS, WSC, and MrOS,
respectively. Most notably, hypertension was more prevalent in
the highest AEEc quartile.
After controlling for covariates (see Table 2), each 10-year

increment in the AEE of model (e, Ensemble–Avg.), of which the
standard deviation was 6.82 years in this combined dataset, was
associated with a 29% (HR= 1.29, 95% confidence interval [CI]:
1.20–1.39) and 40% (HR= 1.40, 95% CI: 1.21–1.62) increase in all-
cause and cardiovascular mortality rates, respectively. In Supple-
mentary Tables 10–12, the results of the mortality analyses in each
cohort are shown. Restricting the analyses to individual cohorts
revealed that the association between AEE and mortality is
present in the SHHS and MrOS cohort, while analysis in the WSC
yielded mostly non-significant effects. However, this could be
explained by a lower sample size and fewer deaths in the WSC (n
= 909, deaths= 98) compared to the other cohorts.
In Fig. 4, survival curves for an AEE of +10 and −10 years for

model (e, Ensemble–Avg.) is shown, which was generated using
Cox Model 3 with all other covariates are set to their mean value.
The survival curve was extended to compute the change in life
expectancy for a change in AEE from −10 to 10 years. For model
(e, Ensemble–Avg.), given an age of 40, 60, or 80 years in Cox

Model 3, a decrease in life expectancy was 12.6 years (CI: 8.9–16.2),
8.7 years (CI: 6.1–11.4), or 6.0 years (CI: 4.2–7.8), respectively.
Because hypertension and sleep apnea were very common in

these cohorts, we also examined the mortality association in
subjects without hypertension and without sleep apnea (AHI ≥ 15). A
sensitivity analysis (see Supplementary Table 13) found that isolating
the analyses to a subset of subjects without hypertension (n= 5303,
deaths= 1291) decreased the hazard ratios of increased AEE to (HR
= 1.25, 95% CI: 1.11–1.40) and (HR= 1.31, 95% CI: 1.03–1.66) for all-
cause and cardiovascular mortality, respectively. As shown in
Supplementary Table 14, isolating the analyses to a subset of
subjects without sleep apnea (n= 5161, deaths= 1390) decreased
the hazard ratios of increased AEE to (HR= 1.22, 95% CI: 1.10–1.37)
and (HR= 1.24, 95% CI: 1.01–1.54) for all-cause and cardiovascular
mortality, respectively. These effects are significant within the 95% CI
in both the hypertension and sleep apnea sensitivity analyses. Lastly,
to justify the inclusion of training and validation data for our AE
models, we restricted the analysis to the test set (n= 8432, deaths
= 2601). As shown in Supplementary Table 15, the hazard ratios of
AEE are slightly decreased to (HR= 1.27, 95% CI: 1.18–1.38) and (HR
= 1.35, 95% CI: 1.16–1.56) for all-cause and cardiovascular mortality,
respectively.

DISCUSSION
Our results show that deep learning enables precise age
estimation and extraction of incipient and medically relevant
information from PSGs that predict mortality beyond the
capabilities of basic sleep metrics derived from sleep staging
and apnea scoring. Subjects’ ages were estimated with an MAE of
5.8 ± 1.16 years with model (e, Ensemble–Avg.), while basic
metrics had a MAE of 14.6 ± 5.91 years. We addressed the
interpretability problem of deep learning methods using gradient
SHAP, which suggested that the model’s estimates were largely
driven by clinically known waveforms (e.g., sleep-stage transitions
and apnea). We found that 10-year increments in AEE of the (e,
Ensemble–Avg.) model was associated with increased all-cause
mortality rate of 29% (HR= 1.29, 95% CI: 1.20–1.39) and increased
cardiovascular mortality rate of 40% (HR= 1.40, 95% CI: 1.21–1.62).
For a 60-year-old subject, the difference of −10 and +10 years in
AEE translates to a decreased life expectancy of 8.7 years (CI:
6.1–11.4) for Cox Model 3, which adjusts for basic sleep metrics
that are associated with early mortality.
The AE models performed well on the test set and generalized

