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Abstract: Insects associate with a diversity of microbes that can shape host ecology and diversity
by providing essential biological and adaptive services. For most insect groups, the evolutionary
implications of host–microbe interactions remain poorly understood. Geographically discrete areas
with high biodiversity offer powerful, simplified model systems to better understand insect–microbe
interactions. Hawaii boasts a diverse endemic insect fauna (~6000 species) characterized by
spectacular adaptive radiations. Despite this, little is known about the role of bacteria in shaping this
diversity. To address this knowledge gap, we inaugurate the Native Hawaiian Insect Microbiome
Initiative (NHIMI). The NHIMI is an effort intended to develop a framework for informing
evolutionary and biological studies in Hawaii. To initiate this effort, we have sequenced the
bacterial microbiomes of thirteen species representing iconic, endemic Hawaiian insect groups.
Our results show that native Hawaiian insects associate with a diversity of bacteria that exhibit a
wide phylogenetic breadth. Several groups show predictable associations with obligate microbes
that permit diet specialization. Others exhibit unique ecological transitions that are correlated with
shifts in their microbiomes (e.g., transition to carrion feeding from plant-feeding in Nysius wekiuicola).
Finally, some groups, such as the Hawaiian Drosophila, have relatively diverse microbiomes with a
conserved core of bacterial taxa across multiple species and islands.

Keywords: insect-microbe interactions; microbial ecology; symbiosis; microbiome; Hawaiian
insects; Wolbachia
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1. Introduction

All complex multicellular life evolved either in alliance with, or in defense from, microbes,
which have dominated Earth for billions of years [1]. In order to fully understand organismal
function, diversity, and evolution, microbial interactions should be an essential consideration. Recently,
a large body of literature has revealed that bacterial symbionts shape insect ecology and evolution by
providing a range of environmental services, or by manipulating host reproduction [2,3]. Although it
is well understood that microbial symbionts played fundamental roles in the diversification of some of
the largest insect orders (e.g., the plant-sap feeding Hemiptera), their roles in shaping species-level
diversity in most insect groups remain relatively unknown [4–7]. Recent advances in molecular
sequencing technologies provide the ability to tackle these questions at unprecedented scales [8–10].
Despite this, efforts to comprehensively address questions regarding the role of microbes in insect
ecology and evolution are hindered by the geographically widespread nature of insect populations
and closely related species.

We propose to develop the Hawaiian Archipelago as an insect-microbiome model system to tackle
fundamental questions in insect evolution that currently elude study. The Hawaiian Islands offer a
simplified, closed ecosystem where the histories of habitat formation and organismal evolution can
be completely understood [11,12]. Each island is ecologically diverse, including habitats that range
from high altitude aeolian deserts to dense rainforests and tropical bogs. The Archipelago has formed
linearly over a host-spot in the middle of the Pacific Ocean, where it has remained one of the most
isolated landmasses for over 80 million years [13]. Furthermore, the ages of the current high islands
and their constituent habitats are known with some precision, having all formed within the last five
million years [12,14]. These geological features have generated a discrete, diverse, and replicated
time-series of habitats. Thus, the archipelago is a long-held evolutionary model-system, informing
theory of organismal adaptation and diversification over the last several decades [15,16]. Hawaii
uniquely provides a natural evolutionary experiment with a developed theoretical framework to
extend this system to address explicit questions of host–microbiome interactions.

