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Intensity-dependent spatial summation
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Psychophysical evidence indicates that, in the human retina, the size of the spatial-summation area decreases as
illuminance increases. Such a relationship would be beneficial for the detection of spatial contrast in the presence
of photon noise. We analyze an image-processing mechanism in which the area of a strictly positive point-spread
function varies inversely with local illuminance while its volume remains constant. In addition to its expected ef-
fect of improving spatial resolution as illuminance increases, this mechanism also yields center-surround antago-
nism and all other manifestations of bandpass filtering and accounts for Ricco’s law and Weber’s law—including
the failures of both laws as a function of test conditions. The relationship between this mechanism and lateral in-

hibition is analyzed.

1. INTRODUCTION

Many psychophysical and physiological experiments can be
interpreted as showing that light falling upon any one point
of the retina creates an excitatory effect at neighboring points
and that this lateral excitation combines additively with the
direct excitation produced by light itself.! Psychophysical
evidence also indicates that the extent of lateral excita-
tion—the size of the spatial-summation area—increases as
retinal illuminance decreases.?3

One obvious and undesirable consequence of spatial sum-
mation is, in effect, to blur the neural image, and so it is nat-
ural to look for compensatory benefits of the process. A
plausible suggestion is that intensity-dependent spatial
summation is an adaptive response to the intrinsic noisiness
of light. If the effective flux density in an image is I (absorbed
photons/unit time)unit area, then both the mean and the
variance of the actual quantum catch per unit time over an
area A equal TA. This statistical relationship imposes a
fundamental constraint on spatial-contrast detection.

Suppose that a change in illuminance from I to I + ¢l is to
be detected with an error rate of the order of 0.001 and that
the visual system is a perfect detector limited only by quantal
fluctuations. Then the effects of the incident quanta must
be summed over an area A large enough that*

IA > 10/c2

Thus, to detect a 100% contrast change (¢ = 1) lasting one
time unit, 14, the total number of quanta whose effects are
summed during one time unit must be greater than 10. To
detect a contrast of 1% requires that IA > 100,000.

Individual human photoreceptors collect quanta over areas
of the order of 10~5 mm? and integrate their quantum catch
over temporal durations of the order of 0.1 sec. Taking ab-
solute threshold to be 100 quanta/0.1 sec at the cornea, spread
over a retinal area of the order of 103 mm?2, and assuming that
10% of corneal quanta are effectively absorbed by photopig-
ment, I at the absolute threshold of human vision is of the
order of 10* (quanta/0.1 sec)/mm2. Therefore the value of IA
for an individual receptor at absolute threshold is only about
1/100th of that needed to detect 100% contrast reliably and
about 108 that needed to detect 1% contrast. Thus, if no
spatial summation occurred, a 100% contrast could be de-
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tected only when retinal illuminance reached 100 times the
absolute threshold level (a statement that is self-contradic-
tory, since the absolute threshold is a contrast detection), and
1% contrast could not be detected until the illuminance was
of the order of 106 times absolute threshold (that is, around
1cd/m?). Spatial summation can thus be seen as a device for
pooling the retinal quantum catch over areas larger than a
single receptor, allowing reliable contrast detection at scotopic
and mesopic light levels. And the fact that the summation
area becomes smaller as illuminance increases can be inter-
preted as an adjustment that tends to keep the summation
area A as small as possible at each light level I, subject to a
requirement of the form IA > 10/c2, thereby minimizing
needless reductions in spatial resolution.

This noise-compensation interpretation of spatial sum-
mation is well known, especially through the seminal work of
Rose.5 However, it does not seem to be widely recognized that
an adaptive spatial-summation mechanism can automatically
create effects resembling a number of well-known visual
phenomena not generally associated with photon noise, in-
cluding edge enhancement (Mach bands) and other band-
pass-filter effects usually attributed to lateral inhibition. We
have analyzed a model visual system based on the following
assumption: Each point in the retinal image gives rise to a
nonnegative point-spread function whose height is directly
proportional to image intensity at that point and whose vol-
ume remains constant—so that the area covered by the point
spread varies inversely with local image intensity. The output
image is the sum of the point-spread functions generated
around each input point. We refer to this operation as “in-
tensity-dependent spatial summation.”

This simple operation proves to have a surprising number
of immediate consequences that resemble important features
of human vision. It creates Mach bands at edges, sombrero-
shaped impulse responses, and a low-frequency falloff in the
spatial contrast-sensitivity function. [In fact, when the
point-spread function is Gaussian, it yields the same con-
trast-sensitivity function (CSF) as a linear lateral inhibitory
model whose point-spread function is the negative Laplacian
of a Gaussian, as in the theory of Marr and Hildreth.6] In
addition, the same assumption implies Weber’s law (including
its failures as a function of light intensity and target size) and
Ricco’s law (including the fact that the area of perfect spatial
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summation shrinks as the background light level increases)
and causes visual acuity (the high-frequency cutoff of the
CSF) to increase as the square root of mean luminance.’
These consequences are robust under changes in the exact
shape of the point-spread function (i.e., square, triangular,
Gaussian, etc.) and depend only on the fundamental as-
sumption that the area under that function is inversely pro-
portional to local image intensity.

Finally, it is noteworthy that this spatial-summation
mechanism mimics not only the main effects usually attrib-
uted to lateral inhibition, such as Mach bands, but also the
apparent dependence of lateral inhibition itself on the mean
luminance level. For example, the response to small spots has
a distinct sombrero form only when the spot is superimposed
upon a relatively high-intensity background. When back-
ground intensity is low the “negative” brim of the sombrero
becomes vanishingly small, as though lateral inhibition failed
at low light levels—a result that has been reported for retinal
ganglion cells® and that is also found in psychophysical
measurements of spatial contrast sensitivity.!%!1 Here,
however, there is never any inhibition—all the model’s con-
sequences are due to changes in the width of a nonnegative
point-spread function. A similar realistic dependence on
background intensity also appears in the model’s response to
other stimulus configurations commonly used in psycho-
physical experiments. For example, the background intensity
level beyond which detectability of a target obeys Weber’s law
shifts upward as the area of the target decreases.!?

Organization

In this paper we describe the basic mathematical properties
of image processing by intensity-dependent spatial summa-
tion. Our purpose is to introduce a theoretical tool that may
prove useful in visual system modeling and also in image-
processing technology. In Section 2 we define the simplest
intensity-dependent spatial summation (IDS) operator and
derive some general results used repeatedly later on. In
Sections 3 and 4 we describe the effects of applying this IDS
operator to images commonly used in psychophysical mea-
surements of spatial contrast sensitivity, such as edges, spots,
and gratings. By and large, these effects are qualitatively in
agreement with the results of psychophysical experiments,
but we point out some significant differences and comment
on their implications. We also note similarities between the
consequences of IDS processing and physiological results
frequently cited as demonstrations of lateral inhibition in the
retina. In Section 5 we discuss the relationship between IDS
operators and linear operators commonly employed in visual
theory and the potential value of IDS operators in artificial
image processing. In Section 5 we also describe a generalized
IDS operator that retains the basic properties of the model
introduced in Section 2 and allows a better fit to psycho-
physical data.

Although IDS is in a sense motivated by photon-noise
considerations, this paper focuses on its consequences for
deterministic input images, for which analytic results can be
obtained relatively easily. That is not so for Poisson noisy
images, which apparently must be approached by simulation
methods and properly form the subject for another paper.

T. N. Cornsweet and J. I. Yellott, Jr.

2. THE INTENSITY-DEPENDENT SPATIAL-
SUMMATION MODEL

Figure 1 illustrates the basic ideas of the IDS model. A two-
dimensional input image (here, a sharp edge) is recorded by
an array of photoreceptors, and they feed into a summation
network that performs the IDS operation. That operation
consists of two stages. First, each receptor gives rise to a
nonnegative point-spread function whose center height is
directly proportional to the intensity of the input image at that
receptor and whose volume is constant—so that its area (that
is, the volume divided by the center height) is inversely pro-
portional to the input intensity. Second, these point-spread
functions are added together to create the output image.
That image is then read out over an array of output chan-
nels—one for each receptor location.

In this section we define the general class of IDS operators,
give an example based on Gaussian point-spread functions,
and derive some useful technical results. In Section 3 we work
out the response properties of IDS models for a variety of
one-dimensional input images, and in Section 4 we do the
same for two-dimensional inputs. Whenever possible we
derive the general properties that characterize the model’s
responses independent of the exact shape of the point-spread
function. Then in every case we give the specific form of the

‘response for the special case of a Gaussian point-spread

function and illustrate the profile of that response graphi-
cally.

For mathematical convenience, our analytic treatment as-
sumes that the photoreceptors are infinitely small relative to
the size of the input and the output images. That is, we deal
with the continuous case, in the same spirit as theories that
model retinal processing by a convolution of continuous ret-
inal images with continuous impulse responses. This con-
tinuous approximation to the discrete nature of actual retinas
and man-made image processors provides realistic results up
to input image intensity levels that would cause the point-
spread function to become narrower than a single receptor or
a single pixel.

Notation and Assumptions

I(x, y) denotes the input image intensity at point (¢, y); O[I(x,
¥)1(p, q) denotes the output image intensity at point (p, )
when the input image is I(x, y). (p and q refer, respectively,
to the x and the y coordinates in the output image plane.)
When the input image is obvious, we occasionally denote the
output image simply as O(p, q).

