UC San Diego

UC San Diego Electronic Theses and Dissertations

Title
Multiprocessing and Runtime Programmability on Virtualized RMT Switches

Permalink

bttgs:ééescholarshiQ.orgéucgitem450r3402d

Author
Das, Rajdeep

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/50r340zr
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Multiprocessing and Runtime Programmability on Virtualized RMT Switches

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

n

Computer Science

by

Rajdeep Das

Committee in charge:

Professor Alex C. Snoeren, Chair
Professor George Papen
Professor George Porter
Professor Geoffrey Voelker

2024



Copyright
Rajdeep Das, 2024

All rights reserved.



The Dissertation of Rajdeep Das is approved, and it is acceptable in quality and

form for publication on microfilm and electronically.

University of California San Diego

2024

il



DEDICATION

Dedicated to my Grandparents

v



TABLE OF CONTENTS

Dissertation Approval Page . ........ .. 1ii
Dedication . ... ...t e v
Table of CONENLS . . ..ottt e e e e e e e \'%
List Of FIgures . . . ..ot e e viii
List of Tables . . . ..o ot e X
Acknowledgements . . .. ... e xi
L AP xii
Abstract of the DISSertation . .. ....... ...ttt e xiil
INtroduction . . .. ... e 1
Chapter 1 Background . ... 12
1.1 Packet Processing Models ............. . i, 13
I = 14

1.1.2 Vector Packet Processing . .............cooiiiiniiniinnnnn.n. 15

1.2 Network Function Virtualization ............ ... ... .. .. . ... 15

1.3 Programmable Packet Processors ............. ... ... .. 17
131 PIS A 20

1.3.2 Resource Sharing ..............iiiiiiini i 21

1.3.3  Architectural EXtensions . ........... ...ttt 22

1.3.4  Virtualization . ...... ...t e 23

1.3.5 Resource Allocation. ...ttt 24

L4 Language .. ... ...ttt 24
1.4.1 Modular Programming. . ...ttt 26

1.4.2  Application Deployment Frameworks ............ ... ... ... ..... 26

1.5 Active Networking. . . ... oot e e e 28
Chapter 2 ActiveRMT ... 29
2.1 OVEIVIEW . .ottt e e e e e 32
2.1.1  Program EXecution. ................iiiuiiiniiinniininannn.. 33

2.1.2  Memory SemMantiCS . ... .. ...ttt tne et 35

213 Layout . ..o 36

2.1.4  Address translation. ............ .. 36

2.1.5 Program Encoding ......... ... i 37

2.1.6  Example: In-Network Cache........... ... ... ... ... ... .. ... 38

2.1.7 Objectretrieval. ........ ... 39



2.1.8 Data-plane cache management ............. ... . ... ... ... ..., 40

2.2 Managing SWitCh r€SOUICes . .. ... ...ttt 41
2.2.1 Limiting recirculation ...............oiiurinnininia, 41

2.2.2 Memory allocation . . ...ttt 42

2.3 Programming Model .. ... ... .. 45
2.3.1 InStruction ProCeSSING . ... ....uuetuntttn ettt 45

232 Memorymodel ....... ... . 46

233 Control flow . ... 47
234 Examples. ... ... 49

2.4 INSTIUCHON SEL. . o vttt ettt et e e e et e e e e e e e et 52
241 Data Copying . ..o vuei ettt e e e e e e e 52

24.2 DataManipulation . ............ . 53

243 Control Flow . . ... 54

244 MeMOTY ACCESS - v vt te ettt ettt et et ettt 54

2.4.5 Packetforwarding ............. ... 55

2.4.6  Special InStructions . ............uiuiintinn i 55

2.5 Implementation .. ... ...ttt e 56
25.1 Switchruntime . ... 56

252 Clientcompiler. . ......couiiiin e 57

2.53 Shimlayer...........iiiiit e 57

2.6 Active Programs . ...... ... 57
2.6.1 Heavy-Hitter Detection (Cache) ........... .. .. ... ... 58

2.6.2 Cheetah Load Balancer ........... ... ... ... ... 60

2.7 Memory Synchronization .. ..............uuiutininin i, 62
27.1 Memory READ .. ... .. 62

2772 Memory WRITE . ... ... e 63

2.8 VAL .ttt 63
2.8.1 Memory COnSISIENCY . . .t vttt ettt e e e 63
2.8.2 Effects of Congestion. .. .........ouuiiniinninin .. 66

2.9 DISCUSSION . ettt ettt et e e e e e e e e e e 67
Chapter 3 Memory Management. .. ......o.uttin it e 68
3.1 Dynamic Memory Allocation. . ...ttt 70
3.1.1 Memory Virtualization. . ...........c.o ottt 70

3.1.2  Allocation Algorithm . ...... ... .. ... ... . i 72

3.1.3  Allocation Process . ...........c.oiiiiiiiii i 74

3.2 Evaluation ... ... 76
3.2.1 Memory ALIOCAtioN .. .......iinii ettt 76
3.22 Latency Overhead .......... ... .. .. . 82

323 CaseStudy ... 83
3.2.4 Allocation AIternatives . .............ueuuneineenneenneennnenn. 87

3.3 DISCUSSION . vttt ettt et e e e e e e e e e 89
Chapter4  VRMT ... o 92

Vi



A1 OVEIVIEW . o oottt e e e e e e e e e e 94

4.1.1 Deployment. . ... ..ot 95

4.1.2  AUthOrization . ............couuiiin i 96

4.1.3  ProteCtion ... .. ...ttt 98

4.2 Function Chaining . . ... ...ttt e e 99
4.2.1  Authentication .. ...........iuiiiinieie ittt 99

4.2.2 Packet Classification ............. ..o iiniinninininnenn.n. 100

4.2.3 Classification Performance ........... ... ... ... ... ... ... 106

4.3 SwitchRuntime . ........ . 109
4.3.1 Domain Switching ......... ... . 110

4.3.2 Program EXecution. .......... ...t 111

4.3.3 Hitless Provisioning . . ..........o i 112

434 Implementation. ... .......ouuutuniune i 113

435 Active Programs .. ...... ..ot 114

4.4 Recirculation-to-Completion . .............o it 118
4.4.1 Virtualizing Bandwidth ........ .. .. 120
4.42 Loopback Congestion ..............couuiiiiiniiiniiiinenneenn.. 122

443 Buffer Contention. ... ...ttt 125

4.44 Provisioning Bandwidth .......... ... ... ... ... . L. 127

4.4.5 Application Benchmarks ............. ... ... ... ... ... ... 128

4.5 DISCUSSION . .ttt sttt et e e e e e e e e e 131
Chapter 5 ConClUSION . . . .ot e 132
5.1 LIMItationS . ..o ottt ettt e e e e e e 133
5.2 Alternative Hardware . ......... ... . i 134
5.3 Network-Wide Planning . ........ ... .. 135
5.4 Language EXtensions .. .........ouuiiniineie ittt 136
Bibliography . .. ... e 138

vii



Figure 2.1.
Figure 2.2.
Figure 2.3.
Figure 2.4.
Figure 2.5.
Figure 2.6.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.
Figure 3.7.
Figure 3.8.
Figure 3.9.
Figure 4.1.
Figure 4.2.
Figure 4.3.
Figure 4.4.
Figure 4.5.
Figure 4.6.
Figure 4.7.

Figure 4.8.

LIST OF FIGURES

ActiveRMT packet processing OVerview . ............oveuuneenneen... 32
ActiveRMT runtime processingmodel ............ ... ... ... ..... 34
ActiveRMT packet header format ............ ... ... ... ... .... 37
A demonstration of dynamic memory allocation ...................... 43
Performance benefits of memory allocation .......................... 44
An example of executing a MEM_READ instruction ..................... 46
Mutating an active Program .. ... ..........oeueeneeneennennennennnn. 71
Control-plane allocation time . . ...ttt 77
Memory utilization of various workloads ............. ... ... ... ... .. 77
Online allocation sequence of active applications ..................... 79
ActiveRMT latency overheadsonaTofino ........................... 82
Full in-network cache lifecycle ............ ... ... ... ... ... ... 85
Effective hit rate for active in-network cache ......................... 86
Comparison of allocation schemes................. ... ... ... ... 88
Impact of allocation granularity on allocation time .................... 90
A model for deploying network functions onto a VRMT network ........ 95
Programming toolchain for user-defined applications .................. 97
Number of expected classifier field entries for sampledrules............ 103
Function chain dispatching ... ........ ... ... ... . i i 105
Exact match table usage of aclassifier .............. ... ... . ... ... 107
Exact match entries in a practical scenario ........................... 108
VRMT packet processing architecture ............... ... ... ........ 109
Effect of packet recirculations on throughput . ........................ 119

viii



Figure 4.9.

Figure 4.10.
Figure 4.11.
Figure 4.12.
Figure 4.13.
Figure 4.14.
Figure 4.15.
Figure 4.16.

Figure 4.17.

Packet scheduling mechanism for recirculations ...................... 121

Representative flow throughput with droptail queues .................. 122
Representative loopback throughput with droptail queues .............. 123
Representative throughputs with dedicated droptail queueing ........... 125
Representative throughputs with dedicated RED queueing.............. 126
Impact of recirculation bandwidth on fairness ........................ 127
Recirculation bandwidth usage by functionchain ..................... 129
Loopback port queue utilization. .............. . ... ... 129
Application benchmarks for recirculated traffic ....................... 130

X



Table 4.1.

LIST OF TABLES

List of VRMT functions written using our domain specific language



ACKNOWLEDGEMENTS

I would like to begin by thanking my parents and my sister for supporting me in my
endeavors. I would also like to thank my friends and labmates for all the arguments and
intellectual discussions that further drove my passion for learning.

I would like to acknowledge Professor Alex C. Snoeren for his support as the chair of
my committee and as my advisor since the beginning of my doctoral journey. Through multiple
drafts over both this dissertation and related conference publications, his guidance has proved to
be invaluable. I would also like to thank Professor George Porter, Professor George Papen and
Professor Geoffrey Voelker for being on my doctoral dissertation committee and for their roles
as teachers, mentors and coauthors on conference publications, during the course of my doctoral
program.

Chapter 2 contains research that was supported in part by the National Science Foundation
(through grants CNS-1564185, CNS-1629973, and CNS-1911104) and the Advanced Research
Projects Agency (ARPA-E). I would like to thank the anonymous reviews for their comments on
an earlier draft of the manuscript prior to publishing at ACM Hotnets 2020. I would also like to
thank Vladimir Gurevich for his training on P4 and the Tofino platform and also the Barefoot
FASTER community for their assistance with P4 programming.

Chapter 3 contains research that was funded in part by the Department of Energy through
grant ARPA-E DE-AR000084. I am indebted to George Papen, George Porter, Vladimir Gure-
vich, and the anonymous reviewers for their comments on earlier versions of the manuscript
prior to publishing at ACM SIGCOMM 2023. Our testbed was made possible through generous
in-kind donations from Intel’s Fast Forward Initiative and Cindy Moore’s capable systems ad-
ministration. I would also like to thank members of the Intel Connectivity Research Program for
their assistance with programming.

Chapter 4 contains unpublished material that was co-authored with Alex C. Snoeren from

UC San Diego. This research was funded in part by Cisco Research.

X1



2009-2013

2013-2015

2013-2015

2015-2017
2017-2024

2019, 2023

2024

VITA
Bachelor of Technology, Information Technology, West Bengal University of
Technology, Kolkata

Master of Technology, Computer Science and Engineering, Indian Institute of
Technology, Kanpur

Teaching Assistant, Department of Computer Science and Engineering
Indian Institute of Technology, Kanpur

Research Fellow, Microsoft Research India, Bengaluru

Graduate Student Researcher, Department of Computer Science and Engineering
University of California San Diego

Teaching Assistant, Department of Computer Science and Engineering
University of California San Diego

Doctor of Philosophy, University of California San Diego

Xii



ABSTRACT OF THE DISSERTATION

Multiprocessing and Runtime Programmability on Virtualized RMT Switches

by

Rajdeep Das
Doctor of Philosophy in Computer Science
University of California San Diego, 2024

Professor Alex C. Snoeren, Chair

Reconfigurable match tables (RMT) have been widely adopted in practice over high-
speed packet processing pipelines. Coupled with P4, a number of useful application-specific
tasks such as in-network telemetry, key-value caching, aggregation and load balancing, have
found their way into the network. However, achieving multi-tenancy on such devices has not
been a trivial task. RMT switches can run only one program per processing pipeline and multi-
tenancy is currently achieved using static program composition with the inability to perform
runtime updates. Moreover, memory is local to processing stages making it difficult to achieve
efficient resource utilization. I first present ActiveRMT, a capsule-based approach to leveraging

computation within the network using a general purpose memory-efficient packet processing
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model that pre-configures match tables to execute user-defined programs at runtime. Using a fast
coordinated approach to dynamic memory allocation along with a constraint-guided approach
to synthesizing stateful active programs, I present a unique method of hitlessly provisioning
computationally cheap tasks with low memory footprint, that operate on a per-packet basis,
onto a programmable switch. However, a capsule-based approach limits the scope of network
functionality, particularly in terms of behavioral inspection. Hence, I present vVRMT, a system
that expands the set of tasks that can be deployed over such a packet processing runtime to
include both commonly used network functions and application offloads. I show how network
functions that perform behavioral inspection on arbitrary packets — using programs defined by an
authorized third-party (such as a network operator) — can co-execute with application-specific
tasks using automated filter composition and function chain synthesis. Generalizing recirculation-
to-completion as a technique to accommodate such function chains, I present a unique method of
deploying such combinations of network functions over a best-effort programmable networking
substrate. We address a key challenge to supporting complex function chains by showing how
to effectively manage switch backplane bandwidth when recirculating packets through RMT

pipelines.
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Introduction

Programmable switches [12, 42, 91] today enable offloading application functionality
onto energy-efficient and high-throughput network processing devices capable of general purpose
compute, by moving functionality closer to the network. Deploying functionality in this way helps
cut down on network latency and improve performance and efficiency of network functionality.
Commercially available RMT devices such as Tofino can achieve port-to-port latency of less
than 400 ns and packet processing throughputs of several terabits per second. Introducing
programmability on such devices has enabled the rapid evolution of network functionality
and has subsequently led to the research community witnessing a large number of interesting
and useful applications that could be offloaded onto such network processors — such as load
balancing [4, 63, 78], co-ordination [45, 59, 97], caching [46, 60] and machine-learning [74, 88]
to name a few [38, 51].

