
Lawrence Berkeley National Laboratory
LBL Publications

Title
Evapotranspiration Partitioning Using Flux Tower Data in a Semi‐Arid Ecosystem

Permalink
https://escholarship.org/uc/item/50s5256w

Journal
Hydrological Processes, 39(3)

ISSN
0885-6087

Authors
Kar, Kanak Kanti
Haggerty, Ryan
Sharma, Harmandeep
et al.

Publication Date
2025-03-01

DOI
10.1002/hyp.70083

Copyright Information
This work is made available under the terms of a Creative Commons Attribution 
License, available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/50s5256w
https://escholarship.org/uc/item/50s5256w#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


1 of 11Hydrological Processes, 2025; 39:e70083
https://doi.org/10.1002/hyp.70083

Hydrological Processes

RESEARCH ARTICLE OPEN ACCESS

Evapotranspiration Partitioning Using Flux Tower Data in 
a Semi-Arid Ecosystem
Kanak Kanti Kar1   |  Ryan Haggerty1   |  Harmandeep Sharma2   |  Dipankar Dwivedi3   |  Tirthankar Roy1

1Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Omaha, Nebraska, USA  |  2Department of Natural Resources and 
Environmental Design, North Carolina A&T State University, Greensboro, North Carolina, USA  |  3Climate and Ecosystem Sciences Division, Lawrence 
Berkeley National Laboratory, Berkeley, California, USA

Correspondence: Tirthankar Roy (roy@unl.edu)

Received: 2 July 2024  |  Revised: 9 January 2025  |  Accepted: 31 January 2025

Funding: This work was supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research, under awards 
DE-SC0009732 and DE-AC02–05CH11231, respectively. This work was also partially supported by the OASIS Project under the Small Business Innovation 
Research program and the Watershed Function Scientific Focus Area at Lawrence Berkeley National Laboratory.

Keywords: biomass productivity | ET partitioning | evaporation | hydrometeorology | SHAP | transpiration

ABSTRACT
Information about evapotranspiration (ET) and its components, that is, evaporation and transpiration, is crucial for a wide 
range of water and ecosystem management applications. However, partitioning ET into its two components is often challenging 
because of their spatiotemporal variabilities and lack of process understanding. This study developed a machine learning (ML) 
framework to shed light on ET processes and assess the relative importance of different drivers by incorporating hydrometeor-
ology and biomass productivity variables. The Shapley Additive Explanations (SHAP) approach was applied to enhance explain-
ability and rank the importance of ET drivers and their components. A total of 62 variables covering hydrometeorological and 
biomass productivity dimensions were considered from the Reynolds Creek Critical Zone Observatory (CZO) station in Idaho. 
The variable importance assessment identified the leading drivers individually for evaporation, transpiration and ET (soil water 
content for evaporation, vapour pressure deficit for transpiration and soil water content for ET). The results further highlighted 
the value of combining hydrometeorological and biomass productivity variables to achieve better predictability of ET processes.

1   |   Introduction

Evapotranspiration (ET) is one of the vital components of 
the water cycle, describing the movement of water from soil 
and plants into the atmosphere (Prein and Pendergrass  2019; 
Koutsoyiannis 2020; He et al. 2021; Raimi et al. 2021; Yang, Yang 
et al. 2021). ET consists of evaporation, a physical process of liq-
uid water vaporising and transpiration, the loss of water vapour 
through plant stomata. Understanding ET-related mechanisms 
and the partitioned components of ET, that is, evaporation and 
transpiration, is essential for a wide range of water and ecosystem 
management applications, such as irrigation scheduling, sustain-
able water usage, water conservation and ecological preservation 
(Huang et al. 2019; Ma and Song 2019; Srivastava et al. 2024).