The basic idea of the model is that each input point (x, y)
contributes a nonnegative point-spread value to every output
point (p, q), the size of the contribution depending on the
input intensity value I(x, y) and the distance from (x, y) to
(p, ). Thus we need to specify a spread function of the
general form S{(x, ¥), (p, ¢), I)} that gives the contribution
from (x, y) to (p, g) when the input intensity at (x, y)isI. We
assume first that

(1) - S is nonnegative. :

(2) S is spatially homogeneous and circularly symmetric.
(That is, S can be written as a function of two real variables
in the form S{[(x — p)2 + (y — ¢)?], I}.)

Next we formalize the fundamental assumption that the
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Fig. 1.

Schematic diagram of the IDS model. From top to bottom:

input image profile (here, a sharp edge); photoreceptors; photoreceptor

point-spread functions (for the Gaussian case of the model); output channels (arrows); output image profile (dots).

area covered by the point-spread function around each input
point varies inversely with the input intensity at that point.
To accomplish this we assume that the center height S(0, I)
is directly proportional to the input intensity I, while the
volume under S remains constant for all nonzero values of
I:

®) S{lx-pr+ @ -925
-, 1

For any spread function S, integrating the right-hand side
of assumption (3) over p, ¢ yields a constant value V; that is
independent of I, while the height at the center [i.e.; S(0, I)]
equals I X S§(0,1). So the equivalent area under the point-
spread function around any input point (volume divided by
center height) is 1/ times the constant V,/S(0,1). The choice
of the volume constant V; is arbitrary; it simply sets the value
of the model’s baseline response to uniform-field inputs, as
is shown below in Theorem 1. We take this to be unity.

(4) The integral of S{[(x — p)2+ (v — q)?], I} over the p,
g plane equals 1.0.

Given assumption (4), the remaining constant 1/S]0, 1]
equals the equivalent area of the point-spread function when
the input intensity I = 1. This parameter determines the
numerical values of the point-spread areas for all input in-
tensities and needs to be chosen appropriately to fit the model
to psychophysical data. We make no specific assumption here
about its value since that will depend on the units used to
measure retinal area and light intensity.

In view of assumption (3), the point spread S is really a
function of a single variable, so we can suppress the redundant
intensity variable and express the fundamental assumption
of the model as follows.

The point spread from input point (x,y) to output point
(p,q)is

I(x,y) X S{I(x,y) X [(x = p)* + (y — )2},

=IXS{IX[(x—-p)2+(y

where I(x, y) is the input image intensity at (x,y) and S is
a nonnegative real function for which

f-: f_: S(p?+ gHdpdg = 1.

Different cases of the model can then be created by different
choices of the basic spread function S, i.e., S may be Gaussian
(as in the example below), square, exponential, etc. However,
as we shall see, the exact choice makes little difference.

Note that the functional form of the spread function re-
mains constant as I(x, y) varies. For any input intensity I the
point spread takes the form I X S(Ir2), where S is a fixed
function and r is distance from the input point. Thus the
effect of the input intensity at each point is simply to rescale
the spread function, leaving its basic form unchanged. As will
be seen below in Theorem 3 and subsequently, this is an im-
portant feature of the model.

Finally, we assume that the output image is the sum of the
point-spread functions:

) OU(x, (P, q) = f

XS (x,y) X [(x = p)2+ (y — q)?}dxdy.

Assumption (5) entirely captures the notion of an IDS oper-
ator.

I(x y)

Example: The Gaussian Case
Suppose that S is the Gaussian function

S(x2+ y2) = (1/2r) X exp[(—1/2) X (x2 + y?)]

corresponding to the joint probability density function (pdf)
of two independent normal random variables, each with mean
zero and variance one. Then the point spread around an
input point (x, y) with intensity I(x, y) is

[I(x, y)/27] X exp{(—=1/2) X I(x, y)[{x — p)2 + (y — ¢)}},

i.e., a bivariate normal density function, centered at that point,
corresponding to the joint pdf of two normal random variables,
each having variance 1/I. Figure 2 illustrates this point-
spread function for several values of I. We use this example
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Fig. 2. Point-spread functions of the Gaussian case of the IDS model
shown for four input intensities.

throughout to illustrate the model. Mathematically it is
" uniquely convenient because the Gaussian is the only circu-
larly symmetric function that is also separable. However, as
was noted earlier, the effects of IDS are largely independent
of the exact shape of the spread function. To demonstrate
this, our theorems are proved for arbitrary spread functions
that satisfy assumptions (1)-(4).

This Gaussian version of the model has a point spread
whose effective width is 6/+/7. Assuming a photoreceptor
width of ¥50-deg visual angle (2 um), the point spread would
shrink to a single receptor when I becomes greater than
800,000. We have confined our examples to / values less than
10,000 to keep the results of our continuous analysis realistic.
In the figures below, the spatial units are degrees. The graphs
show output image profiles over a retinal distance of +2 deg,
plotted at 150 points/deg.

Preliminary Results
An easy way to see that the model is nonlinear is to note the
following.

Theorem 1
The output to any nonzero uniform field is the uniform field
1.0. [Thatis, whenI(x,y)=1>0,0(p,q) =1.]

Proof
Put I(x, y) = I in assumption (5) and make the change of
variable u = (x — p)\/I,v = (y — ¢)v/I. (Note: The output
to a zero-intensity uniform field is again a zero-intensity field.
Thus it might seem that there is a discontinuity in the uni-
form-field response. In practice this is not so, because any
real input image is limited in spatial extent, whereas Theorem
1 assumes a truly infinite uniform field. For uniform-field
inputs of any finite size, the response can be made as near zero
as desired by making the input intensity sufficiently low.)

The physical meaning of Theorem 1 can be understood in
the following way. Because the volume under the spread
function at each point is constant and independent of the
input intensity, the total output of the system is independent
of its input—the effect of any input image is not to change the
total amount of output but only to change its spatial distri-
bution. Since a spatially uniform input image must generate
a uniform output image, it follows that the output amplitudes
corresponding to all uniform input images must be iden-
tical. _

The next theorem simply documents a property built in by
assumption (2): The IDS model is invariant under transla-
tions and rotations.

T. N. Cornsweet and J. I. Yellott, Jr.

Theorem 2

If the input image is translated or rotated by any amount, the
output image is unchanged except for translation or rotation
by the same amount.

Proof

For translation: To represent a translation of the output to
image I(x, y) fi.e., O[{(x,y)](p —j,q —k)iputp=p —j,q =
q — k in assumption (5) and make the change of variable u =
x+j,v=y+ k. Thisyields

JSIu—-j,o-k)XS{Iu—-jv—k)
X [(w = p)2+ (v - q)%jdud,

which is the output for the translated input image I(x — j, y
— k). (Note: To simplify notation we omit the limits of in-
tegration in this expression and those below. Unless other-
wise noted, these can always be assumed to be the entire
plane.)

For rotation: To represent a rotation of the output to I(x,
¥) by a counterclockwise angle § we substitute p cos # + g sin
@ for p and q cos & — p sin 6 for g in assumption (5) and make
the change of variablex = u cos@ + vsin,y =v cos —u —
sin 6. Expanding the squared terms, we get

JI I(w cos 0 + v sin 8, v cos 6 — u sin 0)
X S{I(u cos 6 + v sin 8, v cos f — u sin 9)
X [(u = p)? + (v — ¢)?]}dudv,

which is the output for the rotated input image I'(x cos 0 + y
sin 8,y cos 8 — x sin 6).

The final theorem of this section describes the effect of
multiplying all the input image intensities by a common fac-
tor—i.e., the effect of changing the input image from I(x, y)
toc X I(x,y), as would happen with the retinal image of a real
scene if the illumination falling upon that scene changed.
This simple theorem is really the mathematical heart of the
model: From it we can prove that Weber’s law holds at edges,
that Ricco’s law holds for spots on a dark background, and that
visual acuity increases in proportion to the square root of the
mean luminance level—all regardless of the specific form of
the point-spread function.

Theorem 3 (Scaling Theorem)
For every positive constant ¢ and every input image I(x, y)

OleI(x, y)I(p, @) = Oll(x/v/c, y/ )V, gv/e). (1)

In words, this means that the effect of multiplying all the in-
tensities in the input image by a constant c is the same as first
expanding the original image spatially by a factor /¢ along
both axes, then applying the summation operator in as-
sumption (5) to that image, and finally shrinking the output
image back to the original size. Thus, for example, each
spatial frequency f in the image cl(x, y) is treated like fre-
quency f/+/c in the image I(x, y).

Proof
The right-hand side of Eq. (1) is
I I/ e, yINe)SU(x/\/ e, y/\/e)
X [(x = pV/e)2 + (y — gv/e)2}dxdy.



T. N. Cornsweet and J. L. Yellott, Jr.

Making the change of variable u = x/v/¢, v = y/A/¢, we ob-
tain

If eI(u, v) X S{el(u, v) X [(w — p)2 + (v — ¢)2)}dudv,
which is the left-hand side of Eq. (1).

3. RESPONSES TO ONE-DIMENSIONAL
PATTERNS: EDGES, BARS, AND GRATINGS

Suppose that the input image is intrinsically one dimensional,
ie., I(x,y) =I(x). (Because of Theorem 2, it is sufficient to
consider only vertical one-dimensional inputs.) Making this
substitution in assumption (5), we have

OlI(x)](p,q) = £ VIG) § VI®)SH(x — p)vVI&))?
+[(y = ¢)VI(x))2dydx.