well to the HomePAP study test set with a MAE of 8.16 ± 3.75 years
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for the (e, Ensemble–Avg.) model. Based on these results, we
expect the model to generalize to new data recorded in adult
subjects aged 20–90 from other clinics, obtaining MAEs between
5.8 and 8.16 years. Calibrating the AE in new, unseen populations
may however be necessary to achieve a MAE of 5.8 years in these
instances. Further, although the model was trained using data that
included children, this data was limited in amount and age range,
so our model is not validated for use in children. We however note
that validating similar age estimates in children in a separate study
could have great interest for the study of neurodevelopmental
disorders in children.
We found that model (e, Ensemble–Avg.) was biased for older

subjects, estimating preferentially a younger age. This may be
caused by either a regression to the mean of the predictions or by
unhealthy subjects having died in the older (>80 years) population,
i.e., a type of survival bias. Regression to the mean is a difficult issue
to handle in non-linear models. The AE models output layer did not
have any non-linear activation function, however, the AE still seem
to have a non-linear clipping of AEs (e.g., around 83 years in Fig. 1).
Given that the models have an uncertainty, it will drive the estimate

away from the edge case of 90 years, on average this estimate
would increase the loss. A similar effect is observed for young
subjects in both the test set and HomePAP set, which exhibit
systematic overestimation. It is likely that adjusting for this bias
observed in the test set would improve performance in new data.
Moreover, model (e, Ensemble–Avg.) had a significant (p= 2∙10−9)
night-to-night variability, which may result from of the first-night
effect. However, more PSGs with multiple nights are necessary to
confirm this. Using multiple PSGs for age estimation may alleviate
this problem.
A previous study used a linear model of sleep staging features

based on EEG only to model “brain age” and reported a MAE of
7.6 years27. However, the results are difficult to compare as the
dataset, age ranges, and investigated PSG signals differ.
The deep learning AE models appeared to largely rely on

patterns that are known to be related to aging such as sleep
fragmentation24. The relevance attribution analyses showed that
transitions to deeper sleep would cause model (b; EEG+ EOG+
EMG) to estimate a lower age. The analysis of arousal and sleep
apnea (Supplementary Fig. 2) showed that these modulate the AE.
Relevance scores were computed using a baseline of zero, which
affects how the relevance scores should be interpreted. For
example, relevance scores were increased after but not during
apnea/hypopnea events; however, this is expected as low
amplitude breaths are likely healthier than the baseline of zero
amplitude in complete apnea. Moreover, the gradient SHAP
method assumes an independent and linear attribution from each
sample to the AE41,42, which is not capable of accurately
describing PSG patterns or the processing in the deep neural
network. Therefore, we can only argue that the models probably
use non-linear statistics related to these known patterns without
strictly summarizing sleep patterns to the frequency of binarized
events. Alternatively, we could have interpreted the model
attention network weights, however, the long short-term memory
networks render these weights difficult to interpret.
Survival analysis found that greater AEE was associated with

increased all-cause and cardiovascular mortality. In the Cox Models
for all AE models, AEEs had larger hazard ratios while controlling for
demographics and medication than controlling for only age or
including health and basic sleep metrics. We infer from this that (1)
the AE is more meaningful when knowing demographics and
medication, and (2) the AEE is not fully explained by basic sleep
metrics such as sleep-stage distributions, ArI, and AHI. It is thus
evident that a PSG contains much more information than what is

Table 2. Mortality hazard ratios per 10-year increment in AEE in the combined data of the Sleep Heart Health Study, the Wisconsin Sleep Cohort, and
the MrOS Sleep Study.

