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Abstract of the Dissertation 

An Experimental Study of Concept Formation 

by 

John Hewson Gennari 

Doctor of Philosophy in Information and Computer Science 

University of California, Irvine, 1990 

Pat Langley, Chair 

This thesis presents a careful experimental examination of the task of con­
cept formation. This learning task involves acquiring concepts or classes that 
group observed instances. These classes can then be used for the recognition or 
classification of unseen instances and for predicting values of unknown attributes. 
To carry out this task, I present CLASSIT, a robust, general-purpose system f'or 
incremental, unsupervised concept learning. In order to test the system, the thesis 
reports on a variety of experimental results. There are two broad categories for 
the experiments in this thesis: experiments that test the ability of the system 
with different input data, and experiments that hold the input data constant and 
test various components of the system by changing the system itself. The latter 
include parametric studies and comparative studies with cluster analysis methods. 
The largest modification I suggest for the basic concept formation algorithm is 
the addition of an attention mechanism. This lets the system focus attention on 
only the most important features (or attributes) of an instance. With attention, 
instances can be more quickly recognized, since the less important attributes are 
simply ignored and treated as missing. Finally, although the accomplishments of 
the CLASSIT system are modest, I conclude by discussing the potential for using 
the system as part of a larger cognitive architecture. 





CHAPTER 1 

An Approach to Concept Formation 

Suppose an explorer has just landed in an alien jungle on an unknown planet. To survive, he 
must organize the objects and information he perceives into useful concepts or categories. This 
process, concept formation, is one of the most basic of human learning capabilities. People can 
learn concepts without external supervision and in the face of a bewildering number of inputs. 

This human ability can be abstracted into a very simple clustering task: given a set of instance 
descriptions, find a set of classes that group those instances. A wide variety of researchers have 
approached this general task, each with their particular biases and research goals. Before defining 
more carefully the task for concept formation, I begin this thesis by explicitly presenting my research 
goals and biases, contrasting these with other approaches to the general clustering problem. 

1. Research goals 

There are a. number of reasons for pursuing research in artificial intelligence, ranging from improving 
engineering abilities to discovering elegant mathematical theories to finding psychological models 
of the human mind. Because these reasons are so varied, it is important that researchers make 
clear the goals and biases of their work. Only then can the research be understood and evaluated 
in a consistent manner. This research is most closely tied to the field of machine learning; it shares 
the goals and the assumptions of this paradigm. However, it has also been strongly influenced by 
other fields, borrowing goals from engineering, cognitive psychology, and cluster analysis. 

Machine learning is a subfield of artificial intelligence that focuses on learning systems and 
algorithms. For this field, learning is the most important aspect of intelligence: the ability of 
a system to improve is that which distinguishes an adaptive system from a simple database of 
knowledge. Hence, in order to understand intelligence, we must understand and be able to model 
the learning process. 

In order to model learning, one needs at least a working definition of this term. As with 'intel­
ligence', a precise definition of 'learning' is somewhat controversial (e.g., see Carbonell, 1989, or 
Dietterich, 1990). For this work, I define learning as the ability of a system to acquire knowledge 
and improve its performance over time. More specifically, I define a learning task that specifies 
the inputs to the learner and the knowledge that is to be acquired, and a performance task that 
describes the ability that is improved over time as a result of learning. This is both a reasonably 
general definition, and one that allows for a clear definition of success. 

As with most work in artificial intelligence, I use a computer system to implement and test my 
ideas. Hence, I describe an implemented system, CLASSIT, that instantiates my approach to concept 
formation. As with research in engineering, it is important that the system be rigorously tested with 
a variety of domains; the system should be robust, rather than special purpose. Therefore, after 

I. 

defining the learning and performance tasks, I include a wide variety of experiments with CLASS IT. 

1 



2 J. H. GENNARI 

These experiments demonstrate both that learning occurs with a variety of input domains, and 
that the lea.ming system compares favorably against other methods and variations. 

Although CLASSIT is not a. model of human learning, its development has been constrained and 
inspired by research in cognitive psychology. In this paradigm, a computer system is an analogy for 
an extremely robust learning system: the human learner. Thus, CLASSIT could be used to evaluate 
and explore models of human intelligence. Although I do not currently have any results to support 
this analogy, I am interested in investigating human learning. I hope that CLASS IT is psychologically 
plausible, and that it may easily be modified to be part of a more general architecture for human 
intelligence. 

Finally, I have been strongly influenced by research in cluster analysis. This older field has 
studied the clustering problem from a more specific, application-oriented perspective. However, 
although machine learning approaches to concept formation derive from work in cluster analysis 
(Michalski & Stepp, 1983a), rarely have the two fields been directly compared. This thesis includes 
a description of the relationship between cluster analysis and machine learning, along with a direct 
comparison of my system and cluster analysis algorithms. 

2. Problem definition 

The specific instantiation of the concept formation task as addressed in this thesis is: 
• Given: a sequential presentation of instances described by attribute-value pairs, 
• Find: a hierarchy of concepts that groups these instances. 

In order to make this task more concrete, consider a robot exploring an unknown environment. 
Assuming that the robot includes a perceptual system that reduces objects to attribute-value pair 
descriptions, then the robot could use a concept formation system to acquire knowledge about the 
environment and to organize that knowledge in a hierarchy. As the robot builds a concept hierarchy, 
it can use this learned information to recognize or classify objects that are similar to previously 
observed instances. This example demonstrates the learning and performance tasks of the system: 
it learns a concept hierarchy from the environment, and it recognizes a new instance as a member 
of some concept in that hierarchy. 

There are a number of aspects of this task that differ from other approaches to clustering. First, 
the agent learns a. hierarchy of concepts, rather than a simple set or list of classes. This data 
structure is similar to an is-a hierarchy and is inspired by the more general semantic network of 
Quillian (1967). The concept hierarchy organizes knowledge from very general concepts (near the 
root of the tree) to very specific concepts (near the leaves of the tree). One important difference 
between this structure and decision trees (Quinlan, 1986) is that every node in the hierarchy is a 
concept, rather then a simple decision point. 

Second, learning occurs incrementally, meaning that one must learn from each instance without 
re-processing all previous instances. In contrast to cluster analysis and other methods that process 
a finite set of instances as a batch, one must accept input as a sequence of instance descriptions. 
This emphasis on incremental learning leads to the integration of learning with performance. Each 
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instance can be 11Sed both for lea.ming, as the hierarchy is modified or the concept definitions 
updated, and for performance, as the system recognizes the instance as a. member of some concept. 

Third, concept formation occurs in an unsupervised manner: instances are clustered into classes 
without advice from a teacher. In contrast, a. supervised learner includes as input a specified class 
name for each observed instance. Unsupervised learning has an additional level of complexity to 
its task description: not only must a concept formation system decide which instances belong to 
which class, but also the number and structure of the classes. This is the most important feature 
separating this work from research on learning concepts from examples (Winston, 1975; Quinlan, 
1986). 

Finally, this definition of incremental concept formation leads naturally to a learning algorithm 
that carries out incremental hill climbing (Langley, Gennari & Iba, 1987). Hill climbing is a standard 
AI search method in which one tries to apply all possible operators, compares the resulting states 
using an evaluation function, selects the best state, and iterates until no more progress can be 
made. As we will see in Chapter 3, this description fits the CLASSIT algorithm quite closely. 

For this research, concept formation implies that the learning agent is searching through a space 
of possible concept hierarchies. Since the agent uses a hill-climbing search strategy, only a single 
knowledge structure may be retained in memory at a time. With each new instance, the system 
modifies the hierarchy, and hence chooses a single direction to move through the space. The 
principal disadvantage of this search strategy is that a hill-climbing learner can get stuck at local 

optima. Unlike a depth-first search, it cannot explicitly backtrack through states, nor does it retain 
alternative structures such as beam or breadth-first search. However, hill-climbing approaches are 
simpler and have less memory requirements than other strategies. 

3. Outline of the thesis 

Before describing CLASSIT and its approach to concept formation in more detail, I first present a 

survey of other clustering methods in Chapter 2. There, I use a general definition of clustering, 
and consider a variety of alternative approaches to this problem. Because of a close relationship 
to my research, I focus on work in cluster analysis. The principal goal of Chapter 2 is to outline 
a variety of methods and organize them in a single framework. In this organization, a clustering 

method includes an evaluation function and an algorithm. 

Chapter 3 contains a detailed description of the CLASSIT system. In addition to carefully present­
ing the underlying algorithm and its evaluation function, this chapter includes a detailed example 

to demonstrate the system. The CLASSIT system is carefully evaluated in Chapters 4 and 5. These 
chapters define performance measures and experimental methodology and then describe results as 
the system is tested over a set of both real and artificial domains. Chapter 4 focuses on the abili­

ties of CLASSIT over different domains, while Chapter 5 presents comparative studies in which the 

learning system is modified. 

Chapter 6 introduces a significant addition to CLASSIT: an attention mechanism. This mecha­
nism is inspired by the human ability to focus attention on only a fraction of the perceptual input. 
For concept formation, attention can be used to make classification decisions without inspecting 
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every attribute value in the instance description. This implies that the system must be a.ble to 
find the more important features in the input, a.nd to ignore other attributes. This ability is re­
lated to clustering in the face of missing informa.tion in the domain. Information can be missing 
either because the domain is incomplete in nature, or because the attention mechanism chooses to 
ignore some attributes. Chapter 6 includes an experimental evaluation of CLASSIT with missing 
information in both these cases. 

Finally, Chapter 7 discusses some of the long-range goals for this concept formation system. 
Here, I introduce ICARUS, a. cognitive architecture for learning (Langley, Thompson, Iba., Genna.ri, 
& Allen, in press). This framework includes a number of ideas for extending CLASSIT, especially 
as might be used by an autonomous robot in a reactive environment. Although the majority of 
these ideas are left as future work, some of the extensions inspired by ICARUS a.re implemented and 
undergoing testing. 

4. Contributions of the thesis 

The primary contribution of this thesis rests with the experimental evidence in Chapters 4, 5 and 
6. I believe these chapters present a unified, robust approach to concept formation. The CLASSIT 
system includes a number of novel abilities: it works with a wide range of domains, and is able to 
learn despite noise or missing information in the input. To support this claim, I demonstrate the 
system's ability over a variety of real and artificial domains. Additionally, the attention mechanism 
described in Chapter 6 has the potential to streamline concept formation to focus on only a few 
important features in the input. 

As a secondary accomplishment, I hope that this thesis brings together work from several very 

different paradigms. I have tried to extract the most useful abilities of cluster analysis, and apply 
them to problems faced by cognitive psychology, while using the tools of machine learning. The 
attention mechanism is one example of this theme, and I hope that work with the ICARUS framework 
will lead to others. This thesis emphasizes the importance of understanding and comparing research 
across different paradigms. 

Finally, I hope that my experimental methodology does a comprehensive job of clarifying and 
evaluating my hypotheses. I believe that this type of experimental methodology was lacking in 
most early machine learning research. Without careful experimentation, it is far too easy for the 
researcher to make unwarranted claims, and to extrapolate to optimistic solutions. This thesis 
endeavors to make very precise claims supported by clear experimental evidence. To the extent 
that it succeeds, I hope this work stands as encouragement to other researchers in machine learning. 



CHAPTER 2 

Concept Formation and Cluster Analysis 

In this chapter, I consider a very general form of the concept learning task: given a set of instances, 
group those instances into a set of classes. A fundamental difficulty for this task is that it requires 
some means of evaluating a set of potential classes. In particular, one needs an evaluation function 
that measures the quality of a set of classes with respect to the data. Creating an evaluation 
function is closely related to defining some measure of similarity among instances. In turn, the 
attributes (and attribute types) that describe instances affect the similarity measure. In addition, 
there are a number of different algorithms that create classes from instances. Although some 
algorithms require particular evaluation functions, often the researcher can try a set of different 
functions with a single algorithm, and vice versa. 

In this chapter, I organize a large number of clustering techniques under one framework as a space 
of possible methods. This framework allows for a principled comparison of existing methods, and 
suggests places in the space for new, untried clustering methods. My hope is that this organization 
offers more insight than simply listing different methods from different fields, or trying to define a 
'best' or 'optimal' technique. Although the framework I develop in this survey does not cover every 
clustering method, it does describe a wide variety of possible methods, and I believe it raises some 
interesting ideas about clustering. 

To some degree, researchers in artificial intelligence have been unaware of related work outside 
of their own field. There is a large body of research in statistics and biology, usually known as 
cluster analysis, that is applicable to work in machine learning, if one allows for the different biases 
of these disciplines. Although a few AI researchers have acknowledged this area of work (Michalski 
& Stepp, 1983a; Stepp, 1987; Fisher & Langley, 1986), there has been no comprehensive survey of 
cluster analysis from an AI perspective, especially as it might be applied to concept formation. One 
goal of this chapter is to emphasize the similarity between these fields and to show how researchers 
in machine learning can benefit from a knowledge of cluster analysis. 

I begin by presenting overviews of the clustering problem as seen from several different perspec­
tives, including the machine learning view. In the second section, I describe the difficulty and 
importance of choosing a similarity measure or an evaluation function; this section also includes 
some of the most com~on and useful measures. I follow this with a description of algorithms that 
use these measures, and I conclude with some discussion of the difficulty of validating or evaluating 
a clustering technique. 

1. Paradigms and biases 

Rather than using a precise definition of the clustering ta.Sk, I instead describe the problem from 
four different paradigms: machine learning, biology, statistics, and decision theory. This will make 
explicit the goals and biases of researchers from different !fields. 

5 



6 J. H. GENNARI 

My own biases for clustering come from the machine learning paradigm and the terminology 
used in this survey is from that body of literature. Both to give an idea of the diversity of the 
terminology, and for readers from other paradigms, the following is a brief 'translation' list of terms 
(the terms used in this thesis a.re presented la.st and italicized): 

• an object, organizational taxonomic unit (OTU), event, or case is an instance, 

• the characters, features, or variables that describe an instance a.re attributes, 

• the distance metrics, association measures, or similarity coefficients that compare instances are 
similarity measures, and 

• the closely related optimization criterion is an evaluation function. 

Because researchers have approached the clustering problem from such different directions, not 
only is the problem described with different terminology, but the task itself varies slightly. This is 
hardly surprising - biology has very different goals than machine learning. 

1.1 Clustering in machine learning 

From the perspective of machine learning, clustering is viewed as a problem of concept formation. 
As with most of artificial intelligence, this field is biased by a computational analogy to human 
processes. Therefore, the process of clustering and the concepts produced by that process have 
implications for (human) learning, and for (human) knowledge organization and representation. 
These biases are from the closely related field of cognitive psychology, where the explicit goal is to 
study human cognitive processes. Concept formation has been studied by cognitive psychologists 
such as Smith and Medin (1981), Mervis and Rosch (1981), Barsalou (1987), Corter, Gluck and 
Bower (1988), and Anderson (1988). Although machine learning does not always make explicit this 
bias, there is usually at lea.st a weak analogy between the learning system and the human learner. 