Now in the inner integral (over y) we make the change of
variable v = (y — ¢)v/I(x) to obtain

OU@I(p) = |~ VIESix - pVIGHz, ()

where $ is the line-spread function corresponding to S, given
by

$)= { Sx2+ydy. 3)

It is easily seen that $ is always nonnegative, symmetric about
the origin, and integrates to 1. In the Gaussian example we
have

$(x) = f_ : (1/2m)expl(—1/2)(x2 + y2)ldy
= (1/+/2m)exp((—1/2)x2],

so the line spread around a line with intensity I is a normal pdf
centered on the line, with variance 1/I. Thus for the Gaussian
case the response to one-dimensional patterns is given by

OlI(x))(p) = f_ : WI®)/V/ 27
X exp[(=1/2)I{x)(x — p)?]dx. 4)

Step Response

Suppose that I(x) is an edge of the form I(x) = I for x <0, I(x)
= I+ D for x > 0 (that is, a step). Then, for the Gaussian
case, Eq. (4) yields the response

O(p) = N[x(I + D)¥?} + N[-x+/T], (5)

where N is the cumulative normal distribution function:
Niz] = fz (1/+/27)exp[(—1/2)x2}dx.

Figure 3 shows the Gaussian-model step response [i.e., Eq. (5)]
for a number of edges. These edges differ in illuminance (that
is, I), but the ratio of the lighter to the darker side is the same
for all—i.e., the ratio (I + D)/I, and consequently the Weber
fraction D/I, is a constant. (Here D/I = 10.) It can be seen
that the response displays Mach bands symmetrically located
on either side of the step. At the step itself the response is
always 1.0

To understand intuitively how Mach bands can be created

Vol. 2, No. 10/October 1985/J. Opt. Soc. Am. A 1773
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Fig.3. Edge-response profiles. The input image was a step at zero
from intensity I to I + D. I/D = 101in all cases. Curve 1,1 = 0.1;
curve 2, I = 1; curve 3, I = 10; curve 4, I = 100.

by a purely positive point-spread mechanism (i.e., without
lateral inhibition) it may be helpful to reexamine Fig. 1,
bearing in mind that the output at each point is the sum of the
spread functions above that point. As the edge is approached
from the left (i.e., from the low-intensity side), the output
decreases below the baseline level because there is less spread
excitation coming from receptors on the right-hand side of the
edge, which have narrower spread functions. Conversely, as
the edge is approached from the high-intensity side, the out-
put rises above the baseline level because of the extra excita-
tion contributed by receptors on the low-intensity side, which
have wider spread functions.

A second important feature of the response profiles in Fig.
3 is that the effect of increasing I is to move the peak and the
trough of the Mach bands closer to the edge itself, but their
amplitudes remain the same. This is a consequence of the
fact that the input edges here all have the same Weber fraction
D/I. Analysis of Eq. (5) shows that the peak of the positive-
going Mach band occurs at Pmax = [(1/D)log(1 + D/I)]*%2,
and its value there is

O(Pmax) = N{[(1 + I/D)log(1 + D/T)]V/%
© + N{=[(I/D)log(1 + D/)]V3},

which is a function only of the ratio D/I.. The trough of the
negative-going Mach band occurs at Pmin = —Pmax, and the
output value there is 1 — [O(Pmax) — 1] (i.e., the peak is as far
above the baseline response 1.0 as the trough is below it.)
Thus the peak and trough values of the step response depend
only on the Weber fraction D/I. Assuming a downstream
detector mechanism that registers a perturbation in an oth-
erwise uniform field when the output value at any point differs
from the baseline 1.0 response by more than some threshold
value, it follows that the Gaussian version of the model implies
Weber’s law for edge detection.

This result is not unique to the Gaussian case of the IDS
model. Instead it holds for all cases [i.e., for all choices of the
point-spread function S that satisfy assumptions (1)-(4)].
The following theorem shows why.

Theorem 4
Suppose that I(x, y) is a straight edge separating a uniform

- field of intensity I from a field of intensity I + wl. Then the



1774 J. Opt. Soc. Am. A/Vol. 2, No. 10/October 1985

maximum and minimum values of the output to I(x, y) are
independent of I and depend only on the Weber fraction w.

Proof

Because of Theorem 2 it is sufficient to consider only vertical
edges of the form I(x, y) = I(x) = I (for x > 0); = I + wl (for
x 2 0). Suppose that V(x) is a vertical edge image defined
by V(x) = 1forx <0; =1+ w forx = 0. Assume that the
maximum value of the output O[V(x)](p) occurs at p = Pmax
and that the minimum value occurs at p = Pmin. Let I(x)
=Iforx <O0andI +wl forx 20. ThenI(x)=1X V(x),and
so from Theorem 3 we have

O[I(x)](p) = O[I X V(x)](p)
= O[V(x/v/DI(pv/T) = O[V(x)](pv1).

[The last equality holds because here V(x/+/T) = V(x).] The
maximum value of the last expression in this line occurs at
p+/T = Pmax and its minimum at p+/T = Pmin, and so the
maximum (minimum) output to I(x) occurs at p = Pmax/+/T
(p = Pmin/+/T) and has the same value there that the output
to V(x) has at Pmax (Pmin).

Two other features of the Gaussian-case step response can
also be shown to be common to all IDS models: the fact that
the output value at the step itself is always 1.0 and the fact
that the locations of the peak and trough of the response move
closer to the step as the baseline input-intensity level I in-
creases. (The latter is true under the conditions that pre-
vailed in Fig. 3, i.e., the edge separates fields of intensities I
and I + D, and the Weber fraction D/I remains constant while
I changes.)

To prove the first point, suppose that the input image is a
vertical edge of the form I(x,y) = I forx <0and I+ D for x
> 0. We are concerned with the value of the output image
O(p, q) along the vertical axis p = 0, and since it is sufficient
to consider only a single point, we pick the origin [i.e., the point
(p,q) =(0,0)]. Then, from assumption (5), the output for an
arbitrary spread function S is

0(0,0) = f_ i j: ZIXS{I[x2+y2]}dxdy

+ ‘f'_: ‘f(‘)m (I + D) X S{(I‘I‘ D)[x2 +y2]]dxdy.

We know that I X S{I[x2 + y?]} is a circularly symmetric
function whose integral over the entire x, ¥ plane is 1.0, and
the first integral in the expression above integrates this
function over the half-plane x < 0, so its value must be 0.5.
The same argument applies to the second integral, and con-
sequently the entire expression equals 1.0.

Now to show that the distance from the edge to the locations
of the maximum and minimum output values decreases as I
increases, we can use the fact, shown in the proof of Theorem
4, that if Pmax is the location of the maximum when the edge
separates fields of intensities 1 and 1 + w, then the maximum
occurs at p = Pmax/+/T when the fields are 7 and I(1 + w).
So the distance between the location of the maximum and the
edge itself varies inversely with /7. The same result for the
minimum follows from the same argument.

The main result of this section is that for all IDS models,
the step response always satisfies Weber’s law. The same is
also true of the response to bars and spots with sharp edges,
provided that they are large—meaning large enough that there
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is no interaction between the responses to their two opposite
edges. The next subsection should clarify this point.

Bar Response

Again, because of Theorem 2, it is sufficient to consider only
vertical bars. Suppose that I(x, y) = I(x) = I (a positive
constant) for |x| > W/2; I(x) = I + D for |x| < W/2 (so the
input is a bar of width W and intensity D superimposed upon
a uniform field of intensity I). Then the output for the
Gaussian model is

O(p) = N[VI X (p = W/2)] + N[-v/TI X (p + W/2)]
+ N[ + D)2 X (W/2 - p)]
— N[~(I + D)2 X (W/2 + p)]. ®)

The form of the bar response depends on the bar width W and
the background intensity I. Figure 4 illustrates the width
effect: A narrow bar on a fairly intense background produces
a response whose profile is sombrero shaped, quite like the
line-spread function of a linear lateral-inhibitory model based
on a difference of Gaussians or the negative Laplacian of a
Gaussian. A wide bar of the same intensity on the same
background produces Mach bands at both edges, and inside
the edges the response returns to the baseline response value,
just as would be expected from a linear model whose modu-
lation transfer function (MTF) vanishes at the origin. The
peak and trough amplitudes of the Mach bands in this case

I=100 DELTA 1=1000 WIDTH=0.1 [

+

+

1=100 DELTA 1=1000 WIDTH=1 r

4

Fig.4. Bar-response profiles for a narrow bar (top) and a wide bar
(bottom) on a high-intensity background. Background intensity, I;
bar intensity, I + AI. Bar widths are as indicated in the figure. Tick
marks on the abscissa indicate a width of 1.0.
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Fig. 5. Response profiles for the same bars as in Fig. 4 when the
background has low intensity.

depend only on the Weber fraction D/I, so the detectability
of wide bars should obey Weber’s law.

Figure 5 shows output profiles for the same narrow and wide
bars, but now superimposed upon a low-intensity background.
The top panel illustrates how in this case the inhibitory lobes
of the response to the narrow bar disappear (or, more pre-
cisely, become so broad and attenuated as to be unnoticable),
and only the central excitatory portion of the response is ev-
ident. Thus “lateral inhibition” apparently fails when the
background intensity is low—the receptive fields lose what
appear to be their antagonistic surrounds and seem now to
consist only of positive centers.