Cox Model 1 HR (95% CI) Cox Model 2 HR (95% CI) Cox Model 3 HR (95% CI)

All-cause (a) Central EEG 1.12 (1.07–1.17) 1.15 (1.10–1.20) 1.11 (1.06–1.16)

(b) EEG+EOG+EMG 1.11 (1.06–1.17) 1.17 (1.11–1.24) 1.14 (1.08–1.20)

(c) ECG 1.08 (1.04–1.12) 1.09 (1.06–1.13) 1.07 (1.03–1.11)

(d) Respiratory 1.04 (1.00–1.09) 1.10 (1.04–1.16) 1.09 (1.03–1.15)

(e) Ensemble–Avg. 1.23 (1.15–1.31) 1.38 (1.28–1.49) 1.29 (1.20–1.39)

Cardiovascular (a) Central EEG 1.21 (1.11–1.32) 1.24 (1.14–1.36) 1.17 (1.07–1.28)

(b) EEG+EOG+EMG 1.13 (1.03–1.25) 1.21 (1.09–1.34) 1.15 (1.04–1.28)

(c) ECG 1.15 (1.08–1.22) 1.16 (1.09–1.24) 1.11 (1.04–1.19)

(d) Respiratory 1.04 (0.95–1.13) 1.09 (0.97–1.22) 1.07 (0.96–1.19)

(e) Ensemble–Avg. 1.36 (1.20–1.54) 1.58 (1.37–1.83) 1.40 (1.21–1.62)

The mortality analysis was performed with (n= 9386, deaths= 3045) for all-cause mortality and (n= 9188, death= 976) for cardiovascular mortality. HR hazard
ratio, AEE age estimate error. Model 1: age. Model 2: age, sex, body mass index, race, smoking status, education level, daily alcohol intake, daily caffeine intake,
benzodiazepines, sedatives, antidepressants, and cohort. Model 3: Model 2+wake after sleep onset, N2%, REM%, arousal index, apnea-hypopnea index, sleep
time with blood oxygen saturation below 80%, Epworth Sleepiness Scale Score, hypertension, congestive heart failure, history of heart attack, stroke, and type
2 diabetes.
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Fig. 4 Survival curve for all-cause mortality with an AEE varying
±10 years. The survival curve was generated for all data (n= 9386,
deaths= 3045) and model (e, Ensemble–Avg.) using the Cox
proportional hazards model 3 shown in Supplementary Table 3.
The 95% CI express the uncertainty in the modeled hazard ratio. AEE
age estimate error, CI confidence interval.
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summarized in basic sleep metrics. Our analysis (see Supplementary
Table 5) of AEE in relation with morbidities found associations to T2D,
hypertension, CHF, and history of heart attack, but pathways
underlying these associations are difficult identify. Short sleep
duration in insomnia has been shown to be associated with T2D43,
which may explain the association in model (a, central EEG), and (b;
EEG+ EOG+ EMG). Model (c, ECG) was associated with hyperten-
sion, CHF, and history of heart attack, which was expected as these
factors affect the morphology of ECG. Hypertension was associated
with increased AEE in all but model (d, Respiratory). A sensitivity
analysis that excluded subjects with hypertension (see Supplemen-
tary Table 13) showed that AEE was still associated with increased
mortality, although the effects were smaller. In future studies, the
association between AEE and mortality risk should be investigated in
completely unseen cohorts to study the generalizability of this effect.
A strength of this study is the inclusion of multiple cohorts,

likely increasing generalizability of our models. This is however
also a limitation as measuring sleep with a common instrumenta-
tion and in a more controlled environment could have better
predictive power by reducing technical noise, first-night effect,
variation in recording equipment, electrode placement, room
temperature, and external noise, etc. Another limitation is that
sleep varies from night-to-night and our AE relies on only one
sleep study per subject. It is likely that multiple examinations per
subject and establishing trajectories of aging would have stronger
predictive power.
Other approaches for age estimation have relied on epige-