As an example of an application for concept formation, consider an exploring robot that perceives 
a sequence of different balls. Even if the robot is equipped with a perceptual system that reduces 
each instance to a set of attribute-value pairs, it still must create and organize a useful set of concepts 
about these balls. For example, after observing a few baseballs, it should create a concept for these 
and be able to recognize a new baseball as a member of that class, and not as an instance of some 
other class (volleyballs, tennis balls, etc.). Using this example, I can describe the distinguishing 
features of clustering in machine learning. Since the work in this thesis is from the machine learning 
paradigm, this list of feat:ures reinforces the discussion in Chapter 1 of my own biases and goals. 

One distinguishing feature of concept formation is that the classes learned should be intensional, 
rather than extensional. For example, the baseball class should include a "conceptual description" 
of the baseballs seen, rather than simply a list of all member instances (Michalski & Stepp, 1983b). 
This emphasis on intensional concept definitions means that evaluation functions that compare 
classes are more appropriate for concept formation than similarity measures that compare instances. 

A second aspect of concept formation is that the classes lear.ned are usually arranged in a concept 
hierarchy. That is, the learned concepts are organized into a hierarchy with more general, inclusive 
concepts toward the top, and more specific, exclusive concept1fl toward the bottom. This reflects the 
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hierarchical na.ture of knowledge in typical machine learning domains. For example, soccer balls 
and volleyballs a.re more similar to each other than to baseballs or to lacrosse balls. A na.tura.l 
hierarc~y for these four types of balls would be to put soccer balls a.nd volleyballs together into a. 
more genera.I "soft, large" class, a.nd lacrosse balls and baseballs into a. "hard, small" class. 

A third characterizing feature of concept formation is that learning occurs incrementally. As 
the robot observes each successive ball, it should add to its knowledge immediately; the concepts 
learned are updated by each new experience without reprocessing previous instances. In contra.st, 
a nonincremental system must receive the entire set of instances before producing a set of classes. 
Such a system is incompatible with the goals of concept formation because one may not know the 
complete 'set' of instances, and one may need to use the learned concepts at any point in time. 
For example, the robot should be able to use its knowledge at any point during learning, and it 
should continue learning, no matter how many balls it encounters. These problems are perhaps 
more obvious for human learners, who observe a never-ending sequence of instances. 

Finally, one should be able to measure the improvement of a learning system on some performa.nce 

task. This is a task used to test (and quantify) the ability of the system before and after learning. 
With this type of numeric measure, the success of a concept formation system can be evaluated 
over a number of different domains, or a set of different systems can be compared on given data 
set. 

As I have described the problem, clustering is unsupervised. There is also a large amount 
of work in machine learning on supervised concept formation, usually known as "learning from 
examples". Although this is a related task, the differences between these two problems are very 
important. Supervised concept formation learns to determine which of a known set of classes an 
instance belongs to, whereas unsupervised learning imposes a structure of concepts (ones that are 
not known a, priori) on the set of instances. 

1.2 Clustering in biology 

Historically, the first computational approaches to clustering arose in the field of biology. In partic­
ular, 'numerical taxonomy' grew out of the following problem: given a set of species or organisms, 
find a taxonomic hierarchy that organizes them into species, genera, phyla, and classes. The prin­
cipal purpose of this hierarchy is to suggest evolutionary relationships among individuals. 

As an example, suppose a biologist discovers a new set of worms. After describing each worm 
by some set of attributes (or "characters"), the biologist inputs this set of instances to a clustering 
system. The resulting hierarchy should define classes of similar worms, as well as showing how 
these classes are related to each other. This information can lead to predictions about how related 
worms may behave, and also to theories about how worm attributes have evolved over time. 

The emphasis in this discipline is to find a practical method, instead of worrying about the 
theoretical implications of a particular technique. For instance, biologists are not very concerned 
with evaluating the performance of a given technique. Instead, their measure of success is subjec­
tive: if a method produces a useful taxonomy (one that leads to new insights, or has interesting 
evolutionary implications), then it is a good one. This bi~ has led other researchers to state that 
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"the [biologist's] view of clustering is considered a radically empirical approach" (Aldenderfer & 
Bla.shfield, 1984, p. 21 ). 

Since these methods are explicitly looking for a taxonomy, the classes found should be disjoint 
and organized into a hierarchy. A fiat list of classes or a set of overlapping classes is not as useful. 
However, in contra.st to machine learning methods, the classes created by numerical taxonomy 
techniques are usually extensional, and similarity measures, rather than evaluation functions, are 
used as the ha.sis for clustering. 

Although a robust, general-purpose algorithm is appreciated in any field, these are not crucial 
features for numerical taxonomy. In this paradigm, it is reasonable to use different algorithms for 
different data sets. Also, for any given clustering problem, the researcher is only interested in a 
finite (usually small) set of instances. Therefore, the ability of a clustering method to incrementally 
process new instances is not very important. 

This chapter emphasizes biological clustering methods; however, many of these same biases can 
be. seen when clustering techniques are used in other sciences. In particular, the same emphasis on 
practical methods, similarity measures, and subjective evaluation appears in clustering for ecology 
and psychology. 

1.3 Clustering in statistics 

The statistician has a much more formal view of the clustering problem. In this approach, re­
searchers are interested in a careful definition of clustering and in exploring theoretical implica­
tions of clustering methods. Although this paradigm ha.s had some success, the heuristic nature of 
clustering can be an obstacle to the type of rigorous analysis preferred by statisticians. Likewise, 
objectively evaluating the result of a clustering technique ha.s proven difficult. 

For the statistician, one place to begin is a comparison of cluster analysis with other, well­
established statistical methods such as factor analysis, analysis of variance, and discriminant anal­
ysis. For example, statisticians point out that choosing a set of attributes that describe instances 
is the general problem addressed by factor analysis. However, it appears that performing factor 
analysis as a pre-processing step has a detrimental effect on clustering.1 Similarly, the standard 
multivariant practice of normalizing variables can cause problems: normalization can obscure dif­
ferences that may be crucial for clustering (Everitt, 1980). 

Statisticians have also analyzed and compared the algorithms and evaluation functions of clus­
tering methods themselves. Although this effort has shown that some methods· and similarity 
measures are equivalent (Anderberg, 1973), it has not been able to establish any single clustering 
method as best. The difficulty is that, unlike most statistical methods, clustering is heuristic. Since 
the algorithms use ~rules of thumb' that are not guaranteed to produce correct solutions, they are 
difficult to analyze and compare. 

Although one cannot measure the subjective goal of finding an 'interesting' set of classes, statis­
ticians are interested in quantitatively evaluating aspects of a solution. Unlike the biologist's 

1. There is considerable debate on this issue. See Everitt (1979) or Aldenderfer and Blashfield (1984) for more 
discussion. 
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perspective, the statistician's 'solution' need not be a. hierarchy of classes: for some domains, a :fl.at 
list of classes is more appropriate; for others, overlapping or probabilistic classes may be preferable. 

1.4 Clustering as decision theory 

An abstraction of the clustering problem has been studied by a few researchers in the field of 
decision theory (Jaynes, 1986; Cheeseman, Kelly, Self, Stutz, Taylor, & Freeman, 1988). In this 
view, the goal is to correctly predict the probabilities that a new instance x is a member of a class 
Wi: P(w1lx). This expression can be re-written using Bayes' theorem: 

P( ·I ) = P(xlwi)P(wi) 
w, x P(x) 

The probability of each class, P(wi), is usually known - it can be computed as the number of 
members of Wi divided by the total number of instances. Additionally, since P( x) is the probability 
of x independent of class, it can be ignored - when comparing two different classes, w1 and w2 , the 
denominator is the same a.nd can be dropped. In fa.ct, the only unknown term on the righthand 
side is the class conditional probability density function, P( xlwi)· This is the probability of x given 
Wi, or the value of x that would be predicted by class Wj. These functions must be estimated;·for 
example, one can assume a normal distribution, and search for a good estimate of the para.meters 
µ and a that characterize this distribution. 

Using this foundation for a clustering method guarantees that the method will maximize the 
probability of correctly characterizing the da.ta. Hence, if a system is faithful to the theory, it is 
"provably" optimal, and there is little need for empirical evaluation. For this reason, researchers 
from this paradigm place less emphasis on the algorithms used to implement a Bayesian classifier. 
However, it is usually difficult to create a. system that is faithful to the theory, and a number of 
assumptions must be made along the wa.y. Most solutions based on decision theory encounter the 
usual problems of heuristic search, but a.t this lower, algorithmic level. The principal advantage of 
the Bayesian framework is that by providing a.n underlying theory of decisions, the researcher can 
easily make explicit the theoretical implications a.nd necessary assumptions for a.ny solution to the 
clustering task. 

2. Similarity measures and evaluation functions 

Although it is not always made explicit, any clustering technique produces a set of classes in which 
the members of a given class a.re similar to ea.ch other in some way. Using the 'search' terminology, 
one is looking for classes in which the similarity between instances within a given class is greater 
than that between instances from different classes. From this perspective, a clustering technique 
can be characterized by how it defines 'similarity'. 

For some techniques this basis is made explicit: there is a similarity measure or a. distance 
metric that quantitatively measures the distance between/ two instances. For others, the goal is to 
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maximize some evaluation function or criterion. Such a function measures the 'goodness' of a set 
of classes; usually this is based on the similarity among classes, rather than between two instances. 

Clustering depends upon a similarity measure; in turn, the scores of a similarity measure depend 
upon the attributes used to describe an instance. I begin by describing some issues and problems 
pertaining to attributes. Next, I present a set of similarity measures and evaluation functions. 
These are described independently from the clustering algorithms that use them, so that they can 
be compared directly. This also makes clear that there is usually more than one choice of measure 
or evaluation function available to the researcher. 

2.1 Attributes: choices and representations 

For the biologist or so.cial scientist who is approaching clustering techniques as a tool, there are 
a potentially infinite number of attributes available to describe an instance. Rather than blindly 
using as much information as can be found, the scientist can choose only those attributes that are 
'relevant' to the task. As mentioned earlier, factor analysis is a well-defined statistical method that 
is sometimes used to create a smaller number of more 'appropriate' attributes from the pool of 
available attributes. 

Unfortunately, this is somewhat circular logic. In spite of its widespread use, Everitt (1979~ 
argues against using factor analysis or any method that eliminates attributes before clustering. 
The purpose of clustering is to discover an unknown set of classes. As it searches for these, it will 
establish which attributes are 'relevant', but to decide this beforehand would slant the clustering 
process. Factor analysis can have the detrimental effect of hiding those attributes that may be 
crucial to finding a hierarchy of classes. This method assumes a single, known class; hence, Everitt 
suggests that it may be used after clustering, but never beforehand. Researchers also sometimes 
place weights on the attributes prior to clustering. This has the same effect as using factor analysis, 
and is vulnerable to the same criticism. 

Any method for measuring similarity depends to some degree on the representation used for 
the attributes that describe an instance. Anderberg (1973) points out that there are two ways of 
characterizing attributes: the measurement scale used for the attribute, and the number of possible 
values an attribute may take on. For this thesis, I will describe four ma.in types of attributes: 
continuous, ordinal, symbolic, and binary. 2 

Continuous attributes have an infinite range and are measured along a continuous scale. Exam­
ples of this type of attribute are real-valued measurements of height, weight, and temperature. An 
ordinal attribute has a finite range with an ordering on the possible attribute values. Examples 
might be number-of-fins, or any continuous attribute that has been rounded, such as age to the 
nearest year.3 A symbolic attribute also has a finite range, but there is no order to its values. 
Examples of this may be shape, place of birth, or type of sailboat. Finally, a binary attribute 

2. Note that my terminology is different from Anderberg's, reflecting niy machine learning bias. 
3. These examples are actually both interval attributes, where the difference x - y between two attribute values is 

well defined. Ordinal attributes can also have values such as many ftnd few; although many is greater than few, 
one cannot define the distance between them. 
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has only two possible (symbolic) values. Often, these a.re presence-or-absence attributes such as 
has-backbone or is-freckled. 

The similarity measure or evaluation function employed will be dependent upon the attribute 
types used to describe instances. In fact, instances may be described by a combination of different 
types of attributes. Unfortunately, one of the many unsolved problems in cluster analysis (from a 
statistician's point of view) is that there is no 'good' way to combine different attribute types. That 
is, despite some attempts, there are no theoretically sound similarity measures that can be applied 
to different attribute types, especially if binary and continuous attributes are combined. For this 
reason, the measures described below are organized according to whether they are appropriate for 
continuous, ordinal, symbolic, or binary attributes. 

2.2 Measures for continuous or ordinal attributes 

I begin by considering similarity measures for continuous attributes: measures comparing two 
instances that are described by a set of continuous or ordinal attributes. Let i and j be the 
instances, each described by K attributes, e.g., i = {x1, x2, .. , XK }. One of the most obvio11s 
similarity measures between these two points is to use a distance metric.4 Each attribute defines a 
dimension, and each instance can be plotted in this K-dimensional space. The Euclidean distance 
between two points is 

A simpler, and related metric, is the city-block distance: 

K 

Dij = I: lxik - Xjkl 

k=l 

Euclidean distance is probably the most well-used measure for similarity; it is also used as the 
basis for some evaluation functions. Although a city-block distance may seem less intuitive, it is 
computationally much cheaper, and may be appropriate when ordinal attributes are used. 

Both of these measures are sensitive to linear transformations of the input data. For example, 
if some attributes are transformed from, say, inches to miles, then these re-scaled data will have 
completely different similarity measures. 5 As Duda and Hart (1973) point out, this may or may 
not be a problem, depending on whether such transformations are natural to one's domain. 

The use of Pearson's correlation measure is one way to achieve invariance with respect to linear 
transformations~ The original intent of this measure is to correlate pairs of attributes for factor 
analysis. In order to correlate instances, researchers simply reversed the equation syntactically. 

4. Distance metrics are more properly called dissimilarity measures, since the greater the distance, the less similar 
two instances are. 

5. Note that this 'attribute scaling' is related to the attribute weighting described earlier. Attribute weighting is a 
controversial practice only if the similarity measure used is sensitive to linear transformations of the data.. 
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That is, imagine the data set as a K x N matrix of values (if there are K attributes and N 
instances); the usual use of correlation is to measure similarity among the columns (the attributes), 
so the reversed equation should measure similarity among the rows (the instances). This reversed 
correlation is referred to as Q-mode factor analysis (Anderberg, 1973, p. 113). It states that the 
correlation (distance) between two instances is 

K K 1/2 

[L:(xik - xi)2 l:(x;1c - x;)2) 
k k 

where Xi = 1/ K L:f Xik, the average attribute value for a given instance, i. 

This approach has been used with some success among researchers in psychology (see Aldenderfer 
& Blashfield, 1973, pp. 22-23). However, this measure is largely discredited (especially in other 
fields) because there is no justification for the syntactic reversal. The meaning of the equation is 
lost: for example, since x is an average across different attributes, it may be averaging 'apples and 
oranges', and may not have the semantics expected for that term. 

2.3 Measures for binary or symbolic attributes 

Neither correlation nor Euclidean distance can be applied to an attribute with binary or symbolic 
values. One characteristic of such an attribute is that, given two values, the expression Xi - x; 
does not have any meaning. A similarity measure for symbolic attributes is faced with a simple 
comparison: either two values are the same, or they are different. Over a set of attributes, the 
simplest way of comparing two instances is to find the percentage of matching attributes: 

number of matching attributes 
total number of attributes 

In artificial intelligence, this is a 'partial match': a score of one indicates that all attributes match, 
while a zero says that no attributes match. 