Significant efforts have been made to advance the scientific 
understanding of ET partitioning. Some of the well-known 
methods for this purpose include isotope measurement (Kool 
et  al.  2014), carbon–water vapour correlation (Scanlon and 
Sahu 2008), numerical models like Shuttleworth-Wallace (Zhou 
et al. 2006) and software models, such as Hydrus-1D (Tafteh and 
Sepaskhah  2012); however, they have their limitations. These 
methods often rely on data, such as water use efficiency, which 
is seldom available on a wide scale or requires extensive instru-
mentation. For example, isotope measurement techniques are 
instrumentation-heavy and often impractical for large-scale or 
routine applications. Similarly, carbon–water vapour correlation 
methods, also popular for ET partitioning, depend on continuous 
and precise measurements of carbon fluxes—something that is 
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not always readily available. While powerful, numerical models 
and software like Hydrus-1D often require detailed input data 
on soil properties and climatic variables that may not be readily 
accessible or unavailable for many areas. This is where machine 
learning (ML) can play a crucial role. ML algorithms can effi-
ciently mine valuable information from the available data and 
facilitate scientific understanding of the ET partitioning process 
with high accuracy and much reduced computational costs.

ML has already been effectively applied to various environmen-
tal and hydrological problems, such as obtaining high-accuracy 
leaf area index (LAI) data (Gao et al. 2021, 2023) and correct-
ing relative humidity data (Zhang et al. 2023). ML has also been 
used for ET estimation (Whitley et al. 2009; Dou and Yang 2018; 
Kazemi et al. 2020; Liu et al. 2020; Gao et al. 2021, 2023; Chen 
et  al.  2023); however, ET partitioning remains largely unex-
plored in this context. Furthermore, most studies aimed for high 
accuracy but often neglected insights into the drivers behind 
ET (Eichelmann et al. 2022; Stapleton et al. 2022). For example, 
Eichelmann et al. (2022) developed an artificial neural network 
model that provides high accuracy but limited knowledge of the 
relative importance of different variables. Similarly, Stapleton 
et  al.  (2022) used recursive feature elimination to improve 
model performance; however, the underlying processes of ET 
partitioning were not thoroughly explored.

These limitations necessitate delving into the potential of the 
ML methods for accurately partitioning ET into its components. 
Therefore, this study aims to improve the accuracy of ET par-
titioning and the understanding of its drivers. We hypothesize 
that integrating hydrometeorological and biomass productivity 
variables into an ML framework provides a robust approach 
for accurately estimating ET and its components and identi-
fying their relevant drivers. Our approach utilises the random 
forest (RF) algorithm to test our hypothesis. By integrating this 
algorithm with hydrometeorological and biomass productivity 
variables, our study aims to accurately estimate evaporation, 

transpiration and ET individually, followed by variable impor-
tance assessment to understand the role of different drivers by 
implementing an explainable AI technique, Shapley Additive 
Explanations (SHAP).

2   |   Data and Methods

2.1   |   Study Area and Data

The experimental study site is the Reynolds Creek Critical Zone 
Observatory (CZO) (Seyfried et al. 2018), located in the Owyhee 
Mountains of southwestern Idaho, USA (latitude 43.1675° N, 
longitude 116.7132° W, elevation 1425 m). This semi-arid site is 
situated is notable for its critical ecosystem and biodiversity. The 
USDA-ARS Northwest Watershed Research Center operates 
the site (AmeriFlux ID: US-Rws, Reynolds Creek Wyoming big 
sagebrush) and all data (hydrometeorology and biomass produc-
tivity) were collected using the reliable Eddy Covariance (EC) 
method. The geographical location of the study site is shown in 
Figure 1, where Reynolds Creek drains north of the Snake River. 
The dominant vegetation is Wyoming sagebrush (Artemisia tri-
dentata ssp. wyomingensis). Although the area is classified as a 
cold desert, the climate varies, ranging from semi-arid to sub-
humid. Precipitation dominates at lower elevations, while snow-
fall is more common at higher elevations (Sharma, Reinhardt 
et  al.  2020). The annual average air temperature (TA) ranges 
from 4.9°C to 8.9°C, and the mean yearly precipitation varies 
from 230 to 1100 mm, and snowfall accounts for 20%–70%, de-
pending on elevation (Sharma, Reinhardt et al. 2020).