The endemic Hawaiian insects comprise over 10,000 described species that diversified from a
mere ~260 colonization events [17–19]. For example, the Hawaiian Drosophila radiated from a single
arrival into approximately 1000 species. Drosophila species specialize on specific plant taxa, plant
parts, and fungi for feeding, mating, and oviposition [20–22]. Many other native insects, such as those
that feed on plant-sap (e.g., Hemiptera), diversified into hundreds of species while specializing on
endemic host-plants that have divergent natural defenses and nutritional qualities [23,24]. In some
of these groups, species have transitioned to novel habitats and diets that are rare, or unknown
in their continental relatives. These include species that have adapted to extreme habitats such
as caves, sub-alpine and arid regions, or to completely new diets [25]. Specific examples include
the iconic wekiu bug and sister taxon (Hemiptera: Heteroptera: Nysius wekiuicola and Ny. aa) that
have transitioned from plant feeding to alpine scavenging of dead insects capable of withstanding
sub-freezing temperatures—an adaptation not found in any other members of this globally distributed
genus [26,27]; the caterpillar (Eupithecia spp.) that switched from a pollen diet to carnivory; and,
the drosophilid fly (Scaptomyza [Titanochaeta] spp.) that transitioned from detritivory to spider egg
predation [28,29]. The discrete origins and knowable phylogenetic history of endemic Hawaiian
lineages permits targeted questions of how host–microbiome interactions have evolved through time
and influenced host evolution.

Given the intrinsic role of microbes in shaping insect ecology and diversity, there is surprisingly
little known about their role in the diversification of Hawaiian insect fauna. Perhaps the best
understood is in Hawaiian Drosophila. Species in this group are known to associate with a wide-range
of fungi that may play important roles in host-plant use [30,31]. Recent studies in other systems
suggest that insect lineages represented in Hawaii likely maintain complex associations with bacteria.
Expectations from non-island model systems provide a baseline prediction for Hawaiian taxa.
For example, Drosophila species harbor a gut microbiome that can influence host development
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and fecundity [7,32]. Others, including plant-sap feeding leafhoppers (Cicadellidae), planthoppers
(Cixiidae and Delphacidae), and heteropterans, have obligate associations with microbes that provide
essential nutrition to their hosts [8,33,34]. Although host–microbe interactions are well understood
for some insects such as those in the Hemiptera [35], the extent to which microbes influence insect
adaption and diversity more broadly remains poorly understood.

To gain a better understanding of how microbes may shape insect evolution, we are initiating the
Native Hawaiian Insect Microbiome Initiative (NHIMI). The goal of NHIMI is to develop a framework
for understanding how insect–microbiome interactions shape biological diversity. To introduce this
effort, we describe—for the first time—the bacterial diversity of 13 endemic Hawaiian insect species
(eight genera and seven families). Although this is an initial survey, our sampling is designed to
address two principal questions: (i) What is the expected diversity of microbes associated with
representative insects that have widely different ecologies? (ii) Do adaptations to novel niches correlate
with transitions in insect microbiomes? Elucidating the role of the host-associated microbiomes in the
diversification of Hawaiian insects will help to modernize this long-held evolutionary model system
to continue informing evolutionary theory well into the future.

2. Materials and Methods

2.1. Sample Processing and Sequencing

Insect specimens were collected from across the Hawaiian Islands (see Table 1 for localities).
Species were identified by contributing authors with available taxonomic resources. In general,
species were sequenced in triplicate except for some that were obtained from other collaborators (e.g.,
Drosophila hindgut dissections for three species provided by J. Yew; see Table 1). All field-collected
specimens were stored in 100% EtOH at −20 ◦C immediately after collection. Sequenced samples
were subsequently washed three times in 100% EtOH, except for the Drosophila gut dissections.
To increase DNA yield from internal tissues, samples were manually macerated with a sterile
pestle and homogenized for 10 min with 0.7 mm garnet beads. DNA was then extracted using a
DNeasy PowerSoil Kit (Qiagen, Hilden, Germany). A final negative control following extraction and
sequencing protocols was included to ensure clean sample processing and to test for kit contamination.
Purified DNA was quantified with a Qubit 3.0 fluorometer (ThermoFisher, Waltham, MA, USA).
Library preparation and genomic sequencing were performed by SeqMatic (Fremont, CA, USA)
using a standardized protocol. PCR amplification targeting the meta-barcoding V4 region of bacterial
16SrRNA was achieved by the primer pair 515F (5′-GTGYCAGCMGCCGCGGTAA-3′) and 806R
(5′-GGACTACNVGGGTWTCTAAT-3′) [36]. The thermocycling profile included an initial hold for
3 min at 94 ◦C followed by 36 cycles of: denaturation of 45 s at 94 ◦C, annealing at 50 ◦C for 60 s, and
extension at 72 ◦C for 10 min. Libraries were sequenced with an Illumina MiSeq for paired-end reads
(2 × 150 base pairs).