Since binary attributes are very common, researchers have usually treated this case separately. 
If one looks at two instances, i and j, there are four possible relationships for each binary attribute; 
Table 2 presents these in a 2 x 2 association table. If these are totaled over all attributes, a and d 
represent the number of matched attributes, while c and b are mismatches. Therefore, the simple 
matching measure described above can be expressed as 

a+d 
K 

where K = a + b + c + d, or the number of attributes. A distance measure can be defined as 
b + c: the more mismatches, the greater the distance between the instances. This is known as the 
Hamming distance (Hamming, 1980). The distinction betw~ a, the number of positive matches, 
and d, the number of negative matches, is made because binary attributes can express the presence 
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Table 1. A 2 x 2 association table 

1 0 

1 a b 

0 c d 

or absence of some observable feature. This is often the case in biology; in such a domain, it may 
be more appropriate to use a measure that does not count 'missing' matches: 

a 

a+b+c 

This similarity measure is known as Jaccard's matching coefflcient (Romesburg, 1984, p. 143). 

Jaccard's coefficient and the simple matching measure are the most commonly used similarity 
measures for binary attributes. However, there are a large number of related similarity measures 
that can be defined in terms of Table 1. Most of these other measures are closely related to J accard 's 
coefficient or the simple matching measure; see Romesburg (1984) for a description of 12 different 
measures for binary attributes. As one example, similarity can be described as the probability that 
instances i and j match on a variable minus the probability that they mismatch: 

(a + d) - ( c + b) 
K 

Although these measures are defined expressly for binary attributes, they can be easily adapted 
for symbolic attributes. This can be accomplished either by converting a symbolic attribute into 
a set of binary attributes, or by converting the measure itself. Converting the attribute can be 
accomplished by using the n possible values to create n presence-or-absence binary attributes. (Of 
course, the use of this type of ~ttribute suggests Jaccard's coefficient as an appropriate measure.) 
Alternatively, a measure defined for binary attributes can be used with symbolic attributes, if one 
lets a + d be the number of matches, b + c be the number of mismatches, and d be the number of 
times the corresponding attribute is missing, or not applicable to the given pair of instances.6 

Although it is not difficult to convert from symbolic to binary attributes, the only measure that 
can compare in~tances with both symbolic and continuous attributes is a simple combination of 
existing measures. Gower's coeffl.cient is a sum over all attributes of one of three measures: if the 
attribute is binary, Jaccard's coefficient is used; if the attribute is symbolic, the simple matching 
measure is used; and if the attribute is continuous (or ordinal) a normalized city-block distance 
metric is used. Despite its apparent generality, Romesburg (1984) notes that the measure has rarely 

6. Anderberg (1973) presents this conversion, as well as many othj!:t wa.ys to convert measures and attributes from 
one type to another. 
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been used in practice. This may be because the mathematical properties of Gower's coefficient a.re 
unknown; of course, this criticism can be made against other, well-used measures. 

2.4 Evaluation functions 

Evaluation functions a.re distinct from similarity measures in that they compare sets of classes, 
rather than a pair of instances. This difference can be trivia.I; some evaluation functions a.re 
simple extensions of similarity measures. However, the emphasis on classes rather than instances is 
important to machine learning. From this perspective, as the system learns, the evaluation function 
controls the search for useful classes by evaluating the quality of a set of concepts with respect to 
the data. In contrast to similarity measures, evaluation functions often imply a particular type of 
concept definition. As I present different evaluation functions, I will point out their relations to 
various similarity measures, as well as their implications for concept representations. 

AVERAGE DISTANCE 

The most straightforward way to evaluate classes is to evaluate a.ll of the members by using a 
similarity function. For example, one common method is to sum the distance from each object to 
the class mean; the lower this average distance, the better the class. Although this could be defined 
with any metric, the most common function is based on Euclidean distance; over all classes, the 
evaluation function is: 

trace(W) = 

where Nj is the number of members in class j, and Xjk is the average over a.11 members of class j 
for attribute k. This expression is known as trace(W), because it is the sum a.long the diagonal 
of the within-group covariance matrix. (Also known as a scatter matrix, this is the matrix of 
a.ll possible covariances among K attributes.) Note that for a single class and attribute, this 
expression corresponds to the variance for that attribute. In fact, this function suggests a co11-cept 
representation consisting of a list of means a.nd variances for each attribute, since this information 
is needed to compute trace(W). 

This evaluation function is one of a set based on the matrix identity, T = W +B, where T, Band 
W a.re the total, between-group, and within-group scatter matrices, respectively.7 In genera.I, these 
functions attempt to either minimize W (a measure of within-group differences) or maximize B 
(between-group differences). In order to compare matrixes, they must be converted to a scalar: one 
can use either the determinant of the matrix, or (more cheaply) the 'trace' of a matrix. The three 
most common functions are minimizing trace(W) (defined above), maximizing trace(w-1 B), and 
minimizing the determinant of W. 

It is important to note that trace(W) has the same problem as Euclidean distance; it is sensitive 

7. See Hand (1981) for a more detailed discussion of this identity, as well as further references to the use of these 
functions. 



CONCEPT FORMATION 15 

to normalization of the data, and to linear transformations of attributes. It also prefers clusters 
that form hyper-spheres in the att.ribute space. However, the other proposed functions are compu-, 
tationally much more expensive, especially since they need to compute the inverse of the matrix W. 
Anderberg ( 1973, p. 175) cites evidence that there are no good reasons for selecting one function 
over another, and therefore he suggests considering only trace(W), the simplest function. 

These average distances functions are defined to work with instances described by continuous at­
tributes. Although one can define a 'distance' between two instances with symbolic attributes, there 
certainly cannot be a mean for each symbolic attribute. If the data includes symbolic attributes, 
the researcher must use some other evaluation function. 

ATTRIBUTE CORRELATION 

Hanson and Bauer (1989) describe an evaluation function for symbolic attributes based on corre­
lation between attributes. Each class is defined by all possible pairwise contingency tables (as in 
Table 1 ). To evaluate the class, the distribution over each contingency table, Dij, is averaged for 
all pairs of attributes; the greater this average correlation, the better the class. The 'cooccurance 
distribution' (to use the authors' term) is defined as: 

D .. IJ o:=m I:n Xmn)(log I:m Ln Xmn) 

where Xmn is a count in the contingency table for attributes i and j. Recall that each position in a 
contingency table counts the number of times attribute value m for attribute i co-occurs with value 
n for attribute j. The average value of Dij is a measure of the within-class cohesion. The authors 
label this as We, and state that the complete evaluation function is to maximize Wc/Oc, where Oc 
is defined in a similar way, except that the cohesion is measured across classes. Once again, the 
general goal is to maximize within-group similarities and between-group differences. 

This 'correlation' measure, Dij, is more closely related to the chi-square test of independence than 
to Pearson's correlation coefficient for continuous attributes. For this reason at least, their method 
is distinct from Q-mode factor analysis. However, Anderberg (1973) shows that there are dangers 
in interpreting results with any measure based on the correlation of attributes. In particular, the 
distribution measure may not be consistent across different attributes; if Dij = .52, and Dk1 = .41, 
one cannot conclude that i and j are more closely related than k and l. 

Another problem wi.th this particular method is that it is only well suited to domains with 
relatively few binary attributes. Although there are no theoretical problems with other types of 
data, the storage costs and, to a lesser degree, the computational costs become very severe. With 
K attributes each with M values, each concept needs (K 2 - K)/2 tables, each of which has M 2 

entries. 

The advantage of a method based on correlation is that it can easily find concepts that depend 
on some relationship between two attributes.8 Because this relationship is explicitly represented in 

8. Of course, as used here, 'correlation' only refers to pairs of attributes. Three-way or N-way correlations a.re not 
explored. 
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the correlation tables, the concept can be easily discovered a.nd represented by Hanson a.nd Bauer's 
system. Systems that do not use sotne form of correlation often have difficulty with this type of 
class. 

FUNCTIONS BASED ON INFORMATION THEORY 

Gluck a.nd Corter (1985) present an 'information theoretic' evaluation function, category utility, 
for symbolic attributes. This function is based on the probability of a.n attribute value, P( Xkv ). 

This probability can be expressed as the number of times attribute k has had value v, divided by 
the total number of instances. (Note that this probability is closely related to the simple matching 
measure.) Category utility measures the information that is gained by partitioning instances into 
classes. For a given attribute k, 

Category Utility(k) = 
J 

where V is the number of attribute values for attribute k and J is the number of classes. P( Xkv I Cj) is 
the probability of the attribute value conditioned by the class Cj, meaning that only those instances 
in class Cj are considered. In contrast, P( x kv) is that probability without any class information; it 
is the information at the parent class.9 Although category utility is based on the simple matching 
measure, the subtraction of the final term allows the function to measure information gain from 
pa.rent to children. This gain is then divided by the number of children, so that different size 
partitions can be compared. 

Both category utility and Hanson and Bauer's evaluation function work only for symbolic at­
tributes; because they iterate through all possible attribute values, they cannot be applied to 
continuous attributes. In the next chapter, I will describe a synthesis of this evaluation function 
with the trace(W) function for use with continuous attributes. 

BAYESIAN CLASS EVALUATION 

Although a Bayesian clustering system explicitly compares classes, it does not usually have the 
same type of evaluation function as those described so far. Instead of evaluating classes with 
respect to all instances, the basic decision theory equation (presented in Section 2.4) compares a 
single instance against a !!et of classes. The difficulty with this equation is that in order to compute 
the class conditional probabilities, P(xlwi), one needs an estimation of the class parameters that 
define each Wi· Duda and Hart (1973) conclude that, in general, there is no analytically simple way 
to find this estima~ion, and that computational costs for an exact solution rise exponentially with 
the number of instances. 

However, there are a number of estimation techniques that have been empirically successful. Fried 
and Holyoke (1984) use a simpler algorithm based on the Euclidean distance similarity measure 

9. Gluck and Corter (1985) defined category utility for two classes; here, I have shown Fisher's (1987a) generalization 
to J classes. The information theoretic model also uses logs insteaiil of squared terms (P(x)log(P(z)) instead of 
P(x)2 ). However, Gluck and Corter claim that this difference will not affect the behavior of a clustering system. 
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to find initial class para.meter estimates. Using these estimates, they can then determine P(xlwi)· 
Anderson (in press) uses a coupling probability (a user-defined parameter) to define the prior 
probability of each class and the probability that an instance is a member of a new class. This 
allows him to get an initial partitioning of instances into classes. Then, for a new instance, he can 
compute P(xlwi) based on the membership of each Wi.10 

Unfortunately, it is difficult to compare these systems' "evaluation functions" to others. Part 
of the difficulty is that the task is described as estimating (or updating) class para.meters, rather 
than evaluating the quality of class definitions. For example, Cheeseman et al. (1988) describe the 
update algorithm for their Bayesian system, but do not give an equation for this evaluation process, 
nor describe how it compares to other clustering evaluation functions. 

3. Algorithms for clustering 

Any clustering technique can be described as an algorithm that uses some kind of a similarity 
measure or evaluation function to search for a set of classes. Thus far, I have described these 
measures out of context; this section will show how they are used by algorithms. My goal in 
presenting these components separately is to show that any combination of algorithm and measure 
defines a clustering technique. To some degree, one may choose a part from bin 'a' and a part from 
bin 'b' to create a clustering method. Of course, very few researchers have actually tried this, and 
not every nut will fit onto every bolt. For each algorithm, I will point out the original similarity 
measure proposed, as well as others that could be used. 

In this section, I divide clustering methods into three groups: agglomerative algorithms, itera­
tive optimization algorithms and incremental algorithms. The agglomerative approach is the oldest, 
having been proposed by workers in biology and ecology. With the advent of the computer, itera­
tive optimization methods became popular as a simpler heuristic approach to clustering. Finally, 
incremental algorithms were inspired by human concept formation, and were created by researchers 
in machine learning. 

In addition to describing some of the most important algorithms, I will consider two character­
istics of each method. First, al.though any algorithm must produce some set of classes as output, 
the form and organization of the classes is dictated by the researcher's goals. For example, the re­
searcher may prefer a simple list of classes or he may need a specific-to-general hierarchy of classes. 
Likewise, the researcher may prefer each instance to be assigned to a single class, or to more than 
one class, or even to all classes probabilistically. Second, different algorithms have very different 
computational and memory costs. The computer cannot be treated as an infinitely powerful ma­
chine. Especially from a machine learning point of view, it is important that the algorithm and the 
similarity measure be as inexpensive as possible. 

10. Because Anderson works with symbolic attributes, his evaluation function is related to the simple matching 
measure, except that the new instance is compared to the set of all member instances. Anderson's work is also 
interesting because his algorithm is incremental (see Section 4.3). 
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3.1 Agglomerative methods 

Historically, the first algorithms for clustering were agglomerative methods. Since they were devel­
oped by biologists, they produced a hierarchy (a. taxonomy) of classes, from the most general class 
(including all instances) to the most specific classes (covering only one instance). Although these 
are still the most widely used algorithms, they are expensive both in space and time requirements. 

An agglomerative method begins with each instance as a separate class, and repeatedly combines 
these smaller, specific classes to form larger, more general classes. This process builds up a hierarchy 
of classes, finishing when all instances have been agglomerated into one top-level class.11 In order 
to determine which instances to 'agglomerate', these algorithms require a similarity matrix that 
shows how close, according to some similarity measure, every instances is to every other instance. 
Given this matrix, a general agglomerative algorithm can be described as follows: 

1. Compute and store the similarity matrix. 

2. Find the best value in the matrix and its associated pair of instances. 

3. Merge these two instances (or classes) into a larger class. 

4. Create a new similarity matrix that includes the new class. (This may 

require recomputing some values.) 

5. If there is only one class, return the hierarchy produced and stop; else, 

go to step 2. 

This description does not make clear exactly how to accomplish the fourth step. In order to 
enter a new class into the similarity matrix, one must decide how to use the similarity measure to 
compare a class to an instance or to other classes. The simplest (or at least the cheapest) solution is 
to define the similarity between two classes, A and B, as the similarity of the closest two instances a 
and b, where a E A and b E B. This is called the "nearest neighbor" or "single linkage" algorithm, 
because two classes are combined by the shortest single link between them. This algorithm tends 
to produce long chaining clusters and this can be a disadvantage in some domains. 

Other agglomerative algorithms use different ways to measure the 'similarity' between two classes. 
For example, instead of a single link, one can find the "average link" distance between classes. This 
requires computing the class mean for each attribute every time a class is created or expanded, 
and then measuring the distance to other groups or instances from this mean. This method avoids 
creating long chains, and instead prefers clusters that form hyper-spheres in the instance space. 

Unfortunately, this method is rather expensive: because it requires recomputing part of the simi­
larity matrix, it has a computational cost of 0( n3 ), where n is the number of instances. The nearest 
neighbor algorithm can be implemented so that no recalculation occurs, but the computational cost 

is still O(n2 log(n2)),12 in addition to the cost of sorting the similarity matrix. Depending on the 
similarity measure and the number of attributes per instance, computing and storing the similarity 

11. The reverse of this approach is known as a divisive algorithm. This begins by assuming every instance is in the 
same highest-level class, then repeatedly divides this class into some number of children, until each (very specific) 
class has only one instance. Although a. few such algorithms have been proposed (MacNaughton-Smith et al., 
1964; Fisher, 1984), they have been rarely used. 