The US-Rws dataset is available through the AmeriFlux data-
sharing platform under an open-source licence (https://​ameri​
flux.​lbl.​gov/​sites/​​site-​search/​). The study covers approximately 
7 years of data (2014–2020), considering 62 variables, including 
TA, shortwave and longwave radiation (SW and LW), vapour 
pressure deficit (VPD), atmospheric pressure (PA), precipitation 

FIGURE 1    |    Study location at Reynolds Creek, Idaho, USA. The station location photo was taken from the Critical Zone Collaborative Network 
website (https://​czo-​archi​ve.​criti​calzo​ne.​org/​reyno​lds/​) and the EC flux tower.
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(P), wind speed (WS), soil conditions (e.g., temperature, water 
content) and biomass productivity as indicated by net ecosystem 
exchange (NEE), ecosystem respiration (RECO) and gross pri-
mary production (GPP). Subscripts attached to acronyms indi-
cate their derivation methods and numerical subscripts specify 
the depth for depth-dependent variables (detailed descriptions 
are available in Table  S1). We obtained the daily raw data set 
from the EC system covering the period from 1 January 2014, 
to 31 December 2020, which spans 2556 days. Additionally, we 
collected observed sap flow (transpiration) data from 15 May 
2015, to 20 October 2017, covering 889 days and applied it for ML 
(training and testing). From 2015 to 2017, we selected predictor 
variables for the corresponding time series and found that 5.17% 
of the data was missing (Tables S2–S4). Daily interval data was 
used, and rows with missing values were discarded before run-
ning the ML algorithm. Biomass productivity variables (NEE, 
GPP and RECO) were not used to estimate/gap-fill the target 
ET from flux tower latent heat flux observations, ensuring no 
potential confounders. Missing values were filled using mar-
ginal distribution sampling and model efficiency analysis (Josse 
et al. 2024; Thurow et al. 2024).

Several assumptions were employed to simplify the challenge of 
establishing ground-truth data for the contributions of evapora-
tion, transpiration and ET to the hydrological cycle, drawing on 
insights from Fellows et al. (2017) and Flerchinger et al. (2020), 
who offer valuable data on carbon and water fluxes within the 
Reynolds CZO, particularly, in a sagebrush ecosystem (Fellows 
et  al.  2017; Flerchinger et  al.  2020). For example, Fellows 
et al. (2017) offer a comprehensive dataset on partitioned carbon 
and energy fluxes, noting potential sensor heating issues with 
the LI7500A, which may affect data accuracy during cooler 
weather. Flerchinger et  al.  (2020) analyse water and carbon 
fluxes across an elevational gradient, highlighting significant 
differences in GPP with elevation. Both studies are based on ac-
curate sensor calibration and data interpretation to understand 
the ecosystem dynamics and hydrometeorological impacts. Our 
framework considers a well-suited ML model to reduce the com-
plexity of measuring ET and its components. Our target vari-
ables were ET, evaporation and transpiration, where ET was 
calculated from latent heat flux (source: Ameriflux) and tran-
spiration was estimated from sap flux data (https://​schol​arwor​
ks.​boise​state.​edu/​reyno​ldscr​eek/​15/​). Our study calculated ET 
(mm/day) from the latent heat flux (W/m2), using standard con-
version methods. ET (mm/day) was computed by dividing the 
latent heat flux (W/m2) by the latent heat of vaporisation (J/
kg) and the density of water (kg/m3). However, our model did 
not use the latent heat flux from the EC data set as a predictor 
variable. While we acknowledge that the EC tower's footprint 
may vary in time and space, the measurements were considered 
representative of the overall study area, given the dominance of 
sagebrush in the region. Sap flow data were used to estimate 
transpiration, as they capture the entire plant's water uptake. 
While external losses or storage effects could introduce variabil-
ity, these measurements represent the site's overall conditions. 
Sap flux stations were positioned within a 50–70 m radius of the 
EC tower, corresponding to the range of flux footprints (Seyfried 
et al. 2018; Chu et al. 2021).

Although the precise footprint area was not calculated, we as-
sume that the sensors capture most of the transpiration, as 

sagebrush is the dominant plant species in the region. Sap flux 
values were reported per unit leaf area of the shrub (Sharma, 
Reinhardt et al. 2020). Sap flux measurements are recorded con-
tinuously at 15-, 30-min or hourly intervals, allowing precise 
synchronisation with the EC data for more accurate comparison 
and analysis. We used sap flux sensors to measure transpiration. 
They directly capture plant water use, making them ideal for 
tracking dynamics in sagebrush. Other methods, like lysimeters 
or soil moisture balance, were impractical due to the large area 
and focus on plant-level uptake. Sap flux data complement the 
EC measurements of ET. We multiplied these values by the LAI 
of Wyoming shrub species at the study site to report sap flux 
per unit ground area (Renwick et al. 2019). Since the study site 
is dominated by mainly Wyoming big sagebrush (Artemisia tri-
dentata ssp. wyomingensis) and greasewood (Sarcobatus Nees), 
we anticipate relatively low uncertainties in transpiration esti-
mations. Once the input and variable data were collected, they 
were cleaned, outliers were removed and the data were trans-
formed into a format the modelling algorithm could use.