Table 1. Taxon sampling for 16S bacterial metabarcoding.

Family Species Collection Location Feeding Behavior Replicates

Cerambycidae Plagithmysus bilineatus Hawaii Island, HI, Upper
Wailuku Herbivorous 3 2

Cicadellidae Nesophrosyne pipturi Oahu, HI, Manoa Cliff Tr. Sap-feeding 3
Cicadellidae Nesophrosyne “dodonea” 1 Oahu, HI, Diamond Head Sap-feeding 2
Lygaeidae Nysius terrestris Hawaii Island, HI, Mauna Kea Sap/seed-feeding 3
Lygaeidae Nysius wekiuicola Hawaii Island, HI, Mauna Kea Carnivorous 5 2

Delphacidae Dictyophorodelphax swezeyi Kauai, HI, Kokee State Park Sap/seed-feeding 1
Delphacidae Leialoha sp. 1 Oahu, HI, Kaala Road Sap/seed-feeding 3 2

Drosophilidae Drosophila chaetocephala Oahu, HI, Mt Kaala Detritivorous 3
Drosophilidae Drosophila ochracea Hawaii Island, HI Detritivorous 1 3

Drosophilidae Drosophila silvestris Hawaii Island, HI Detritivorous 1 3

Drosophilidae Drosophila tanythrix Hawaii Island, HI Detritivorous 1 3



Insects 2017, 8, 130 4 of 14

Table 1. Cont.

Family Species Collection Location Feeding Behavior Replicates

Cosmopterigidae Hyposmocoma “sp.
candywrap-case” 1 Oahu, HI, Palikea Lichenivorous 3 2

Colletidae Hylaeus kokeensis Kauai, HI Flower Feeding 1
Colletidae Hylaeus kauaiensis Kauai, HI Flower Feeding 1 2

1 Species have not yet been formally described; 2 taxa were eliminated from analysis due to low quality sequencing
output; 3 hindgut tissues.

2.2. Bacterial Community Analyses

The FastX-Toolkit was used to filter low quality sequences (settings: fastq_quality_trimmer,
-Q 33, -t 20, -l 130) [37]. At this step, two low quality samples were eliminated from the dataset.
Sequences were then merged using PEAR V0.9.6 (settings: default) and sequences with ambiguous
base-calls removed with prinseq-lite v0.20 (settings: default) [38]. Finally, chimera sequences were
removed with VSEARCH using UCHIME (settings: default) [39,40]. Operational Taxonomic Unit
(OTU) clustering was performed using UCLUST on MacQIIME V1.9.1 (pick_open_reference_otus.py)
and taxonomic assignment performed at 97% against the SILVA database [41,42]. These data were
used to determine alpha diversity, beta diversity indices, and clustering of species based community
similarity (core_diversity_analyses.py) [41]. Sample reads were rarefied to 14,500 reads, which excluded
three additional low-quality samples (see Tables 1 and 2). OTU saturation was evaluated with
rarefaction curves using chao1 richness estimate. Shannon Diversity and Pielou’s Evenness Indices
were calculated for each sample with the vegan package in R V3.3.3 [43,44]. A two-sample t-test
with non-parametric Monte Carlo permutations (n = 999) and Bonferroni correction was used to test
for statistically significant differences in alpha diversity between species with biological replicates
(QIIME script: compare_alpha_diversity.py). Samples represented by a single individual or only two
replicates were removed. A two-dimensional principal coordinate analysis (PCoA; make_2D_plots.py)
was conducted from unweighted unifrac distances obtained from core diversity analyses. Insect hosts
clustered into three groups that include (1) an intracellular symbiont dominated microbiota group
(e.g., obligate bacterial and facultative symbionts found in sap-feeding leafhoppers and seed bugs),
(2) Drosophila + Wekiu bug (Drosophila spp. and Nysius wekiuicola), and an environmentally diverse
microbiota group (e.g., Plagithmysus bilineatus, Hyposmocoma sp., Leialoha sp., etc.,) (see Figures 1 and 2).
In order to determine if these clusters are significantly dissimilar, an analysis of similarity (ANOSIM)
was performed in QIIME with 999 permutations (compare_categories.py). Finally, to further illustrate
the most abundant bacterial taxa and community relationships across host species a heatmap and
dendrogram was generated with Bray–Curtis dissimilarity index and bacterial OTUs representing <5
reads removed in R V3.3.3 [43–45].