12. For each of n 2 similarity values, one must check to see if the insta.nCes have already been merged into the same 
class (a cost of log(n 2 )). See Aldenderfer (1973) for a description of this algorithm. 



CONCEPT FORMATION 19 

matrix alone may be prohibitively expensive. In fa.ct, for domains where there a.re a. large number 
of attributes a.nd instances, agglomerative methods a.re largely unsuitable. 

Another significant problem with agglomerative algorithms is that they produce only binary 
hierarchies. Instead of this structure, the researcher is often interested in :finding some 'optimal' 
number of classes. Although there a.re some methods for cutting or :flattening the binary hierarchy 
(see Aldenderfer & Blash:fi.eld, 1984), these a.re not guaranteed to find the best or most appropriate 
set of classes. In fact, Everitt (1979) points out that such techniques ma.y be misleading; he 
concludes that :finding the optimal number of classes from a binary hierarchy is an open problem. 

3.2 Iterative Optimization 

Iterative optimization algorithms were created in response to the expense of agglomerative methods 
and to the difficulty of finding the correct number of classes. Instead of trying to find this ideal 
number, one can simply give the number of classes, k, to the clustering system. Iterative optimiza­
tion searches for these k classes by repeatedly reassigning instances to different classes in order to 
improve the score of some evaluation function. Although these algorithms do not produce hierar­
chies of classes, they are more efficient than agglomerative methods, and by transferring instances 
from class to class they can recover from an initial 'bad' decision. 

In general, one can view the clustering problem as a search over the huge space of possible 
partitionings of the instances into classes. A simple method would examine every possible partition, 
and find the one with the best score according to an evaluation function. Unfortunately, this is 
computationally impossible even with a relatively small number of instances; for example, there are 
approximately 5.28 x 1028 ways to partition 50 instances into four classes.13 Therefore, instead of 
a complete search through this space, iterative optimization methods use hill-climbing techniques 
to iteratively improve the evaluation score until an optimum is reached. As with any hill-climbing 
method, the starting point for the search may be critical, and the algorithm can converge on a local 
optimum instead of the global optimum. 

Iterative optimization methods require a criterion to optimize at each iteration. Theoretically, 
one could cho.ose any evaluation function for this role. However, in order to keep the overall 
clustering system efficient, the researcher should use a relatively simple evaluation function, one 
that that system can compute cheaply as it considers each re-assignment. For example, one of the 
simplest and most popular techniques is the k-means algorithm: 

1. Use the first k instances as seed points. 

2. Assign each of the remaining instances to the class represented by the 

nearest (Euclidean distance) seed point. 

3. Recompute nev seed points as the centroids (the average attribute values) 

of each class. 
4. Iterate betveen steps 2 and 3 until no reassignments are made. 

Although the number of iterations required before halting is unknown, Anderberg (1973) gives a. 

13. Duda and Hart (1973) give the exact expression for the number 9fways to partition n instances into c classes; an 
approximation is en I c!. I 
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proof that such algorithms will eventually converge, a.nd in practice this is usually a. reasonably 
small number (less than ten). When Euclidean distance is used, Hand (1981) shows that this 
algorithm is equivalent to optimizing the trace(W) evaluation function. 

One can make a number of modifications to this algorithm. First, since the starting point can 
be critical to a hill-climbing searcher, different methods can be used to choose it. For example, 
the k seed instances can be chosen randomly, or they can be chosen so that all seeds are at least 
some minimum distance apart. Duda and Hart (1973) point out that the entire algorithm can be 
repeated with different seed selections so that the researcher can compare possibilities. In fact, 
they even suggest using an agglomerative method to find the initial partition, although this seems 
expensive. Anderberg (1973) also describes a number of seed selection techniques. 

A second modification can be made by computing new class centroids whenever an instance 
is reassigned to a class. In this case, the algorithm may converge much earlier; for example, 
MacQueen's (1967) k-means algorithm uses only two passes through the instances. In the first 
pass, centroids are modified as each reassignment occurs; during the second pass the centroids 
remain fixed. 

Finally, one can expand the algorithm so that it addresses two higher-level problems. First, 
because one may not always be able to specify the number of classes, k, a priori, one can try 
the k-means algorithm with different values of k, allowing an estimate of the 'best' k. Second, 
the researcher may need a hierarchy of classes, rather than the flat list that iterative optimization 
algorithms usually produce. To this end, one can simply execute the algorithm recursively on each 
of the k groups identified on its first execution. 

Although these extensions appear to be expensive, 'brute-force' solutions, Michalski and Stepp 
(1983b) have incorporated them into the k-means algorithm in their CL USTER/2 program. 14 This 
system also includes a step that helps avoid local optima: when the k-means algorithm converges, 
CLUSTER/2 chooses new seed points at the edge of each class, instead of at the centroids. It then 
restarts the k-means algorithm with these new seeds, and if the resulting partition remains un­
changed, the system returns those classes as the solution. Finally, CL USTER/2 differs from most 
iterative optimization techniques in that it uses domains with symbolic, rather than continuous 
attributes. As the trace(W) evaluation function only works with continuous domains, this system 
uses a special-purpose evaluation function defined by a set of (user-specified) parameters. Unfortu­
nately, iterative optimization has not been tried with any more principled evaluation function for 
symbolic attributes. 

Cheeseman et al. (1988) also use an iterative optimization approach, but their AuTOCLASS system 
does not strictly partition instances into classes. This system carries out a hill-climbing search for 
the best set of classes, where each class is defined by a mean and a standard deviation. However, 
class membership is completely probabilistic, specifying the probability that x E c, for any object 
x and for every class c. These 'fuzzy' classes are especially suitable when an instance is described 
reasonably well by two (or more) competing classes. 

Although iterative optimization algorithms have met with some clear successes, their domain 

14. CLUSTER/2 is not usually identified as using a k-means iterative optimization clustering algorithm. This char­
acterization became clear only after surveying these older methods.· 
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of application is somewhat constrained. If an approximation of k is available, if the instances are 
described by continuous attributes, and if a :flat list of classes is sufficient, then iterative optimization 
is a good approach to the clustering problem. Although the CLUSTER/2 system relaxes these 
constraints, it does so only at substantial. computational cost. 

3.3 Incremental methods 

In contrast to other approaches,. incremental algorithms view the set of instances as a potentially 
infinite sequence. As each instance is processed, the algorithm makes an incremental. modification 
to its current set of concepts. At any point in time, the concepts reflect information gained from 
all the instances encountered up to that point. Thls approach was designed with human concept 
formation in mind; it seems unlikely that a. human learner would need to first receive some number 
of instances, and then stop receiving and perform the computation of the clustering task. 

Even without this bias, these incremental systems are useful for a. number of more pragmatic 
reasons. They require less computational. time than other algorithms, and can therefore process 
larger data.bases. These algorithms also offer a solution to the problem of determining the nui;n­
ber of classes. Finally, this type of algorithm is almost essential for any application in which the 
classes change over time. Schlimmer and Granger (1986) refer to this as concept drift: if new in­
stances reflect new or different concepts, an incremental algorithm can adjust its concept definitions 
accordingly. 

A general incremental algorithm for adding ea.ch new instance x to a hierarchy of classes ca.n be 
described a.s: 

For a nev instance I, and some concept hierarchy: 

1. Incorporate I into the root node. 

2. Either: a) incorporate I to an existing child concept, or 

b) create a nev child concept based on I. 

3. Unless a nev child is added, recurse on the ·selected child 

concept. 

Usually these algorithms produce a hierarchy of classes, but step three can be omitted if one prefers 
a simple list of classes. Unlike agglomerative methods, incremental algorithms need not produce 
binary hierarchies: the branching factor is variable and determined by how often new classes are 
created (in step 2b ). Determining when to make a new class is critical to these algorithms - this 
choice al.lows incremental algorithms to automatically find an appropriate number of classes from 
the data. 

EPAM (Feigenbaum, 1963) was the first system in artificial intelligence to approach the clustering 
problem. This system applies monothetic decision making to the basic incremental algorithm. This 
means that all internal nodes in the hierarchy (or discrimination network) are associated with a 
single attribute. As the system sorts a new instance through the hierarchy, each internal node tests 
a single attribute, and clustering decisions are based on that attribute value. In contrast, leaf nodes 
(cal.led images) include a set of attribute values. When the clustering process reaches a leaf node, 
one of two actions occur. If the new instance matches t!e values at the node, then the instance 
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is added to that node, and the concept definition is expanded. Otherwise, EPAM re-sorts that 
instance through the hierarchy, ma.king a new disjunct at some point where the attribute values 
differ. 15 

Lebowitz's (1985, 1986) UNIMEM system incorporates a number of advances over EPAM. First, 
every node in the hierarchy is a concept definition, and includes more than a single attribute. Thus, 
when classifying a new instance, this system uses a polythetic strategy, inspecting some number 
of attributes before making a decision. When an instance is incorporated into a concept, the 
system updates "confidence" values associated with each attributes at that concept by raising the 
confidence of the matching attributes, and lowering the confidence of any mis-matched attributes. 
This bookkeeping lets UNIMEM ·delete features with low confidence, potentially deleting entire 
classes, if they have no features with strong confidence. Finally, this system allows for clumping, 
or sorting instances to more than one class. However, UNIMEM does not allow the completely 
probabilistic classification suggested by Cheeseman et al. (1988). 

As defined above, the incremental algorithm is a. pure hill climber - it can get trapped in the 
same kind of local optima a.s iterative optimization methods. Fisher's COBWEB system (1987a,. 
1987b) added some operators to the algorithm that were designed to alleviate this problem. In 
addition to options a) and b) at step two, the system considers merging two existing classes a.nd 
splitting a class into its children. These opera.tors permit the system to move away from local 
optima, since they allow a form of backtracking through the space of possible concept hierarchies. 

As described earlier, researchers in machine learning prefer algorithms that create intensional 
class definitions. Incremental algorithms modify these definitions with each new instance, rather 
than adding the instance to a. membership list. This suggests that an incremental system need 
not store every instance. This ability leads to reduced memory costs, especially if the number of 
instances is very large. Developing ways to 'forget' instances, or avoid storing them at all, is a 
current research topic (Gennari et al., 1989). 

4. Evaluating a clustering method 

With this many clustering methods to choose from, one would hope for some principled way of 
comparing different methods. In general, we would like some quantitative measure for how well 
a given method has succeeded. Unfortunately, because the goals of clustering vary and are often 
very poorly defined, a single definitive measure is impossible. To some degree, any quantitative 
comparison of results is impossible because the goal of clustering is subjective. For example, some 
researchers prefer one clustering method to another simply because it produces a 'more intuitive' or 
'more pleasing' set of classes. However, researchers with a more formal bias have found a number 
of ways to measure different aspects of a solution. 

One measure used in discriminant analysis and in machine learning is to see how often a system 
classifies instances correctly. In some domains, the correct class is known beforehand, so the 

15. This description of EPAM is a. simplification that ignores aspects of the system tha.t model huma.n learning, 
a.nd emphasizes the similarity to other incremental algorithms. Se~ Genna.ri et a.I. (1989) for a. more complete 
description. 
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hierarchy produced by some number of "training" instances can be evaluated by how correctly it 
classifies a number of "test" instances. For concept formation, the problem is that the 'correct' 
class is not known. At best, this measure can be used to compare an 'intuitive' set of classes with 
the new set produced from the data; it is usually not a good evaluator of the process that created 
the new classes. 

One measure that can be used to compare hierarchies is "cophenetic correlation". This method 
compares the output of agglomerative algorithms, and is therefore used mostly by biologists. This 
measure uses correlation to compare the original similarity matrix with a new matrix that is derived 
from the final hierarchy. Instead of the similarity between instances i and j, an entry ( i,j) in the 
new matrix has the value of the similarity measure when the class containing i was merged with 
the class containing j. These two matrices can then be compared by computing their correlation -
a high correlation between entries suggests that the clustering method did a good job of capturing 
the information in the original similarity matrix. However, Aldenderfer and Blashfield (1984) point 
out that this measure is not statistically sound. The use of correlation assumes that the values 
in the matrices are normally distributed. Because the derived matrix is dependent on the original 
matrix and contains much less information, this is usually not the case. 

As an alternative, Aldenderfer and Blashfield suggest that a better way to compare concept 
hierarchies is to use what they call a "Monte Carlo" method. There are three steps in this procedure. 
First, a set of random data is generated that is normally distributed and based on the averages 
of the original data. In effect, this represents the original instances, but grouped as a single class. 
Next, this random data set is clustered, resulting in a "base-line" hierarchy. Finally, the original 
hierarchy is compared to this base-line hierarchy (for example, by comparing an analysis of variance 
within each class). A large difference between hierarchies means that the algorithm has done a good 
job of finding classes from the data. Although the score resulting from this procedure has little 
absolute meaning, it can be used to compare a set of different methods - the method with the 
biggest difference is the 'best' for a given data set. 

Rather than comparing hierarchies, there is a more general way of evaluating a clustering method. 
Instead of evaluating whether a classification is 'correct', the idea is to judge the 'usefulness' of 
that classification. Although this may seem difficult to do, one measurement of 'usefulness' is the 
degree to which the classes can predict attribute values of a new instance. Predictive ability is 
related to the 'recall' task in cognitive psychology, and has been used in machine learning (Fisher, 
1987a; Gennari et al., 1989). This recall task occurs when an agent is given an incomplete set of 
cues (attributes) from a new instance, and must use its memory of past instances to recall values 
for the unspecified attributes of the instance. For machine learning, predictive ability can be used 
as a performance task to evaluate the learning system (as described in Section 1.1). In Chapter 4, 
I define this performance measure more precisely. 

5. Chapter summary 

The framework delineated in this chapter allows for a comparison of clustering methods across 
a wide spectrum of research fields. By describing a technique in relation to others proposed by 
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different fields, one can focus on what is new and distinctive about the work. More importantly, 
an awareness of these related efforts allows the researcher to avoid duplication of work. 

Although concept formation in machine lea.ming offers some new insights to the clustering prob­
lem, there is certainly information to be gained from other clustering methods. Too often, the 
researcher in machine learning proceeds without any awareness of other potential solutions. This 
can mean that she may not apply an existing solution to a particular clustering problem, or worse 
yet, may present a 'new' approach that is identical or very close to an older solution to the same 
problem. 

At the same time, machine learning certainly offers a new perspective for clustering methods. 
The biases it brings from cognitive psychology can be useful if applied to traditional cluster analysis 
methods. For example, the preference for low-cost, incremental methods may bring computational 
benefits without a loss of performance. Also, using predictive accuracy as a performance task seems 
to provide a useful method of evaluation in an otherwise unexplored area. 

This survey of clustering methods is intended as the beginnings of a bridge between cluster 
analysis methods and efforts in machine learning. A recognition of these older efforts has been 
overdue in the machine learning literature, while an understanding of machine learning approaches 
to concept formation has been missing in other fields. In the chapters that follow, I describe a 
machine learning system, evaluate it with some clear performance tasks, and directly compare it 
to these earlier efforts. 



CHAPTER 3 

An Introduction to CLASSIT 

My approach to concept formation is instantiated by the CLASSIT learning system. As stated in 
the first chapter, an implemented computer system is important for two reasons. First, it forces 
the researcher to fully detail the ideas and goals of her theory. Second, a running system is a. tool 
for experimentation and careful modification, allowing for progressive refinements of the ideas that 
inspired the system. 