netics44, proteomics45, neuroimaging46,47, etc., but few of these
markers have been linked to hard outcomes such as mortality.
Freire-Aradas et al. found that 7 DNA methylation markers
estimated age with a median age error of ±3.07 years44. A
systematic review of proteomic studies found that a 83-protein
could estimate age with a MAE of 5.5 years45. Cole et al. leveraged
T1-weighted magnetic resonance imaging (MRI) to estimate age
with a MAE of 5.02 years. Moreover, each 1-year increment in this
AE was associated with a 6.1% increased relative risk of all-cause
mortality47. This corresponds to a hazard ratio of 1.29 for a 10-year
increment, which is close to the hazard ratio we report in this
study for the ensemble model. Advantages of PSG over these
methods include being non-invasive, less expensive, and more
accessible. It is also notable that sleep, should causality be
demonstrated in future studies, can be modified by well-
established behavioral and pharmacological therapies, unlike
many of these other proxies.
In that sense, the AE may also serve as an outcome measure in

adult subjects (20–90 years) for interventions in both clinical and
research settings. Moreover, the AE could potentially serve as an
easily understood marker of health for patients and the general
public. In contrast, current sleep quality measures such as SE and
N3% can be difficult to interpret for a given sleep clinic patient.
Thereby, a sleep-based AEE could improve health literacy48 among
patients. A recent Danish study found that interviews based on body
age assessments motivates health promotion in the workplace, which
lead to a decrease in smoking and metabolic syndrome among the
employees49. Moreover, a meta-analysis found that health literacy
was correlated with treatment adherence, especially among vulner-
able groups50. These findings may apply to sleep health as well,
which could lead to better adherence to treatment such as lifestyle
changes and continuous positive airway pressure (CPAP) therapy. This
could be interesting to investigate in future studies.
Finally, our predictions of mortality are estimated through

cardiovascular, respiratory, and brain activity related to aging,
which we hypothesize is a likely proxy of premature aging, but not
likely the sole or even main predictor of mortality. This is
illustrated by the fact we recently found that reduced REM sleep
amounts also significantly predicted mortality in these same
samples13, and as shown in Cox Model 3 in Supplementary Table 3
that adjust for REM sleep%, addition of REM sleep to the Cox

Model did not diminish predictive effect of AEE on mortality.
Clearly, other factors than AEE in the PSG are likely incipient
biomarkers of poor health predicting mortality or new-onset
morbidity. Additional approaches aiming at directly predicting
mortality51 and the development of cardiovascular and brain
morbidity in these cohorts with and without controlling for AEE
may help to uncover additional information in PSG recordings.

METHODS
Data description
Diversity of data is a necessity for the success of a supervised deep-
learning algorithm52. Olesen et al. showed that both data quantity and
diversity were essential for automatic sleep staging, a supervised learning
task, using polysomnography data53. Diversity of data can be ensured
using polysomnography recordings from multiple study cohorts with
different study objectives and patient populations.
In this study, we included participants with a wide age range from seven

study cohorts: STAGES31,32, the SSC33,34, the WSC4,34, the SHHS35,36, the
MrOS36–38, the CFS36,39, and HomePAP Study36,40. Access to the SHHS,
MrOS, CFS, and HomePAP Study was granted through the National Sleep
Research Resource36. This study was approved by institutional review
boards and written informed consent was obtained from all participants.
The included study cohorts are briefly described in the subsections below:

The stanford technology analytics and genomics of sleep. The STAGES31,32

is a prospective cross-sectional multi-site cohort designed to investigate
the relationship between different sleep-related data including in-lab
polysomnography, questionnaire data, genomics, actigraphy data etc. A
total of 1859 PSGs were recorded in 1627 participants of ages between 13
and 83 at the following 6 clinical sites: Stanford University, Bogan Sleep
Consultants, Geisinger Health, Mayo Clinic, MedSleep, and St. Luke’s
Hospital. A total of 1536 PSGs in 1494 participants were included, while the
remaining PSGs were excluded for being a split-night study or due to
missing annotations. The study was approved by institutional review
boards at each site.