Table 2. Bacterial 16S barcoding sequencing depth and quality.

Family Seq ID Species Raw Reads Merged
Fragments

Shannon
Diversity Index

Pielou’s
Evenness Index

Cerambycidae
IM_001 Plagithmysus bilineatus 62,589 4067 N/A N/A
IM_002 Plagithmysus bilineatus 210,792 32,601 2.78 0.519
IM_003 Plagithmysus bilineatus 279,336 48,751 2.92 0.528

Cicadellidae

IM_006 Nesophrosyne pipturi 281,608 28,096 1.19 0.498
IM_007 Nesophrosyne pipturi 285,705 54,199 1.03 0.402
IM_008 Nesophrosyne pipturi 408,688 37,665 1.08 0.437
IM_064 Nesophrosyne “dodonea” 1 140,222 20,007 3.54 0.713
IM_065 Nesophrosyne “dodonea” 1 275,866 40,540 2.32 0.462

Colletidae
IM_054 Hylaeus kokeensis 135,535 23,067 2.23 0.453
IM_057 Hylaeus kauaiensis 80,603 10,664 N/A N/A

Cosmopterigidae
IM_047 Hyposmocoma sp. 1

(candywrap-case) 68,231 7180 N/A N/A

IM_048 Hyposmocoma sp. 1

(candywrap-case) 332,269 52,954 2.40 0.448

IM_049 Hyposmocoma sp. 1

(candywrap-case) 141,714 20,496 2.58 0.509
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Table 2. Cont.

Family Seq ID Species Raw Reads Merged
Fragments

Shannon
Diversity Index

Pielou’s
Evenness Index

Delphacidae

IM_029 Dictyophorodelphax swezeyi 157,229 30,539 2.64 0.523
IM_041 Leialoha sp. 1 180,872 28,045 2.39 0.465
IM_042 Leialoha sp. 1 92,971 6127 N/A N/A
IM_043 Leialoha sp. 1 214,609 32,972 2.28 0.442

Drosophilidae

IM_044 Drosophila chaetocephala 205,429 30,495 2.66 0.652
IM_045 Drosophila chaetocephala 222,912 37,809 1.45 0.378
IM_046 Drosophila chaetocephala 208,202 29,385 2.33 0.620
IM_050 Drosophila ochracea 193,518 32,766 1.57 0.524
IM_051 Drosophila silvestris 251,611 58,065 1.18 0.416
IM_052 Drosophila tanythrix 317,357 58,839 0.87 0.315

Lygaeidae

IM_015 Nysius terrestris 362,988 44,577 0.56 0.226
IM_016 Nysius terrestris 421,244 33,881 0.45 0.230
IM_017 Nysius terrestris 370,619 34,477 0.45 0.230
IM_025 Nysius wekiuicola 365,402 36,829 0.92 0.331
IM_059 Nysius wekiuicola 108,745 14,561 2.23 0.597
IM_060 Nysius wekiuicola 121,857 19,236 2.26 0.604
IM_062 Nysius wekiuicola 127,518 15,219 2.11 0.580
IM_063 Nysius wekiuicola 108,665 10,776 N/A N/A

Control C-O N/A 1297 263 N/A N/A
1 Species have not been formally described.