This chapter describes CLASSIT at an introductory level: it does not consider performance abili­
ties, nor a number of embellishments a.nd details of the system. In order to appreciate the results of 
experimentation, the reader must have a. thorough understanding of the system's operation. Many 
of the ideas described here a.re not new, a.nd I try to provide pointers back to influential research 
and ideas. At the same time, I include forward pointers to the work presented in Chapters 4, 5 a.nd 
6 that explore the strengths and weaknesses of CLASSIT's abilities. 

This chapter begins by describing CLASSIT's representation of input data and concepts. Next, I 
present the concept formation algorithm, defining both its learning and performance tasks. This 
section also presents the evaluation function used for learning, although I investigate alternative 
evaluation functions in Chapter 5. Finally, in order to demonstrate and clarify the operation 
of CLASSIT, I include a detailed example as the system learns from a sequence of playing ball 
descriptions. 

1. Representation in CLASSIT 

For CLASSIT, issues of representation can be divided into three areas. First, I present the represen­
tation used for instances - the input language for the system. Next, I describe the representation 
of the learned concepts - the knowledge for the system. Finally, I discuss the organization CLASS IT 
uses to arrange these concepts in memory. 

1.1 Instance representation 

As with most other work in concept formation (and cluster analysis) CLASSIT begins with the 
assumption that instances are described by a known set of attribute-value pairs. However, as 
described in Chapter 2, there are a number of different attribute types. Unlike most earlier work 
in cluster analysis and concept formation, CLASSIT uses instances that may be described by any 
combination of ordered (continuous or ordinal) and unordered (symbolic) attributes. 

For example, if the system is learning from a set of playing balls, a golf ball might be described 
as {weight: 46gr, diameter: 4.3cm, color: yellow, texture: dimpled}. In this domain, two 

25 
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of the attributes are continuous a.nd two a.re symbolic.1 Allowing different types of attributes lets 
the system work with a wider variety of input domains. 

Previous. concept formation efforts (such a.s COBWEB or UNIMEM) focused on symbolic or, a.t 
best, ordinal attributes. However, from a. psychological standpoint, such work ignores the ability 
of the human perception system to work with continuously-sea.led measurements. Whenever a. 
measurement is taken from a.n instrument, tha.t value is most naturally represented as a continuous 
attribute. In contra.st to ma.chine learning research, work in cluster a.na.lysis often dea.ls with 
continuous attributes, but rarely with data. sets tha.t a.re mixtures of symbolic and continuous 
information. There a.re a variety of domains that a.re most naturally represented using mixed 
continuous and symbolic da.ta, such as diagnosis ta.sks. In Chapter 4, I present a number of real­
world domains that a.re of this mixed format. 

CLASSIT a.lso allows instance descriptions to be incomplete. Simply stated, this means tha.t not 
all attributes must be present for every instance. This lets the system work in domains with missing 
information. In rea.l a.pplica.tions, data. is often una.vaila.ble for a number of reasons. Additiona.lly, 
this design a.llows for the ability to simply ignore some attributes (and trea.t them as missing) 
because they may be unimportant. This introduces the idea. of selective attention, which is discussed 
in Chapter 6. 

One limitation of this representation is that the attribute-value pairs a.re arranged in a flat list. 
In some domains, It may be desirable to represent instances with a structured representation: 
Although an earlier instantiation of CLASSIT ( Genna.ri et a.1., 1989) included a limited approach 
to simple structured instances, the current system leaves this issue to future work. Thompson 
and Langley (in press) a.re exploring a more genera.I solution to concept formation with structured 
instances (based in part on this work) with their LABYRINTH system. 

1.2 Concept representation 

Like Fisher's (1987a) COBWEB system, CLASSIT uses probabilistic representations for its concepts. 
That is, information about a concept is stored with probabilities: if x is a member of concept 
X, x will have value Vi for attribute A with conditional probability P(A = VilX). Like other 
aspects of the system, this representation is inspired by work in cognitive psychology. Smith and 
Medin (1981) use the term probabilistic concepts to describe concept representations that include 
conditional probabilities. 

There are two parts to.such a. concept representation. First, there a.re conditional probabilities 
stored for every attribute. Second, each concept includes the probability of the concept as a whole: 
the base rate, P(X), for concept X. This is simply defined as the percentage of instances (relative 
to the parent) that .are sorted to that concept. 

Although conditional probabilities are easy to calculate with symbolic attributes, some mod­
ification is required when using continuous attributes. In pa.rticula.r, since the probability of a 
continuous attribute having any particular value is zero, one must assume some probability density 

1. CLASSIT does not make any distinction between continuous and ordinal a.ttributes, nor between symbolic a.t­
tributes a.nd bina.ry, unordered a.ttributes. 
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model. Therefore, a concept stores information a.bout ea.ch continuous attribute in terms of a. prob­
ability density function. For CLASS IT, I assume that concepts a.re based on normal distributions; 
thus, the parameters for ea.ch density function are the mean, µ a.nd the standard deviation, u, of 
that concept's population. 

Although this assumption does restrict the range of concepts possible, Fried and Holyoke (1984) 
suggest two arguments for using normal distributions. First, such distributions seem to appear fre­
quently in the natural (ecological) world. Second, the authors point to psychological evidence about 
basic-level categories that suggests human categories can be approximated by normal distributions. 

The type of information stored for each attribute depends on the type of that attribute. If the 
attribute is symbolic, CLASSIT simply stores a set of counts for each attribute-value, from which it 
ca.n compute conditional probabilities. If the attribute is continuous, the system keeps the mean 
and standard deviation for the population of member instances.2 Example concepts can be seen fo. 
Figure 1 of the next subsection. 

Although such a hybrid representation may appear cumbersome, it seems the most natural 
choice when one is working with both continuous and symbolic attributes. The only alternative is 
to convert attributes from one type to another. There are a large variety of conversion methods 
available. For example, Lebowitz's (1985) UNIMEM system converted all ordered attributes into 
'symbolic' ranges, thereby allowing a symbolic clustering method to accept numeric attribu.tes. 
However, any conversion method is necessarily imperfect: it must either lose information or add 
unwarranted information to the data. If it is possible to use both symbolic and continuous data 
directly, there is no reason to bother with imperfect conversion methods. Chapter 4 presents 
experimental evidence for this claim. 

1.3 Concept organization 

As with most machine learning approaches to concept formation, CLASSIT organizes its knowledge 
into a hierarchy.3 Each node in the hierarchy is a concept, and nodes are partially ordered from 
general to specific. Hence, leaf nodes often correspond to single instances, whereas nodes higher in 
the hierarchy correspond to more general concepts, with the root node summarizing all instances 
that the system has observed. 

Figure 1 presents the simple concept hierarchy that CLASSIT builds when presented four examples 
of playing balls. Each instance is described by the four attributes mentioned earlier: weight, 
diameter, color, and texture. Hence, each node in the hierarchy includes information about each of 
the attributes: the mean and standard deviation if the attribute is continuous, and the conditional 
probability for each observed value if the attribute is symbolic. In this case, there are three golf 
balls clustered under concept C2 , and one ping-pong ball as concept Ca. Note that the latter node 

2. In order to compute <T incrementally, CLASSIT stores the count, the sum of values, and the sum of the squares. 
From these, u and µ can be quickly computed when needed. 

3. As described in Chapter 2, Feigenbaum's EPAM (1963), Michalski and Stepp's CLUSTER/2 (1983a), Lebowitz's 
UNIMEM (1985), and Fisher's COBWEB (1987a) all build conc,pt hierarchies of some sort. Exceptions include 
Anderson and Matessa's work (1990) and Cheeseman et al.'s (1988) work with AUTOCLASS. 
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P(C1) = 4/4 

Color P( white) 
P(orange) 
P(yellow) 

Txt P(dimpled) 
P(smooth) 

Wt u = 18.61 
Dia. u = 0.27 

= 2/4 
= 1/4 
= 1/4 
= 3/4 
= 1/4 

µ = 34.92 
µ = 4.13 

P(C2) = 3/4 
P(Cs) = 1/4 

Color P( white) 2/3 = Color P(yellow) P(orange) 1/3 = Txt P(smooth) Txt P(dimpled) = 3/3 Wt (f = 0.20 Wt (J'=0.37 
Dia (]' =0.20 

Color P(orange) = 1/1 
Txt P(dimpled) = 1/1 
Wt (]' = 0.20 µ = 45.20 
Dia (]' = 0.20 µ = 4.23 

µ = 45.67 
µ = 4.28 

Dia (f = 0.20 

P(Cs) = 2/3 
Color P(white) = 2/2 
Txt P(dimpled) = 2/2 
Wt u = 0.20 µ = 45.90 
Dia u = 0.20 µ = 4.31 

Figure 1. A simple CLASSIT concept hierarchy. 

= 1/1 
= 1/1 

µ = 2.69 
µ = 3.68 

is a singleton class - a concept with only one member instance.4 Syntactically, this concept is 
similar to a simple description of the instance. However, the semantics for this node are the same 
as any other concept in the hierarchy. 

At the second level in this hierarchy, the golf balls are divided into two subclasses: orange 
ones and white ones. Note that the probabilities for each symbolic attribute are conditional given 
membership in that class, and that the probabilities for each class are relative to their parents. 
Hence, the singleton class C4 has a probability of k, and not ~· Also, note that the leaf node Cs is 
not a singleton class·; its two members are so similar that CLASSIT chose not to further subdivide 
these instances, and therefore forgets their particular attribute values. The next section describes 
how this can occur. 

This type of concept hierarchy sets machine learning research in concept formation apart from 

4. In Figure 1, the tr value for a.ny numeric a.ttribute of a. singleton cliiss is 0.2. Section 2.2 expla.ins the origin of 
this number. 
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older work in cluster analysis. Such methods produce either a. :fia.t list of classes or a binary 
tree from which classes must be . somehow extracted. A genera.I. to specific hierarchy (with an 
arbitrary branching factor) allows concepts to be created a.t more than one level of generality. This 
organization also allows for an efficient organization of learned concepts. Tha.t is, any concept may 
be quickly retrieved by descending down some path from the root node, ra.ther than inspecting all 
known concepts. 

One limita.tion of this type of memory structure is tha.t there is only a single path to each 
concept. Rather than a tree of concepts, a more genera.I. structure would be a directed acyclic 
graph of concepts. This would allow different cha.ins of reasoning (represented by different paths 
through memory) to lead to the same concept. Chapter 7 discusses such an extension to CLASSIT 
in more deta.il. 

2. CLASSIT's algorithm and evaluation function 

After describing the structure of CLASSIT's concepts, and the memory it uses to store and organize 
concepts, I am now ready to describe the mechanisms that the system uses to acquire the concept 
hierarchy. As with the other clustering methods presented in Chapter 2, I describe my approach 
to concept formation in two parts: the algorithm and the evaluation function. 

2.1 The CLASSIT algorithm 

CLASSIT uses an incremental algorithm to acquire its concept hierarchy. This means that that its 
algorithm can be roughly described as in Section 4.3 of Chapter 2: 

For a new instance I, and some concept hierarchy: 
1. Incorporate I into the root node. 
2. Either: a) incorporate I to an existing child concept, or 

b) create a new child concept based on I. 
3. Unless a new child is added, recurse on the selected child 

concept. 

From a machine learning perspective, one of the most important aspects of this algorithm is that the 
learning method (concept formation) and the performance method (classification of an instance) 
are completely intertwined. Whenever an instance is classified, learning also occurs. The new 
instance is incorporated into a number of concepts, thereby modifying their definitions, and it may 
ca.use entirely new concepts to be added to the hierarchy, a.s in Step 2b above. Conversely, learning 
only occurs when. new instances a.re classified. 

Table 2 presents a more detailed outline of the central learning and classification algorithm for 
CLASSIT. As with the simple description of incremental concept formation, the new instance I is 
recursively sorted through the hierarchy of concepts (nodes). The recursion terminates when the 
system decides to create a new concept based on the instance J.5 This can occur in two ways. 

5. The recursion ca.n also ha.It when the score is 'high enough' - I Will discuss this momentarily. 
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First, if the current node N has no children (a. lea.f node), then the hierarchy is extended down 
by adding the new instance below N (see the definition of fork-node in Table 3). Second, if I is 
sufficiently distinct from the existing children of N then the system places I as a new child of N. 

Table 2. The top-level CLASSIT algorithm. 

Input: The current node N of the concept hierarchy. 
An unclassified (attribute-value) instance I. 

Actions: Modifies the concept hierarchy to include the new instance. 
Top level call: classit(Root, I). 

Classit(N, I) 

If N is a leaf node, 
Then Fork-node(N, I) 

Incorporate(N. I). 
Else 

Incorporate(N, I). 
For each child C of node N. 

Using some evaluation function. 
compute the score for placing I in C. 

Let Best be the node with the highest score, Best-val. 
Let Second be the node with the second highest score. 
Let Disj be the score for adding I as a new singleton child of N. 
Let Merge be the score for merging Best and Second into one node. 
Let Split be the score for splitting Best into all its children. 
If Best-val is the best score, 

Then if Best-val is high enough 
Then Incorporate(Best,I). 
Else Classit(Best. I). 

Else if Disj is the best score. 
Then place I by itself in a new singleton child of N. 

Else if Merge is the best score. 
Then let Merged be Merge(Best, Second, N). 

Classit(Merged, I). 
Else if Split is the best score, 

Then Split(Best, N). 
Classit(N, I). 

;· 
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At ea.ch level, the instance I is incorporated into the chosen concept, N. This means tha.t all 
the attributes defining N a.nd observed in I a.re updated: for symbolic attributes, the probabilities 
for each value a.re modified; for numeric attributes, the means a.nd the sta.nda.rd deviations are 
updated. In this way, the definition of N is modified to account for its new member, I. Note that 
N is defined intensionally: no list of instances is included in N, a.nd J's particular attribute values 
are not stored in N. 

Next, CLASSIT chooses among a. set of four operations: selecting an existing child class, creating 
a. new disjunct, merging two classes, or splitting a. class. The system uses its evaluation function 
(defined in the next section) to compute scores for each of these alternatives, and then carries out 
the action with the highest score. These alternatives a.re lea.ming operators: they are methods 
of moving through the search space of possible concept hierarchies. As discussed in Chapter 1, 
CLASSIT carries out a.n incremental hill-climbing search for the best concept hierarchy (Langley et 
al., 1987). 

In order to compute a. score for the first operator, the system considers adding the new instance 
I to each child node in turn. If the system does choose to incorporate I into the best existing child, 
then it recurses on that node, unless the score is so high that further categorization is deemed 
unnecessary. This occurs by means of a. system para.meter called the recognition criterion; the 
point at which the system 'recognizes' an instance I as being indistinguishable from a concept N. 

The user provides this para.meter to the system as a. percentage of the maximum value that the 
evaluation function can return. The recognition criterion lets the system 'forget' those instances 
that are similar enough to an existing concept. It is applied both to this first opera.tor and in the 
procedure fork-node. The latter use lets this para.meter indirectly control the depth of the tree: 
new levels are not added if instances a.re recognized as the same as existing leaf nodes. In either 
case if the recognition criterion suggests that the instance has been 'recognized', then the recursion 
terminates, and the system is ready for the next instance. 