With the emergence of powerful programmable switch hardware, one can scale to more
network functions with more (cheap) programmable switches and reuse spare resources for other
networking tasks. Conversely, excess capacity on networks can be used to run network functions.
Such a proposition is not unreasonable since networks are usually overprovisioned. Essential
network functions can be assigned dedicated resources on the same grounds as dedicated VMs.
While network function virtualization over general purpose servers have been debated to be
more practical and cost-effective over building custom middleboxes, enhancing switches with
programmable capabilities now raises the debate about how and to what extent such devices
can be harnessed to perform such tasks, given their presence within the network. The answer

to this question is not obvious since programmable switches do have limited compute and



memory, and expanding hardware comes at a cost to performance. However, one can argue
that it is more reasonable to scale switch capacity instead of diverting traffic to general purpose
servers, complicating traffic engineering and significantly increasing the cost of network function
processing. We thus attempt to reason about whether network functions can be deployed at scale
over programmable switches. Fortunately, programmable switches with enhanced hardware [12,
42, 91] are evolving to facilitate such a goal.

However, the most widely known ecosystem of RMT-based [12] programmable switches,
as of today, is limited in its ability to host a multi-tenant environment that can be dynamically
provisioned. Programming such devices typically involve writing a P4 program that is loaded
onto the switch (requiring a device reset). A packet provides a context for invoking the program,
which subsequently initiates a process that performs various operations on the packet. The
devices are provisioned with redundant hardware, that allow parallel execution of the same
program over multiple packets (processes). However, switches receive heterogeneous traffic
requiring a multiprocessing environment to be hosted by the device. Separation of functionality
among various network slices can be achieved by composing all such functionality into one
monolithic program and defining respective filters within the program. Yet, such an approach
requires reloading the device every time the program is changed (e.g. when migrating a function
from one switch to another), advocating the need for a runtime programmable environment to
enable applications to be deployed onto the switch without causing network disruption.

While several approaches to enable runtime programmability [36, 87, 93] have been pro-
posed in the recent past (some of which have been implemented on NICs [87]) there hasn’t been
much on the front of programmable switches. Thus, current approaches to multi-tenancy (multi-
processing) that require static program composition [27, 53, 96, 98] suffer from the same prob-
lems. To such an end, we propose approaches to virtualizing RMT-based programmable switch
hardware that enables both multiprocessing and runtime programmability on programmable
switches. Our first system, ActiveRMT, enables a means of invoking functionality — defined by

network users — on programmable switches, using encapsulated packets that contain programs.



This allows applications to be offloaded onto network switches without requiring operator in-
tervention. Our second system, VRMT, enables authorized parties to deploy virtual network
functions that can process arbitrary packets, onto such devices, thus allowing functionality such
as behavioral inspection to be deployed over virtualized RMT switches. These systems further
provide a unified way to allow flexible switching hardware to be more accessible to network
users, by enabling application service providers and network operators to program switch com-
putational elements — application services could offload functionality onto high performance
network processing elements within switches, while operators could implement policies over the

same device.



State-of-the-Art

P4 provides an ecosystem that consolidates network programmability by allowing a
general-purpose mode of expressing network functions across a large set of programmable
network devices. Yet, the burden of coalescing various functions — such as standard network
forwarding protocols along with application offloads — lies with the P4 programmer; P4 programs
are monolithic and targeted towards one device. The task of (programmatically) implementing
network forwarding functions alongside experimental (or application accelerating) functions
could be fragile — incorrect implementations may break the network. One solution to this
may be to separate fixed functionality from programmable functionality and disallow network
forwarding functions from being programmable. A better alternative is to enable multiprocessing
and runtime programmability. This would enable applications to be added and removed from
the switch without affecting other applications or network operation, and also allow behavioral
isolation among the applications.

RMT is however inadequate when it comes to achieving such objectives. This is where
application virtualization becomes relevant. Network function virtualization today is usually
implemented over x86 virtual machines which are not throughput optimized. Various frame-
works have been built around such an ecosystem to allow efficient packet processing and also
to homogenize such a virtual network processing system over x86 machines. Programmable
packet processing devices are however throughput optimized. The challenge is then to be able
to virtualize such devices for multiprocessing and enable efficient use of resources. Virtual-
1zing such programmable network devices can also enable rapid deployment of experimental
functionality along with fixed network functions. Current network function virtualization plat-
forms are however built on top of general purpose servers (often augmented with NIC-based
accelerators [20]). The model used to describe network functions and most techniques used to
enable efficient processing are not applicable in the context of programmable switches. However,

problems such as packet classification and chain synthesis do apply. Even then, the extremely



limited switch resources present several other challenges and require additional explorations to
realize their design and implementation.

There has not been much addition to P4 in terms of language and programmability, even
in the context of multi-tenancy on switches. Approaches have mostly included static program
composition [27, 53, 98] to accommodate functionality from a set of programs onto a single
device. This has typically been enabled by templating the P4 language [53, 98]. Alternative
languages that enable specific functionality (e.g. Domino [76]) have been integrated as target-
specific language constructs within the P4 language. The language system has been easily
expandable and semantically compatible to expressing functionality directed towards relevant
device targets and runtime environments. While the functionality compatible with our systems
are, in theory, expressible in some extended P4 language (or constructs) such explorations are
beyond the scope of this work. Instead, the focus is on defining a higher level domain specific
language that could enable programming the virtualized switch.

The mode of programming devices has also been restricted to the P4 language and
associated control plane APIs (e.g. the P4 runtime). Alternative modes of program delivery such
as active networks [85] have not been well explored. While a general purpose active network
built on programmable switches has not existed until now, there have been attempts to embed a
small set of instructions within packets [44] to perform a limited set of user-defined functionality.
Using table configurations to deliver programs to switches have also been attempted [36, 93],
although in a limited setting (e.g. no stateful processing) and with impractical overheads.

Multi-tenancy has further been an elusive goal. Recent attempts to virtualize switch
resources such as stateful memory [39, 98] require static program composition. Programmable
switches based on RMT pipelines do not have hardware support for virtualization, requiring
expensive hacks and workarounds [98]. In addition, match table structures cannot be reconfigured
hitlessly on current RMT switches (for instance, due to the packing algorithms used to compile
programs). Thus, the lack of support for runtime programmability makes them less practical to

deploy and also decreases the efficiency of such approaches.



Limitations

Several challenges are associated with achieving a multi-tenant runtime programmable
environment on RMT-based programmable switches. Achieving multi-tenancy requires the
separation of hardware resources based on application functionality. It additionally requires
performance and resource isolation. Due to the limitations of static partitioning of resources with
respect to a runtime programmable environment, we focus on techniques to provision resources
virtually at runtime over RMT pipelines. We first describe some of the general challenges in
achieving our objectives and then discuss how our approaches introduce additional challenges.

P4 semantics have limited support in achieving runtime programmability on current RMT
devices. While prior work has attempted virtualizing P4 applications using match-tables [36,
93] the overheads of such approaches are impractical in any realistic setting. Attempting to
express P4 tables on match-action pipelines requires an excessive number of processing stages to
emulate both match and action operations. Moreover, due to such overheads, these approaches
also require a significant number of recirculations to express programs that do not even require
any stateful processing — a feature necessary to implement practical in-network functionality. We
argue that attempting to port programs from the P4 language system to a virtualized environment
constructed using match tables leads to an inherent semantically incompatible problem. Rather, a
high-level language system should be designed that is able to express functionality with a similar
degree of expressibility as P4. P4 on the other hand should be used to define low-level interfaces
that enable such a programmable environment.

Runtime programmability requires the ability to modify application functionality on
a programmable switch while it is still processing packets. Since current RMT devices such
as Tofino require a device reset to be performed every time a program is changed, a disrup-
tive network is inevitable with static approaches to modifying switch behavior. Even rapid
reconfiguration approaches require tens of milliseconds, which in the context of terabit-scale

programmable switches results in dropping gigabytes of traffic. While there have been recent



approaches [87] designated for other classes of network processors (e.g. NICs [20]), current
runtime programmable approaches also have their limitations, for example, requiring the use of
stashes (or auxiliary memory) which may be unavailable on-chip. Exploring such a direction
requires considering how to stash memory objects when performing hitless updates.

While performing updates to functionality may be ultimately desired, certain use cases
may suffice with dynamically allocating resources such as memory among co-located appli-
cations on a switch. The design of RMT pipelines are inherently inefficient in memory usage
— dependencies could lead to unused memory in earlier stages. A solution to such problems
have been proposed through alternative hardware designs [15]. However, such architectures
have not been realized on programmable switches and their feasibility is also unknown. There
have however been attempts to enable dynamic memory allocation [98] over RMT switches
using virtualization, although at a significant resource overhead — existing approaches is able to
dynamically reallocate around 50% of switch memory — the overheads of isolation (including
address translation) are significant. The challenge is to come up with a technique that allows

dynamic remapping of memory on RMT switches with a low overhead.



Thesis

Using virtualization, it is possible to achieve efficient multiprocessing and runtime
programmability over a software defined active network consisting of RMT-based programmable
switches.

We begin in Chapter 1, by describing tools, techniques and systems that enable pro-
grammable packet processing over both conventional general purpose processors as well as
custom hardware accelerators. This also includes language systems and associated frameworks.
Based on existing literature, we then describe how techniques such as modularization, virtualiza-
tion and resource sharing have been realized on such ecosystems.

Chapter 2 describes our ActiveRMT system which presents a packet processing model
that can be used to deploy an active network using capsules over RMT-based programmable
switches. We describe the programming model along with associated set of instructions and
demonstrate using examples how such a programming model could be used to offload application
functionality. We correspondingly describe the memory model and how switch memory is
virtualized. We then describe memory access semantics and its utility. Our initial exploration
focuses exclusively on determining whether it is worthwhile from a performance perspective to
reconsider active networking given today’s hardware capabilities. Many challenges to running
arbitrary code embedded in network packets remain, most notably the serious security implica-
tions. Previous proposals such as signing the active program and using the control plane to make
the network aware of accepted signatures could still apply, but there have been recent advances
on this front as well. Moreover, the fixed-function capabilities (such as hashing) offered by
programmable switches may help in restricting the hazards of untrusted code.

Our next exploration considers stateful processing to enable meaningful applications
to be implemented using such a framework. Most notably is the challenge of multi-tenancy,
where multiple applications are expected to share pooled resources such as memory. While there

have been recent proposals towards this goal using statically composed programs, a dynamic



environment presents both challenges and opportunities for efficient resource management. The
question arises as to whether efficient memory management can be achieved using virtualized
switch memory. Chapter 3 describes the memory management techniques used in our approach.
We describe how virtualized memory is dynamically allocated using a coordinated mechanism.
We evaluate such a mechanism with respect to resource efficiency and discuss associated
overheads.

Our final exploration attempts to answer whether such a system can be adapted to offload
commonly used network functions onto programmable switches, especially ones that require
behavioral inspection. Realizing protection domains, packet classification and authentication
form auxillary problems that require exploration to deem feasibility and assert practicality.
Understanding the network costs behind such a packet processing model (e.g. bandwidth), is
explored as a further step. How such a model affects the fairness and efficiency of network
resources using traditional networking protocols is investigated. Chapter 4 correspondingly
describes the VRMT system which enables application-defined programs to perform behavioral
inspection over network packets and co-exist with application offloads over a virtualized function
execution environment. We focus on one critical aspect of such a system, function chaining,
and how it is realized over programmable switch hardware. We evaluate the practicality of the
approach in terms of degree of multi-processing and switch bandwidth utilization.

We finally conclude and discuss the implications of our approach and future considera-

tions in Chapter 5.



Challenges

Our approach entails a virtualized platform over programmable switches that enables
multi-processing and runtime programmability. There are several associated challenges here.
First, the mode of program delivery commmands exploration. We use active networking to such
an end. Programs specified by network packets can further accelerate experimental networking
by allowing applications to define network behavior. Hierarchical layering of experimental
network protocols can be replaced by a generic active protocol which allows application service
providers to define network behavior over the internet protocol. In case one communication
mechanism proves to be successful (in some regards) over time, it can be adopted widely; in
other words this enables incremental deployment of an experimental network. This also allows
deployment of short-lived packet-processing tasks (including application offloads) over the
network.

In addition to security and performance implications, there are several other pragmatisms
associated with deploying an active network. One such consideration is network goodput. Since
active programs can occupy a significant fraction of a network packet payload, this effectively
reduces the goodput of the network. This payload does not contain information that is consumed
by the end-hosts and is hence an overhead to the network. One way of solving this problem
would be to cache active programs on the switches to the extent possible. Similar approaches
were proposed previously [84] where a function identifier could be used to retrieve code stored
on the forwarding device; the capabilities of current programmable switches can further optimize
such an approach.