2.3. Data Availability

Bacterial 16S reads for each sample were submitted to GenBank Single Read Archive (SRA)
database under accession numbers SAMN07806952-SAMN07806982.

3. Results and Discussion

The bacterial microbiomes of select endemic Hawaiian insect species were surveyed to provide
baseline understanding of their community diversity and potential influence on host ecology and
evolution. Insect species were selected to explicitly investigate (a) the microbial diversity associated
with iconic Hawaiian host insects, and (b) the microbiome communities of hosts that have experienced
novel niche transitions. Following read quality filtering and a stringent rarefaction threshold, we
analyzed a total of 26 individuals in 13 endemic Hawaiian species (five orders and seven families; see
Table 1). Broadly, our results reveal that Hawaiian insects harbor a wide diversity of bacterial lineages,
comprising over 10 bacterial phyla (see Table S1). Several species have bacterial communities that
appear to be distinct from those found in other host species sampled in our study (see Figures 1 and 2;
e.g., Drosophila spp., Nysius spp., and Nesophrosyne spp.). In the case of Drosophila, host insects appear
to share members of their bacterial communities across replicates, distinct species, and geographic
locations (Figures 1–3). In other taxa, communities also appear to be related to insect habitat and diet
(Figures 1–3). For example, the plant-sap feeding insects, Nysius terrestris (which feed on seeds in
addition to sap) and Nesophrosyne pipturi, both maintain obligate symbionts that provide essential
nutrition absent in their plant-based diets (discussed further below) [46,47]. In addition, sap-feeders
such as Ny. terrestris and Ne. pipturi had lower overall bacterial diversity than other insects with
different feeding behaviors such as Ny. wekiuicola and Drosophila (see Shannon Indices in Table 2).
However, we note that alpha diversity indices are not significantly different (p > 0.05) between samples
at the species-level. This result is expected since our sampling was not exhaustive, lacking sampling
breadth and suitable replication for each taxon or species. Nevertheless, statistical analysis of clustering
across all samples is highly significant (ANOSIM: R = 0.94, p = 0.001; see Figures 1 and 2), indicating
that native Hawaiian insects may have emergent microbiome properties. Species appear to cluster
into categories corresponding to host-level relationships with obligate and facultative intracellular
symbionts, host transitions to novel trophic levels (e.g., carrion feeding from plant feeding in Ny.
wekiuicola), insect host identity (Drosophila spp.), and insects with potentially diverse environmentally
assembled microbiomes (e.g., Hyposmocoma spp. and Plagithmysus spp.; see discussion below).
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Leialoha sp. and Dictyophorodelphax swezeyi; see [33]). Our analysis further reveals that these insect 
groups have complex, possibly incidental species assembled from environmental interactions 
associated with feeding. However, it is notable that some insects, such as the herbivorous 
cerambycid beetles, can have relatively cellulose-rich diets. Intriguingly, they were found to 
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of the microbiomes within these insect groups are currently unknown. 

Figure 1. (a) PCoA of bacterial communities by insect sample based on unweighted unifrac distances.
Samples that are stacked or tightly clustered are omitted from the inset legend. Clusters used in the
ANOSIM analyses are labeled with brackets (Env. = Environmental, Symb. = intracellular symbiont
associated, Dros. + Wek. = Drosophila spp. Nysius wekiuicola). (b) Rarefaction curves with Chao1
diversity indices, indicating insect microbiome sampling depth and saturation in this study. Legend
illustrates host insect species identity.