The bottom panel of Fig. 5 shows that the response to a wide
bar also changes dramatically when the background intensity
changes from high to low. Instead of a pair of narrow positive
and negative Mach bands at both edges separated by an in-
ternal region of baseline-level output, the response now ap-
pears to be uniformly high within the bar, and outside each
edge there is a broad negative Mach band. (If this bar were
made much wider, the response inside its edges would even-
tually return to the baseline value, so that each edge would
exhibit both positive and negative Mach bands. In general,
the response profile for any target depends on its size relative
to the background illuminance level.) From the standpoint
of a classical receptive-field analysis it might appear that large
receptive-field units retain their antagonistic surrounds at low
light levels, whereas small units lose them—perhaps because
of insufficient quantum catches in the regions feeding the
smaller units. In an IDS system all these effects are due to
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intensity-dependent changes in the area of positive spatial
summation.

Sinusoidal Grating Response

Suppose that the input is a sinusoidal grating of the form I(x,
y) =1I(x) = L(1+ & cos 2wfx): L isthe mean intensity level,
k is the grating contrast, and { is its spatial frequency. Be-
cause our operator is nonlinear we know that it must produce
some harmonic distortion. Figure 6 shows the Gaussian-
model response to high- (90%) and low- (20%) contrast si-
nusoidal grating inputs. At high contrast levels distortion is
apparent: It takes the form of a spurious second harmonic
that creates noticeable dimples at the peaks of the response.
For low contrast levels, however, the output closely approxi-
mates a pure sine wave. Appendix A shows that for the
Gaussian model the output to a low-contrast sinusoidal
grating of the form I(x) = 1 + k cos 2« fx is approximately

O(p) =1 + {272f2 exp[—272%f?]}k cos 27fp. 7)

The approximation given by Eq. (7) is obtained by solving Eq.
(4) for I(x) = 1 + k cos 27fx under the assumption that k2 =
0. Consequently it is quite accurate for input contrasts on the
order of 10% or less.

For low-contrast sinusoidal grating inputs, then, the outputs
of the model are effectively sinusoidal, and it makes sense to
speak of its MTF—i.e., the ratio of output contrast to input
contrast as a function of input frequency. Let G(f, L) denote
the MTF for mean input level L. Equation (7) shows that

G(f, 1) = 2w?%2 exp(—2m2f2). 6))

To obtain the general form of the MTF we use the scaling
theorem:

O[L(1 + & cos 27fx)](p)
= O[1 + & cos 27fx// LY pvL)
= 1+ {202(f/~/L)? exp[—-2w2(f//L)2J}k cos 27fp.

Sovthe MTFis
G(f, L) = 27%(f/</L)? exp[—2x2(f/r/L)?]. 9

Figure 7 shows this MTF for a range of mean intensity levels,
plotted in the conventional way on log-log coordinates. In
this plot the MTF shifts bodily to the right as L increases: Its
peak (the best frequency) occurs at f = (1/7/2) X /L, and
visual acuity (defined as the highest frequency for which the
MTF exceeds any fixed threshold) increases directly as
VL.
Both the bandpass characteristics of the MTF and its bodily
shift with changes in mean luminance (when the frequency

94 % contrast
28 7 contrast

Fig. 6. Sinusoidal grating response profiles for high-contrast (90%)
and low-contrast (20%) gratings.
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Fig. 7. MTPF’s of the Gaussian IDS model for various input mean
luminance levels.

axis is logarithmic) are general properties of IDS models, in-
dependent of the exact form of the spread function S.
Bandpass properties follow from the fact that very low
frequencies will act like uniform fields and be driven to the
baseline-response level, and very high frequencies will be at-
tenuated by the basic point-spread operation. Bodily shifts
with mean luminance follow from the scaling theorem, as is
shown by the following.

Theorem 5

Suppose that for some range of contrast values the output to
a sinusoidal input of the form I(x) = 1 + k& cos 2fx is another
sinusoid of the form O(p) = 1 + G(f) k cos 2nfp. Then for
any mean intensity level L the output to the sinusoidal input
L1+ & cos 2rrfx) is 1 4+ G(f/~/L)k cos 2rfp. [In other words,
the MTF at mean intensity L is G(f/+/L).]

Praof
From Theorem 3

O[L(1 + k cos 2xfx))(p) = O[1 + k cos 2nf(x//D)(p/L)
=1+ G(f/+/L)k cos 2x(f/~/L)(pv/L)
=14 G(f/\/L)k cos 27fp.

Consequently all IDS operators cause the peak frequency of
the MTF, and also any high-frequency cutoff (visual acuity),
to increase proportionally with the square root of the mean
luminance level. These increases continue up to luminance
levels at which saturation begins to occur, i.e., the point-spread
area shrinks to the size of a single receptor.

Psychophysical evidence indicates that the peak frequency
and the high-frequency cutoff of the human spatial CSF show
similar increases with mean retinal illuminance below the
photopic range, though in general the changes are smaller than
those expected from an IDS model. A plot of log visual acuity
versus log retinal illuminance based on the data of Schlaer?
is quite well fitted by a straight line with slope 3/8 (instead of
1/2) up to about 5 Td, after which acuity levels off rapidly.
The spatial CSF’s-of Van Ness and Bouman!® show a peak
frequency that increases by 0.8 log unit (instead of 1) as mean
illuminance increases from 0.09 to 9 Td. Raising mean illu-
minance beyond this point produces smaller changes in the
CSF peak, and above 90 Td it appears that the entire CSF
becomes independent of the mean luminance level.

Another difference between the behavior of IDS models and
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psychophysical data is that human CSF’s generally show a
decrease in sensitivity at the peak frequency as mean lumi-
nance decreases,'%1! whereas the IDS model MTF maintains
a constant gain at its peak frequency.

Discrepancies between IDS-model predictions and psy-
chophysical data obtained at photopic luminance levels are
to be expected in view of the model’s automatic saturation
property. It isinteresting to note that the signal-detectability
argument given in Section 1 implies that reliable detection of
contrasts of the order of 0.1-1% covering an area the size of a
single photoreceptor requires a quantum catch of the order
of 106-108 times absolute threshold, or approximately 10-1000
Td. Over the range 10-1000 Td, then, the visual system loses
its need for spatial summation, and so the disappearance of
an IDS mechanism through saturation would not be disad-
vantageous. In this connection it is worth recalling that rod
saturation occurs in the same range.13

Discrepancies below the photopic range call for a different
sort of reconciliation. One approach is to weaken the IDS
model’s assumption that the point-spread area varies inversely
with quantum catch. In Section 5 we develop a generalized
IDS model in which that area varies as a power function of the
input intensity. This allows the model to predict visual acuity
and peak-frequency changes with mean luminance more in
line with empirical results. A second approach is to take into
account the time required for a point-spread effect to disperse
across the retina. When plausible assumptions about this are
combined with the actual temporal conditions prevailing
during CSF measurements, preliminary analysis indicates that
the IDS model yields a rise in peak-frequency sensitivity with
increasing mean luminance comparable with that exhibited
by human CSF’s.

The exact shape of the MTF of an IDS model depends on
the form of its point-spread function, and so it is an interesting
coincidence that for the Gaussian case the MTF [Eq. (9)] turns
out to be the same one produced by Marr and Hildreth’s linear
DEL2-G model of early visual processing.6 In that model the
image is convolved with the Laplacian of the Gaussian func-
tion —(1/022m)exp[—(1/2)(x2 + y2)/0?), i.e., with the som-
brero-shaped point-spread function

(1/V/T)2(1/6D2[1 — (22 + y2)/202]exp[—(1/2) (x2 + y2)/6?].
The Fourier transform of that point-spread function is
4m2(u2 + v2)exp[—2n202(u? + v?)),
and so its MTF for one-dimensional sinusoidal gratings is
472f2 exp(—2w202f2),

It follows that the Gaussian IDS model cannot be distin-
guished from a single channel DEL2-G model by experiments
that simply determine the shape of the CSF at any fixed mean
luminance level. [Such experiments generally involve small
contrast values, in the range 10% or less, so that the approxi-
mation in Eq. (9) is valid. For high contrast values the non-
linearity of the IDS model would become an important factor
and could allow an experimental discrimination between the
models.] Marr and Hildreth® show that a DEL2-G filter is
essentially indistinguishable from a difference-of-Gaussians
filter of the sort used by Wilson and Bergen,!4 and so the same
is true of single-channel linear models based on that filter.
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4., RESPONSES TO TWO-DIMENSIONAL
PATTERNS

Ricco’s Law and Weber’s Law

Ricco’s law states that the detectability of a spot of light de-
pends only on the product of its area and intensity. Experi-
mentally, in human vision, this holds for spots up to a certain
critical size—a size that decreases as the background intensity
increases.2? We show here that the IDS model implies that
Ricco’s law holds for spots of all sizes on a background field
of zero intensity—in the sense that the peak value of the
output to such an input is the same for all spots of the same
shape that have the same product of area times intensity. On
nonzero backgrounds it causes Ricco’s law to hold (in the same
sense) for spots up to a critical area that decreases as the
background intensity increases. (The experimental fact that

Fig. 8. Response profiles for square spots on a dark background.
Spot area (A) times intensity (I) was held constant at 10. Curvel,
I=1,A=10;curve2,] =10, A = 1; curve 3,1 = 100, A = 0.1; curve
4,1 =1000, A = 0.01.