2.2   |   Methods

2.2.1   |   RF Model

RF is an ML algorithm based on an ensemble of decision trees 
(Breiman et  al.  2017). In this case, multiple decision trees are 
used to form a forest, where increasing the number of trees re-
duces the variance and generalisation error. This study used 
hydrometeorological and biomass productivity variables to de-
velop RF models separately for evaporation, transpiration and 
ET. While setting up the model, we used six for the maximum 
depth and 10 for the number of trees in the forest.

The data set was not randomly split into training and testing sets. 
Instead, we used a sequential approach, where the first 80% of 
the time series data was selected as the training, and the remain-
ing 20% was used for testing. We used the RF implementation 
from the scikit-learn Python package, a widely recognised ML 
tool known for its accuracy and ability to handle datasets with 
many predictor variables. This ML package is well-documented, 
extensively tested and has been used in various prediction stud-
ies (e.g., Kühnlein et al. 2014; Li et al. 2016; Schoppa et al. 2020, 
Mital et al. 2020; Dwivedi et al. 2022).

2.2.2   |   SHAP

We implemented an explainable AI method called the SHAP to 
robustly understand the importance of different evaporation, 
transpiration and ET drivers. SHAP helped us understand the 
contributions of hydrometeorology and biomass productivity 
variables, individually and in combination, in predicting evap-
oration, transpiration and ET. The Shapely value represents the 
average change in the model prediction when a feature is added 
to various feature sets, weighted by the number of feature sets. 
It assigns the importance value to each input feature for a given 
prediction. Therefore, the SHAP value represents the mean mar-
ginal influence of each variable on the model prediction across 
all possible combinations of features, considering their interac-
tions (Yang, Chen et al. 2021). One of the advantages of SHAP 
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is its ability to reveal a feature's positive and negative effects in 
each instance (Ullah et al. 2023). A SHAP value of zero indicates 
no contribution of the given feature to the prediction, while 
positive and negative values refer to increased and decreased 
predictions, respectively (Lundberg and Lee  2017; Lundberg 
et al. 2018). The larger a variable's mean absolute SHAP value, 
the more influential it is in the lot.

2.2.3   |   Framework for ET Partitioning

To partition ET into evaporation and transpiration and link 
them with their drivers and components, we considered three 
scenarios: hydrometeorology, biomass productivity and a 
combination of both. In this study, ET was derived from the 
latent heat flux of EC data, while transpiration was measured 
and upscaled from sap flow. After that, transpiration was sub-
tracted from ET to get the evaporation. The proposed frame-
work, illustrated in Figure 2, involves several steps and applies 
each scenario to our study site in the Reynolds Creek CZO. It 
begins with initial dataset preparation and specification of the 
target variable, followed by RF regression analysis and fea-
ture selection using SHAP. The methodology concludes with 
model training, model performance evaluation (KGE score), 
and variable importance analysis.

3   |   Results and Discussion

3.1   |   Model Performance Evaluation

With the newly developed ML-based ET partitioning frame-
work, we evaluated the model performance using the Kling-
Gupta Efficiency (KGE) scores (Gupta et al. 2009) score (Table 1). 
KGE scores interpret how well a model predicts observed data, 
whereas values closer to 1 indicate better performance and 

values closer to −∞ indicate poor performance. The RF model 
achieved a KGE score of 0.679 when utilising only hydromete-
orological variables for evaporation and 0.568 when using only 
biomass productivity variables, indicating moderate predictive 
accuracy in both cases. In other words, the model was more 
effective in predicting evaporation within the hydrometeoro-
logical context. The combination of hydrometeorological and 
biomass productivity variables further improved the evapora-
tion prediction, yielding a KGE score of 0.783.