Resource management policies are also a concern. Applications such as caches will
benefit less from dynamic reallocation of resources than applications whose performance scales
linearly with memory such as load balancers. Policies need to be weighted according to the
impact they have on application and network performance. For example, longer active programs

that require multiple recirculations (such as our object cache) consume more switch-plane
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capacity. While active network programmers need to keep this in mind while writing programs,
some assistance from the network may help minimize the potential negative impacts on both
network as well as application performance.

Keeping such things in mind, we believe that the large emerging space of application
functions that are being built on top of the P4 ecosystem makes it worth reconsidering the
way these functions are executed on a P4 switch. It may make sense for network behavior to
be controlled by end-host applications without having to interact with network administrators.
Recent approaches like INT [52] aim to achieve this for specific use cases such as telemetry.
Further, service chaining in virtual network functions also seems likely to benefit from end-host
control. Our approach attempts to deliver the flexibility to meet all of these requirements using
ideas from active networking introduced decades ago, but applied to modern programmable
switch hardware. As recently pointed out [85] by researchers who introduced active networking,
the ecosystem built around programmable switches has enabled achieving something that was

frequently perceived as lacking utility earlier.
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Chapter 1

Background

Network functionality such as load balancers and firewalls have been implemented over
a variety of hardware — ranging from general purpose (x86) processors to application-specific
integrated circuits (ASICs). The former allows the most amount of flexibility, enabling arbitrarily
complex applications to be deployed over the network data path. The latter achieves the most
efficient form of network processing, allowing functionality designated for the network to
be pushed to high-radix, high-throughput line-rate forwarding devices such as switches and
routers. Yet, until recently most of such hardware has had fixed functionality baked in at the
time of fabrication. Programmable switches balance flexibility with performance, enabling high
performance evolving networks. Coupled with an intuitive programming model, this ecosystem
has witnessed significant popularity in the recent past, particularly in the context of application
offloading. During the same time, network function virtualization over general purpose CPUs
(often coupled with accelerators) have also witnessed several advancements.

This chapter covers some background and related work on hardware, tools and techniques
related to network packet processing. We begin in Section 1.1 by describing some of the models
used in network packet processing and how they have been adopted in various hardware and
software frameworks. Then, in Section 1.2, we describe network function virtualization — a
widely used technique for packet processing over general purpose CPUs — and its associated

frameworks. Section 1.3 describes the class of hardware accelerated programmable packet
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processors that have been integrated into network switches. We describe how such ecosystems
have evolved over the recent years in terms of programmability and resource management. In
Section 1.4, we then move on to language systems associated with such hardware and throw
some light on how they have evolved over time. Subsequently, in Section 1.5, we briefly describe

the space of active networking — a technique that we have incorporated into our systems.

1.1 Packet Processing Models

There are various modes of performing network packet processing today, on devices
ranging from general purpose CPUs to application specific integrated circuits (ASICs). The
emergence of network function virtualization has led to the development of highly efficient
packet processing frameworks over the former, while several use cases favor the latter due to
their high performance and efficiency.

Some of the earlier approaches to modelling a packet processor dates back to the 1990s,
with the introduction of the Click modular router [66]. In this approach, a processor is composed
of a set of modules or “elements" that can be chained together using interfaces. Each interface
defines semantics that enable transfer of control to another element. The elements are self-
contained in their behavior — functionality determining how to process the packet, what to do
with it, and how and what state to maintain is contained within an element. Mechanisms such as
“push", “pull" and “queue" stitch together a packet processing pipeline. Click is one of the earliest
examples of a software router that can be run over general purpose Linux systems. Later on,
various adaptations of Click have emerged [3, 62] that make use of efficient packet processing
over optimized frameworks.

Today, a packet processor typically consists of a parser, transformer and deparser. The
parser extracts packet headers using a state machine, the transformer performs various operations
on the parsed packet — such as mangling, forwarding, aggregating — and the deparser reconstructs

the processed packet. Such a model allows for the construction of efficient pipelines that can
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be implemented in software or hardware — parsers and transformers can be implemented (using
algorithms and architectures) to run at line-rate in commercial settings. Thus, fixed-function

ASICs and software routers alike, perform packet processing based on such a model.

1.1.1 P4

The P4 [11] language provides a programming model for both hardware and software
implementations of such packet processors. A pipeline typically consists of a parser, a pre-
processor, a traffic manager, a post-processor and a deparser. The implementation of these units
is target-dependent; The abstractions are not (P4 as a language is not truly target-independent).
The parser extracts and names headers to be used in subsequent phases. The pre-processor
performs a set of operations prior to queueing and switching, which opens up the opportunities to
program such behavior. The traffic manager performs the queueing and switching but is usually
treated as a black box (implemented by the respective targets) in the model. The post-processor
opens up more opportunities such as collecting statistics or mangling packet headers. Finally, the
deparser performs standard network operations (such as checksum computation) and reconstructs
the packet. This model closely maps to a range of targets, most notably the protocol independent
switch architecture (PISA).

These models give us an insight into the design of packet processing pipelines. The
argument is that an ideal high-performance packet processing model should be one that can be
optimally mapped to performance-bounded targets. This resembles PISA pipelines — a sequence
of fungible processing units with tight bounds on processing latency (to guarantee line-rate
processing). The question is then about what an ideal (fungible) processing unit should be
capable of, such that performance lies within the guaranteed bounds. More importantly, is there
a way to programmatically synthesize such a unit (in both software and hardware) based on
a specification. A language that maps intent to a performance-guided architecture is then the

solution to the problem.

14



1.1.2  Vector Packet Processing

High-throughput packet processing is limited by memory access times, which even today
is slower than network modulation rates at 100G. Hence, the only way to process packets at
line-rate is through batching — a batch of several packets are processed all at once and then
written to the respective buffers. Vector packet processing [21] (VPP) generalizes this concept
with respect to packet processing frameworks. The most prominently known among them is
the Intel data plane development kit [21] (DPDK). In this model, a user-space networking
approach is used to bypass the kernel overheads of Linux networking stacks. Special NICs
that allow user-space access to the NIC buffers are used to implement this approach. A user
space process (usually pinned to a CPU core) constantly polls the NIC buffers to check for
new packets, and subsequently copy a batch of packets to the (lockless) DPDK ring buffers.
Leveraging cache locality, packets are then processed from there in fixed size batches before
being enqueued for transmission. Complex operations on the packets, which require additional
(and non-cache-aligned) memory accesses may slow down processing — a caveat that developers
need to be aware of. The receiver and transmitter processes for the port can be scaled with CPU
cores, allowing for high throughput packet processing. VPP enables line-rate packet processing
on many general purpose servers equipped with traditional CPUs and memory. However, factors
such as cache size and packet processing operations still constrain the maximum throughput that
can be achieved. There are P4 targets that map to VPP frameworks such as DPDK, which aids

developers in writing efficient packet processing programs.

1.2 Network Function Virtualization

General purpose servers provide a cost-effective, reusable and manageable infrastructure
for running network functions alongside server applications building the case for network
function virtualization (NFV). NFV takes an approach to running packet processing functionality

on x86 (or equivalent) virtual machines. Packets are routed to servers hosting the virtual network
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functions and injected back into the network post processing. Load balancers, firewalls, proxies
are some of the network functions that are implemented using this approach. NFV makes network
functions manageable and scalable in the same way as regular server applications, making them
ideal to deploy over general-purpose server infrastructure. Several frameworks and techniques to
scale such an ecosystem have been proposed in the past.

E2 [69] is a scalable framework for virtual network functions with application-agnostic
scheduling for network functions. It performs filtering based on ports and packet headers.
Function placement is performed using policy graphs. Applications implemented using such
a framework include network address translation (NAT), firewall, intrusion detection systems
(IDS) and virtual private networks (VPN). NetVM [41] uses DPDK and KVM to partition
memory regions for packet processing. It allocates each processing core with its own queue and
network function, achieving 10 Gbps line-rate processing. It uses an address-based scheduling of
packets to VMs. Function chaining is performed using shared memory region, trusted groups and
dedicated chain forwarding cores. Applications implemented using NetVM include L3 routing,
the Click [66] modular router and firewalls. OpenNetVM [94] uses DPDK and Docker to run
network functions. It presents a scalable and modular approach to function chaining. It uses
flow tables and TX threads to steer packets through chains and service identifiers to aid in the
management of NF instances. Applications implemented include an IDS. OpenBox [13] presents
a framework for development, deployment and management of network functions across VMs.
It presents approaches to merging NFs and packet processing abstractions. It uses so called
OBIs to implement NFs using metadata and session storage for maintaining state. It is able to
achieve O(10us) latency and O(100Mbps) throughput. Applications include firewall, intrusion
prevention system (IPS), web cache and a load balancer. NetBricks [70] presents UDF-based
composition of NFs with packet processing abstractions. It performs chaining through function
calls and run-to-completion scheduling. It uses zero-copy soft isolation using LLLVM and unique
types. Applications implemented using this framework include firewall, NAT, signature matching,

monitoring and load balancer. LemonNFV [58] presents an approach to consolidation of NFs

16



using PKU-based hardware isolation. It presents an approach to namespace-based isolation of
NFs and so called trampolines for scheduling NFs. It also used software based fault isolation.
Applications include IDS, NAT, ACL, connection tracking and DPI. OpenState [10] uses the
concept of mealy machines. It uses OpenFlow messages to implement stateful processing on
switches. Their API consists of XFSM tables to implement state machines and scopes based
on ordered sequence of header fields. Applications include port knocking and MAC learning.
OpenNF [30] presents a controller-driven approach to state management across NF instances. It
uses flow-based state management with consistency guarantees. Examples include IDS, asset
monitor, caching proxy and [PTables.

Various user-space and kernel-space optimizations have been created to cope up with
increasing traffic demands within the network. Two major tasks include function placement and
function chaining. Functions are placed across NFV hosts by considering traffic demands and
network performance according to some optimal plan. Function chains are typically composed
according to an operator-specified precedence. A large amount of work on NFV deals with per-
formance optimizations including core-pinning, shared memory regions and hardware isolation.
State synchronization across instances is another problem addressed by existing approaches,

which gets more challenging as network speeds increase.

1.3 Programmable Packet Processors

Commercial network packet processing devices which allow programmable behavior
have been around for a while, although they allow limited functional behavior to be configured
onto the devices. However, recent advances in switching technology [1, 12, 42, 91] has enabled
richer functionality to be programmed onto switching ASICs. These devices fall into one of two
types of packet processing architectures — fixed-depth pipelined [12] and run-to-completion [42,
91]. The former has limited compute capabilities while their compute primitives typically

guarantee line-rate forwarding performance. The latter allows more flexibility while allowing
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variable performance (e.g. below line-rate).

Run-to-completion processors such as Trio [91] can result in sub-line-rate performance.
While there is enough redundancy in hardware to compensate for this, programmers must be
aware of this caveat. Tofino switches guarantee line-rate performance once a program is compiled,
but requires programmers to be aware of the resource constraints that guide compilation.

PISA switches have a fixed-depth pipeline of RMT [12] match-action processing stages,
which are typically programmed using a P4 program. The compiler ensures that programs only
compile if the resultant configuration can fit within the pipeline’s resource constraints. Hardware
restrictions determine what types of processing can be performed in match-action stages and
how memory can be accessed — memory is local to each stage. However, stages are functionally
redundant, i.e. any stage can perform any type of processing. This makes it a lot easier to
compile programs using techniques such as ILP [47]. Such functional redundancy forms the bare
bones for enabling active networking, as presented later in our approach.

To facilitate programming of such hardware, most vendors have supplied their own
distinct interfaces making it difficult for users to interoperate across different types of devices.
Building upon the fact that all packet processing tasks involve a common set of steps, P4 [11]
attempts to overcome this hurdle by unifying device programmability with a language system.
PISA devices, commercially available as Tofino [1] was the first to adopt this language as a means
to program these devices. Since then, more device targets have been made programmable using
P4 [42]. However, P4 is still target dependent — each device is required to export an architecture
which is exposed through the language semantics. This makes P4 programs non-interoperable
across devices, even though the language abstracts out most of the complexity of programming
such devices. This makes the language appropriate as a low-level language [99] intended for
systems programmers rather than application developers. Unlike languages meant for general-
purpose CPUs, P4 programs for real devices need to take into account resource constraints on
such devices, which are extremely limited; As compared to a commercial server machine which

has several gigabytes of memory, a Tofino has a few tens of megabytes (of SRAM). Moreover,
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for PISA devices that follow an all-or-nothing approach to compilation, the task of compilation
is both computationally hard [47] and slow. From a programmer’s perspective this is indeed
frustrating, since programs that are both syntactically and semantically correct may not compile
due to resource constraints, significantly slowing down development time.

There are several concerns that govern the practical utility of such an ecosystem, one
of which is multi-tenancy, i.e. multiple functions (e.g. forwarding, mangling) need to be
run on the same device. Recent advances in the language [68] allow for a certain degree of
modularity in programming through the use of control blocks. This has been leveraged by
recent approaches [53] to compose (annotated) programs to a certain extent. To make the most
efficient use of resources (while taking into account modularity) special data structures were
introduced [40] for P4. Such approaches do not however, allow the parser to be sliced among
modules. Other approaches have however, attempted to solve this problem using tags [96] or
leveraging bit-slicing to move parsing functionality to the match-action processing units [79]. All
of the above approaches present themselves as modifications to the P4 language or templating
(e.g. using annotations). There have been other language-based solutions to program PISA
devices, particularly for stateful programs (e.g. Domino [76]).

While the flexibility of run-to-completion devices make them attractive for implementing
a large range of functionality, the performance-guided constraints of pipelined devices such
as Tofino eases the burden on programmers to restrict their focus on functionality rather than
performance. Is there a way to combine the best of both worlds — i.e. facilitate performance-
aware programmability — for such devices? Moreover, can the ecosystem of programmable
switches be modified to enable multi-tenancy?