1=0.01
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Ricco’s law holds for only a limited range of areas even on a
nominally dark background does not necessarily contradict
the model, since the activity in real visual systems does not
fall to zero in darkness.) The IDS model also predicts the
types of configurational effect reported by Sakitt,!5 who found
that two separated spots lying within Ricco’s area do not yield
perfect summation but instead require more total quanta for
detection than a single spot in the same area.

Figure 8 shows the profiles of the Gaussian IDS-model re-
sponse to square spots of various sizes on a zero background.
The input image here was I(x, y) = I for x| < W/2,|y| < W/,
I(x,y) = 0 elsewhere (so the spot area was W2). The output
equation in this case is

O(p, q) = {N[(W/2 = p)/T] - N[-(W/2 + p)v/T]}
X{N[(W/2 — )v/I) - N[=(W/2 + ¢)V/TI}. (10)

In this figure all spots have a (area X intensity) value of 10.
The response profiles shown here run along the horizontal axis
through the center of the squares. It can be seen that the peak
output value is the same for all inputs. This is a general
property of IDS models.

Theorem 6

The peak value of the output to uniform patches of light on
a zero-intensity background is the same for all patches of the
same shape that have the same product (area X intensity).

Proof
For convenience we prove the theorem for square spots, but
the form of the proof applies to any shape. Suppose that I’(x,

1=0.1

1
—

Fig. 9. Response profiles for square spots on nonzero backgrounds of various intensities. The input images were squares of intensity / + D
surrounded by backgrounds of intensity I. The spot area (4) times its incremental intensity (D) was held constant (D X A = 10), and responses
were computed for A = 0.01, 0.1, 1, and 10. Upper left, background intensity I = 0.01; upper right, I = 0.1; lower left, I = 1; lower right, I =
10.
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Fig. 10. Increment threshold as a function of test spot area for
background fields of various intensities. The input images were
square spots of area A and intensity I + D surrounded by uniform

background fields of intensity I. Each curve shows, in log-log coor-
dinates, the value of D required to produce a peak response of 1.15
as A increases over eight log units. Background intensities range from
I = 1000 (top curve) to I = 0.001 (bottom curve). The diagonal
straight line represents Ricco’s law; each curve follows this line up to
some area value and then departs from it as shown.

y) is a square spot of width W and intensity I on a dark
background, i.e., I’(x, y) = I for|x| < W/2,|y| < W/2; and I (x,
y) = 0 elsewhere. And suppose that I(x, y) is another square
with intensity ¢/ and width W/\/¢, so that (area X intensity)
is I X W2 for both. Then I(x, y) = cI’(x+/¢, yv/¢), and so
from Theorem 3

OlI(x, »(p, q) = O(cI’'(xv/c, yv/ ) (P, q)
= O[I'(x, »(pve, gv/¢).

Consequently, if the peak output to I’(x, y) occurs at (p’, ¢’),
the peak output to I(x, y) occurs at (p’/+/¢, ¢A/c) and has the
same value as the peak output to I’ (x, y).

For nonzero backgrounds, the IDS model implies that
Ricco’s law holds as an approximation for small spots: Up to
a certain spot size the peak output value remains constant out
to several decimal places (e.g., 3) for all spots (of the same
shape) that have the same value of (area X intensity). The
higher the background intensity, the smaller the critical area
beyond which Ricco’s law begins to fail.

Figure 9 shows the profiles of the Gaussian-model responses
to square spots of various sizes on various backgrounds. Spot
(area X intensity) was held constant at 10. On the lowest-
intensity background (0.01) the peak-response value remains
constant for areas ranging from 0.01 to 10. When the back-
ground intensity is increased to 0.1 the peak-response value
is still constant for areas up to 1.0 but drops below the constant
value for the largest spot (area = 10). For a background in-
tensity of 1, only the two smallest spots preserve a constant
peak output, and, finally, at the highest background intensity
(10) Ricco’s law fails for all but the smallest spot. (At this
background intensity, Ricco’s law would hold only for spots
with areas <0.01.)

The equation for the Gaussian-model response to square
spots of intensity I + D on backgrounds of intensity I is
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O(p, q) =1+ ({(N[A(W/2 — p)] - N[-A(W/2 + p)}}
X {N[A(W/2 - q) — N[-A(W/2 + q]})
— ({N[B(W/2 = p)] = N[-B(W/2 + p)}}
X{N[B(W/2—q)] - N[-B(W/2+q)}), (1)

where A = (I + D)¥/2, B = /T, and W is the spot width.

Figure 10 summarizes the Ricco law behavior of the model.
It shows, for a range of background intensities, the spot in-
tensity needed to produce a constant peak response as a
function of spot area. (The spots here were squares, and the
peak-response value at threshold was taken to be 1.15. That
value was chosen for convenience: It is the peak response to
a square of unit area when D = 1and I = 0.1. The choice of
threshold value is irrelevant here; other values yield curve
families that look like those in Fig. 10.) For all background
levels the constant-response curve runs for some distance
along a line of slope —1, indicating obedience to Ricco’s law,
and then departs from this line when the spot area reaches a
critical value. After a brief further decline with further in-
creases in area (Piper’s law), the curves increase a bit and then
level out to constant values. For spot areas in that final range
the peak response occurs as a Mach band at their edges and
is governed by Weber’s law.

Increment-Threshold versus Background-Intensity Curves
The last point is made more explicit by Figs. 11 and 12.
Figure 11 replots three of the curves from Fig. 10 in the form
of standard increment-threshold versus background-intensity
(TVI) curves. It can be seen that these TVI curves evolve
through three stages. When background intensity is low the
curve is flat, as though threshold were limited by dark light
(though here there is none). Next there is a transitional stage
in which the TVI curve increases with a slope that is first
somewhat less than one and then somewhat greater. Finally,
when background intensity is sufficiently high, the TVI curve
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Fig. 11. 'TVI curves for test spots of different areas. These are
replots of data from Fig. 10. Each curve shows the incremental in-
tensity D required to produce a fixed peak-response value when the
input is a square spot of area A and intensity I + D, surrounded by
a background of intensity I. The three curves shown are for A = 0.01,
A =1,and A = 100. As background intensity increases, all curves
eventually terminate in a diagonal straight line corresponding to
Weber’s law.
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1=0.01 D=1 WIDTH=1
maximum response=1.15
at x=0
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1=10 D=8 WIDTH=1
maximum response=1.15
at x=0

- T~

1=1000 D=2600 WIDTH=1
maximum responge=1.15
ax=—48

Fig. 12. Response profiles at threshold for a spot of fixed area on
backgrounds of various intensities. Each curve shows the profile of
the response to a square test spot of area A = 1 and intensity I + D
surrounded by a uniform background of intensity /. The increment
value D in each case is that required to produce a peak output value
of 1.15. Top profile, background intensity I = 0.01; middle, I = 10;
bottom, I = 1000.

attains a slope of one (Weber’s law) and retains it for all higher
backgrounds. The background-intensity values corre-
sponding to these three ranges depend on the size of the test
spot: The larger the spot, the sooner its TVI curve begins to
follow Weber’s law.

These TVI curves are in good qualitative agreement with
standard psychophysical results,13 except that in the Weber’s
law region our curves all run together, whereas in practice one
expects to find a slightly smaller threshold value of the Weber
fraction for larger test spots.1® This can be understood in
terms of the fact that larger spots have longer perimeters,
which should increase their relative detectability once the edge
response becomes the dominant factor. We have not sought
to model such an effect, since to do so realistically would in-
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troduce issues of noise and probability summation beyond the
scope of this paper.

Figure 12 shows how the shape of the threshold-value re-
sponse profile changes as background intensity increases.
These profiles are for a test spot of area 1.0. On low-intensity
backgrounds (in the zero-slope portion of the T'VI curve) the
response is simply a broad shallow bump, peaking in the
center of the test spot. Here threshold is determined by the
increment intensity required to make this central peak exceed
the threshold criterion. In the next background-intensity
range (corresponding to the transitional-slope portion of the
TVI curve) the response profile at threshold has a sombrero
shape, with apparent inhibitory regions surrounding a central
positive bump. Here threshold is still determined by the
response value at the center of the spot. Finally, on a high-
intensity background, the response profile consists entirely
of Mach bands at the edges of the test spot, and threshold is
determined by their peak values. Those peaks follow Weber’s
law, as was shown earlier in Section 3, and this is the Weber
region of the TVI curve.

Shape of the Impulse Response

Figure 13 illustrates, for small spots, a point made earlier for
thin bars: At moderate to high background intensities, the
IDS model produces a sombrero-shaped impulse response
(center-surround antagonism), but when the same spot lies
on a low-intensity background, the depression of surrounding
activity becomes negligible, and the response appears to be

1=100 D=1000 WIDTH=0.1

1=0.1 D=1000 WIDTH=0.1

b Il o i
, T 1

Fig. 13. Response profiles for a small square spot of fixed incre-
mental intensity (D = 1000) superimposed upon a high-intensity (top
curve, I = 100) or a low-intensity (bottom curve, I = 0.1) background.
Spot width, 0.1.
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purely positive—as though lateral inhibition had failed at low
light levels. Mammalian retinal ganglion cells have been re-
ported to behave in this fashion.8? That fact has generally
been interpreted in terms of a loss of the inhibitory contri-
bution from the antagonistic-surround portion of the cell’s
receptive field. We see here that the same effect also occurs
naturally in a system involving no inhibition.