The Wisconsin sleep cohort. The WSC4,34 is an ongoing longitudinal
population-based cohort of employees from Wisconsin state agencies, and
it approximates a population-based sample, although they are generally
more overweight4. A total of 1682 PSGs in 962 participants was included,
which aged between 37 and 78. The participants were tracked through
2018 and deaths were identified by matching social security numbers with
death record sources13. A detailed description of the cohort can be found
in Young et al.4 and Moore et al.34. Cardiovascular mortality was
categorized using the same rules as Leary et al.13. The study has been
reviewed and approved by the University of Wisconsin Institutional
Review Board.

The Stanford sleep cohort. The SSC33,34 is a cohort of patients who
underwent in-lab PSG at the Stanford Sleep Clinic. A total of 700
independent PSGs was included in patients aged between 13 and 90. A
detailed description of the cohort can be found in Andlauer et al.33.

The MrOS sleep study. The MrOS Sleep Study36–38 is a multi-site cohort of
older men to study the association between sleep disorders and vascular
disease, falls, fractures, and mortality. A total of 2874 male participants
were included who underwent full in-home PSG recording. Vital status was
determined based on contact every 4months, or in case of no response, by
their next-of kin. Reported deaths were confirmed by centralized review of
death certificates13,37. Deaths through August 2018 were included in these
analyses. Cardiovascular mortality was categorized using the same rules as
Leary et al.13. The study was approved by the institutional review board at
each of the six sites: University of Alabama at Birmingham, University of
Minnesota, Stanford University, University of Pittsburgh, Oregon Health
and Science University, and University of California, San Diego.

The Cleveland family study. The CFS36,39 is a large family-based study of
sleep apnea, consisting of probands with sleep apnea, neighborhood
controls, and their family members. We included PSG recordings obtained
in the Clinical Research Center from 730 participants of age between 6 and
88 years. The study was approved by the institutional review committee at
the University Hospitals Case Medical Center.
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The sleep heart health study. The SHHS35,36 is a large multi-center cohort
designed to study the association between sleep apnea and cardiovascular
disease. We included 5703 participants, aged between 40 and 90, were
studied with in-home PSG. Participants vital status was continually
identified and confirmed using interviews, written annual questionnaires,
contact to next-of-kin, hospital records, obituaries, and linkage with the
Social Security Administration Death Master File35,54. Cardiovascular
mortality was categorized as recorded by parent studies35,54. The study
was approved by institutional review boards at each of the six sites:
University of Arizona, Boston University, University of California-Davis,
Johns Hopkins University, University of Minnesota, and New York
University.

The home positive airway pressure study. The HomePAP Study36,40 is a
multi-site randomized controlled trial with the aim of comparison in-lab
PSG and in-home unattended portable monitoring for diagnosis of
obstructive sleep apnea and CPAP treatment. We included 190 patients
of age between 20 and 80 with in-lab PSG without full or split-night CPAP
at one of 7 sites: Case Western Reserve University affiliates (University
Hospitals, MetroHealth Medical Center, and Cleveland Clinic), North-
western University, University of Wisconsin in Madison, University of
Minnesota, and University of Washington. The study was approved by
institutional review boards at each site.

Data use and study design. Across the cohorts, PSGs were excluded if the
participant’s age was unknown, the recording was a CPAP split-night, the
recording included <3 h of sleep, or if more than one of the PSG signals
were missing.
To facilitate the development and testing of the AE models, the

combined data were split into a training set (n= 2500), a validation set (n
= 200), a test set (n= 10,699), and a second test set comprised of repeat
visits (n= 547). The AE models are developed using the training and
validation set, which should include diverse data at all ages. To ensure this,
we propose a sampling strategy with uniform age distribution in favor of
the commonly used random sampling. Firstly, patients who used CPAP or

had any known neurological disorders including narcolepsy and RBD were
allocated to the test set. Data was sampled for the training set by
iteratively excluding data with the most represented age, cohort, and sex,
see Supplementary Table 16 for details. Similarly, the validation set uses
the same algorithm with the remaining data. The high-level flow of data
from each cohort to various sets used for age estimation and evaluation of
mortality risk is shown in Fig. 5.
The test set used the remaining data, which was not uniform but can