The model demonstrated a KGE of 0.614 for transpiration for 
hydrometeorology, while biomass productivity alone indi-
cated poor performance (0.277). The transpiration data could 
introduce variability, as it relies on upscaling sap flux mea-
surements, which might not comprehensively capture site-
wide dynamics. However, combining hydrometeorological 
and biomass productivity variables provided a better context 
for predicting transpiration, resulting in a KGE score 0.626. 
The biomass productivity variables may not exhibit strong di-
rect correlations with transpiration at the temporal resolution 
of this analysis. Transpiration has a complex dependence on 
multiple interacting factors, including soil moisture, VPD and 
plant physiological traits, which were not fully encapsulated 
by the biomass productivity data set. ET showed a higher KGE 
score than evaporation or transpiration individually, with the 
combined category achieving the highest KGE (0.865). In con-
trast, the KGE scores for hydrometeorology and biomass pro-
ductivity alone were 0.855 and 0.781, respectively.

We explored the correlation between predictors and target vari-
ables to understand better the relationships driving the model's 
performance (evaporation, transpiration and ET). Our correla-
tion plots (Figure S1) show strong linear relationships between 
certain predictors, such as soil water content, WS, friction veloc-
ity, GPP, RECO, incoming SW and the target variables, support-
ing our ML analysis. While correlation analysis identifies linear 

FIGURE 2    |    Methodological framework to predict ET and its components (evaporation and transpiration).

TABLE 1    |    Model performance evaluation by KGE score.

Components Hydrometeorology Biomass productivity
Combined (hydrometeorology + biomass 

productivity)

Evaporation 0.679 0.568 0.783

Transpiration 0.614 0.277 0.626

ET 0.855 0.781 0.865
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relationships, RFs capture linear and nonlinear interactions. 
The ML approach we employed was highly effective. Even pre-
dictors with weaker or mixed correlations were effectively mod-
elled (e.g., NEE relationship with evaporation, transpiration and 
ET), as evidenced by the model's strong performance. This suc-
cess suggests that our approach can capture both the linear re-
lationships and more intricate nonlinear dynamics in the data.

The results indicate that hydrometeorological factors are cru-
cial in predicting ET, evaporation and transpiration compared 
to biomass productivity alone. Integrating both variable types 
within an ML model improves prediction accuracy between ob-
served and simulated datas ets. Thus, the combined approach to 
ET is more robust (KGE: 0.865) than predictions based solely on 
individual components (evaporation and transpiration).

3.2   |   Variable Importance by SHAP Analysis

3.2.1   |   Hydrometeorological Effects on Evaporation, 
Transpiration and ET

Figure  3 illustrates the impact of hydrometeorological variables 
on ET, transpiration and evaporation using mean absolute SHAP 
value analysis. The analysis identifies shallow soil water content 
(SHAP value: 0.49) as the primary driver of evaporation. While 
higher moisture supports surface evaporation, drier soils can para-
doxically increase evaporation due to elevated VPD and amplified 
temperature gradients, which enhance heat transfer and evapo-
ration (Lu et al. 2005; Alessi et al. 2022). Reduced moisture also 
raises sensible heat flux, further intensifying evaporation (Cioni 
and Hohenegger 2017). Friction velocity (SHAP value: 0.06) con-
tributes by increasing turbulence near the soil, aiding in water va-
pour removal, while soil desiccation cracking creates new surfaces 
for evaporation (Zhou et al. 2006). As soil moisture decreases, its 
ability to retain water declines in semi-arid regions, resulting in 
greater surface evaporation (Vautard et al. 2007; DuPre et al. 2022). 
These dynamics are, particularly, relevant for agriculture since 

effective soil moisture management leads to reduced water loss 
and stable crop yields (Daryanto et al. 2016; Dai et al. 2022). In 
summary, evaporation is driven by the interactions of tempera-
ture gradients, shallow soil water content, friction velocity and soil 
structure, emphasising the need for careful moisture management 
in the face of climate change.

VPD (SHAP value: 0.2) is the primary driver for transpiration, with 
higher VPD increasing atmospheric dryness and water loss from 
plant leaves (Oren et al. 1996). Shallow soil water content (SHAP 
value: 0.13) ensures root-zone moisture and, when reduced, lim-
its water uptake, decreasing transpiration (Naithani et al. 2012). 
Soil temperature (SHAP value: 0.10) raises plant water demands, 
while SW (SHAP value: 0.06) provides energy for photosynthesis, 
increasing water loss through transpiration (Boote et al. 2018).