As mentioned earlier, CLASS IT chooses the second opera.tor (create disjunct) when I is sufficiently 
distinct from all existing children. Just a.s fork-node controls the depth, this operator affects the 
breadth of the tree. Also, this operator provides another stopping condition for the classification 
process; after making a disjunct, the system is done with I, and can begin classifying the next 
instance. 

Table 3 includes definitions of the third and fourth operators for CLASSIT: merging and splitting 
nodes.6 These two operators a.re a.n important addition to the basic incremental algorithm, since 
they let the system reorganize the structure of its concept hierarchy. In general, because CLASSIT 

carries out a hill-climbing search, it may become stuck a.t a. local optimum of the evaluation function. 
Because of this problem, the system may learn different hierarchies for different orderings of the 
same data. TheE;e two operators can help the system recover from these order effects. Because they 
reorganize the tree, split and merge let the system recover from earlier decisions, and restart the 
search for the best concept hierarchy. 

For example, if initial instances are all of the same class C1 , CLASSIT may build a. hierarchy 
that divides instances into some number of closely related subclasses. If later, the system observes 

6. Fisher (1987a) originally introduced these operators in his CoB~EB system. 
i 
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Table 3. Auxiliary CLASSIT procedures. 

Merge(N1, N2, Parent) 
Add M, a new child of Parent. 
Initialize M's conditional probabilities to 

the weighted average of N1 and N2. 
Set M's children to (N1, N2). 
Delete N1 and N2 from the children of Parent. 
Return M. 

Split(N, Parent) 
Add the children of N to the children of Parent. 
Remove N from the children of Parent. 

Incorporate(N, I) 
Increment the member count of N. 
For each attribute in I, 

If the attribute is symbolic, 
update the count for the value in I 

Else (the attribute is numeric) 
update the mean and standard deviation 
to include the value in I. 

Fork-node(N, I) 
If I is different enough from N 
Then 

Create two children of N: 
One child is a copy of N. 
The other is a singleton child based on I. 

Else do nothing. 

instances from a very different class C2 , then it needs to merge together the C1 subclasses (see 

Figure 2a). This lets C1 and C2 be defined at the same level, and pushes the C1 subclasses to a 
lower, more specific level of the concept hierarchy. 

Conversely, instances from different classes may be placed in the same concept node. This can 
happen if the system assumes some single instance from C2 is noise, and is a member of C1. If 
additional instances show that there really is a separate cla~s C2, then this class will be built up 
as a child of C1 . Eventually, the system should prefer to split node C1 (see Figure 2b ), raising the 
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(a) The merge operation 

(b) The split operation 

Figure 2. Merging and splitting nodes in a concept hierarchy. 

subclasses to a higher level in the hierarchy. As one can see from the figure, merge and split are 
inverse operations. 

In general, there are a variety of operations that could be used to reorganize a concept hierarchy. 
For example, Wallace (1989) suggests a general grab(c, w) operation that lets any node w become 
a new sibling of some other node c. Since this can be defined for every pair of nodes in the tree, 
the operation can be attempted many times whenever learning occurs. This is similar to Fisher's 
(1987a) promote operator, which raises a node to some other location in the tree. The principal 
difference between the promote and grab operators is that Fisher strongly limits the use of his 
operator, while Wallace allows the grab operation to be used on many pairs of nodes. 

In contrast, CLASSIT only uses the merge and split operators, and in a strongly limited way. 

Table 2 shows that only a single merge (of the best and second-best children) and a single split (of 
the best child) is attempted at each level of the hierarchy. I chose this design to keep the system 
simple; until there is strong evidence suggesting that CLASSIT needs additional reorganization 
operators, I see no need to add additional mechanisms. 

The best way to reorganize a concept hierarchy remains a.n open question. Chapter 4 presents 
some evidence that CLASSIT's method works well, but it'is possible that other schemes will work 
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even better. For example, a simple way to expand CLASSIT's reorganizing ability is to consider 
more than a single merge at each level, or consider merging more than two nodes. Finally, I should 
point out that these operators often make little or no change to the information in the hierarchy, 
but rather rearrange the information into a more efficient form. This has implications when testing 
the value of these operators. 

2.2 The category utility evaluation function 

As described in Chapter 2, a clustering method consists of an algorithm and a.n evaluation function. 
These parts should be at least somewhat interchangeable; one should be able to design a set of 
related clustering methods by using different evaluation functions in a single algorithm. This is 
true to some degree of CLASSIT: the algorithm does not specify how to compute the scores needed 
to make a decision. In theory, an arbitrary evaluation function may be used at this point in the 
algorithm. I will return to this idea in Chapter 5, but for now, I present the evaluation function 
used by the basic system. 

A critical aspect of an evaluation function for CLASSIT is that it must be able to work with 
both symbolic and continuous attributes. The basic approach is analogous to that used by Gower's 
similarity metric. The system uses a symbolic measure for symbolic attributes, a numeric measure 
for numeric ones, and averages the values across all attributes. This is one of the simplests methods 
for combining attribute types, and therefore seems like a good starting point. Since this approach 
averages over two different evaluation functions, the functions should be as closely related as pos­
sible; in fact, CLASSIT uses a numeric evaluation function that can be derived from CoBWEB's 
category utility function, as described in Chapter 2. 

I have used this function as a starting point for two reasons. It has been used with some success by 
Fisher, and it has some psychologically appealing features. Not only does it allow for probabilistic 
concepts, but it also can be used to model some well-known psychological phenomena such as 
typicality and basic level effects (Fisher, 1987b; Fisher & Langley, in press). As presented in the 
Chapter 2, category utility for a single symbolic attribute, i, can be expressed as: 

Category Utility( i) = 
I:f=i[P(Cj) I:~=l P(XivlC1)2] - I:~=l P(Xiv)2 

J 

with summations over J classes and V values. It is the latter, innermost summations that must 
be generalized for continu·ous attributes. Since continuous attributes have an infinite number of 
possible values, the terms 

v 
I: P( Xiv ICJ )2 and 
v 

must be re-written for continuous attributes. Both of these terms are a sum of squares of the prob­
abilities of all values of an attribute. The former includes probabilities conditional on membership 
in a particular class, c1, whereas the latter does not include class information. The second term 
is equivalent to the probability at the parent concept, since .that node includes all instances in the 
partition regardless of class membership. 
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In order for these terms to be applied to continuous attributes, summation must be changed 
to integration, and some assumption must be made about the distribution of values. Without· 
any prior knowledge about the distribution of an attribute, a reasonable assumption is that its 
distribution follows a normal curve. (This is the same assumption ma.de in Section 1.2 for defining 
probabilistic concepts). Thus, the probability of a particular attribute value is the height of the 
curve at that value, and the summation of the square of all probabilities becomes the integral 
of the normal distribution squared. For the first term, above, the distribution is for a particular 
class, whereas the second term must use the distribution a.t the parent. In either case, this integral 
evaluates to a simple expression: 

-- e rr dx J 1 -(~)2 
q2211' = 

1 1 
;; 2y'i 

where µ is the mean and O' is the standard deviation. Finally, since this expression is used only for 
comparison, the constant term 1/2.,/i can be discarded. 

In summary, one can replace the innermost summations from category utility with the term 1/0'. 
Thus, the evaluation function used by CLASSIT for a. continuous attribute i is 

J 

where J is the number of classes in the partition, O'ij is the standard deviation for a given attribute 
in a given class, and <Jip is the standard deviation for a given attribute in the parent node. Hence, 
the evaluation function over all attributes can be defined as 

J.J 
(1) 

lnfo(C) is a. function that measures the value or quality of a class C. For a symbolic attribute i 
(with V values) 

v 
Info( Ci)= I: P(xivlC)2 

v 

and for a continuous attribute i 
lnfo(Ci) = l/O'iC 

This evaluation function is analogous to the function used by COBWEB; it is a transformation of 
category utility. For each attribute i this function sums over every child concept, Cj, and subtracts 
the information at the parent, Gp. Hence, this measures the gain in Info(C) from pa.rent to child 
levels of the hierarchy. 

Unfortunately, this transformation introduces a. problezp for singleton classes. For these classes, 
the standard deviation of any numeric attribute is zero, hd the value of 1/ O' is therefore infinite. 
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CLASSIT resolves this problem by employing the notion of acuity, a. system para.meter that specifies 
a minimum standard deviation. This ·limit corresponds to the notion of a. 'just noticeable difference' 
in psychophysics - the lower limit on our ability to ma.ke perceptual discriminations. Because acuity 
strongly affects the score of new disjuncts, it indirectly controls the breadth or branching factor of 
the concept hierarchy, just as the recognition criterion controls the depth of the hierarchy. 

For both symbolic and continuous attributes, Info( C) has the highest value when C is a. singleton 
class. This seems to imply that category utility would always prefer to make disjuncts, creating 
a degenerate hierarchy where there is a singleton child for every instance observed. However, the 
division by the number of classes J biases the system toward hierarchies with smaller branching 
factors. Hence, as long as there is a finite maximum va.lue for Info( C), the evaluation function 
will at some point prefer not to add a. new disjunct to the hierarchy. For symbolic attributes, this 
maximum value is 1.0, whereas for continuous attributes it is I/acuity. 

3. A detailed example 

A description of CLASSIT would be incomplete without a step-by-step example of the system's 
construction of a concept hierarchy. In fact, the examples used to instantiate a new theory or 
system are sometimes the most important (and frequently the most well-known) aspect of the 
description. In this section, I will step through an execution of the system as it learns about the 
domain introduced earlier in the chapter: playing balls described by weight (in grams), diameter 
(in centimeters), color, and texture. 

CLASSIT usually begins with an empty hierarchy, and hence no information about the domain. 7 

Therefore, the root node is instantiated as a singleton class after observing the first instance as 
shown in Figure 3a. Notice that the numeric attributes have Cl = 0.2; this shows that for this 
execution, acuity is set at 0.2. 

When the second instance is observed, CLASS IT incorporates it into the root and the two instances 
are used to extend the tree downward, making singleton classes at level one of the hierarchy (Fig­
ure 3b ). The only other possible action at this point would occur if the instances were so similar 
that the recognition criterion parameter forced the instances together without creating a. more 
specific level in the hierarchy. For this trial, the recognition criterion is set at 0.90; the instance 
must get a score of more that 90% of the maximum possible score in order to halt the classification 
process. 

The third, fourth, and· fifth instances are additional yellow and white ping-pong balls. In each 
case, the systems adds the new instance to concept C1 (for yellow ping-pong balls) or C2 (for white 
ping-pong balls). Also, each of these instances are similar enough that the recognition criterion 
does not let the tree extend beyond !eve~ one (where the root node is at level zero). After five 
instances, the classes C1 and C2 appear as in Figure 4. Upon encountering the sixth instance (an 
orange golf ball), CLASSIT makes a new singleton class, Ca, based on this instance. This hierarchy 

7. Of course, CLASSIT may also be initialized with background infom1:a.tion about a domain in the form of an initial 
concept hierarchy. Chapter 7 discusses this possibility further. 
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(a) First instance: color = 
texture = 
weight = 
diameter = 

P(Co) = 1/1 
Color P(yellow) = 
Txt P(smooth) = 
Wt tr= 0.20 µ = 
Dia rr = 0.20 µ = 

1/1 
1/1 
2.62 
3.67 

Color 
Txt 
Wt 
Dia 

white (b) Second instance: color = white 
smooth texture = smooth 

2.67 weight = 2.64 
3.69 diameter = 3.68 

P(Co) = 2/2 
Color P(white) = 1/2 

P(yellow) = 1/2 
Txt P(smooth) = 2/2 
Wt q = 0.20 µ = 2.63 
Dia q = 0.20 µ = 3.68 

~=s= 
P(C1) = 1/2 P(C2) = 1/2 

P(yellow) = 1/1 Color P(white) = 1/1 
P(smooth) = 1/1 Txt P(smooth) = 1/1 
(! = 0.20 µ = 2.62 Wt (! = 0.20 µ = 2.64 
(! = 0.20 µ = 3.67 Dia (! = 0.20 µ = 3.68 

Figure 3. The first two instances in CLASSIT's hierarchy. 

Sixth instance: color = orange 
texture = dimpled 
weight = 45.20 
diameter 4.23 

P(Co) = 6/6 

Color P(white) = 2/6 
P(yellow) 3/6 
P(orange) = 1/6 

Txt P(smooth) = 5/6 
P(dimpled) = 1/6 

Wt q = 15.84 µ = 8.39 
Dia (! = 0.20 µ = 3.84 

P.(C1) = 3/6 P(C2) = 2/6 P(Ca) = 1/6 
P(yellow) = 3/3 Color P(white) = 2/2 Color P(orange) = 1/1 
P(smooth) = 3/3 Txt P(smooth) = 2/2 Txt ?(dimpled) = 1/1 
q = 0.20 µ = 2.73 Wt (! = 0.20 µ = 2.68 Wt q = 0.20 µ = 45.20 
q = 0.20 µ = 3.77 Dia q = 0.20 µ = 3.74 Dia q = 0.20 µ = 4.23 

Figure 4. The effect of adding a new disjunct to1 CLASSIT's concept hierarchy. 
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Color 
Txt 
Wt 
Dia 

P(C1) = 3/7 
P(ye/low) 3/3 
P(smooth) 3/3 
(j = 0.20 µ = 2. 73 
(j = 0.20 µ = 3.77 
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Seventh instance: color 

Color 

Txt 

Wt 
Dia 

Color 
Txt 
Wt 
Dia 

texture = 
weight = 
diameter = 

P(Co) = 7 /1 
P(white) 3/7 
P(yellow) 3/7 
P(orange) = 1/7 
P(smooth) = 5/7 
P(dimpled) = 2/7 
O" = 19.40 µ = 14.98 
(j = 0.25 µ = 3.91 

P(C2) = 2/7 
P(white) = 2/2 
P(smooth) 2/2 
(j = 0.20 µ = 2.68 
(j = 0.20 µ = 3.74 

P(orange) 1/1 
P(dimpled) = 1/1 

white 
dimpled 

46.10 
4.36 

Color P(orange) = 1/2 
?(white) 1/2 

Txt ?(dimpled) 2/2 
Wt (j = 0.45 µ = 45.65 
Dia (j = 0.20 µ = 4.29 

P(Cs) = 1/2 

P(white) = 1/1 
P(dimpled) = 1/1 

Color 
Txt 
Wt 
Dia 

(j = 0.20 µ = 45.20 

Color 
Txt 
Wt 
Dia 

(j = 0.20 µ = 46.10 
(j = 0.20 µ = 4.23 (j = 0.20 µ = 4.36 

Figure 5. The result of extending CLASSIT's hierarchy down a level. 

is shown in Figure 4. Although the diameter of the sixth instance is similar to other instances, all 
other attributes are different, which leads the system to store it as a new disjunct. ' 

The seventh instance is a second golf ball. Since this instance is similar to the previous golf ball, 
CLASSIT chooses to add this instance into class C3. However, the new instance is distinct enough 
(e.g., it is white rather than orange) to warrant extending the hierarchy downward to level two 
(it applies the procedure fork-node to C3 ). Figure 5 shows the hierarchy after the system has 
processed the seven.th ball. At this point, the evaluation function would prefer a hierarchy with two 
rather than three level one classes, corresponding to a class of ping-pong balls and a class of golf 
balls. However, this requires merging the two ping-pong classes, and this option is not considered 

until a new ping-pong ball is seen. 