The approaches presented here attempt to solve the above problems using prototypes
built on top of PISA devices. The arguments presented here can serve as the basis for future

improvement of the ecosystem of programmable switches and in-network computation in general.

19



1.3.1 PISA

A programmable switch ASIC like the Tofino [1] is a well-known target for the P4 pro-
gramming language and is capable of processing packets at the rate of terabits per second. Such
ASICs implement the protocol independent switch architecture (PISA) through reconfigurable
match tables (RMT) hardware [12]. Packets arriving at physical ports of the switch are fed into
heavily optimized pipelines of hardware units which process (and modify) the packets before
sending them out on the wire. An ingress pipeline processes packets directly arriving on the
physical ports while an egress pipeline processes packets as they move through egress port
queues.

A traffic manager sits between the ingress and egress pipelines and is responsible for
switching packets. A deparser concludes packet processing on the pipeline and reconstructs
packet headers before sending it to the traffic manager or out on the wire. Tofino allows packets
to be re-circulated back into the switch processing pipeline for further processing. Although
powerful for implementing complex functions, it does come at a cost to bandwidth.

RMT. Reconfigurable match tables [12] (RMT) is an architecture for implementing
match tables over programmable network processors. These match tables are implemented over
a set of SRAM blocks that can be partitioned into logical tables. A set of hash units connect data
from packet buffers into these SRAM blocks to perform key matches on data stored in the SRAM.
Typically exact matches are performed over SRAM data. Ternary matches are implemented
using TCAMs that can be reconfigured to logical tables in a similar way. The match results are
fed to a set of action units which perform programmed operations on packet fields.

Parsing. Packet parsing follows a state-machine model: information extracted in a
parsing state is used to determine the next parsing state. Header information extracted during the
parsing phase is stored inside an internal data structure known as the packet header vector (PHV).
The PHV can also be used to store additional information—in the form of metadata—during

program execution. The PHV persists throughout the lifetime of the packet inside the switch.
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Match-action processing. A series of identical match-action stages is responsible for
implementing the core functionality of a P4 program. The match units in a match-action stage are
stored in on-chip SRAM or TCAM and capable of performing exact or ternary matches. A set
of primitives defined by the architecture can be invoked through abstractions known as actions.
These primitives include arithmetic, logic and assignment operations along with a set of fixed
functions such as hashes, counters and random number generators. A set of crossbars connect
the data paths between match and action units. Additionally, Tofino enables read-write access
to on-chip SRAM from the data plane through primitives known as registers. These features
are exported to the P4 language through architectural constructs (known as “externs” in P4-16).
Tofino registers are associated with ALUs which can perform a range of operations on register
values.

The architecture of PISA switches has implications on the efficiency of resource utiliza-
tion. Tables that require more memory than is available in a single stage can be chained across
stages with the assistance of the compiler. However, there are other restrictions that may limit
the size of tables altogether (e.g. the use of TCAMs). For programs that have dependencies
(e.g. match dependencies), resources such as memory may not be available until later on in the
pipeline. For a fixed pipeline architecture this leads to a wastage of resources. Alternative designs
have been proposed such as dRMT [15] that use memory pooling to address such limitations.

Even then, resources that are once tied to a program cannot be altered without causing
network disruption — another key limitation of the current ecosystem of programmable switches
is the inability to perform hitless updates and modular programming. While several architectural
designs have been proposed [25, 83, 87] that provide hardware extensions to support such

capabilites, none have yet made it to commercially available switches.

1.3.2 Resource Sharing

Although P4 enables programmers to express a variety of functionality using a uniform

set of semantics, it has limited support for multi-tenancy. Programmers have to manually
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write complex programs that contain functionality corresponding to multiple programs. Prior
efforts have focused on hypervisor-based approaches [36, 93] to running multiple applications
simultaneously on programmable switches: Hyper4 [36] allows runtime re-configuration of
functions and allocated resources using control-plane support. However, these approaches do
not support stateful processing. Moreover, supporting multiple stateful functions on a single
P4 target necessitates sharing the limited resources (particularly memory) available on these
devices. While devices such as Tofino have constructs (e.g. register ALUs) that allow isolation
of memory regions, they have hard limits to the number of instances that can be created per stage
and also cannot be allocated dynamically.

Since P4 targets can only run one program at a time, there have also been several
efforts [39, 79, 96] to compose P4 programs in a modularized way. Our approach obviates the
need to compose programs by decoupling programmability from resource allocation. Stateful
programming only requires mapping of switch SRAM to programs, which we demonstrate can

be done effectively at runtime.

1.3.3 Architectural Extensions

Even if a suitable binary were readily available, reprogramming currently available
switches disrupts network processing. Researchers have proposed alternative architectures [83,
87] to allow incremental updates to the device without disrupting packet processing for the entire
switch. This is achieved by modularizing switch hardware and heavily multiplexing resources
across the switch using crossbars. For example, Menshen’s fully isolated packet-processing
modules can be independently re-configured at runtime in less than a second [83]. Unfortunately,
such extensions have not made their way into commercially available devices.

Other proposed extensions seek to improve resource efficiency. For example, dRMT [15]
decouples processing from memory, allowing memory to be partitioned among match-action
stages according to program requirements. Follow-on work demonstrated that device behavior

could be modified without disrupting operation: FlexCore [87] extends dRMT with primitives
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to support partial re-configuration. By breaking down various elements of a P4 program (i.e.,
parsers, tables, control-flow) into hardware-mapped re-configurable units, FlexCore is able to
update each of these elements at runtime with varying degrees of consistency. The In-situ
Programmable Switch Architecture (IPSA) [25] is another approach to enabling incremental
updates to switch configuration and decoupling processor from device memory. IPSA introduces
self-contained, independently programmable units known as Templated Stage Processors (TSPs)
that support non-disruptive re-configurations. The degree of multi-programmability of the switch
(i.e., number of concurrent services) in such approaches, however, is limited by the number of

independent hardware units.

1.3.4 Virtualization

Our work is similar in spirit to prior attempts to virtualize standard RMT devices [36,
93, 98]. Like ActiveRMT, Hyper4 [36] employs a generic P4 “Persona” program that runs on
the device and can be configured to provide various functionality—through table updates in
Hyper4’s case. Their approach works well for a restricted set of functions like network slicing,
snapshotting and virtual networking, but it lacks support for stateful processing required by a
large number of services. Moreover, the use of resubmission to parse packets consumes switch
bandwidth, and their approach to virtualization leads to prohibitive overhead [36, 93].

Virtualizing a subset of switch resources such as stateful memory is a more tractable
approach on current devices. NetVRM [98] virtualizes register memory constructs on pro-
grammable switches such as the Tofino. Memory is dynamically apportioned across a pre-
compiled set of applications at runtime through virtual addressing. While address translation is
performed at runtime on the switch, page sizes are selected from a fixed set of values determined
at compile time. (This, along with a fixed two-stage cost for address translation is a consequence
of the lack of hardware support for virtualization on current devices.) In addition to the coarse-
grained allocations of stages (i.e. memory cannot be allocated to applications on a per-stage

basis), the virtualization overheads are also significant.
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1.3.5 Resource Allocation

Regardless of how services are deployed, they must share limited switch resources,
which requires not only a mechanism to partition them but policies to determine appropriate
allocations. NetVRM [98] attempts to determine the appropriate allocation using knowledge of
utility gradients and network traffic. Determining an appropriate utility function is not always
straightforward, however [31]. Take the example of a telemetry service such as the count-min
sketch [17]; The width of the filter determines the accuracy of the filter whereas the depth
determines the probability of error in counting. Neither of these two metrics can be evaluated
at runtime—otherwise it would defeat the need for the filter; they are determined at allocation
time and can only be calculated using a given width and depth. Similarly, the hit rate of an
in-network cache varies based upon both memory allocation and workload mix, yet the latter is a
complicated function of demand, congestion control, traffic engineering, etc. ActiveRMT adopts
a first-come-first-serve approach wherein new services request resources and the switch performs
admission control; services with elastic demands may have their allocation reduced as additional

services arrive.

1.4 Language

Programming emerging packet processors can become a tedious task in the absence of
proper abstractions. P4 [11] addresses this problem for a large set of programmable devices. It is
the most widely known language that can be used to program various targets including PISA and
other emerging programmable switches [42]. The programming model consists of a series of
constructs — parsers, control units and deparsers — that mimic a packet processing pipeline. These
abstractions compile to device-specific resources that can implement the corresponding logic.
Programmers can define custom header formats and logic describing how to parse them. Using
information extracted from the headers, various functions can be implemented that make use of

the processing units on the device. While most of the abstractions in P4 are target-independent,
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the ecosystem of devices are quite heterogeneous requiring special language modules to enable
several capabilities. For this reason, P4 requires distinct architectures for each class of device
targets (e.g. Tofino, BMV?2, etc.). Some examples of target-specific capabilities include register
memory and hashing — these are defined within their respective P4 architectures. P4 toolchains
are hence associated with a target-specific compiler that implement the “backend".

The P4 language is however, limited in its support for modularization. For example, only
one parser can be defined for a program. Control blocks do however, allow for some degree
of modularization. A control block takes as input a set of headers and various metadata fields.
A set of tables and their invocation order is defined within such control blocks. Additional
imperative-style logic can also be implemented within the control blocks. Control blocks can be
invoked recursively, making large programs more manageable. However, control blocks only
simplify programmability — the actual feasibility of the program is determined by the compiler
upon mapping the logic to resources. The simplest form of modular composition from multiple
sources can be achieved using control blocks. Each programmer simply defines a control block
based on a fixed set of headers and metadata.

P4 initially did not have much support for stateful processing. Language alternatives
have been proposed in the past that attempt to address some problems such as stateful processing.
Domino [76] is one such example. An imperative-style language is used to define operations on
stateful memory on programmable devices. The idea is based on atomicity of operations. Every
operation on stateful memory as defined in the corresponding packet transaction is atomic. This
helps address the problem of data consistency. The complexity of such operations are however,
limited by the number of required processing cycles to keep up with line-rate processing on a
number of target devices. The Domino model is present on current RMT switches such as Tofino

in the form of “register ALU" constructs.
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1.4.1 Modular Programming

A trivial approach to deploying multiple services is to manually combine them into one
monolithic P4 program, but custom-crafting programs for each possible service combination
is intractable. uP4 [79] supports modular program composition by presenting a homogenized
logical architecture and uses match-action tables to provide generic packet-processing capa-
bilities. P4All [39] similarly extends the P4 language with support for elasticity and modular
programming: each independent program can make the most efficient use of switch resources by
using elastic data structures that are designed to maximize memory utilization. P4Visor supports
deploying multiple versions of the same service simultaneously for testing [96].

While these approaches enable modular composition, they do not solve the chief drawback
of P4-based approaches: the time to deploy new services remains dominated by compilation
time. Moreover, RMT resource constraints (along with an all-or-nothing approach to ensure
line-rate processing) frustrate compilers’ attempts to map programs onto such devices, often
resulting in compilation times on the order of minutes requiring sophisticated tools such as
ILP solvers [47]. At times, such approaches even fail to find a solution due to their search
strategy [76]. Chipmunk [28] presents an alternative (combinatorial) approach to finding feasible
mappings in challenging circumstances, at a significant cost in terms of computation and time,

further delaying service deployment.

1.4.2 Application Deployment Frameworks

Software-defined solutions to leverage all such hardware for network functionality has
also grown over time. NFV frameworks [58, 69, 70] facilitate arbitrary network functions to be
deployed over general purpose servers. They are however not directly applicable to programmable
hardware accelerated data planes. This ecosystem is dominated by P4 [11] and its proposed
enhancements [39, 76, 79]. While P4 does heavily simplify the task of expressing packet

processing functionality, it is not sufficient in terms of multi-programmability — a necessary
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feature when using such an ecosystem to program a deployable network. Since the number of
concurrent programs (functions) targeted for a single device are expected to be small (a few 10s),
combining functions using static analysis seems to be a reasonable approach for most scenarios.
Recent approaches have in fact been proposed [53, 96, 98, 99], that use such techniques to
facilitate deploying functionality over a network of programmable devices.

ExoPlane [53] is one operating system that enables multi-tenancy for network functions
deployed over a rack using resource augmentation. It attempts to provide an infinite switch re-
source abstraction by augmenting rack servers — equipped with smart NICs — with programmable
switches. Applications defined in annotated P4 control blocks are composed into monolithic
P4 programs and provisioned onto target devices. Packets are processed on a single device
allocated by a resource planner which takes into account operator specified objectives. Packets
are filtered on the programmable switch to determine whether they are to be executed on the
switch or a rack server. Application state is synchronized across devices following certain
(time-bounded) consistency guarantees. Such a system facilitates reactions to dynamic traffic
patterns and increasing memory requirements.

Sirius [27] is a similar, yet more recent approach that composes P4 functions into
monolithic chains using static analysis and spreads functionality across heterogeneous devices.
It does so by leveraging redundant functionality across programs and defining gateways for each
functional block. It also takes into account resource constraints to determine an ideal split of
functionality across devices.

Both these approaches statically compose (templated) programs and target devices such
as Tofino, where programs cannot be updated hitlessly. The limitations of efficient resource
utilization, degree of multi-programmability and runtime programmability still remain with such
an ecosystem unless alternatives such as virtualization is adopted. Moreover, some of them
generalizes packet recirculations to run complex functionality — a feature that must take into

consideration network bandwidth.
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1.5 Active Networking

Our 1nitial approach to service deployment harkens back to design patterns from classical
active networking [9, 84, 86]. While the capabilities of currently available programmable
switches allow [23, 85] for a broad range of functionality, we focus on traditional in-network
services like those currently supported by P4. Others have taken similar approaches in even more
restricted domains. Jeyakumar et al. propose active packets containing Tiny Packet Programs
(TPPs) [44] of up to 20 bytes in length that can take advantage of stateful processing on RMT
devices, but they focus on storing and retrieving switch attributes to support network telemetry.
We recognize many challenges of active-networking style approaches remain unsolved; this
dissertation focuses on a subset of those issues, such as memory allocation and we defer the
others to future work.