be analyzed stratified by age. Participants with an age >89 were
recorded as being 90, therefore we chose to exclude these from the test
set. Moreover, data from the HomePAP Study (n= 190) was left out of
the remaining test set for an additional test set, which provided an
unbiased performance estimate as no data from the cohort is included in
the training or validation set. Supplementary Fig. 3 shows the
distribution of age and cohorts across the training, validation, and test
sets. Supplementary Table 17 shows the distribution of basic PSG metrics
across the included cohorts. The apneas and hypopneas were scored in
agreement with AASM guidelines1, which requires associations with
either a 3% desaturation or an arousal for hypopneas. Arousals were
either scored manually in agreement with the AASM guidelines1 (CFS,
MrOS, SHHS, HomePAP) or automatically scored using a previously
validated method21 (STAGES, WSC, SSC) when manual annotations were
missing.

Preprocessing of polysomnographic signals
The PSG data included in this study have been recorded at many clinical
sites with varying signal montages, environments, technicians, equipment,
software, and acquisition settings. These differences are addressed in the
preprocessing step to both standardize the data and eliminate signal
artifacts. Specifically, we implemented a preprocessing that can (1) select
the appropriate signal derivations; (2) resample signals to a desired and
standardized sampling frequency; (3) eliminate signal artifacts; and (4)
normalize signal amplitudes.
A PSG recording involves measuring many physiological signals and

these can vary between recordings. Most commonly, the PSG recording
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Validation set 
(n = 200)

Test set 
(n = 10,699)

Test set V2 
(n = 547)

Uniform age 
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HomePAP 
(n = 190)

STAGES 
(n = 1,536)
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(n = 730)
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(n = 2,874) 
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Fig. 5 Use of data for age estimation and evaluating mortality risk. a The data from six cohorts are sampled to generate a training and
validation set with a uniform age distribution. The remaining data comprises a test set, some of which has additional visits (test set V2). b Age
estimation models are optimized and evaluated in all data. c Associations between increased age estimate errors and mortality risk are
evaluated in all available data using Cox proportional hazards models.
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includes electroencephalography (EEG) signals, electrooculography (EOG)
signals (left and right), electromyography (chin), electrocardiography (ECG),
nasal pressure, oral airflow, plethysmography belts (abdominal and chest),
and blood oxygen saturation. Except for frontal and occipital EEG, we
included all of these as they were available in almost all cohorts. Potential
missing signals was substituted for flat signals of zeros.
The convolution neural networks (CNNs) assume a constant sampling

rate, therefore, the signals are resampled to a sampling frequency of
128 Hz, which enables all signals to be stacked in one tensor. This
frequency was chosen as it preserves most relevant information while
still imposing a relatively low computational burden. The resampling was
implemented with a finite impulse response (FIR) low-pass filter with a
Kaiser window. However, the blood oxygen saturation was resampled
with linear interpolation.
Thereafter, signals were filtered using infinite impulse response (IIR)

filters to eliminate artifacts and ensure that signals contained similar
spectral content across recordings. The IIR filters were implemented as
elliptic filters with an order of 16, a maximum passband ripple of 1 dB,
and minimum stopband attenuation of 40 dB. The cut-off frequencies
for the filters were the following: EEG and EOG: band-pass (0.3–45 Hz);
EMG: high-pass (10 Hz); ECG: high-pass (0.3 Hz); nasal pressure: high-
pass (0.1 Hz); airflow and plethysmography belts: band-pass (0.1–15 Hz);
and blood oxygen saturation: no filtering. All filters were applied
forwards and backwards to avoid signal phase distortion.
Finally, the signal amplitudes, except for the blood oxygen saturation,

were normalized such that −1 and 1 corresponded to the 5th and 95th
percentiles. Although, the blood oxygen saturation was normalized such
that −1 and 1 corresponded to 60% and 100% saturation. The normal-
ization enables efficient training of neural networks52.