CLASSIT is able to apply the merge operator after observing the eighth instance. For this instance 
(a yellow ping-pong ball), the system finds that C1 is the best match and C2 the second best, but 
the score resulting from merging these classes is better than all other options. Therefore, a new 
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Eighth instance: color = yellow 
texture smooth 
weight = 2.69 
diameter = 3.68 

P(Co) = 8/8 

Color P(white) = 3/8 
P(yellow) = 4/8 
P(orange) = 1/8 

Txt P(smooth) = 6/8 
P(dimpled) = 2/8 

Wt (J' = 18.60 µ = 13.44 
Dia (J' = 0.25 µ = 3.88 

P(Ci) = 6/8 P(C2) = 2/8 
Color P(white) 

P(yellow) 
Txt P(smooth) 
Wt (J' = 0.20 
Dia (J' = 0.20 

P(C3) = 4/6 
P(yellow) = 4/4 
P(smooth) = 4/4 
u=0.20 µ=2.72 
(J' = 0.20 µ = 3.75 

Color 
Txt 
Wt 
Dia 

= 2/6 
= 4/6 
= 6/6 

µ = 2.71 
µ = 3.74 

Color P(orange) 
P(white) 

Txt P(dimpled) 
Wt (J' = 0.45 
Dia u= 0.20 

Color P(orange) = 1/1 
Txt P(dimpled) = 1/1 
Wt CT = 0.20 µ = 45.20 
Dia CT= 0.20 µ = 4.23 

= 1/2 
= 1/2 
= 2/2 

µ = 45.65 
µ = 4.29 

P(C4) = 2/6 P(Cs) = 1/2 
P(white) = 2/2 Color P(white) 1/1 
P(smooth) = 2/2 Txt P(dimpled) = 1/1 
u= 0.20 µ = 2.68 Wt (J' = 0.20 µ = 46.10 
(J' = 0.20 µ = 3.74 Dia c;= 0.20 µ = 4.36 

Figure 6. The result of merging two classes in the concept hierarchy. 
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node, C3 , is created by merging C1 a.nd C2 , as shown in Figure 6. Note that the old classes a.re 
pushed down to level two, and that the new instance is added into class C3 before the recognition 
criterion stops further descent. 

In order to demonstrate the split operator, we need to look at the hierarchy after CLASSIT has 
seen a number of very different objects, such as volleyballs. In this trial, the first volleyball is 
instance number nine. Despite the fact that this is a very different instance, the system decides to 
add it into the golf ball class, making a disjunct at level two rather than at level one. After all, it is 
possible this is the result of measurement error, or that it is simply a very la.rge, very unusual golf 
ball. However, instances ten and twelve are additional volleyballs, and instance eleven is another 
golf ball. These instances strengthen the two subclasses below C2, producing the hierarchy shown 
in Figure 7. (To reach this point, merge operators were used at level two with the eleventh and 
twelfth instance.) 

Finally, with the thirteenth instance (another volleyball), the system applies the split opera.tor. 
This causes all nodes under the old C2 concept to be promoted, and C2 is discarded as no longer 
useful. This tree is shown in Figure 8. Note the twelfth instance has been added to the new C2 , 

the promoted class of volleyballs. 

This step-by-step trace should make clear the basic CLASSIT algorithm. As each each instance 
is seen, the system sorts it through the current concept hierarchy. At the same time, each instance 
modifies the hierarchy by changing the concept definitions and by modifying the structure of the 
tree. I have demonstrated the four operators the system uses to search for the 'best' concept 
hierarchy: incorporation, creating a new disjunct, merging, and splitting. Although this domain 
is quite small, it should be clear that the algorithm can be applied to hundreds of instances, each 
described by a large set of attributes. Chapters 4, 5, and 6 will use much larger domains to evaluate 
the system's ability. 
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Twelfth instance: color = yellow 
texture = smooth 
weight = 2.69 
diameter = 3.68 

P(Co) = 12/12 

Color P(white) = 7/12 
P(yellow) = 4/12 
P(orange) = 1/12 

Txt P(smooth) = 6/12 
P(dimpled) = 3/12 
P(leathery) = 3/12 

Wt u = 109.81µ = 79.60 
Dia u = 7.36 µ = 8.17 

Color P( white) = 2/6 
Color P( orange) = 1/6 

P(white) = 5/6 
Txt P(dimpled) = 3/6 

P(leathery)= 3/6 
Wt u = 110.86µ = 156.5 
Dia u = 8.32 µ = 12.63 

P(yellow) = 4/6 
Txt P(smooth) = 6/6 
Wt u=0.20 µ=2.71 
Dia u = 0.20 µ = 3.74 

P(Cs) = 4/6 
P(yellow) = 4/4 
P(smooth) = 4/4 
(7' = 0.20 µ = 2.72 
(7' = 0.20 µ = 3.75 

Color 
Txt 
Wt 
Dia 

P(Cs) = 3/6 
P(white) = 3/3 
P(leathery)= 3/3 
(7' = 3.30 µ = 267.3 
(7' = 0.49 µ = 20.90 

P(Cs) = 3/6 

Color 
Txt 
Wt 
Dia 

P(white) = 2/2 
P(smooth) = 2/2 
(7' = 0.20 µ = 2.68 

Color P(white) = 2/3 
P(orange) = 1/3 

Txt P(dimpled) = 3/3 
Wt u = 0.37 µ = 45.67 
Dia u = 0.20 µ = 4.28 

(7' = 0.20 µ = 3.74 . 

Figure 7. CLASSIT's concept hierarchy after 12 instances. 
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Color 
Txt 
Wt 
Dia 

P(C1) = 6/13 
Color ?(white) = 2/6 

?(yellow) = 4/6 
Txt ?(smooth) = 4/6 
Wt (J' = 0.20 µ = 2.71 
Dia (J' = 0.20 µ = 3.74 

P(yellow) = 4/4 
?(smooth) = 4/4 
u=0.20 µ=2.72 
(j = 0.20 µ = 3.75 
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Twelfth instance: color 

Color 
Txt 
Wt 
Dia 

texture 
weight 
diameter 

P(Co) = 13/13 

Color ?(white) = 8/13 
?(yellow) = 4/13 
?(orange) = 1/13 

Txt ?(smooth) = 6/13 
?(dimpled)= 3/13 
?(leathery)= 4/13 

Wt (J' = 116.50µ = 93.86 
Dia u= 7.82 µ = 9.13 

P(C2) = 4/13 
Color ?(white) = 4/4 
Txt ?(leathery)= 4/4 
Wt (J' = 3.03 µ = 266.7 
Dia (j = 0.43 µ = 20.85 

P(Cs) = 2/6 
?(white) = 2/2 
P(smooth) = 2/2 
(j = 0.20 µ = 2.68 
(j = 0.20 µ = 3.74 

= yellow 
= smooth 
= 2.69 
= 3.68 

P(C3) = 3/13 
Color P(white) = 2/3 

P(orange) = 1/3 
Txt P(dimpled) = 3/3 
Wt (j = 0.37 µ = 45.67 
Dia (j = 0.20 µ = 4.28 

. Figure 8. The effect of splitting a class in the concept hierarchy. 



CHAPTER 4 
Experimentation with Different Domains 

In any scientific endeavor, after creating and presenting a new idea or theory, the value of the 
idea should be evaluated. Therefore, now that I have described a system for concept formation, the 
next step is to evaluate that system's learning ability. Purely mathematical ideas can be evaluated 
simply by analysis and proof. Unfortunately, despite advances in the theory of learning algorithms 
(Valiant, 1984; Haussler, 1987), most learning systems, including CLASSIT, are much too complex 
for complete analysis. Hence, the best available means for evaluating the system is with extensive, 
careful experimentation. Experimental studies are the focus of Chapters 4, 5, and 6. 

Although this is clearly a good method for carrying out research, extensive experimentation is 
relatively new to machine learning. The experimental procedure I use roughly follows the outline 
presented in Langley (1988). I begin with a precise description of the performance tasks that I use 
to evaluate the system. The :first section of this chapter presents the two measures used throughout 
the thesis: accuracy and efficiency. The remainder of the chapter looks at the effect on performance 
as the domain is varied. This contrasts with Chapter 5, where for a fixed set of domains, I look at 
a variety of modifications to the learning method. 

There are a number of different ways to vary CLASSIT's domain. First, I look at a set of 'real­
world' domains, to show that CLASSIT can actually learn useful concepts in a variety of real ap­
plications. Next, with the use of artificial domains, I show how some systematic changes in the 
domain (such as added noise or complexity) affect the system's learning ability. The following 
section is dedicated to domains that include both symbolic and continuous attributes. I discuss 
attribute conversion methods, and compare their use to CLASSIT's more integrated approach. The 
:final section in the chapter discusses order effects: the effect of modifying the order of training 
instances on the system's learning and performance. 

1. Performance measures 

In order to carry out an experiment that evaluates the ability of a learning system, one must define 
a quantitative performance task. If learning is defined as improved performance over time, we must 
know exactly what is meant by 'performance'. In addition, if performance can be quantitatively 
measured, then one can determine how much learning has occurred. This measurement can then be 
used to evaluate a learning method across different domains and compare 9.ifferent learning systems 
on a given domain. 

1.1 Predictive accuracy 

To evaluate the CLASSIT system, the principal performance task I use is predictive accuracy. 
This task evaluates the usefulness of a concept by judgin~ how accurately it can make predictions 
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about future instances. More specifically, any concept can predict the attribute values of member 
instances; the system can infer that ·if x is a member of concept C, then x has certain attribute 
values (with some probability). One can then use the accuracy of these inferences to evaluate the 
learning system. This predictive accuracy task is an instantiation of a more general task for any 
inductive learning system: an application of the knowledge acquired during training to new, unseen 
test data. This approach for testing inductive systems was first popularized by Quinlan (1986). 

Predictive accuracy was first defined and used in concept formation by Fisher (1987b). Fisher 
points out that the use of predictive accuracy is also motivated by the definition of the category 
utility evaluation function. This function was originally defined to maximize the the number of 
correct guesses that a class can make about an attribute value (Gluck & Corter, 1985). Hence, 
to evaluate the ability of a learning system that uses category utility, one should use this same 
prediction task. 

Table 4 defines how predictive accuracy is measured to evaluate CLAS SIT. For each test set 
instance I define predictive accuracy as the difference between the predicted and the actual values 
of the test attribute. Note that this difference is defined separately for symbolic and continuous 
attributes. For the former, either a one or a zero is returned, indicating a match or a mismatch; for 
the latter, the absolute value of the difference between Predicted and Actual is returned. This 
difference is then averaged over all test set instances, giving a performance measure for the system.1 

The table shows that BestClass is found by making a call to CLASSIT' with the test-set instance 
I. This call to CLASSIT' is used to evaluate the performance of a static concept hierarchy. Therefore, 
in contrast to the usual CLASSIT system, learning is turned off as each test set instance is sorted 
through the hierarchy. Therefore, CLASSIT' does not modify the concept hierarchy; it does not 
change any concept definitions, and it does not consider the merge and split operations. 

This leaves only two choices as the system sorts I through the tree. Either it chooses an existing 
concept, in which case the algorithm continues recursively with that concept, or it prefers to make a 
new disjunct. In the latter case, rather than making the disjunct (and modifying the tree), CLASS IT' 
returns the parent class as BestClass. As usual, the system also terminates when it reaches a leaf 
node or when the recognition criterion suggests that no further sorting is needed. This is slightly 
different from Fisher's (1987b) performance task: when COBWEB carries out this task, it does not 
consider disjuncts and does not have a recognition criterion parameter, so it always terminates at 
a leaf node. 

As described in Chapter 2, this performance measure is related to the 'recall' task in cognitive 
psychology: given a set of cues (attributes) from a new instance, the system should be able to use 
its knowledge about past instances to recall the unspecified attributes of the instance. As I have 
defined predictive accuracy, there is only a single unspecified attribute. However, this task can be 
modified so that a number of attributes are set to unknown. I return to this issue in Chapter 6, 
which describes CLASSIT's ability with unknown attribute values in more detail. 

1. Fisher (1987b) suggests going one step further and averaging this predictive accuracy over all attributes. Although 
this is certainly reasonable, it should not change relative performanc11, and therefore is not used in this dissertation. 
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Table 4. Measuring predictive accuracy. 

Given: Tree, a concept hierarchy. 
TestAtt, an attribute for prediction. 
TS, a set of test instances. 

Predict (Tree, TestAtt, TS) 
For each instance, I, in TS do 

1. Save as Actual the value of TestAtt for I; 

set TestAtt to 'unknown'. 
2. With learning off, set BestClass to Classit'(Tree, I) 
3. Set Predicted to 

a) For continuous attributes, 
the mean of TestAtt in BestClass. 

b) For symbolic attributes, 
the most likely value of TestAtt in BestClass. 

4. Set Diff to the difference between Predicted and Actual. 
Return the average value of Diff over all instances in TS. 

1.2 Retrieval efficiency 

45 

Although predictive accuracy is an important indicator of a learning system's ability, it overlooks 
the efficiency of the system. In general, there is often a tradeoff between efficiency and accuracy: 
it may be possible to arrive at an extremely accurate answer, but only with an impractical amount 
of processing time. Conversely, it is certainly possible to obtain an answer very efficiently that is 
not very accurate. 

For these reasons I use retrieval efficiency as a secondary task for evaluating CLASSIT's ability. 
Rather than measuring the accuracy of predictions made by some class, this measures how much 
time is taken to classify the instance. As with predictive accuracy, this task uses an unseen set of 
test instances, and is averaged over those instances. This measure corresponds to a 'recognition 
time' test as used in c~gnitive psychology: given some knowledge about the environment (for this 
application, a concept hierarchy), measure the length of time needed to recognize or classify a new 
instance. 

For CLASSIT, .time can be defined as the average number of nodes inspected during classification. 
I also call this quantity the average work during testing, since it is related to the computational 
cost of classification. Table 5 defines Work for a concept hierarchy and a test set. As with predictive 
accuracy, work is an average over test-set instances, and includes a call to CLASSIT1 with learning 
turned off. 

This performance task measures the quality of the concept hierarchy, rather than a measure of 
I 

the predictive quality of the concepts in that hierarchy .. In general, I use this measure whenever 
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Table 5. Measuring retrieval time. 

Given: Tree, a concept hierarchy. 

TS, a set of test instances. 

Work(Tree, TS) 

For each instance, I, in TS do Classit 1 (I, Tree) 

Count the number of nodes visited: 

For every recursive call to Classit 1 (I, N), 

Sum the number of children of N into Nodes-Seen. 

Return the average Nodes-Seen over all instances in TS. 

looking at differences in structure and shape of the concept hierarchy. This arises in Chapte; 5, 
when comparing different learning systems. Retrieval efficiency is also important for evaluating 
the attention mechanism I introduce in Chapter 6; in that chapter I will define recognition time in 
terms of both concepts and attributes observed during classification. 