Other researchers have also considered employing capsule-based active networking
techniques in modern switches. In one instance [44], the authors present an approach to
expressing a range of telemetry functions by composing tiny programs (up to 20 bytes in length)
using a small set of instructions. More recently, in-network telemetry [52] has been adopted as a
standard for P4-based applications. Programmers can encode instructions in network packets
according to a specific format in order to obtain a set of useful information from programmable

switches. We provide a more expressive framework enabling a larger variety of applications.
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Chapter 2
ActiveRMT

Numerous applications have been built around programmable switch hardware in recent
times, especially with the emergence of reconfigurable match-action tables (RMT). This new class
of devices is capable of performing basic computation and line-rate forwarding at a reasonable
cost. Given this transformation in commodity switching functionality, we suggest it may be
time to reconsider the concept of active networking, where end hosts can off-load application
functionality to the network in real time without requiring the assistance of the network operator.
We present a preliminary approach to encoding (nearly) arbitrary computation into a series of
network packets that can be decoded and executed on programmable switch hardware. Our
programs can leverage both high-speed forwarding and stateful capabilities of RMT devices. We
also conduct an initial exploration into the importance of dynamically allocating switch resources
across active programs to improve aggregate performance.

Researchers have proposed a wide variety of ways to leverage RMT-based programmable
switching to offload functionality from end hosts, often taking particular advantage of the
unique topological advantages afforded by in-switch processing. Recent systems demonstrate
performance improvements in domains as varied as data aggregation [57], machine learning [74],
object caching [46], distributed consensus [18] and network telemetry [33, 52] among others.
The sheer number of disparate target domains and velocity of evolution of the associated P4 [11]

ecosystem suggest there remain many additional benefits that are yet untapped.
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We observe, that the capabilities of the current, P4-based deployment model fall consid-
erably short of earlier visions for in-network computation. In particular, P4 application logic is
statically deployed by operators at network configuration time. Despite the availability of pro-
grammable switch hardware from a variety of vendors [1, 91], there is considerable uncertainty
regarding the viability of operator-managed service deployment. The P4 [11] ecosystem has
enabled the development of a vast spectrum [38] of in-network services that can be compiled
and installed on programmable switches such as those based on the reconfigurable match table
(RMT) model [12]. Yet, when P4 is employed on currently available ASICs, it is not possible to
alter the set of services deployed on a switch—or reallocate resources among them—without
operator intervention. While Intel Tofino-based switches [1] can be re-provisioned with relatively
brief (O(50-ms)) impact to traffic forwarding [6], each potential service combination must be
developed and compiled independently, a complicated and time-intensive process. As a result,
the existing P4-based service-deployment model limits the potential of modern programmable-
switch hardware: there is no practical way to adjust a switch’s service set without deep operator
involvement, dramatically limiting the utility of hardware programmability in many networks
and undermining the value proposition [14, 37].

Active networking [9, 84], in contrast, sought to enable user traffic to execute arbitrary
programs inside the network, treating the switching fabric as a general-purpose execution
environment. This more flexible approach provides the potential to dramatically expand the set
of applications and users that can benefit from switch-based processing present in the network.
Unfortunately, commercial switching hardware of the late 1990s and early 2000s was unable
to provide line-rate forwarding performance while executing active programs, presenting a
significant barrier to the adoption of proposed active-networking technologies. In subsequent
years network processors were developed that are able to deliver line-rate network performance
while allowing rich functionality, but their cost remains prohibitively high when compared to
commodity switching gear. The increasing commoditization of RMT-based hardware, however,

suggests price may no longer be a significant barrier.
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We argue that the time is ripe for a reconsideration of active networking, in particular to
study whether RMT hardware may finally unlock the promises of the original, traffic-directed
computation vision. As a starting point, we show it is possible to use P4 to turn a commodity
RMT switch (a Barefoot Tofino Wedge100BF-65X) into a something akin to a virtual machine,
where program instructions contained within incoming network packets are executed while
the packets are forwarded through the switch, potentially impacting not only the contents and
forwarding behavior of the packet itself, but also the state of the switch—which, transitively,
may impact the forwarding behavior experienced by subsequent packets.

Each packet can therefore perform a piece of computation that contributes to the overall
functionality of a corresponding off-loaded application. We leverage the storage capabilities of
programmable RMT hardware to maintain application state across packets and deliver complex
functionality impossible to describe within a single packet.

Our approach naturally enables multi-processing within the switch. Because each in-
coming packet can contain its own, independent program, a switch may execute instructions for
multiple programs concurrently. Importantly, unlike the current P4 model, where the network
operator must determine the set of applications to support in a given switch a priori, in our
model a new application can be executed on a switch simply by sending traffic containing that
program—the switch does not need to be reconfigured in any way. Obviously, our model raises
all of the standard questions regarding resource isolation and scheduling, namely defining both
mechanisms and policies for protection and sharing. We defer almost all of these to future work,
instead choosing to focus on the pragmatic question of feasibility: specifically, is it possible to
replicate the functionality of recently-proposed P4 programs in our model? And, critically, can
multiple such programs execute concurrently on a single switch while retaining their inherent
performance benefits? For the particular applications we start with, the latter question comes
down to one of resource management—can we dynamically allocate on-switch memory resources
among competing programs to achieve better overall application performance?

We describe the space of programs that can be expressed with our programming model
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Figure 2.1. ActiveRMT packet processing overview

and introduce two example programs selected from the set of applications that has been im-
plemented using P4. We choose one commonly used network function—a load balancer—as
well as an example of application offload: in-network caching. Finally, we demonstrate the
importance of the memory manager that resides in the control plane of the switch. In particular,
we illustrate the impact of initial mechanisms that guide and enforce memory management on
the performance the network applications are able to achieve. We conclude with a discussion of
the remaining technical challenges that must be addressed before active networking might finally

become a reality.

2.1 Overview

The RMT [12] architecture consists of a sequence of match-action stages comprising
ALUs, stateful register memory and several other hardware units that can be configured to
perform a specific set of operations. Languages such as P4 [11] and Domino [76] can be used
to write programs that map to such configurations to enable desired behavior. We overlay a
homogenized logical architecture (shown in Figure 2.1) that enables network packets to determine
device behavior at runtime. To this end, we pre-configure the device (using P4) to expose a set
of abstractions—in the form of instructions—that can express a range of programs. (Section 2.4

contains the details of our instruction set.) Programs can be attached to individual packets to
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trigger desired behavior when the packets traverse the switch.

Our design allows for an essentially unlimited degree of multi-programmability as each
packet executes an independent program. Behavioral and performance isolation follows from
RMT’s line-rate processing wherein each packet has its own independent state—contained within
a packet header vector (PHV)—and does not affect the processing of other packets. Many
services implement stateful processing across a set of packets (i.e., flows), however, which
requires programs to access high-speed switch memory, a limited resource on such devices. As a
result, in practice the degree of multi-programmability is limited by the extent to which switch
memory can be shared among applications. ActiveRMT allows users to write programs that
access partitioned stateful memory. Unlike prior approaches [98] we are able to dynamically
partition memory—both vertically (within stages) and horizontally (across stages)—resulting in

more efficient resource utilization.

2.1.1 Program Execution

In ActiveRMT, parsing units on a PISA switch extract code and data corresponding
to an active program and store them in the PHV. Programs can have variable length and are
terminated using a special EOF instruction. Parsed code is executed in match-action stages with
one instruction being executed per physical stage. Applications that contain more instructions
than the switch pipeline has stages are recirculated to continue execution. ActiveRMT defines
three additional 32-bit variables that are maintained in the PHV: the memory address register
(MAR) and two memory buffer registers MBR and MBR2 that serve as general-purpose accumulators.
Our instruction set is based on the Tofino native architecture (TNA) [5] and provides capabilities
such as hashing and access to ALUs.

Instruction interpretation. Figure 2.6 illustrates the execution process for active programs.
From a P4 perspective, the control plane installs a match table for each stage which matches
on the program’s FID (see Section 2.1.5), instruction opcode, contents of the variables, and

additional control flags. Table entries define valid memory regions for each program and are
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computed by the control plane during allocation. We use the contents of MAR to enforce memory
protection and the contents of MBR to facilitate branching. Note that both these variables can
contain the results of previous operations. We implement instruction decoding using exact
matches in SRAM. Memory protection is enforced through range matching in TCAMs, which
end up being the resource bottleneck for the number of distinct address ranges that ActiveRMT
can support.

A successful match executes a corresponding P4 action which invokes a subset of
primitives defined by the underlying device architecture. To support runtime programmability,
we only employ primitives where the operands are all obtained from the PHV.

Control flow. Program execution proceeds sequentially through the stages of the RMT
pipeline with the help of control flags. Instruction execution is enabled by default at each stage,
except when there is branching or the program terminates. The latter is determined by using a
control flag labeled complete. This flag is usually set when the RETURN instruction is executed.
Branching occurs when a CJUMP instruction or one of its variants is executed. Correspondingly,
a disabled flag is set and subsequent instructions (corresponding to the alternate branch) are
skipped until this flag is reset. A branch instruction is associated with a label indicating where in

the program to branch. Due to the sequential nature of program execution, this location has to be
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later on in the program. The flag is reset once this label is encountered.

Once an instruction is executed on a logical stage, a flag is set in the corresponding
instruction header in the packet. This flag provides indication to the P4 parser that the instruction’s
field should be discarded from the packet. Consequently, active packets shrink in size after
execution—an optimization that can be disabled if variable packet sizes are undesirable.

The full set of instructions is available in each stage, simplifying program structure. The
downside of this design choice is additional overhead: A match-action stage in a typical PISA
switch consists of various hardware units that can be used to implement certain programming
constructs. By using match-action tables to perform instruction decoding, we are not able to take
advantage of various Tofino optimizations such as checking a condition and using it to predicate
table execution within the same stage. Instead, ActiveRMT typically requires conditionals
to execute in a distinct stage, although there are certain instructions that can be conditionally
executed without requiring an additional stage (e.g. CRET). Our approach similarly cannot
parallelize execution within a stage.

Recirculation. There are three factors that determine whether a program can be run in one
pass through the switch or requires recirculation: The first one is the program length. Programs
where the number of instructions exceed the number of logical stages require packet recirculation
to complete execution. (A switch can thus directly infer the recirculation cost by observing the
program length.) The next one is the position (on the logical pipeline) where certain instructions
are executed. For example, the return-to-sender (RTS) instruction should ideally be executed
on a stage of the ingress pipeline, since ports cannot be changed at egress on devices such as
the Tofino. (Otherwise we recirculate packets to change ports with a corresponding overhead).

Finally, instructions that clone packets (e.g., FORK) also require recirculation.

2.1.2 Memory Semantics

ActiveRMT uses a novel approach to achieve memory protection using TCAMs. Each

instruction processor table performs a ternary match on the MAR register to determine if a memory
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access instruction can be executed, and only executes the instruction if a corresponding entry
exists for the given FID and MAR range. The ternary match entries are populated according to the
memory allocation for the corresponding FID. FIDs essentially behave as memory protection
keys, assigning programs to domains. These keys are assigned to programs one-to-one at the
time of resource allocation. An alternative presumed authentication mechanism ensures that keys
exclusively belong to one user when issued. Over the course of time, these keys can be reused.
However, while keys are pinned to a particular program (and corresponding user), the respective
allocations can change over time to make most efficient use of switch resources.

The ability to access stateful memory from the data plane enables a large number of
interesting applications. On a Tofino switch register “externs” enable this capability. Each
register has its own stateful ALU for which multiple micro-programs (register actions) can be
defined and selected, on a per-packet basis, from the same match table. We define memory

semantics using four register ALU actions. (The resulting instructions are listed in Section 2.4.4.)

2.1.3 Layout

In our design, we use one large register array to store memory objects in a particular
stage. Based on the constraints described above, we define a set of register ALU semantics and
corresponding actions which (in our experience) is enough to express a number of non-trivial
applications (Section 2.6). Memory is directly addressable based on the contents of the MAR
variable and protection is enforced by the match tables. Consistent with the RMT design, a

packet (and consequently an active program) can access only one memory object per stage.

2.1.4 Address translation

We allocate a contiguous region of each stage to a particular application. The pipeline
uses physical addressing, so we need to apply a mask and add an offset to translate a program’s
accesses for a given allocation. Because there are no primitives on the Tofino to perform such

an operation, we implement address translation as part of program synthesis at the client: the
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switch communicates the details of an service’s memory allocation at admission, and the client
updates its program’s memory access instructions accordingly.

ActiveRMT can support runtime translation at the switch when necessary, however, such
as to perform address translation on the result of a hash. We define instructions (Section 2.4.6) to
apply the appropriate mask and offset (determined by the switch at runtime based upon the stage

at which the memory access will execute to ensure memory safety) to the value of MAR.

2.1.5 Program Encoding

(End-host) clients run a shim layer that is configured with the (set of) service(s) they
wish to employ at the switch. Active programs do not operate—or even inspect—the TCP/IP
payload of packets; rather, outgoing packets are encapsulated with special headers that contain
the instructions' and data corresponding to an ActiveRMT program. The order of instructions is
determined based upon the match-action units and parsers allocated to the service by the switch.
As a result, the shim-layer logic for each service needs to understand the protocols used by
packets upon which it operates, and encode any relevant data from the payload into the active
headers.