The cause of this apparent loss of lateral inhibition on
low-intensity backgrounds is that when the background level
is low, the width of the point-spread function in the back-
ground region is large, and consequently the value of the re-
sponse at points near the test spot is the sum of many small
contributions coming from a large portion of the field. The
high-intensity test spot reduces the amount of spread coming
from receptors directly beneath it, but these are relatively few
in number, and consequently their overall point-spread con-
tribution to the response at nearby points is negligible to begin
with. Thus, when it is removed, there is only a negligible re-
duction in the response level. When the background intensity
is high, however, the point-spread function is narrow, and the
response level at points near the test spot is the sum of spread
values contributed by a relatively small number of closely
neighboring points. In this case the loss of the spread values
formerly contributed by points beneath the test spot causes
a substantial reduction in the response level at points adjacent
to that spot. Thus the same test spot creates appreciable
“lateral inhibition” at nearby points when it is superimposed
upon a high-intensity background and no apparent inhibition
when the background is low.

Configurational Effects

At any given background intensity, Ricco’s area can be defined
as the area of the largest spot for which Ricco’s law holds. If
Ricco’s law were the result of summation within the central
region of a classical receptive field, one might expect all targets
smaller than Ricco’s area to be equally detectable if they have
the same value of the product (area X intensity). Sakitt
found, however, that Ricco’s law is violated within Ricco’s area
when the target is a pair of spatially separated spots rather
than a single continuous one.!> Her experiment showed that
two spots that deliver a fixed total number of quanta within
Ricco’s area may be undetectable even though the same
number of quanta are detectable when imaged in the form of
asingle spot. Moreover, she showed that her results could not
be reconciled with the idea of spatial summation over a
fixed-size receptive field even if one allows for the possibility
that receptors have different weights depending on their po-
sitions within the field.

For the IDS model these configurational effects pose no
difficulty. It predicts what Sakitt found: The peak response
to two spatially separated spots, each of area A and inten-
sity/unit area D, is less than the peak response to one spot of
area A and intensity 2D, even though they lie entirely inside
an area that would yield apparently perfect spatial summation
when tested with larger continuous spots. Figure 14 illus-
trates this effect.

The top panel shows the response profile for a single square
spot of intensity I + D surrounded by a background of in-
tensity I. I here is 0.1, and Fig. 9 shows that at this back-
ground intensity the width of Ricco’s area is 1.0. The spot
whose response profile is shown here has a width of 0.1, and
its (area X intensity) value is 10. (Thatis, D is 1000.) The
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peak-response value for this spot is 1.78. The bottom panel
shows the response profile for a pair of square spots, each of
width 0.1, whose edges are separated by a gap of 0.05. The
background intensity is again I = 0.1, and each spot has an
intensity D = 500, so the combined (area X intensity) value
for the two spots is 10. Thus this pair of spots falls well within
the area of perfect spatial summation for this background
intensity and have the same total (area X intensity) value as
the single spot. However, the peak-response value for the pair
is only 1.55.

This behavior can be understood qualitatively in the same
way as the IDS model’s creation of Mach bands at edges.
Here the single spot’s response contains a substantial con-
tribution coming from receptors lying under the background
portion of the input image. The responses to the separated
squares gain a smaller contribution from spreading, because
each square has a high intensity and consequently creates a
narrower spread function in the receptors beneath it than they
would produce if the low-intensity background were present.
Thus each square reduces the point spread that its receptors
would have contributed to the output of its neighbor.

The following expression is the output image equation for
the Gaussian case of the IDS model when the input image is

r
1=0.1 D=1000 WIDTH=0.1

maximum responss=1.78 L
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Fig. 14. Configurational effects within Ricco’s area. The top curve
is the response profile for a single square spot with (area X intensity)
=10. The bottom curve is the response profile for a pair of square
spots whose combined (area X intensity) value was also 10.
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a pair of squares of intensity I + D, width W, and center—
center separation S, surrounded by a uniform background of
intensity I. It assumes that the squares are both centered on
the x axis. The curve in the bottom panel of Fig. 14 is a plot
of the profile of this output function along the p axis (i.e., the
horizontal axis of the output image).

O[p, q] =1+ (IN[A(W/2 — q)] — N[A(-W/2 - )]}

X IN[A(S/2 + W/2 — p)] — N[A(S/2 — W/2 — p)I})

+ (IN[A(W/2 — @)] - N[A(-W/2 - ¢)}}

X {N[A(=S/2 + W/2 — p)] = N[A(-S/2 — W/2 - p)]})

— ((N[B(W/2 - ¢)] - N[B(-W/2 - q)]}

X {N[B(S/2 + W/2 — p)] — N[B(S/2 — W/2 — p)I})

- (N[B(W/2 - ¢)] - N[B(-W/2 - q)]}

X {N[B(~S/2 + W/2 — p)] — N[B(=S/2 — W/2 — p)]}),
(12)

where A = (I + D)2 and B = /1.

5. DISCUSSION

Intensity-Dependent Spatial Summation as a
Psychophysical Model
For a model based on a single assumption, the IDS model gives
a surprisingly complete first-approximation description of
- human spatial vision for retinal illuminances ranging from
absolute threshold up to around 10 Td. It predicts the two
major effects usually associated with spatial summation: the
dependence of Ricco’s area on background luminance and the
fact that visual acuity increases approximately as the square
root of mean luminance. And, unexpectedly, it also predicts
two major effects that are not usually thought of as related to
spatial summation—or, indeed, to each other: Mach bands
and Weber’s law. Those two effects are typically explained
in terms of mechanisms quite different from the one embodied
in the IDS model: lateral inhibition for Mach bands and
nonlinear transduction for Weber’s law. Here we examine
the relationship between those familiar concepts and the IDS
mechanism. We also describe a way in which the IDS model
can be modified to produce a closer fit to psychophysical data
and point out a connection between IDS processing and
brightness constancy.

Mach Bands and Constant-Volume Models

Mach bands are generally attributed to a neural process of
lateral inhibition that can be modeled by convolving the ret-
inal image with a sombrero-shaped point-spread function
whose negative brim represents the inhibition.17 We will refer
to this as the standard linear lateral inhibitory (LLI) model.
Within the framework of linear systems theory, lateral inhi-
bition is the only possible explanation of Mach bands, since
Mach bands correspond to a high-pass filter effect and in a
shift-invariant linear model such an effect can be produced
only by a point-spread function containing negative lobes.
However, we have seen that the IDS model, which is nonlinear,
creates Mach bands with a purely positive point-spread
function.

Thus the IDS model represents a new principle for gener-
ating edge enhancement, namely, edge enhancement will be
produced by any model in which each photoreceptor creates
a point-spread function whose volume is the same for all input
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intensities. Recall that the fundamental assumption of the
IDS model is that the height of the receptor output function
varies directly with input intensity but its volume remains
constant. As a consequence, the effect of an image on the
system is not to change its total output but rather to redis-
tribute that output in space. It follows that, when the input
is a uniform field, the output must also be uniform and that
output level will be the same regardless of the input level—this
is the intuitive proof that was given for Theorem 1 in Section
2. In other words, the sensitivity of the IDS model to uniform
fields is zero.

Put another way, the IDS model has zero sensitivity at
spadtial frequency zero. And by extension it is clear that the
same is true of any model in which the volume under the re-
ceptor output function remains constant across all input in-
tensities. Furthermore, if the model responds at all, its sen-
sitivity will rise from zero as frequency increases, so that it will
act like a high-pass filter. And that, in turn, is what is gen-
erally meant by edge enhancement: Low frequencies are
attenuated more than high frequencies, so that in the image
itself large uniform areas are attentuated more than edges. It
follows that all constant-volume models will produce edge
enhancement.

An example of a constant-volume model different from the
IDS model is illustrated in Fig. 15. Here the receptor point-
spread function is the sum of two functions: a Gaussian
whose variance remains constant and whose height is directly
proportional to the input intensity I, added to another
Gaussian whose variance also remains constant but whose
height varies as (¢ — I), so that the total volume under the
spread function (i.e., the volume under the sum of the two
Gaussians) is always equal to ¢ regardless of the input inten-
sity I. Because the volume is constant, this model will at-
tenuate low frequencies and produce Mach bands. [Note that
if ¢ is positive the composite spread function will be entirely
positive when the input level I is low and then will assume a
sombrero shape at higher input levels, when (¢ — I) becomes
negative.]
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Fig. 15. Component curves for the point-spread function of a con-
stant-volume model that differs from both the IDS model and the LLI
model. Here the point spread is the sum of two functions, one whose
height increases proportionally with the input intensity I [here, a
Gaussian of the form I X G,(x, y), where G1 has a fixed standard de-
viation 1] and another whose height varies as ¢ — I, where ¢ is a
positive constant [here, (¢ — I) X Ga(x, y), where G has fixed stan-
dard deviation o2 and g2 > ¢1]. Component curves for two values of
I are shown on the left, and the corresponding composite point-spread
functions are shown on the right.