Deep learning framework for age estimation models
The proposed deep learning framework for AE was designed to input C
number of preprocessed PSG signals of T samples x 2 RC ´ T and output an
estimate of the subject’s age ŷ 2 Rþ . In the subsections below, the
network architecture, the optimization approach, performance testing, and
the interpretation of models is presented.
A challenge in end-to-end deep learning processing of PSG recordings is

the huge data size, which usually is of 8 h corresponding to an input
dimension of x 2 R12´ ð128´ 60´ 60´ 8Þ corresponding to roughly 177 MB in
32-bit float. Directly optimizing a network to map the whole night’s PSG to
estimate age is practically infeasible as intermediate network activations
must be saved for optimization through backpropagation. Therefore, we
chose to optimize the networks in two phases.
Phase (1): Estimating age based on 5-min epochs of PSG data

xi 2 RC ´ ð128´ 60´ 5Þ .
Phase (2): Estimating age based on the latent space learned zi 2 RM in

phase 1 (at the network layer preceding the output layer) for all 5-min
epochs of length q in a whole night’s recording z 2 RM ´ T=qb c .
Thereby, the networks first learn signal patterns in 5-min epochs that are

associated with aging, and secondly, distributions of these patterns across
the night taken into consideration by the networks.

Neural network architecture of age estimation models. The network
incorporates a series of structures that have shown success in sleep-
stage classification from PSG data19,53,55,56, image classification57, and
natural language processing58.
As shown in phase (1) in Supplementary Fig. 4, 5-min epochs of data xi

are processed through a channel mixing layer, a CNN using inverted
residual bottleneck blocks (see Supplementary Fig. 5), a bi-directional long
short-term memory59 (Bi-LSTM) layer, an additive attention58,60 layer, and
two dense layers, which produces an estimate of age ŷP1i .
As shown in phase (2) in Supplementary Fig. 4, the latent space zi is

concatenated from the layer activation in phase (1) at the last layer and the
average activation after the Bi-LSTM layer to summarize the 5-min epochs
of data xi. Like phase (1), the whole night’s latent space z is processed
through a Bi-LSTM layer, an additive attention layer, and two dense layers,
which produce a final AE ŷP2.
The implementation details of each neural network type61–65 are

presented in the Supplementary Notes.

Optimization scheme for age estimation models. The network was
optimized in two phases as outlined in Supplementary Fig. 4 to both
lower the computational burden and increase the amount of training data.
The Huber loss used as the objective function to minimize and was defined

as

LH ¼ f xð Þ ¼
1
2 y � ŷð Þ2; for y � ŷj j< 5

5 y � ŷj j � 1
2 5

� �
; otherwise;

(
(1)

which corresponds to an L2 loss for an error <5 years and L1 loss
otherwise. This loss weighs outliers less than an L2 loss while retaining a
continuous gradient. The loss was further divided by a factor of 112.5 such
that an error of 25 years corresponds to a loss of 1. Using this loss and L2
weight decay (not counting network bias’s), the network was optimized
using Adam optimization66 with β1= 0.9 and β2= 0.999.
Additional optimization settings and hyperparameter tuning methods67

are described in Supplementary Notes.
We experimented with various combination of PSG signals: (a, Central

EEG) C3-A2, C4-A1; (b, EEG+EOG+EMG) C3-A2, C4-A1, L-EOG, R-EOG, chin
EMG; (c, ECG) ECG; (d, Respiratory) airflow, nasal pressure, thoracic and
abdominal belts, SaO2.
Moreover, an ensemble model (e, Ensemble–Avg.) was developed based

on models (a), (b), (c), and (d).
Finally, as a comparison to basic sleep summary measures, a linear

regression model using sex, BMI, ArI, AHI, TST, WASO, and percentage of
N1, N2, N3, and REM sleep was developed.