Our prototype uses layer-2 encapsulation, following the standard Ethernet header (i.e., a

'Such a design adds overhead. We could potentially optimize our solution by caching code on the switch; We
present a similar approach later on.

37



special VLAN tag). While limiting its use to local networks, this choice dramatically simplifies
interaction with standard transport protocols such as TCP and UDP and allows packets to
be “activated” just prior to transmission in a traditional POSIX networking stack. Figure 2.3
illustrates the ActiveRMT header format. An initial header marks the beginning of an active
program. This header contains an identifier called FID which is used to identify an active
program along with control flags that determine the nature of the active packet. One of the
control flags specifies the type of active packet which determines the next set of headers.

There are three types of active packets: allocation requests, allocation responses, and
active programs. Allocation request packets contain a set of headers that describe an active
program in terms of its memory access patterns—the length of the program, the stages where it
accesses memory and the respective demands of each stage. Allocation response packets contain
the start and end locations of the memory regions allocated in each stage. Active program packets
comprise of a set of argument headers (containing program data) followed by a sequence of
instruction headers which define the (code for the) active program.

The initial header is 10 bytes while the argument header is 16 bytes (consisting of four
32-bit data fields) followed by a variable number of instruction headers, each of which contains
two bytes: a one-byte opcode and a one-byte flag. The former is used to identify the instruction
to be executed while the latter is used for control flow (as described in Section 2.1.1). In our
prototype allocation request headers are 24-bytes long, consisting of eight three-byte headers
corresponding to eight potential memory accesses. Allocation response headers are 160-bytes
long and consist of 20 eight-byte headers encoding the memory regions allocated in each of the

20 stages in our switch pipeline.

2.1.6 Example: In-Network Cache

Our instruction set allows us to implement a number of useful services. Here we present
a toy example of an in-network cache that can store small objects (4-byte values with 8-byte

keys) from realistic workloads [90, 2, 89] on a PISA switch. (Additional examples of active
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1 MAR_LOAD, $ADDR // locate bucket
2 MEM_READ // first 4 bytes
3 MBR_EQUALS_DATA_1 // compare bytes
4 CRET // partial match?
5 MEM_READ // next 4 bytes

6 MBR_EQUALS_DATA_2 // compare bytes
7 CRET // full match?

8 RTS // create reply

9 MEM_READ // read the value
10 MBR_STORE // write to packet
11 RETURN // fin.

Listing 2.1. Active program for querying an object cache

programs can be found in Section 2.6.) This service consists of two separate active programs:
one to store key/value objects on the switch and one to request objects if available. Listing 2.1
shows the active program for the latter, which clients attach to application-level read requests
addressed to the server. When inserting the program into the packet, the ActiveRMT shim on
the client computes a hash of the desired key (by parsing the application-layer payload of the
packet) and calculates the address of the corresponding hash-table bucket on the switch based
upon the memory allocation it received when registering the service at the switch (following the

process described in Section 3.1.3).

2.1.7 Object retrieval.

Line 1 of the program loads that address (depicted as SADDR) into the MAR variable. In
the next line, the program reads the first four bytes of the key stored in that bucket (i.e., located
at MAR) into MBR—and advances MAR accordingly—which is compared (line 3) with first the four
bytes of the requested key stored in the first data header in the packet. If the bytes are not equal,
it is a cache miss and the program terminates (line 4), causing the packet to be forwarded to
its destination, presumably a server that will service the application-level request for the same

object contained in the (TCP/IP) payload of the packet. Lines 5—7 repeat the exercise for the
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remaining four bytes of the key to check for an exact match. If the program reaches line 8, it is a
cache hit and the switch is directed to return the packet back to the source. Before terminating
(line 11), however, the program reads the stored value from the the last byte of the hash bucket
(line 9) and writes it into the first data header (lines 9-10). When the packet is received back at
the client, the shim layer can extract the value from the data header and construct an appropriate
application-layer response packet. This program can be fully executed in one pass through the
switch since the total number of instructions (11) is less than the number of logical stages (20)

and the RTS instruction maps to a stage (8) within the ingress pipeline.

2.1.8 Data-plane cache management

Deploying a full-featured in-network cache service like NetCache [46] using ActiveRMT
involves more than just the active program above. Concretely, the service needs to determine
popular items and populate the cache accordingly. As a P4 program, NetCache can use the
switch’s match-action tables to look up keys; in other words—in the context of key-value
objects—it uses content-addressable memory. The register memory that ActiveRMT exports,
on the other hand, is direct (or hash-based) addressable. Moreover, match-action table entries
cannot be updated via the data plane and, as such, NetCache requires a control-plane application
to perform cache management.

In NetCache, the P4 program instantiates counters for stored objects in addition to sketch-
based counting of every requested key while its control-plane application identifies popular items
and updates the set of objects cached in the tables. Match tables can store an arbitrary set of
objects so the exact set of frequent items can always be maintained. Using register memory
requires a different approach: hash-based addressing like that used in our example results in
collisions. Hence, the problem transforms to storing the most-frequent key-value pair among the
set of keys that hash to each bucket [7, 67, 77]. Section 3.2.3 presents a realization of such an
approach in ActiveRMT. Similarly, while NetCache relies on its control plane to populate the

cache, ActiveRMT employs the data plane. Section 4.3.4 presents a set of RDMA-style client
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primitives that enable clients to directly access allocated switch memory. Clients of our cache
service use these primitives to populate the cache in response to workload changes or due to

memory reallocation.

2.2 Managing Switch resources

One of the key challenges raised by active networking is determining how to multiplex
scarce switch resources across programs, not all of which may be executing at a given time
(e.g., some programs may require continued use of stable switch storage even when none of the
application’s packets are transiting the switch). In particular, the performance of many of the
applications that have been proposed for off-loading depends greatly on the resources available to

the application at the switch. Here, we consider two of these resources: bandwidth and memory.

2.2.1 Limiting recirculation

While a 64-port switch with 100-G ports has enough backplane capacity to process
6.4 Tbps of traffic, packet recirculation changes things completely. A few recirculations can
have significant effects on forwarding performance due to both available processing capacity
and queue space. Larger and more complicated active programs are likely to require multiple
passes through the switch and, hence, recirculation. However, as datacenter networks frequently
have a surfeit of switching capacity it may make sense to transform this surplus bandwidth into
useful computation. We attempt to manage this tradeoff in our prototype by implementing a
recirculation manager for active programs. Our runtime monitors traffic levels on the switch
using traffic meters based on the standard three-color marking scheme. Significant changes
in traffic levels are reported to an application running on the switch control plane, which uses
this information to dynamically assign limits to the number of allowed recirculations for active

programs.
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2.2.2 Memory allocation

Unlike bandwidth, which may be readily available in many environments, memory in
the form of SRAM is likely to be scarce on most switches. While a single application using
the switch can liberally use all the memory available on the device, careful partitioning of the
memory space is required to enable multi-tenancy. Since the set of applications using the switch
resources vary over time, memory management needs to be dynamic and automated based on
predefined policies. In our prototype implementation of the memory manager, we explore a
strawman approach of allocating memory equally to applications sharing the switch. Memory is
explicitly requested by each new application, following which the memory manager reassigns
memory equally among the new set of applications. For applications that benefit equally from
memory, this approach enables fair sharing of resources.

To evaluate this hypothesis, we performed an experiment where we used four, separate
caching applications (similar to the one we described in Section 2.3.4, but more full-featured)
that share the switch over time. The keys corresponding to the requests are drawn from a
Zipf distribution with o« = 2. All four applications first avoid the switch cache and directly
access objects from the back-end key-value store. Then, each of these applications leverage
the switch cache, one by one, over time. Figure 2.4 shows a timeline of the response latencies
of application-level requests, averaged over one second. In the absence of on-switch caching,
the destination server is able to respond to the requests in just over 6 microseconds. As we can
see, the latencies for each application flow converge over time as the memory manager equally
allocates memory among them—with latencies increasing slightly as each arrives.

Of course, the performance impact of decreased resource allocations varies across ap-
plications. Figure 2.5 shows the relative performance benefits of allocating varying number
of stages to both the load balancing application (from Section 2.3.4, in blue in the figure) and
the cache application (shown in orange). In this experiment, both applications are running

concurrently (i.e., the incoming traffic consists of packets carrying object requests and flows to
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Figure 2.4. A demonstration of dynamic memory allocation. Initially, all four flows bypass the

switch cache. Then, each flow begins using a separate active caching application that attempts

to serve requests from on-switch memory. As more active applications arrive, per-application
allocations decrease, resulting in a higher miss rate and increasing latency.
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Figure 2.5. Performance benefits of memory allocation. We allocate four switch stages’ worth
of memory across two applications in varying proportion. The normalized load balancer drop
rate is shown in blue, and response latency in orange.

be load balanced), and we consider three different allocations of four switch stages worth of
memory. The left-hand grouping shows when one stage is allocated to the load balancer and
the remaining three to the cache, the center evenly across applications, and the right-hand bars
consider the reverse. The bars plot an application-specific performance metric (request latency
in the case of the cache and flow drop rate in the case of the load balancer) normalized to the
worst-case performance where each application is allocated only one stage. While the absolute
heights of the bars are incomparable across applications, in both cases lower is better. One can
deduce that the load balancer extracts greater relative performance benefit than the cache from a

commensurate memory allocation.
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2.3 Programming Model

Our active programming model is built on top of the semantics exported by the P4
programming language and the associated RMT architecture. An active program consists of
a sequence of instructions contained within one or more packets. Execution follows the von
Neumann model, where instructions are executed sequentially: once an instruction is executed by
any switch in the network it will not be executed again. In our initial work, we consider programs
that run to completion inside of a single switch (possibly taking multiple passes through the
egress pipeline) but we imagine it may be preferable for packets to execute across switches in

networks with multiple RMT-capable devices.

2.3.1 Instruction processing

Figure 2.6 shows the relationship between match-action tables, packet and ephemeral
metadata contents (stored inside the PHV) and switch storage and computational units. Arith-
metic, logical and bit-shift operations are enabled by the action units in the RMT pipeline.
Instructions and their arguments are decoded by the match tables and executed by the corre-
sponding action units. The match tables use the opcode (loaded by the parser) to determine
which action to execute. Space prohibits us from listing a complete set of operations, but we
illustrate several in the examples that follow.

The runtime uses a variety of packet metadata buffers to facilitate the control flow of the
program. Data flows between packet header fields and these metadata buffers during program
execution. The instruction set architecture exposes these buffers as a fixed set of general-purpose
‘registers’ that are available for use by operations in the instruction set. These registers can
be loaded from and stored to both packet header fields and persistent memory on the switch
through a set of memory access instructions. Two registers of particular interest are the memory
address register (MAR) and memory buffer register (MBR), so named to reflect the semantics of

the corresponding registers in a general-purpose CPU. The instruction argument is used to pass
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Figure 2.6. An example of executing a MEM_READ instruction; the vale stored at MAR in the
switch’s stateful memory is loaded into the MBR register.

information from the packet directly to the action unit. The 1abel is also loaded by the parser

and is used to mark locations in the program to which it may jump.

2.3.2 Memory model

Persistent switch memory is somewhat different than typical architectures and comes in
two forms: directly addressable, and associative collision chains whose length is dictated by the
number of match-action stages in the switch hardware. Direct memory locations are specified by
16-bit addresses, while values stored in collision-chain memory are accessed through 16-bit-wide
keys.

In contrast to registers which are available throughout a program’s execution, the per-
sistent memory locations available to an instruction depend upon the hardware stage on which
the instruction is executed: both memory addresses and keys are scoped by the current pipeline

stage. Said another way, the location of an instruction in a program dictates which portions
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of memory it can access, as memory physically located at one match-action stage cannot be
accessed from another stage. This RMT-based restriction currently necessitates some careful
program construction, but could potentially be alleviated by clever compiler design: Memory in
later stages can always be accessed by inserting the necessary number of NOP instructions before
the access, while locations on previous stages require re-circulation back into the egress pipeline
to execute the instruction at the appropriate stage in the next pass.

Memory protection is enforced by the runtime during program execution. Allocation
policies defined in the control plane allocate regions for corresponding applications. Memory
re-allocation is triggered whenever the set of tenant applications change. An incorrect memory
access by an instructions results in the generation of a segmentation fault, where the correspond-
ing active packet is returned to the sender with a specific bit set in the active program header.

The application then retrieves the allocated memory region from the switch runtime.

2.3.3 Control flow

Our current instruction set supports both branching and a basic loop construct. Apart
from loops, our runtime currently cannot re-execute instructions already executed previously.
In other words, one can only jump forward in the program. This can of course be partially
compensated for by repeating instructions as necessary, but a practical implementation would

likely remove this restriction.
Branching

A jump instruction branches to label in a different part of the program while a return
instruction terminates execution of the program and branches out of the program. UJUMP
is unconditional, while CJUMP checks the value of MBR and jumps if the value is not zero,
while CJUMPI jumps if the value is zero. Unlike typical execution environments, however,
active programs have constant-time execution despite the presence of conditional branches.

All branches of a conditional are visited irrespective of the condition. Instructions in inactive
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11. MAR_LOAD, 0x0001

2 2. MEM_READ

33. CJUMP, goto=2

44. MBR_ADD, 1, label=2
55. MEM_WRITE

6 6. RETURN

Listing 2.2. Conditional example

branches are simply ignored (i.e., treated as NOP) while the active ones are executed. Return
instructions are used to terminate execution of the program. This is a mandatory instruction
for every program. A regular RETURN instruction marks the program execution as complete
immediately and can be invoked anywhere in the program. The CRET instruction returns only if
MBR is non-zero.