ET, which combines evaporation and transpiration, is essential 
for managing water resources and agriculture. Our analysis 
shows that shallow soil water content is the most significant fac-
tor for evaporation (SHAP value: 0.47), while friction velocity 
(SHAP value: 0.03) and net radiation (SHAP value: 0.08) play 
secondary roles. VPD mainly influences transpiration with a 
SHAP value of 0.2, negligible in ET (SHAP value: 0.03). These 
relationships show that ET is enormously complex in its rela-
tionship with hydrometeorological factors, representing the im-
portance of a better understanding these different dynamics for 
integrated water resources management.

3.2.2   |   Biomass Productivity Effects on Evaporation, 
Transpiration and ET

Based on SHAP values (Figure  4), gross primary productivity 
(GPP) is a key driver for both evaporation and transpiration, 
with SHAP values of 0.25 for evaporation and 0.17 for transpi-
ration. For ET, GPP has the highest influence (SHAP value: 
0.33), followed closely by RECO with a SHAP value of 0.28. 
RECO also significantly influences transpiration (SHAP value: 
0.11) by influencing air movement and water vapour exchange 
around leaves. The common environmental factors impacting 
all three processes—evaporation, transpiration and ET—in-
clude temperature, soil moisture and VPD. These factors affect 
the partitioning of GPP and RECO between evaporation and 

FIGURE 3    |    Hydrometeorological variables impact on evaporation, 
transpiration and ET.

FIGURE 4    |    Biomass productivity variables impact on evaporation, 
transpiration and ET.
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transpiration, making their influence strongly interdependent 
under varying conditions. Higher temperatures and drier con-
ditions enhance evaporation and transpiration, while higher 
humidity can limit evaporation by reducing the vapour pressure 
gradient (Abeshu et al. 2024; Michel et al. 2024).

GPP influences evaporation through its effect on water avail-
ability and transpiration. However, this impact is shaped by 
environmental factors such as temperature and VPD, which 
drive both GPP and ET (Abeshu et al. 2024; Michel et al. 2024). 
Biomass in the canopy reduces turbulence, stabilising the mi-
croclimate and limiting moisture transport, which impacts 
evaporation (Bonan et  al.  2018; Chen et  al.  2019). Excessive 
turbulence can reduce moisture transport efficiency, so 
canopy structure plays a crucial role (Chen et  al.  2020). 
GPP-driven transpiration can increase evaporation in dry con-
ditions, while in humid conditions, it may reduce evaporation 
by lowering the vapour pressure gradient. While GPP does 
not directly alter turbulence, the changes in transpiration and 
local humidity indirectly affect evaporation by modifying the 
vapour pressure gradient, which influences the efficiency of 
turbulent transport (Chowdhuri et al. 2022).

GPP is the most influential factor for transpiration, controlling 
stomatal activity, which regulates CO2 and water vapour ex-
change (Chowdhuri et al. 2022). Elevated GPP increases tran-
spiration, limiting evaporation by reducing the vapour pressure 
gradient, but under drier conditions, GPP can enhance evapora-
tion by driving higher transpiration. RECO influences transpi-
ration by modulating air movement and water vapour exchange, 
with its impact strongly tied to soil moisture and temperature 
(Fu et  al.  2022). Elevated RECO, indicating higher metabolic 
activity, leads to increased transpiration, which can indirectly 
boost evaporation through greater water vapour release, though 
local environmental conditions modulate this effect (Rezende 
et al. 2022). RECO's influence on evaporation may also involve 
changes in the vapour pressure gradient, as increased meta-
bolic activity leads to greater water vapour release, potentially 
affecting the balance between the surface and atmosphere (dos 
et al. 2021).

For ET, GPP has the highest SHAP value, with RECO and NEE 
also contributing. Including both evaporation and transpiration 
in the ET model highlights their combined influence. Research 
on water use efficiency supports this connection between 
GPP, ET and the water–carbon cycle (Umair et al. 2020; Jiang 
et  al.  2021). Temperature sensitivity in the EC measurements 
from FluxNet further affects the partitioning of evaporation and 
transpiration, complicating the interpretation due to the covari-
ance between GPP and RECO (Yan et al. 2020; Wang et al. 2023). 
The strong covariance between GPP and RECO, particularly in 
daytime data, is likely due to their shared dependency on tem-
perature. This interdependence affects SHAP values, as GPP and 
RECO often rise under favourable conditions and reflect shared 
environmental factors rather than independent contributions 
(Watanabe et al. 2021). Partitioning GPP and RECO from NEE 
requires precise modelling based on EC measurements, which 
are influenced by temperature and soil moisture, complicating 
the process (Endsley et al. 2022). Despite those dependencies, it 
can be challenging to distinguish the effect while similar vari-
ables like temperature influence both.