Performance quantification of age estimation models. The performance of
the AE was quantified using mean absolute error (MAE) and Pearson’s
correlation coefficient. The test set was not characterized by a uniform age
distribution; therefore, we measured the MAE stratified by 5-year age
intervals (MAEi) with intervals ([20, 25], [25, 30], …, [85–89]). The average
MAE across age intervals MAEi was used as a final measure of performance.

Interpretation of age estimation models. Deep neural networks are
traditionally considered black boxes due to their complexity, which is of high
concern generally and even more so in a clinical setting. However, in recent
years several methods have been proposed that can interpret network
decisions in a meaningful way68,69. We applied gradient SHAP41,42 to distribute
relevance scores to each PSG sample using phase (1) of the optimized
networks. To remove noise, the sample relevance scores were filtered by a
Gaussian window with a length of 10 s and standard deviation of 0.234 s.
Relevance scores were averaged around transitions of manually scored
hypnograms, arousal, and apnea/hypopnea events in PSGs from the CFS,
MrOS, and SHHS cohort in the test set. Here we expected to see increases in
relevance scores arousals, transitions to lighter sleep, and sleep apnea.
Moreover, we examined statistical associations between the AEE and

conventional sleep parameters from manual scoring.

Association between age estimation and mortality
The usefulness of the AEE as a marker for sleep health was examined by
studying its association with all-cause mortality. This analysis was
performed in the SHHS, MrOS, and WSC.

Statistical analyses. We considered that missing data were missing at
random and these were imputed using multivariate imputation by chained
operationalized equations using R 4.0.4 MICE package70. Information about
CPAP had a lot of missing data (0 for WSC, 5603 for SHHS, and 2671 for
MrOS), therefore, we excluded the few subjects (n= 74) that used CPAP
from these analyses.
We employed Cox proportional hazards models to evaluate associations

between AEE and all-cause mortality. The results are reported as hazard
ratios (HR) along with their 95% confidence intervals (CI) for every 10 years
increase in AEE, which is close to the standard deviation of AEE.
The Cox proportional hazards models controlled for a combination of

variables based on clinical and empirical knowledge13. Covariates were
included in three combinations to investigate if the association was
dependent on these covariates. Cox model 1 adjusted for age; Cox model 2
that included covariates we clinically known or suspect to influence
mortality: age, sex, BMI, race, education, smoking status, daily alcohol
intake, daily caffeine intake, medication use (antidepressants, benzodiaze-
pines, and sedatives), and study site. Cox model 3 that included covariates
from Cox model 2 and covariates empirically found to affect mortality in
the MrOS cohort using 6-fold cross validation13: NREM 2%, REM%, SaO2-80,
WASO, ArI, ESS, congestive heart failure, chronic obstructive pulmonary
disease, type 2 diabetes, heart attack, and stroke. The proportional hazards
assumption for AEE was confirmed graphically by analyzing the scaled
Schoenfeld residuals.
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A summary of all covariates was computed for each quartile of the AEE
corrected for age variation (AEEc) for model (h, Ensemble–Avg. EEG). The
AEEc was computed as the residuals in the linear regression model AEE=
1+ age+ ε, i.e., where ε is the AEEc.
Fitted Cox proportional hazards models were formulated as survival

functions SKM0 tð ÞzðxÞ , where SKM0 tð Þ is the baseline survival function and
z xð Þ ¼ expðβ0 þ β1x1 þ ¼ þ βnxnÞ. The survival functions were plotted
with the AEE as ±10 years, corresponding to the estimated hazard ratio exp
(βAEE × 10). Moreover, similar to a previous approach28, we computed the
effect of an increased AEE on life expectancy by extending the survival
curve and computing the difference in curve area. The baseline survival
curves were extended by fitting a Weibull distribution SW0 ðtÞ. Life
expectancy was computed as the area of SW0 tð ÞzðxÞ with age set to 40,
60, or 80 years and the other covariates to their median in that age range
±10 years. The difference in life expectancy was found by subtracting the
LE for AEE=−10 and AEE= 10.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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