We illustrate both memory access and branching using a trivial example shown in
Listing 2.2 that increments a value stored in memory location 0x0001 only if the value is
currently zero, and stores the result in a different location. The first instruction sets the value
of MAR to the address literal 0x0001. The MEM_READ instruction then loads the value at that
memory location (in stage two of the pipeline) into MBR. The CJUMP instruction causes the next
instruction (number 4, labeled 2) to be skipped if the value of MBR is non-zero. Else, it executes
the MBR_ADD instruction which adds the numeric literal 1 to the contents of MBR. Finally, the
MEM_WRITE instruction stores the value in MBR back to the address specified in MAR—but this

time into the memory bank of stage five.
Loops

A loop follows the ‘do-while’ idiom common in many higher-level programming lan-
guages. We explain how a loop is written using the example shown in Listing 2.3. The loop
conditional that determines whether the next iteration of the loop should be executed or not

is based on the value in MBR. A non-zero value indicates that the loop should continue. In the
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11. MBR_LOAD, 3

22. LOOP_INIT

33. DO, goto=2

44. MBR_SUBTRACT, 1

55. WHILE
66. NOP, label=2
77. RETURN

Listing 2.3. Loop example

example MBR is loaded with a value of 3 to cause the loop to execute three times. Once this value
reaches 0O the loop will terminate. The LOOP_INIT is used to initialize the loop by indicating
that the next instructions are iterable. The DO instruction implements the loop conditional and
checks whether the value in MBR is zero or not. The goto label specifies where to branch to if
the loop is done. The target location in the program is specified by a 1abel. In the example
if MBR is zero then it jumps to the instruction labeled 2 (i.e., instruction six). Else, the body of
the loop is executed. In this case the following MBR_SUBTRACT instruction is executed which
decrements the value in MBR by 1. The WHILE instruction is the final instruction in the loop
construct and indicates the end of the scope of the loop. Control-flow instructions such as the

branches described in the previous section can also break out of the body of a loop.

2.3.4 Examples

We have used our programming model to implement a variety of network functions.
Here, we present two toy examples based upon published applications implemented on RMT
hardware using P4 to demonstrate our ability to express similar functionality in our framework.

Then, in the subsequent section, we consider performance concerns raised by our model.
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Stateful load balancer

Stateful flow-level load balancers have been implemented in the P4 ecosystem before [4]
and require forwarding packets based on state. We wrote an implementation of a trivial load
balancer using our active programming language that selects a random egress port to use for the
duration of a flow; the program itself need only be included in the first packet of the flow—or
whenever the network chooses to redirect the flow. (A useful load-balancing application, of
course, is likely to select only among a subset of the egress ports, and may need to adjust the
packet destination addresses while doing so.)

Listing 2.4 shows the function written using our active language. The instruction
LOAD_BTUPLE loads the packet’s 5-tuple (i.e., source and destination IP address and port, along
with the IP next protocol field) into a data structure. The subsequent instruction HASH_GENERIC
applies a hash function to the contents of this structure and stores the result in MAR. The instruc-
tion RANDOM_PORT selects a random output port and stores it in MBR. The SET_PORT instruction
at step 9 updates the switch’s forwarding table to set the egress port for all packets associated
with this packet’s 5-tuple (i.e., the current flow) to the contents of MBR (i.e., the result of the hash).
The sequence of associative MEM_WRITE instructions in steps 4—8 attempt to write the contents
of MBR to the memory location associated with the key stored in the MAR in each of the four
stages following the semantics of a collision chain. (In particular, any successful MEM_WRITE
will prevent the execution of any subsequent ones.) The C_ENABLE_EXEC instruction enables the
subsequent (SET_PORT) instruction only if the associative write was successful. Packets that are
unable to store their selected output port (due to an overflowed collision chain) are dropped in

this trivial example.
Object cache

We draw inspiration from systems like NetCache [46] to implement an in-network cache
using our prototype language. A request for an object received at the switch is first looked up in

its local storage. If it is found then the object value is returned to the requester, else the switch
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11. LOAD_BTUPLE
22. HASH_GENERIC
33. RANDOM_PORT
44. CMEM_WRITE
55. CMEM_WRITE
66. CMEM_WRITE
77. CMEM_WRITE
88. C_ENABLE_EXEC
99. SET_PORT

10 10. RETURN

Listing 2.4. Program for toy stateful load balancer

forwards the packet to its intended destination as usual. The cache uses the stateful memory
on the switch to implement a key-value cache. Values are accessed in a collision chain across
several stages. Listing 2.5 shows a program for reading objects from the switch cache. (Storing
objects requires a separate, complimentary program which we do not include here due to space
constraints.)

The first instruction loads the 16-bit key (specified in the packet as a literal instruction
argument) into MAR. The next four instructions attempt to read the value associated with MAR using
the semantics of a collision chain. (Any successful CMEM_READ instruction disables the execution
of all subsequent ones.) The ENABLE_EXEC instruction is used to resume execution of the
program once it is paused due to a successful memory access. The CJUMPI instruction performs
a conditional jump if a cache hit occurs and executes the RTS instruction. This instruction
marks the packet for returning back to the sender. The subsequent ACC_LOAD instruction is
executed thereafter and the value of the MBR (which contains the object value) is loaded into
the packet header. Otherwise, a cache miss occurs and the packet is forwarded along to its

destination—presumably a server which can service the request.
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1.
22.
33.
44.
55.
66.
77.
88.
99.
10 10.

MAR_LOAD, <key>
CMEM_READ
CMEM_READ
CMEM_READ
CMEM_READ
ENABLE_EXEC
CJUMPI, 2

RTS

ACC_LOAD, 1label=2
RETURN

Listing 2.5. Program for toy cache read

24

Instruction set

In this section, we describe the set of instructions that we used to write our active

programs. We group our instructions into categories corresponding to data copying operations,

data manipulation operations, memory access (and manipulation), control flow and special

instructions.

24.1

metad

1.

Data Copying

Assignment instructions effectively move data between PHV containers (which contain

ata and extracted packet headers).

MBR_LOAD arg — Loads the MBR register with the specified argument from a correspond-

ing argument field.

MBR_STORE - Stores the value of MBR into an argument field.

. MBR2_LLOAD arg — Loads the MBR2 register with the specified argument from a corre-

sponding argument field.
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4. MAR_LOAD arg — Loads the value of MAR with the specified argument from a correspond-

ing argument field.
5. COPY_MBR2_MBR - Copies the value of MBR2 into MBR.
6. COPY_MBR_MBR?2 — Copies the value of MBR into MBR2.
7. COPY_MAR_MBR - Copies the value of MAR into MBR.
8. COPY_MBR_MAR - Copies the value of MBR into MAR.
9. COPY_HASHDATA_MBR - Copies the value of MBR into the hash metadata fields.

10. COPY_HASHDATA_MBR?2 — Copies the value of MBR2 into the hash metadata fields.

2.4.2 Data Manipulation

We enable most compiler primitives in standard P4 and Tofino with the exception of shift

instructions (which cannot be virtualized).
1. MBR_ADD_MBR?2 — Performs an addition of MBR and MBR2 and stores it in MBR.
2. MAR_ADD_MBR - Performs an addition of MBR and MAR and stores it in MAR.
3. MAR_ADD_MBR?2 — Performs an addition of MBR2 and MAR and stores it in MAR.
4. MAR_MBR_ADD MBR?2 — Performs an addition of MBR and MBR2 and stores it in MAR.
5. MBR_SUBTRACT_MBR2 — Subtracts the value of MBR2 from MBR and stores it in MBR.

6. BIT_AND_MAR_MBR - Performs an AND operation between the values of MAR and

MBR and stores it in MAR.
7. BIT_OR_MBR_MBR?2 — Performs and OR of MBR and MBR2 and stores it in MBR.

8. MBR_EQUALS_MBR2 — Performs a XOR of MBR and MBR2 and stores it in MBR. This

results in the value of MBR being O if MBR = MBR2 else a non-zero value.
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9. MAX — Computes the maximum of MBR and MBR2 and stores it in MBR.
10. MIN — Computes the minimum of MBR and MBR2 and stores it in MBR.
11. REVMIN - Computes the minimum of MBR and MBR2 and stores it in MBR2.
12. SWAP_MBR_MBR?2 — Swaps the contents of MBR and MBR2.
13. MBR_NOT - Performs a bit-wise NOT operation on MBR.
2.4.3 Control Flow
These instructions facilitate branching and program termination.

1. RETURN — Marks execution of the program as complete and indicates that the packet
should be forwarded to the resolved destination. (There may still be additional instructions

in the active packet.)
2. CRET - Conditionally returns if true (based on value of MBR).
3. CRETI - Conditionally returns if false (based on value of MBR).

4. CJUMP label — Performs a conditional jump to the label if true (based on the value of

MBR).
5. CJUMPI label — Performs a conditional jump to the label if false.

6. UJUMP label — Performs an unconditional jump — similar to a goto instruction certain

programming languages.
2.4.4 Memory Access
These instructions enable reads and writes to register memory.

1. MEM_WRITE — Writes the contents of MBR to the memory location specified by MAR.
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2. MEM_READ - Reads the contents of the memory location specified by MAR and stores it

in MBR.

3. MEM_INCREMENT - Increments the counter at the respective stage by the value of INC

and stores the result into MBR.

4. MEM_MINREAD - Reads the value of the register object and performs a min with the

value of MBR.

5. MEM_MINREADINC - Increments the value of the register object and performs a min

with the value of MBR.
2.4.5 Packet forwarding
These instructions allow programs to impact packet forwarding.
1. DROP - Drops the current packet.

2. FORK - Creates a clone of the current packet and continues execution — similar to a

fork() system call.
3. SET_DST - Sets the destination for the current packet to the contents of MBR.

4. RTS - Performs a return-to-sender operation. The source and destination addresses are

swapped and the packet is re-directed to the source.
5. CRTS - Performs a return-to-sender operation if condition is true (specified by MBR).

2.4.6 Special Instructions

Here we list a set of instructions that enable specific capabilities (similar to fixed-

functions).

1. EOF — Marks the end of the active program.
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2. NOP - Performs a no-operation — skips an instruction.

3. ADDR_MASK - Applies the address mask for the next memory access.
4. ADDR_OFFSET - Applies the address offset for the next memory access.
5. HASH - Computes a hash from the values of the hash metadata fields.

6. LOAD_STUPLE - Loads the hash metadata fields with the 5-tuple values of the executing

packet.
7. LOAD_QDELAY - Loads MBR with the queuing delay reported by the switch.
8. LOAD_QUEUE - Loads MBR with the queue occupancy.

9. LOAD_PKTCOUNT - Load the current packet count at the switch.

2.5 Implementation

The ActiveRMT runtime consists of ~10K lines of P4 code targeting a Tofino switch. Our
controller is written in Python and comprises ~1.2K lines of code; we use BFRT Python APIs to
interact with the Tofino ASIC. Client-side support to inject and coordinate active programs is

implemented in ~3K lines of C using DPDK and VirtIO.

2.5.1 Switch runtime

Our P4-based runtime consumes 100% of SRAM available for register memory in each
stage (75% overall per stage) of our switch. We also use all of the TCAMs in each execution stage
to decode instructions and enforce memory protection. That said, a full 83% of the match-action
stage resources are available for active program execution, which is only slightly less than native
P4 and substantially higher than NetVRM. Native P4 programs cannot make full use of memory
in the first and last stages of the physical pipeline due to read-after-read dependencies, leading to

a roughly 92% resource availability. Due to its use of virtual address translation and constraining
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the total addressable memory region per stage to be a power of two, NetVRM is only able to

make less than half of the match-action stage resources available to application programs [98].

2.5.2 Client compiler

An active program such as the one described in Section 2.1.6 has to be compiled to a set
of bytes that can be inserted into active packets. In addition to generating the byte code, our
compiler for ActiveRMT computes the memory access indices and ingress constraints (such
as those for RTS) which are required to request allocations. It also synthesizes the appropriate
mutant in response to allocation responses from the switch and performs any necessary address

translation.

2.5.3 Shim layer

Our prototype exports a VirtlO-based Unix network socket to encapsulate and decapsulate
active packets. Packets corresponding to supported active services (arriving on the virtual
interface) are identified by their destination ports and parsed appropriately. Active packets
arriving on the physical interface are identified by their active headers and processed accordingly.

We use a state-machine model to keep track of what state a given service and its con-
stituent programs are in: this could be an operational state (when active programs are injected
into packets being sent over the wire), a negotiating state (when an allocation is being request-
ed/released) or a memory-management state (when state extraction is being performed). Active
transmissions are paused when the client is negotiating or responding to a memory reallocation.
Communications with the controller involve a poll-based mechanism with intervals around

100 us (which is faster than the fastest allocation time).

2.6 Active Programs

With a total of 20 virtual processors mapped to RMT stages, with each capable of

executing over 50 instructions, the number of programs in theory is astronomical. We however,
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attempt to express a few useful and interesting applications using our programming model that

could benefit from offloading onto a programmable switch. These are described below.