Overall, the different components of the climate, such as 
temperature and soil moisture, contribute to the interaction 
between RECO and evaporation, which influences the VPD 
by the difference between leaves and the surrounding air. 
This deficit increases parallel with RECO in arid conditions 
that accelerate water vapour escape and impact evaporation 
(dos et al. 2021). Elevated RECO correlates with higher met-
abolic activity, increasing transpiration and indirectly boost-
ing evaporation through water vapour release. However, the 
vapour pressure gradient may decrease in high transpira-
tion and humidity conditions, limiting further evaporation. 
Understanding how GPP and RECO are partitioned is essen-
tial for clarifying their roles in ET and improving ecosystem 
carbon dynamics models.

3.2.3   |   Combined Hydrometeorology and Biomass 
Productivity Effects on Evaporation, Transpiration 
and ET

As illustrated in Figure  5, SHAP analysis shows that shallow 
SWC is the most critical factor affecting evaporation and ET, 
with SHAP values of 0.29 for ET and 0.35 for evaporation. SWC 
and VPD significantly affect transpiration with a SHAP value of 
0.12 and 0.11, respectively, because they control moisture gra-
dients and exist between the leaf and surrounding air. RECO 
indicates an essential role for ET and transpiration (SHAP value: 
0.28 and 0.11). Friction velocity contributes to evaporation by 
enhancing turbulent air mixing (SHAP value: 0.04), while net 
radiation plays a minor role in ET (SHAP value: 0.07) and has a 
negligible impact on transpiration.

Higher evaporation rates are related to shallow SWC, which is 
linked to moisture redistribution through hydraulic processes. 
Water is moved from deeper soil layers to the surface through hy-
draulic redistributions, which increases the amount of moisture 
available for evaporation. As mentioned earlier, an increased 
SWC correlates with higher evaporation rates, providing the 

FIGURE 5    |    Combined (hydrometeorology and biomass productivi-
ty) variables impact on evaporation, transpiration and ET.

 10991085, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.70083, W

iley O
nline L

ibrary on [15/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



7 of 11

moisture required for surface evaporation (Scholz et  al.  2002; 
Or et al. 2013). Additionally, friction velocity accelerates the re-
moval of water vapour and elevates evaporation rates by increas-
ing air mixing near the surface (Katul and Liu  2017). With a 
SHAP value of 0.10 for evaporation, NEE influences plant phys-
iology and microclimatic conditions, thus impacting evapora-
tion. NEE represents the balance of CO2 exchange between the 
ecosystem and the atmosphere (regulating photosynthesis and 
transpiration), thereby influencing water loss through evapora-
tion (Jiang et al. 2012; Samuels-Crow et al. 2020).

Hydrometeorological factors, such as VPD, deepest soil tempera-
ture and SWC, are key drivers of both evaporation and transpi-
ration. At the same time, biomass productivity plays a secondary 
role. As mentioned earlier, VPD is, particularly, influential as it 
determines the moisture gradient between leaves and surround-
ing air. Higher deficits typically result in increased transpiration 
as plants release more water vapour to balance this moisture 
difference (Zhao and Ji 2016; Broughton and Conaty 2022). Soil 
temperature (deepest) also affects transpiration by regulating 
root zone temperature and moisture availability, which impacts 
water uptake and subsequent water loss through transpiration 
(Zhang and Davies 1989; Gong et al. 2007).

Additionally, while friction velocity plays a key role in evapo-
ration by driving turbulent air mixing, its influence on transpi-
ration appears less significant. This may be due to the stronger 
impact of VPD and stomatal regulation on transpiration, which 
directly controls water vapour exchange between the leaf sur-
face and the atmosphere. Unlike evaporation, where surface 
processes and turbulence are critical, transpiration is primarily 

regulated by internal plant mechanisms that respond to envi-
ronmental conditions such as VPD and soil moisture.