Many insect groups are known to have diverse bacterial microbiomes that reside in the gut,
but that also contain members occurring in other tissues (e.g., specialized bacteriome organs and
gonads) [48–50]. These microbes can provide a range of services that affect host development, fecundity,
pathogen susceptibility, and the breakdown of environmental compounds [51–55]. Our results reveal
that some Hawaiian insect species have diverse microbiomes that are not differentiated across species
spanning higher taxonomic rankings (e.g., environmental cluster, see Figures 1 and 2) that include
Delphacidae planthoppers, Cosmopterigidae: Hyposmocoma moths, among others). Generally, these
species have broad ecological niches and feeding habits such as wood-boring and herbivory (e.g.,
Cerambycidae: Plagithmysus bilineatus) or lichenivorous (e.g., Hyposmocoma “sp. candywrap-case”)
(Table 1). The delphacid planthoppers are known to harbor obligate fungal symbionts that aid in
plant-sap feeding that would not be detected in our bacterial barcoding approach, possibly leading
to increased sampling of lower abundance bacteria (e.g., Leialoha sp. and Dictyophorodelphax swezeyi;
see [33]). Our analysis further reveals that these insect groups have complex, possibly incidental
species assembled from environmental interactions associated with feeding. However, it is notable
that some insects, such as the herbivorous cerambycid beetles, can have relatively cellulose-rich diets.
Intriguingly, they were found to maintain bacteria in the Ruminococcaceae family (Firmicutes) in
relatively high abundance, which are capable of degrading cellulose-based substrates (Figure 2) [53].
Otherwise, the functional roles of the microbiomes within these insect groups are currently unknown.
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Figure 2. Heatmap showing bacterial taxa distributed across sequenced insect specimens. Bacterial
OTUs that comprise less than 5% of total reads are excluded. Cell values are calculated proportionately
across rows and dendrograms estimated with Bray–Curtis dissimilarity index. Clusters shown on the
right side in shaded boxes (e.g., Environmental, Symbiont, etc.,) correspond to those also shown
Figure 1a (ANOSIM: R = 0.94, p = 0.001). Some bacterial taxonomic names (e.g., Betaproteo. =
Betaproteobacteria) have been abbreviated.

Among insects, the potential roles of the gut microbiome are perhaps best studied in Drosophila,
which are an important model system for microbiome and genetic studies [56–58]. Drosophila arrived
on Hawaii ~25 million years ago and subsequently diversified to feed and oviposit on specific plant
parts in over 40 Hawaiian endemic plant families [12,59–61]. Species in this group are detritivorous,
feeding on decaying plant material in a microbe-rich environment. Although our sampling here
is limited to four species (of almost 1000 species), our preliminary survey found evidence that the
Hawaiian Drosophila microbiome maintains a conserved set of bacterial taxa. The identities of the
most abundant bacterial species across Drosophila samples are similar regardless of whether guts
or whole-bodies were sampled (Figures 1–3, Table 2). Community conservation is observed among
replicates for Drosophila chaetocephala, and across multiple species that have different host-plants and
are restricted to different islands (Table 1). The consistent, relatively high abundance members of this
microbiome include the Orbaceae family and the genus Dysgonomonas (Bacteroidetes) (Figures 2 and 3).
These bacterial taxa have been identified as core members of the gut microbiomes in non-Hawaiian
Drosophila species across the globe and also in other insects, including termites and honeybees [62–66].
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Although the importance of these microbes in Hawaiian Drosophila remain unknown, given their widely
conserved nature it is plausible that they play important roles in shaping host ecological adaptations.
It would be illustrative for future studies to investigate microbiome community structure across
Hawaiian Drosophila phylogenetic diversity, geographic ranges, and ecological associations. Sampling
should further include food substrates to distinguish their gut microbiota from the environment.
Finally, the Hawaiian Drosophila feed and oviposit on rotting and decaying plant material that are rich
in fungi and yeasts. Surveys of Hawaiian Drosophila microbiome communities should include these
microbial groups as they likely have important implications for host ecology and evolution [30].
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and only the most abundant bacterial taxa are included in the legend. Some taxonomic names (e.g.,
Betaproteo. = Betaproteobacteria) have been abbreviated.