2.6.1 Heavy-Hitter Detection (Cache)

Listing 2.6 shows the active program for computing frequent items. For our cache
application described in Section 2.1.6 we use 8-Byte keys and 4-Byte values. Packets carry the
8-Byte value across two argument fields in the header. Lines 1 and 2 loads this value into MBR
and MBR2 respectively. Lines 3 and 4 copy these values into a hashing data structure. Lines 5-13
compute the count-min-sketch update corresponding to the key. The key is hashed in line 5. The
address mask and offset for logical stage 8 is applied on lines 6 and 7 respectively. On line 8,
the instruction MEM_MINREADINC performs the following: a counter is incremented, the count
returned is stored in MBR and the minimum of MBR and MBR2 is stored in MBR2. We do not use the
minimum value now but store the value of MBR in MBR2 for use later. These steps are repeated in
lines 10—13. Now, MBR2 contains the minimum and hence the sketched count. The address of
the key is loaded in line 15. In line 16 we load the corresponding heavy-hitter threshold. The
minimum of this threshold and the sketched count is stored in MBR in line 17. If this value equals
MBR2 (line 18) then the count has not exceed the threshold and the program correspondingly
terminates (linel9). Since the first four bytes of the key was overwritten previously, we reload
this value in line 20. We then write this part of the key to memory in line 21. We perform a trick
to avoid another re-circulation by writing the updated threshold next. We first insert two NOP
instructions to reach the memory stage for the threshold. We then copy the threshold (stored
in MBR2) to MBR and write it in line 26. We interleave one of the instructions for storing the
remaining part of the key in line 25. In lines 27-28 we load the remaining part of the key into

MBR and write it to memory. On line 29 the program terminates.
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0NN BN

MBR_LOAD // load key O
MBR2_LOAD // load key 1
COPY_HASHDATA_MBR
COPY_HASHDATA_MBR2

HASH

ADDR_MASK

ADDR_QOFFSET
MEM_MINREADINC
COPY_MBR2_MBR

HASH

ADDR_MASK

ADDR_QOFFSET
MEM_MINREADINC
COPY_MBR_MBR2

MAR_LOAD

MEM_READ // read hh threshold
MIN

MBR_EQUALS_MBR2

CRETI

MBR_LOAD // reload key O
MEM_WRITE

NOP

NOP

COPY_MBR_MBR2

MBR2_LOAD

MEM_WRITE

COPY_MBR_MBR2

MEM_WRITE

RETURN

Listing 2.6. Active program for computing frequent items for a cache with 8-Byte keys and

4-Byte values.
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2.6.2 Cheetah Load Balancer

For load-balancing we adapt the P4 based approach to the Cheetah load balancer [4]
into our active approach. Consistent with their implementation, there are two functions — one
that selects a server for a flow and the other that routes flows to the selected server. We present
active programs for both these functions. The server selection function is inserted into TCP SYN

packets while the other packets carry the active program for flow routing.
Server selection

Listing 2.7 shows the active program for selecting a server. In this implementation, the
VIP pool size, the VIP pool and the page table for the VIP pool is stored in memory. We use a
round-robin scheduler for selecting a server and assume pool sizes to be a power of two. The
program begins with loading the TCP 5-tuple into a hashing data structure in line 1. The address
of the VIP pool size is then loaded (line 2) into the address variable and translated accordingly
(lines 3—4). The subsequent instruction then reads the bucket size and saves it to MBR2. In line 7
the a counter is read and incremented, which is used to select the next server in a round-robin
fashion. The counter value is then loaded into the address variable (MAR) and the bucket size
into MBR (lines 8-9). The offset for the next server is then computed in line 10 and stored in MBR
and MBR2 (lines 11-12). We then load the address for the VIP pool page table and apply the
necessary translations (lines 13—15). The location of the VIP pool is read in line 16. In line 17,
we apply the offset (to the server) computed earlier to the base address of the VIP pool to get the
address of the server. We then read and set the corresponding port to the server (lines 18—19).

Once the server port (identifier) is obtained, we store it in a “cookie” according to the
CheetahLLB implementation. The server port is saved to MBR2 and MBR is loaded with a “salt”
(lines 20-21). This value is loaded into the hashing data structure which contains the TCP 5-tuple
(line 22). In the next line, the hash of the salt and the 5-tuple is computed and stored in MAR. This
value is copied to MBR and a bit-XOR 1is performed between this value and the server port (lines

24-25). We then store this value into the packet headers (line 26) and terminate the program in
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LOAD_TCP_5TUPLE

MAR_LOAD ,$VIP_ADDR

ADDR_MASK

ADDR_OFFSET

MEM_READ // mbr now has bucket size
COPY_MBR2_MBR

MEM_INCREMENT // mbr now has counter value
COPY_MAR_MBR

COPY_MBR_MBR2

BIT_AND_MAR_MBR

COPY_MBR_MAR // mbr now has round-robin server index
COPY_MBR2_MBR

MAR_LOAD ,$VIP_ADDR

ADDR_MASK

ADDR_OFFSET

MEM_READ // mbr now has offset to VIP pool
MAR_MBR_ADD_MBR2 // mar now has address to VIP
MEM_READ // mbr now has VIP

SET_DST

COPY_MBR2_MBR

LOAD_SALT

COPY_HASHDATA_MBR

HASH

COPY_MBR_MAR

MBR_EQUALS_MBR2

MBR_STORE

RETURN

0NN N BN
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Listing 2.7. Active program for SYN packets in CheetahLLB.

line 27.

Flow routing

Listing 2.8 shows the active program for routing flows on the switch based on the

server selected using SYN packets. Consistent with the CheetahLLB approach for stateless load

balancing, we compute a hash of a (switch-specific) salt and the TCP 5-tuple and XOR it with

the cookie to obtain the server port. Lines 1-2 load the 5-tuple into a hashing data structure and

the salt into MBR, which is loaded into the hashing data structure in the next line. The hash is
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LOAD_TCP_5TUPLE
LOAD_SALT
COPY_HASHDATA_MBR
HASH
MBR_LOAD , $COOKIE
COPY_MBR2_MBR
COPY_MBR_MAR
MBR_EQUALS_MBR2
SET_DST

RETURN

O O 0NN AW

—_

Listing 2.8. Active program for non-SYN packets in CheetahL.B.

computed and stored in MAR in line 4. In line 5 the cookie is loaded from the packet headers and
copied to MBR2 in line 6. We then copy the hashed value into MBR (line 7) and perform a XOR
with the cookie on line 8. The result stored in MBR is then used to determine the destination port

for the packet (line 9). The program returns on line 10.

2.7 Memory Synchronization

A (re)allocation process may involve synchronizing memory regions with the client. We
use activate packets containing programs to read/write memory locations to perform synchro-
nization. We use direct addressing to access the memory locations. Here we describe these active

programs.

2.7.1 Memory READ

Listing 2.9 shows the active program for reading a memory location. Note that with such
a program, memory regions in the first logical stage are not accessible (due to the MAR_LOAD
instruction). The active compiler performs an optimization to get around this limitation by
“preloading” values (such as MAR) before active execution begins. Thus the program can be
re-written in a way that omits the MAR_LOAD instruction (enabling access to the first memory

region).
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1 MAR_LOAD, $ADDR
2 MEM_READ

3 MBR_STORE

4 RETURN

Listing 2.9. Remotely reading a memory location.

1 MAR_LOAD, $ADDR
2 MBR_LOAD, $DATA
3 MEM_WRITE

4 RETURN

Listing 2.10. Remotely writing a memory location.

2.7.2 Memory WRITE

A corresponding memory write active program can be found in Listing 2.10. Notice that
in this program, an additional MBR_LOAD instruction precedes the memory access instruction.
Our “preloading” trick is applied here as well to MBR, allowing memory writes to every memory

location in the active memory region.

2.8 Caveats

While our programming model allows expressing a large number of programs, Ac-
tiveRMT comes with several caveats which must be taken into consideration. We describe these

in this section.

2.8.1 Memory Consistency

Our memory semantics is based on register ALUs on Tofino. These units are individually
programmable and can be used to perform a number of (atomic) operations on register memory.
In order to achieve generality, ActiveRMT pre-programs them to export a subset of (common)

operations — such as read, write and increment — that allow expressing a range of functionality.
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However, more complex operations that require atomicity have to dealt with specially. Let’s

consider the following pseudocode for a conditional update:

if (x % 2) == 0:

x=x +1

This pseudocode can be implemented in ActiveRMT as follows:

MBR2_L0OAD,0x0001 // Load mask = 1.

MEM_READ // Read the memory value (assuming MAR has address).
MBR_AND_MBR2 // Apply the mask to check for divisibility by 2.
CJUMP, :LOC // If not divisible (i.e. x % 2 > 0),
RETURN, @LOC // then return.
NOP // Fill with NOPs to force re-circulate.

//
MEM_INCREMENT // Increment the value at the same stage.

The above raises a concern for memory consistency. Let’s say that there are n pipeline
stages in the active runtime. After the first packet reads the memory object at line 2 (let’s assume
the value is even), another n-1 packets would have read the same value before the first one
updates it. This would result in the value of ‘x’ to be updated to x=x+n instead of x=x+1. Since
this read-modify-write update to ‘x’ is not atomically feasible on ActiveRMT, we would need to
use locks. Fortunately, we can use semaphores using ActiveRMT. The following is a pseudocode

for the same program with locks:

lock(s)
read(x)

y=x&1

<<re-circulate>>
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increment (x)
<<re-circulate>>

unlock(s)
The procedure lock(s) can be implemented as follows:

MEM_INCREMENT // Read current value as "s" and increment.
CJUMPI, :LOC // Jump if value ==

CONTINUE,QLOC // Continue otherwise.

The special instruction CONTINUE terminates execution of the packet and marks it for re-
circulation. This causes the packet to spin within the pipeline until the value ‘s’ is cleared.

This approach however, requires two re-circulations (one additional to release the lock).
For workloads that are write-dominant, this would consume significant bandwidth. More
importantly, since upon re-circulation packets are added to the (e)gress queue, there is a chance
of congestion-related packet drops. Hence, the program may not run to completion resulting in a
deadlock!

To mitigate deadlocks, a watchdog program can be used which monitors the value of ‘s’.
Note that this value is incremented when a new packet arrives or the previous one spins around.
Either way, it is an indicator of the number of packets processed (k) and hence the number
of cycles elapsed can be bounded by k * T, where T is the number of cycles per pipeline. A

timeout can then be chosen appropriately. The following is a representative program:

MBR2_L0OAD, $THRESHOLD // Threshold for timeout.

MEM_INCREMENT // Read semaphore value.

MIN // Store min of threshold and value.
MBR_EQUALS_MBR2 // Check if this is equal to the threshold.
CJUMP, :LOC /"

NOP // Force re-circulate.
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// n
CLR_MBR // Set MBR to O.

MEM_WRITE, @LOC // Clear the semaphore.

2.8.2 Effects of Congestion

One must note that packets can get dropped at queues depending on the level of conges-
tion. There is no way to avoid this solely at the switch. This also applies to re-circulated packets.
Hence, programs are not guaranteed to run to completion. Even if priority queues are used, the
problem can only be alleviated. This is one of the fundamental limitations of RMT.

However, such a limitation may not necessarily violate consistency semantics. Consider
the cache read program described previously. The key may be read in the first pass through the
switch whereas the value may be read in a subsequent pass. If the packet gets dropped after
re-circulation, the result would simply not be returned to the sender and there would also be a
packet loss over the network — the sender could then re-transmit the packet. When writing to
memory, one could take care of consistency be ensuring that writes are idempotent — this is used
in our example implementation of populating the cache.

In any case, such a limitation is inherent in the design of networks — which is itself a best
effort service. While packet drops due to congestion cannot be avoided completely, one might
attempt to workaround them through congestion control mechanisms and traffic engineering. For
example, one might consider tracking queues within a switch to decide where to re-circulate
packets. Typically, on devices such as Tofino, re-circulated traffic is assigned a priority distinct
from regular traffic. While this may indeed affect run-to-completion, additional scheduling
mechanisms may be used to avoid packet drops internally. Chapter 4 discusses mechanisms to

handle such scenarios.
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2.9 Discussion

The large emerging space of application functions that are being built on top of the P4
ecosystem makes it worth reconsidering the way these functions are executed on a P4 switch. It
makes more sense for network behavior to be directly controlled by the application without having
to interact with network infrastructure. Furthermore, thinking on the lines of virtual network
functions, being able to multiplex functions in a manageable way appears to be a necessity. Our
approach attempts to deliver the above using ideas from active networking introduced decades
ago on recent programmable switch hardware. However, we must take into account the resource
constraints on such hardware and shed some light on how effectively managing them could affect
application performance and functionality. We focus on one particular scarce resource — stateful

memory — in our next chapter.
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Chapter 3

Memory Management

Most practical applications require stateful memory, a scarce resource on programmable
switches. Typically, such memory is statically allocated at compile time along with packet
processing logic. However, as with any other network resource, varying traffic demands necessi-
tate reallocations, yet the P4 ecosystem is not well suited for dynamic resource management:
Modifying the set of services deployed on a switch using P4 requires the network operator to
prepare a new binary image and re-provision the switch, disrupting all existing traffic. Building
on top of ActiveRMT, we present an alternate approach—using techniques from capsule-based
active networking—to programming RMT devices that enables non-disruptive (re)allocation
of switch memory at time scales that are much faster than P4 compilation without operator
intervention. We use P4 to implement a single, shared runtime on commodity RMT hardware that
interprets instructions received via the switch data plane to deliver a variety of exemplar services
including caching, load balancing, and network telemetry. Our prototype implementation is able
to dynamically provision dozens-to-hundreds of instances of simultaneous stateful services at
the timescale of seconds.

In most environments, switches are shared resources, and what is needed is a way to alter
the set of services (i.e., multi-programmability) and the resources allocated to each at runtime,
without disrupting traffic forwarding or the functionality of existing services. Prior research

on runtime RMT reconfiguration has pushed in three distinct directions: hardware extensions
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to support hit-less reprogramming [6, 25, 83, 87], software virtualization to enable multi-
programming [36, 93, 96], and dynamic resource allocation among a fixed set of services [39, 98].
While promising, the limitations and overheads (e.g., additional crossbars) of novel hardware-
based approaches are not y