1782  J. Opt. Soc. Am. A/Vol. 2, No. 10/October 1985

In general, this constant-volume model is nonlinear since
superposition fails: The output to a uniform field with in-
tensity 27 (i.e., ¢) is not twice the output to a field with in-
tensity / (also ¢). However, when ¢ equals zero the model is
linear—in fact, it is the standard LLI model. Thus that model
falls in the intersection between two distinct classes of model
for edge enhancement: It is simultaneously a constant-vol-
ume model and a linear model with negative lobes in its im-
pulse response. Since no linear model can be a constant-
volume model unless the volume under its impulse response
is zero (and consequently the value of its MTF is zero at the
origin), it follows that the only linear models that can produce
edge enhancement with complete dc suppression are also
constant-volume models.

We see then that the edge-enhancement properties of the
standard LLI model need not necessarily be attributed to
inhibition per se. Instead, they could equally well be said to
follow from the fact that it, like the IDS model, is a con-
stant-volume model.

Weber’s Law and a Generalized Intensity-Dependent
Spatial-Summation Model

Weber’s law is often attributed to an early nonlinear trans-
formation in the visual system that causes the neural response
to an input of intensity I to be approximately proportional to
log I. This very old idea is not really satisfactory because it
does not explain why Weber’s law fails at low luminances, and,
more critically, even when huttressed with the concept of dark
light, it still cannot explain why the range of background lu-
minances for which Weber’s law holds exactly should depend
on the size of the test spot. The IDS model accounts for
Weber’s law and its failures on a totally different principle.
Here the height of the receptor response varies linearly with
the input intensity, and Weber’s law arises as an edge effect
that is due to spatial summation—an effect that begins to
become significant only at a critical level of background lu-
minance, which increases as the size of the test spot decreases.
A natural question here is: What specific feature of the IDS
model causes Weber’s law to occur at all?

The answer cannot be the constant-volume assumption per
se, since that assumption is shared by the standard LLI model,
which does not imply Weber’s law. And for the same reason,
it cannot be the assumption that the height of the receptor
spread function is directly proportional to the input intensity.
In fact, the key to the model’s Weber-law behavior is the
constant-shape assumption, i.e., the assumption that the form
of the spread function when the input intensity is I is I X
S(Ir?), where r is distance from the receptor. This assump-
tion keeps the volume under the spread function constant by
causing the equivalent area (volume/center height) to vary
inversely with I. But closer analysis shows that this specific
area-intensity relationship is not necessary for Weber’s law.
In fact, if the spread function takes the form I® X S(I"r2),
where n is any nonzero exponent, and all the other assump-
tions of the IDS model remain the same, the resulting model
still implies Weber’s law, though now the area under the
spread function varies inversely with I* instead of simply I.
Thus the critical feature is really the fact that the model causes
the spread function to change with intensity by rescaling the
x and y coordinates of the retinal plane by factors that exactly
undo the change in its height, thereby leaving its volume
constant.
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To prove that the generalized IDS model mentioned in the
last paragraph implies Weber’s law, recall that the key to our
proof that all IDS models imply Weber’s law, regardless of the
form of the basic spread function (Theorem 4 in Section 3) was
the scaling theorem (Theorem 3). Suppose now that we alter
assumption (3) of Section 2 so that the spread to output point
(p, g) from input point (x, y) with input intensity I(x, y) is

(BA)  [I(x, Y)™S{{I(x, y)]"[(x — p)2 + (¥ — ¢)¥]},

where S is any spread function satisfying assumptions (1)-(4)
of Section 2. And suppose that the output image is still the
sum of the spread functions, i.e., assumption (5) now be-
comes

(5A) O[I(x,)](p,q) = [ [I(x,y)]
X S{lI(x, y)"(x — p)2 + (v — ¢)2]}dydx.

Then Theorem 3 can be generalized as shown below.

Theorem 3A (Generalized Scaling Theorem)
For every positive constant ¢ and every input image I(x, y)

OlcI(x, y)I(p, q) = Ol (x/v/e", y/v/c™)]
’ (pve™, gv/em). (18)

Proof
As in the proof of Theorem 3, we express the right-hand side
of Eq. (13) in terms of the integral in assumption (5A) and
make the change of variableu = x/(+/¢"),v = y/(\/¢"). The
result is the left-hand side of Eq. (13) expressed in integral
form.

From Theorem 3A it is easy to prove that Theorem 4 still
holds for this generalized IDS model, i.e., the maximum and
the minimum values of the output on the high and the low
sides of an edge still depend only on the ratio between the
input intensities on the two sides. In other words, the gen-
eralized IDS model in which the point-spread area varies in-
versely with I™ still implies Weber’s law in the same way as
the original model.

In fact all the theorems proved for the original model still
hold for this generalization, since their proofs in every case
depended only on the scaling theorem. The only difference
is that, wherever the original theorems and proofs mention
the mean luminance level L, one needs to substitute L™ in the
general case. Thus Theorem 5, which showed that visual
acuity increases as v/, can be immediately generalized to
show that acuity in this model increases as /L™ As noted
in Section 3, n values less than 1.0 are more in line with psy-
chophysical acuity measurements (e.g., n = 0.75 for the data
of Schlaer?). This is also true of measurements of the size of
Ricco’s area as a function of background luminance: Bar-
low’s? results obtained at 6.5-deg eccentricity require a n of
the order of 0.2, and the foveal data of Glezer3 are fitted by n
= (.5,

Discounting the Illuminant: Weber’s Law and Brightness
Constancy

Most objects in natural scenes emit no light of their own but
simply reflect light from the sun or some artificial source.
Normally the reflectances of objects remain constant over
time, but their illumination may vary by factors as large as
1019, 50 the irradiance of their optical images can vary by the
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same factor. After IDS processing the peak and trough am-
plitudes of the Mach bands at edges depend only on the ratio
between the input image intensities on the two sides (Fig. 3).
This ratio depends only on the reflectances of an object and
its background and is independent of scene illumination. The
shapes and the positions of these peaks and troughs, however,
depend on the absolute input intensities and thus on illumi-
nation: Both become narrower and move closer to the edge
itself as illumination increases. For any object-background
combination, then, there is some illumination level beyond
which the Mach bands generated on opposite sides of the
object no longer overlap one another. At this level and all
higher ones, the output image of the object consists of an
edge-enhanced border whose peak and trough amplitudes
depend on the reflectance ratio across its edges and whose
interior has the baseline output value (1.0 for the IDS opera-
tors defined in Section 2). Of course this critical illumination
level is lower the larger the object. Assuming that an object
can be detected when the peak of its edge response differs
from the baseline response value by more than some criterion
amount, it follows that in an IDS system the detectability of
any object will follow Weber’s law once the illumination level
gets high enough.

If the apparent brightness of an object is unaffected by its
illumination and depends only on its reflectance and that of
its background, as is roughly true in human vision, one speaks
of brightness constancy. In the human visual system, the
apparent brightness of the interiors of large objects of uniform
luminance must be based on an extrapolation from their
edges, since the retinal images of the interiors are effectively
stabilized images and consequently cannot contribute to their
visibility.1® If an extrapolation mechanism based its as-
signment of interior brightnesses on the peak and trough
values of the Mach bands at the edges of objects and received
its input from an IDS operator, it too would exhibit brightness
constancy for all objects beyond a certain size.

Intensity-Dependent Spatial Summation as an
Image-Processing Algorithm

Intensity-dependent spatial summation seems potentially
useful as a first-stage image-processing operation for appli-
cations involving the same type of boundary conditions faced
by the retina—applications in which the inputs are Poisson
noisy images whose mean intensity levels [(quanta/pixel)/
frame)] can vary substantially from scene to scene (e.g., because
of changes in illumination) and also within a single image (e.g.,
because of shadows). These conditions occur naturally for
television pictures of real scenes illuminated by the sun.

Automatic Gain Control

The illumination falling upon natural scenes can vary over the
course of a day by as much as 10'%, No recording medium can
readily accommodate such an enormous dynamic range.
There are two fundamental objections to the usual solutions
to this problem, such as the use of filters or amplifier gain
changes. First, they are insensitive to local variations in scene
illumination, e.g., owing to shadows: The effective luminance
of the entire scene is reduced by a common factor, which can
reduce the signal level in shadowed areas down into the range
of the system noise. This is symptomatic of the second
objection, which is more general. Spatial contrast detection
is in principle limited by photon noise at all illumination
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levels; contrast sensitivity can always be improved by in-
creasing the quantum catch. Thus any gain-control mecha-
nism that simply enforces a fixed quantum catch, as the use
of an iris or a filter does, is bound to become increasingly in-
efficient as the illumination level rises.

The IDS mechanism automatically compresses all input
intensities into a output range extending from zero up to
around twice the value of the constant point-spread volume
(i.e., 0-2 when that volume is taken to be 1.0, as it was arbi-
trarily in the IDS model of Section 2.) In doing this it makes
efficient use of every photon: As the image plane illuminance
increases, the extra photons serve to decrease the size of the
spatial-summation area, improving spatial resolution while
maintaining a fixed reliability of contrast detection. And this
effect occurs locally within a single image, so that in every
region the size of the summation area is matched to the illu-
mination falling upon objects in that portion of the scene.

Noise Smoothing and High-Frequency Attenuation

In noise smoothing by local averaging, the size of the sum-
mation area is usually held constant throughout any single
image. The effect is simply low-pass linear filtering. This
is a sensible way of suppressing photon noise, provided that
the mean intensity level is known in advance (so that the
summation area can be set inversely proportional to it) and
that there is not much variation around the mean level within
any single image. If the last condition cannot be guaranteed,
either summation over a fixed area loses potentially resolvable
high frequencies in the high-intensity regions of the image
(because the summation area is too large for the mean lumi-
nance level in those regions), or else the low-intensity parts
of the image become needlessly noisy (because the summation
area is too small for the mean luminance level there), or both
effects occur at once in different parts of the image.