As expected, the sampled plant-sap feeding insect taxa harbor predictable and conserved
microbiome communities. In general, these communities comprise known obligate symbionts that
provide essential functions and that are required for host reproduction. For example, Ne. pipturi
and Ny. terrestris maintain microbiome communities that include previously identified obligate
bacterial symbionts (Figures 2 and 3) [46,47]. These species also have reduced complexity in their
microbiome communities, perhaps due to either (i) their relatively sterile feeding habit that reduces
their contact with environmental microbes, or (ii) overrepresentation of intracellular obligate and
facultative symbionts (see Figures 1 and 2 and see also discussion below). In the case of Ne. pipturi,
a high abundance of reads grouped with the obligate symbiont species, “Candidatus Sulcia muelleri”
(Bacteroidetes) and “Ca. Nasuia deltocephalinicola” (Betaproteobacteria) (20–30% of relative bacterial
diversity, respectively), which are derived from ancient symbioses in the Auchenorrhyncha [66].
Genomic work has shown that these obligate symbionts are required for the synthesis of essential
amino acids that are in low abundance in their hosts’ plant-sap diets [46,67–69]. Thus, it is expected that
these symbionts would be found broadly across other related endemic Hawaiian Auchenorrhyncha,
including some planthopper families (e.g., Fulgoroidea: Cixiidae) that also rely on nutrient limited
diets [70].
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The existence of obligate bacterial symbionts among the microbiomes of some insect groups
provides a predictable null expectation for host–symbiont interactions under normal conditions.
This natural experimental framework provides a testable hypothesis regarding how microbiome
communities influence—or are influenced by—host transitions to novel niches, particularly if
community membership is altered. In our study, we found such evidence that an obligate symbiont
replacement may be occurring in at least one Nesophrosyne species. While the microbiome of Ne. pipturi
was consistently observed to contain high relative abundances of the obligate symbionts (“Ca. Sulcia”
and “Ca. Nasuia”), the undescribed Nesophrosyne “dodonea” species appears to occasionally lack “Ca.
Nasuia” (Figure 2). Our recent total meta-genomic sequencing of this host also supports this finding
(Bennett unpub. data). “Ca. Nasuia” is known to have been replaced with some frequency throughout
the Cicadomorpha (e.g., sharpshooter leafhoppers, cicadas, spittlebugs) [71,72]. Although the cause
for a potential disruption of this symbiosis is unclear, it is notable that Ne. “dodonea” tends to live
in an arid and hot habitat with many non-native organisms, which is unusual for members of this
genus [24].

One clear example of a microbiome shift is found in the wekiu bug (Heteroptera: Nysius wekiuicola).
Nysius wekiuicola transitioned from plant feeding at low elevations to scavenging carrion on the
sub-alpine summit of Mauna Kea (~4000 m)—an adaptation not known to occur in any other species in
the genus [26,27]. Members of the Nysius genus harbor an obligate symbiont, “Ca. Schneideria nysicola”
(Gammaproteobacteria). Although no genome for this symbiont is currently available to understand
its metabolic contributions, it is thought to nutritionally supplement its hosts’ plant-based diet [47].
As expected, “Ca. Schneideria” was found in relatively high abundance in the endemic plant-feeding
species, Ny. terrestris (average of ~12.6% of bacterial diversity in infected individuals; Figures 2
and 3). It is likely conserved broadly across the endemic Hawaiian species in the genus. In contrast,
Ny. wekiuicola appears to no longer harbor “Ca. Schneideria” in correlation with its extreme ecological
and dietary adaptations. Shifting to carrion feeding likely provides a more complete nutritional
profile (e.g., balanced essential amino acids and other nutrients), belying the requirement to maintain
populations of symbiotic bacteria [73,74]. Our results further show that Ny. wekiuicola has a diverse
and distinct microbiome than Ny. terrestris (Figures 1 and 3; see also Shannon Indices in Table 2).
Although the functional role of these microbes remains uncertain, it is possible that Ny. wekiuicola’s
enriched bacterial community is at least partially derived from its diet of decomposing insects exposed
to environmental microbes.