While net radiation contributes to ET, its impact on transpira-
tion is minimal, suggesting that factors like VPD and soil tem-
perature (deepest) exert more influence on transpiration without 
significantly affecting ET (Zhang et al. 2015; Chen et al. 2022). 
As mentioned earlier, RECO impacts transpiration by altering 
air movement around leaves and changing CO2 concentrations 
in the canopy, modulating stomatal behaviour and water loss 
(Bonan et  al.  2014; Schymanski et  al.  2015; Cawse-Nicholson 
et al. 2018). Our results show biomass productivity contributes 
significantly to ET but is a secondary component for evaporation 
and transpiration, revealing how these processes are interde-
pendent in the ecosystem (Impa et al. 2005; Vaughn et al. 2016).

In summary, the complex interactions between shallow SWC, 
hydrometeorological factors and biomass productivity are key to 
fully understanding the dynamics of evaporation, transpiration 
and ET across ecosystems.

3.3   |   Combined Interaction of Most Influential 
Variables on ET and Its Components

Our SHAP analysis, as illustrated in Figure 6, highlights the distri-
bution of combined hydrometeorological and biomass productivity 
impacts on ET, evaporation and transpiration. Each dot represents 
a single observation for a specific variable, showing its influence 
on the model's output. The colour indicates the feature value, with 
blue dots representing lower values and red dots representing 

FIGURE 6    |    Summary plot shows the impact of the model output of three components (a, evaporation; b, transpiration and c, evapotranspiration) 
for the three most crucial variables.

 10991085, 2025, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.70083, W

iley O
nline L

ibrary on [15/04/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 of 11 Hydrological Processes, 2025

higher values of the variable itself. For evaporation (Figure 6a), soil 
water content has the highest impact, with higher SHAP values 
linked to increased evaporation, while lower soil moisture reduces 
the model predictions of evaporation. However, the physical effect 
of low soil moisture can still increase evaporation due to elevated 
VPD. Soil temperature and friction velocity are also important 
factors, with friction velocity boosting evaporation predictions by 
enhancing air mixing. In transpiration (Figure 6b), VPD emerges 
as the key variable reducing SHAP values, emphasising its role in 
lowering transpiration predictions. At the same time, soil tempera-
ture and soil water content positively influence the model's abil-
ity to predict transpiration. For ET (Figure 6c), shallow soil water 
content dominates the predictions, followed by net radiation and 
NEE, which significantly impact ET.

Soil moisture is essential for maintaining evaporation by con-
tinuously supplying water, while friction velocity promotes air 
mixing, helping to move water vapour from the soil to the at-
mosphere (Gentine et al. 2011). VPD is crucial for transpiration, 
as higher VPD increases plant water loss, potentially leading to 
stomatal closure and reduced carbon dioxide uptake (Kolb and 
Sperry  1999; Brabec et  al.  2017; Gu et  al.  2018). Net radiation 
supplies the energy necessary for ET processes, while NEE in-
fluences stomatal behaviour and plant water use, both of which 
are key to ET dynamics (Wang et al. 2021).

4   |   Conclusions

This study refines ET partitioning, demonstrating that soil prop-
erties (shallow water content and deepest layer temperature), 
friction velocity, VPD, net radiation and NEE are crucial for 
accurate predictions. Our model offers novel insights into ET 
dynamics by incorporating hydrometeorological and biomass 
productivity variables. Our framework highlights the impor-
tance of integrating hydrometeorological and biomass produc-
tivity variables to predict the ET and its components. The RF 
model's performance (KGE score) demonstrates that the vari-
able's value combination achieves the highest accuracy for ET 
(KGE: 0.865) and outperforms models using only hydrometeo-
rological or biomass productivity variables. The SHAP analysis 
identified the 10 most important variables, with soil properties 
and friction velocity controlling evaporation. Transpiration was 
driven by VPD and soil properties and ET by shallow soil water 
content, net radiation and NEE.

Even though our study is based on flux tower data, our variable 
importance analysis indicates that the framework can still be 
implemented in data-scarce settings as long as the key variables, 
such as soil moisture, temperature and VPD, are available. This, 
however, does not undermine the need for exhaustive validation 
in data-scarce settings to ensure accuracy. The future scope in-
cludes testing a diverse range of ML models, expanding the cur-
rent framework multi-site and implementing complementary 
mechanistic modelling of the ET partitioning process.
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