The IDS operation, on the other hand, acts like a spatial
filter whose high-frequency cutoff is always adjusted to match
the prevailing light level (Fig. 7). In effect, it selects for at-
tenuation the spatial frequencies that are so high, relative to
the mean quantum catch/pixel, that they could not be reliably
discriminated from photon noise. Thus the mean luminance
level does not have to be known in advance, because the IDS
mechanism adjusts to it automatically. And since this process
occurs locally, different parts of the same image can have
different mean intensity levels without requiring the mech-
anism to compromise on a single high-frequency cutoff. In-
stead, each region’s cutoff frequency is automatically matched
to its local mean intensity level. Thus, if the input is an image
of a natural scene illuminated by the sun and some parts of
the scene are in shadow, all parts of the output image will si-
multaneously tend to contain the maximum amount of
high-frequency information justified by their local mean lu-
minance levels.

Edge Enhancement

Edge enhancement is usually accomplished by convolving the
input image with a more or less sombrero-shaped point-spread
function consisting of a positive central region and a negative
surround. For Poisson noisy optical images, this bandpass-
filtering operation has no effect on the signal-to-noise ratio:
If the input image takes the form I X r(x, y), where I is scene
illumination and r(x, y) is the reflectance distribution over
a scene, after convolution the mean to standard deviation ratio
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at each point is still proportional to /7. If the volume of the
point-spread function is zero, as it usually is, uniform regions
in the input image at any intensity I are converted into
bandpass-filtered Gaussian noise with mean zero and variance
I at every point. This noise is the background against which
objects must be detected. For any value of I, the size of the
sombrero must be adjusted to ensure an adequate signal-
to-noise ratio at the Mach bands produced at edges, since
those are the only places where most objects will be visible.
In general, the critical size varies inversely with I, and, if the
filter is poorly matched to the actual value of I in a given scene,
the result will be either a needless loss of high-frequency in-
formation (when the sombrero is wider than necessary) or
edges that cannot be discriminated from noise (when the
sombrero is too small). If I varies greatly within a scene, the
filter cannot be appropriate for all regions simultaneously, and
one defect or the other is inevitable, just as with linear noise-
smoothing filters.

An IDS operator acts like a bandpass filter whose frequency
range automatically changes to match the prevailing mean-
luminance level, both from scene to scene and also locally
within scenes. Consequently, the parameter of an IDS filter
(i.e., the width of its point-spread function) needs to be ad-
justed only for a single luminance level, and the filter will then
adapt to all other levels (up to its saturation point), main-
taining essentially the same size edge response at all levels for
constant-contrast edges (because of the Weber-law property
discussed above) and increasing spatial resolution as scene
illumination increases. It can be shown that, for the Gaussian
case, the IDS response to Poisson noisy uniform fields has a
constant mean and variance for all values of I = 0.01. Con-
sequently, the background noise against which objects are
detected does not increase with scene illumination, and the
detectability of edges (and thus of large targets) should remain
constant as illumination increases, while resolution im-
proves.

6. SUMMARY

We have analyzed a nonlinear model of retinal image pro-
cessing, the IDS model, based on a single assumption: The
height of the point-spread function varies directly with illu-
minance, whereas its volume remains constant, so that the
area under the spread function around each photoreceptor is
inversely proportional to the illuminance at that receptor.
This assumption allows reliable spatial contrast discrimina-
tion in the face of photon noise while simultaneously maxi-
mizing spatial resolution. It proves to have the following
consequences:

(1) Bandpass Filtering. The input image is effectively
bandpass filtered, producing Mach bands at edges and an
apparent center-surround antagonism in the response to small
spots. In general, the model mimics effects normally attrib-
uted to lateral inhibition. This mimicry includes the fact that
the appearance of lateral-inhibitory effects depends on illu-
mination: At low background intensity levels, responses to
small test spots exhibit no noticeable surround antagonism.

(2) Ricco’s Law. For spatially continuous targets smaller
than a critical size, the peak response value depends only on
the product of target area times intensity. Thus detection
of such targets should obey Ricco’s law. The size of the crit-
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ical area (that is, the size of Ricco’s area) varies inversely with
the background illuminance.

(3) Configurational Violations of Ricco’s Law. Within
Ricco’s area (that is, the area of apparent perfect spatial
summation as determined with spatially continuous targets),
Ricco’s law fails for noncontinuous targets: A single spot
produces a larger peak response than two separated spots that
have the same combined area X intensity product.

(4) Del2-G MTF. The response to low-contrast sinus-
oidal gratings closely approximates a sinusoid, allowing one
to define a MTF. For the Gaussian case of the IDS model, the
MTTF at any fixed mean luminance level has the same form
implied by a LLI model based on the negative Laplacian of
a Gaussian.

(5) Visual Acuity Improves with Illumination. The
MTTF varies with illuminance in such a way that any high-
frequency cutoff increases as the square root of the mean lu-
minance level (for the simplest version of the model). This
implies that visual acuity should vary in the same way.

(6) Weber’s Law Succeeds or Fails Depending on Target
Size and Background Intensity. The response to edges
separating large uniform fields obeys Weber’s law: The peak
and trough values of the Mach bands at edges depend only on
the ratio between the input image intensities on the two sides
of the edge. When a target of fixed size is superimposed upon
background fields of increasing intensity, its response profile
evolves through three stages: first a simple bump, then a
sombrero, and, finally, a pair of Mach bands at both edges with
a baseline-response level between. The smaller the target is,
the higher is the background level required to reach this final
stage. Once it is reached, the detectability of the target

“satisfies Weber’s law for all higher background luminance

levels. In general, the model implies threshold versus back-
ground intensity curves whose shapes closely resemble those
found in psychophysical experiments.

(7) Brightness Constancy. Assuming that the brightness
of a target depends on the size of its edge response, the Weber
property implies that sufficiently large targets will exhibit
brightness constancy; i.e., their brightnesses will be inde-
pendent of the scene illumination and depend instead only
on their reflectances relative to that of the background.

APPENDIX A: DERIVATION OF THE
RESPONSE TO LOW-CONTRAST SINUSOIDAL
GRATINGS

We derive here the approximation given in Eq. (7). Suppose
that the input is a vertical sinusoidal grating of the form I(x)
=1+k cos 2rfx. Then from Eqg. (4) the output profile along
the horizontal axis is exactly

O(p) = j:: [(1 + & cos 27fx)1/2/\/ (27)]

X exp[(—1/2)(1 + & cos 27fx)(x — p)?]dx.

For arbitrary values of % this integral seems quite intractable.
However, when % is small enough that k2 can be treated as
zero, it can be solved as follows. First, write 1 + & cos 27fx
as

[1 + (k/2)cos 2mfx]? — (k2/4)cos? 2rfx.

Dropping the second term, we have



T. N. Cornsweet and J. 1. Yellott, Jr.

(1 + & cos 27fx) ~ 1 + (k/2) cos 27fx,

and substituting this approximation into the output equation
yields

0o(p) ~ f_ : [(1 + j cos 2nfx)/n/@r)]
X exp[(-1/2)(x — p)?]
X exp[(—Jj)(cos 27 fx)(x — p)?|dx,

where j = k/2 and the factor exp[(—1/2)(k/2)%(x — p)?
cos? 27fx] has been set equal to one. Expanding the second
exponential factor as a Taylor series and dropping the terms
containing powers of j greater than one, we have

0p)~ [ 1+ ] cos 2mf)V/ ]
' X expl(=1/2)(x — p)?] X [1 = j(x — p)Zcos 2rfe)dx
=1-j f_: [1/v/@D](x — p)? cos 2rfx

X exp[(=1/2)(x — p)?]dx

+j f_ : [1/v/@)]cos 2fx expl(=1/2)(x — p)2dx

-2 j: : [1/7/(27)](x — p)2cos 27fx

X exp[(—=1/2)(x — p)?]dx.

Dropping the last term (which is less than j2) and making the
change of variable v = x — p, we obtain

O(p)~1~j j:: [1/+/(@m)]v? cos 2f(v + p)

X exp[(—=1/2)v%dv + j f_ NG

X cos 27f(v + p) exp[(—~1/2)v?]dv,

which can be solved exactly. Expanding the cosine factors
into (cos 27fv)(cos 2mfp) — (sin 2wfv)(sin 27fp) and noting
that the integrals involving sine factors all vanish, we have

O(p) ~1—jcos 2nfp j‘_m [1/+/(27)v?

X cos 27fv exp[(—1/2)v2]dv

+ j cos 27fp j‘_: {1/4/(2m)]cos 2w fu exp[(—1/2)v2]dv.

The third term can be obtained from integral tables: It works
out to j cos 2mfp exp(—272f2). To evaluate the second term
we note that the integral is the Fourier transform of
[1/4/(@m)]v? exp[(—1k)v?], which is [1 — (2f)?]exp(—27%f2).
The entire second term then is —j cos 27fp times that ex-
pression. Combining all three terms and replacing j with k/2,
we have finally

O(p) =~ 1 + [272f2 exp(—27%f2)]k cos 27fp,
which is Eq. (7).
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