Finally, since we generally sampled whole insect bodies (i.e., all organs), we were able to detect
other facultative and parasitic bacteria that do not necessarily reside in the gut. For example, several
Hawaiian insect species are highly infected with Wolbachia, which includes several sap-feeding insects
sampled in this study (Nesophrosyne spp. and Nysius spp.; average of 33% of relative bacterial
diversity when infected). However, Wolbachia infection was not found across all species’ replicates,
which is expected since parasitic and facultative symbionts often do not infect every individual in a
population [2,75]. Wolbachia is one of the most widespread insect symbionts; it infects up to 60% of all
arthropod species, including endemic Hawaiian insect lineages (e.g., Nesophrosyne and Drosophila) and
is known to have parasitic or mutualistic interactions with its hosts [75–79]. Whole-body surveys of
insect microbiomes provide an opportunity to screen for non-gut associated pathogenic and facultative
microbes. However, we caution that facultative symbionts at high titers may dominate microbiome
communities and cause other low abundance bacterial taxa in the gut to be under-sampled (e.g., see
Ny. wekiuicola in Figures 1 and 3). Adequate sequencing depth is required to thoroughly investigate the
complete microbiome profile of individual insects. We further caution that insect specimens infected
with Wolbachia may cluster with others that are also infected, but that have a distinct and under sampled
microbiome as in the case of one Ny. wekiuicola replicate (see Figures 1–3). Thus, it is critically important
to obtain suitable biological replication to thoroughly understand host-associated microbiomes.
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4. Conclusions

The aim of the Native Hawaiian Insect Microbiome Initiative (NHIMI) is to develop a framework
to understand the synergies between host-associated microbiomes and insect species diversity.
The Hawaiian Islands provide a natural platform for more precise investigation of the role host–microbe
interactions play in shaping insect ecology and evolution. Linking these aspects allow for the
opportunity to better understand the mechanisms that underlie adaptive diversification in animals
more broadly. Even though our preliminary study includes a limited number of endemic species, our
results do provide a set of baseline predictions for several of the largest and most iconic insect radiations
on Hawaii. We emphasize that broad scale microbiome community analyses without attention to
the identity of particular bacterial species may miss important biological aspects of host–microbe
associations in Hawaiian insects. For example, although the obligate symbiont in Ny. terrestris,
“Ca. Schneideria”, is fundamental to host fitness, it only represents ~12.6% of the total microbiome
community abundance, far less than Wolbachia when present. The related Ny. wekiuicola appears to
have lost “Ca. Schneideria” completely in association with its adaptation to a novel—and dramatically
different—ecological niche. Similarly, the Hawaiian Drosophila maintain a fairly diverse microbiome,
but they contain several species in lower abundance that are uniquely shared between Hawaiian
Drosophila, and also with Drosophila species worldwide. Thus, establishing a baseline understanding for
the emergent properties of host-associated microbiomes in Hawaiian insects is critical to elucidating
conserved symbiotic interactions. These types of symbioses are likely to have important implications
for host ecology and evolution.

The insights produced by this study (derived from a graduate student class) could be easily
expanded by a concerted effort from the Hawaiian entomological research community. Our immediate
goals are to (a) increase host taxonomic sampling to encompass all major insect lineages and species
diversity, and (b) survey the other microbial groups that include the archaea, fungi, and even
viruses [80,81]. It is our long-term goal to encourage other entomological researchers to collaboratively
consider the importance of microbes in shaping the biology of their study organisms. We view that
incorporating a microbiome perspective is essential to not only fully understanding insect evolution,
but also to maintaining Hawaii as a cutting-edge model system for guiding evolutionary theory
more broadly.

Supplementary Materials: The following are available online at www.mdpi.com/2075-4450/8/4/130/s1,
Table S1: Complete Bacterial Operational Taxonomic Unit (OTU) table with full taxonomic names.
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