2. Performance with real domains 

If one defines learning as improved performance over time, then the most basic experimental eval­
uation of a learning system is a learning curve, a graph that shows this improved performance. For 
CLASS IT, I will show learning curves with improved predictive accuracy over time. As the system 
observes instances, its concept hierarchy becomes a better and better representation of the class 
structure in the data, and therefore can be used to more accurately predict missing attributes. 
Additionally, the time needed to recognizing instances should not become too large as more and 
more instances are observed. 

I begin this section with a description of the real-world domains used for testing CLASSIT. These 
domains are all in the public domain, and available from the UCI repository of machine learning 
databases. 2 After describing the data.bases, I present the experimental method and the resulting 
learning curve for each domain, as well as some discussion of results. Finally, I present efficiency 
results (recognition times) for these natural domains. 

2. To obtain information a.bout these databases, contact Da.vid Aha., Department of Information a.nd Computer 
Science, University of California., Irvine, 92717, or send electronic DJ.ail to 
(ml-repository@ics.uci.edu) 
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Table 6. The real domains used for testing CLASSIT. 

Database 
Symbolic Numeric No. of 
attributes attributes instances 

Voting records 17 0 435 

Glass 1 9 214 

Heart-disease 8 6 263 

Car insurance 8 16 205 

Star LRS 1 93 531 

2.1 The domains 

I consider five real-world domains for evaluating CLASSIT. Together with experimentation on 
artificial domains, I believe this represents a good start toward demonstrating CLASSIT's ability 
with real problems. In comparison with earlier machine learning (and AI) research, this chapter 
uses a wide range of domains for evaluating the system. However, recent work suggests that five 
or six domains is near the minimum needed to evaluate the ability of a learning system (Buntine 
& Niblett, 1990). Table 6 summarizes the databases, showing the number and type of attributes 
for each. Appendix A presents sample instances from these domains, as well as additional details 
about each database. 

VOTING DATABASE 

The first database consists of voting records extracted from the 1984 U.S. congressional voting 
records by Jeff Schlimmer. There are a total of 435 instances (corresponding to the 435 represen­
tatives), and each instance is described by 17 binary attributes: 16 yea or nea votes, and one class 
attribute indicating 'democrat' or 'republican'. The voting attributes can also take a third attribute 
value: unknown (or an abstention). Since this is a form of missing information, I postpone the 
use of this attribute value until Chapter 6, where I describe CLASSIT's general approach to missing 
information. For this chapter, I only use instances from this domain that are complete, with no 
unknown attribute values. 

This database includes a 'class attribute', which indicates the 'correct' class (political party, 
in this case) for each instance. I use this attribute for the performance task: CLASSIT will try to 
predict the political party of a congressman based on that person's voting record and on the learned 
concept hierarchy. This database has been used extensively in machine learning, especially by those 
in supervised learning (Aha & Kibler, 1989; Buntine & Niblett, 1990). For these researchers, the 
class attribute is treated specially, as feedback for the le3.1fning system. In contrast, CLASS IT treats 
all 17 attributes equally. 
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GLASS DATABASE 

The second data.base contains 214 descriptions of glass fragments, a.s would be used by forensic 
science. Given a. small fragment of glass, as is often found during criminal investigation, the 
problem for this domain is to identify the origin (window pane, car window, bottle, etc.) of 
that glass fragment. This data.base wa.s originally collected by Brian German of the Home Office 
Forensic Science Service, U.K. There are nine numeric attributes such a.s refractive index and 
mineral content for various minerals, and one symbolic attribute. As with the voting data.base, the 
symbolic attribute indicates the 'class' of the instance; this will be the predicted attribute. 

For this work, I use a binary class attribute: either the glass is a window fragment or it a non.­
window fragment. This follows the original use of this database by Evett and Spiehler (1987). 
In contrast, Bun.tine and Niblett (1990) allow the class attribute to take seven possible values .. 
Both of these approaches seem to result in about the same accuracy, so I have chosen the binary 
representation for simplicity. 

HEART-DISEASE DATABASE 

The next database encodes heart disease information from 263 patients from the records of the 
Cleveland Clinic Foundation. There are 14 attributes per instance, of a variety of types. Attributes 
range from binary attributes such as male/female to continuous attributes such as blood pressure 
at rest. This database was collected by Dr. Robert Detra.no, who converted all attributes to a 
numeric representation (Detra.no et al., 1990). As much as possible, I have restored the attributes 
to their original mixed format: the database I use has eight numeric attributes and six symbolic 
ones. 

The predicted attribute for this database is 'degree-of-disease'; indicating the degree of heart 
disease in the patient. This attribute is technically an ordinal attribute (see Chapter 2) with four 
values: {O, 1, 2, 3}. As with the previous database, I convert this attribute into a binary attribute: 
either sick {1, 2, 3} or healthy {O}. Although this could be treated as a numeric attribute, there is 
more 'distance' between healthy and sick than there is among different degrees of sickness. This 
database has also been used by Aha. and Kibler (1989). 

CAR INSURANCE DATABASE 

The fourth database describes data from a wide variety of cars from 1985, including attributes such 
as price, weight, wheel-base, and horsepower, as well as a 'risk factor' as assigned by automobile 
insurers. This database of 205 automobile descriptions was collected by Jeff Schlimmer. Unlike the 
other domains, there are no published results using this database. 

This is probably due to a number of difficulties. First, there are a relatively large number of 
attributes of mixed types: there are 8 symbolic attributes and 16 numeric ones. Second, there is no 
definitive 'class attribute': although the risk factor is probably a good choice, the accuracy of this 
attribute is unknown. Finally, although it can be treated as symbolic, the risk factor is really an 
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interval attribute, ranging from 3 to - 2. For this chapter, I predict both risk factor a.nd horsepower 
as numeric attributes. 

STAR SPECTROMETER DATABASE 

The final domain used to test CLASSIT is the largest: 531 instances of low resolution spectrometer 
(LRS) readings of stars. Ea.ch instance is described by 93 numeric attributes measuring spectral 
fluxes from different blue-band and red-band channel wavelengths. Also included is one class 
attribute, although the meaning (or validity) of this attribute is unclear. Although this particular 
set of instances has not been used elsewhere, Cheeseman et al. (1988) present qualitative results 
with a. larger data.base (5425 instances) from the same domain. 

As with the automobile database, this domain does not have a. definitive class attribute. There­
fore, in addition to predicting the class attribute, I would like to apply the performance task to 
other attributes in the domain. Unfortunately, because the semantics of this database a.re poorly 
understood, there does not seem to be a good way to choose among the remaining 93 attributes. 
For this chapter, I have selected two additional attributes at random, one each from the blue and 
red spectra. 3 

2.2 Learning results 

I am now ready to describe the experimental method used to demonstrate that CLASSIT ca.n learn 
from ea.ch of these domains. To produce learning curves, each domain must be broken into sets of 
training and test instances. In general, I have found that the system's concept hierarchy stabilizes 
after relatively few training instances. For most domains, performance is largely unchanged after 
learning from 30 to 50 instances. Hence, for these experiments, I use a. training set much smaller 
than the size of the entire <la.ta.base. In order to be representative of the data.base, I use test sets 
of at least 30 instances. 

Both the test set and the training set are selected a.t random from each domain, such that the two 
sets have no instances in common. This is an important requirement: if the test set were a subset 
of the training set, then a 'learning' system could perform well simply by saving all instances and 
parroting information back a.bout each test set instance. This is the task for a database system, not 
an inductive learner. Because the test set instances are unseen, CLASSIT must carry out induction 
over the instances it has seen: it must generalize or extend its knowledge to account for the new 
instances. 

There are some aspects of the CLASSIT system that affect learning ability but that I would like 
to ignore for these initial experiments. First, different orderings of the training set instances will 
affect the performance of the system. I will discuss this effect in detail in Section 5 of this chapter. 
However, for most experiments, all results are averaged over ten random orderings of the training 

3. I have followed a suggestion from John Stutz (personal communication) that I use attributes from the higher and 
lower ends of the red and blue wavelengths. 
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Figure 9. Learning curves for CLASSIT on three real domains. 

set data. This makes it very unlikely that any result is due to a beneficial ordering that aids 
performance, or a misleading order that hinders performance. 

Second, different settings of CLASSIT's two parameters, acuity and the recognition criterion, can 
affect performance. For these experiments, I will simply list the settings used for each domain. Ob­
viously the degree to which CLASSIT must be 'tuned' to each new domain is an important concern; 
I will discuss this and explore the effects of parameter settings more completely in Chapter 5. 

Figure 9 shows learning curves for the first three domains. As the graph shows, I used a training 
set of 60 instances for the glass and heart-disease domains, and 50 for the voting database. The 
figure also includes .the parameter settings used for these experiments. I report performance as 
percentage error: at each test point, the percentage of incorrect predictions CLASSIT makes for 
the test-set instances. This is the measure I use whenever reporting predictive performance for a 
symbolic attribute. 

All three curves shown in Figure 9 demonstrate some degree oflearning. Unsurprisingly, asymp­
totic performance is best with the cleanest domain (the voting database), and worst with the 
noisiest domain (heart-disease). All three curves show th~t most learning has occurred by the 
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Figure 10. Learning curves for the automobile database. 
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tenth instance; after this point, the concept hierarchy is fairly stable and little additional learning 
occurs. Also, each curve shows performance with the same type of attribute: a binary (symbolic) 
attribute. The simplicity of this attribute may contribute to the relatively rapid learning seen in 
these curves. 

A different type of learning curve can be seen in Figure 10. These graphs show results from 
the automobile insurance database (with acuity set at 1.0 and recognition criterion at 0.9). For 
this experiment, the predicted attributes are numeric rather than symbolic. For these attributes I 
report average absolute error: the average distance from the attribute value that CLASSIT predicts 
to the actual attribute value in the test-set instance. 

Figure lO(a) shows improved predictive ability for the 'risk factor' attribute, while Figure lO(b) 
shows results for the 'horsepower' attribute. The curves are displayed at different scales because 
the magnitude of the attributes are completely different: risk factor varies from -2 to 3 while 
horsepower ranges from 58 to 162. In addition to risk factor, I chose horsepower simply because 
there is probably some correlation between insurance risk and horsepower. There are certainly 
other attributes that would be equally interesting to predict (e.g., the price of the car, or the car 
manufacturer). 

In order to evaluate these absolute errors, I compare CLASSIT's ability to that of a baseline error 
rate. This is shown in Figure 10 as a the learning curve for a naive algorithm. This algorithm 
simply always p'redicts the overall mean for the missing attribute. Although this is certainly not 
a lower bound for performance (it is possible to worse than average prediction), one would expect 
that any reasonable learning method would outperform this naive method. 

Figure 11 presents learning curves for the final domain, the star LRS database. I present the 
learning curve for the 'class' attribute in Figure ll(b), while Figure ll(a) shows results from two 
randomly chosen attributes. For these experiments, achlty is set at 100.0, and the recognition 
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criterion at 0. 7. As with the automobile database, I include the naive average prediction for 

comparison. 

It should be noted that although the 'class attribute' is symbolic, it can take on ten possible 
values. This contrasts with the first three domains (see Figure 9) in which the predicted attributes 
were binary. One should not compare accuracy scores between these two types of attributes: it is 
much easier to be correct with two possible values than when choosing among ten values. This can 
be seen with the lower scores in Figure ll(b) for both CLASSIT and the naive algorithm.4 Actually, 
the star instances are not distributed very evenly among the ten classes; three or four classes tend 
to dominate, with the most common class including almost 50% of the test set instances. 

Although it is hard to intuitively evaluate CLASSIT's ability in this domain (especially without 
the aid of a domain expert), these results seem comparable to learning curves in other domains. 
I should point out that this domain is closest to the visual perception domain that I described in 

Chapter 1. Unlike diagnosis data, attribute values in the star database are simple readings from a 
sensor, forcing the system to learn concepts in a completely unsupervised environment. Although 
one might prefer something easier to visualize, CLASSIT was designed for this type of data. 

2.3 Efficiency results 

For all of these domains, CLASSIT shows some ability to improve predictive performance over time. 
I also examine the system's ability with the secondary performance task: its average retrieval 

efficiency. Figure 12 shows retrieval efficiency (work) versus instances for four of the real domains 

described in this chapter. The parameter settings, test sets, and any experimental variables are 

the same for this experiment as with the accuracy tests. Thus, the efficiency curve for the heart 
disease database was created from the same executions as used earlier for predictive accuracy. 

This experiment shows that work rises approximately as the log of the number of instances. 

Since the depth of a tree grows at logb(N), for N nodes and branching factor b, this is exactly what 
should be expected when retrieving information from the concept hierarchy. It may also be possible 
to draw some conclusions about the different asymptotes for the different domains. According to 

Figure 12, CLASSIT is least efficient with the automobile domain, and most efficient with the voting 

database. This implies that the automobile domain requires more nodes than a domain such as the 

voting database, suggesting a difference in domain complexity. 

Testing the efficiency and accuracy over a variety of real domains is an important step in the 
evaluation of a learning system. Although the domains differ along a number of dimensions, I hope 

to have shown that CLASSIT performs reasonably with all of them. This versatility suggests that 

the system should work well with a large number of potential domains. 

4. A naive algorithm for symbolic attributes always predicts the. most common attribute value, rather than the 

mean. 
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Figure 12. Retrieval efficiency for four real domains. 

3. Varying domain characteristics 

Although it is important to show that the system can learn with a variety of different real domains, 
this type of experimentation cannot guarantee that the system will not completely fail on the very 
next real domain. In order to understand the limitations of the system, one must characterize ways 
in which the input can vary, and then test the system at different points along these dimensions. 
To this end, I use artificial domains that can be systematically modified in order to demonstrate 
particular abilities (Langley, 1988). 

The artificial domains that I use throughout this thesis are created by simple data-producing 
programs that incorporate a random number generator. In general, one can use these programs to 
precisely specify the class structure, along with the number and type of attributes for each domain. 
For symbolic attributes, one must specify a set of possible values, while for numeric attributes, the 
generator needs a mean and a standard deviation. These values can then be used with a polynomial 
approximation to produce values with the specified normal d;istribution. For completeness, all data 
generators (and some experimental details) are fully described in Appendix B. 
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Figure 13. Three simple class structures. 

In this section I use artificial domains to investigate three different domain characteristics: class 
complexity, noise, and irrelevant information. For each of these, I measure CLASSIT's predictive 
ability over a set of domains that differ along that dimension. As with experiments with real do­
mains, all of the results in this section are averaged over ten different training-set orders. Although 
these experiments are preliminary, they do demonstrate that the system can be applied to a variety 
of different domains. 

3.1 Varying the class complexity 

One of the simplest tests possible with artificial domains is to verify that CLASSIT is not biased 
toward a particular type of class structure. One of the claimed advantages of the system is that 
it need not be told the number of classes a priori; instead, these are discovered automatically by 
the system. More precisely, I hypothesize that the system can reach a high level of predictive 
ability regardless of class structure. In order to support this claim, I show predictive performance 
as CLASSIT learns from three domains with different class structure. 

Figure 13 shows three simple class structures: (a) shows a binary tree, (b) shows a tree with six 
top-level children and (c) shows a two-level tree with si~ subclasses. These three graphs specify 
the class structure of three artificial domains. The genefators for these domains are described in 

I 
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Figure 14. CLASSIT's predictive ability with varying class structure. 

Appendix B. All of these domains have instances with nine numeric attributes. Predictive ability 
is measured with the ninth attribute, an attribute that is different for every class. 

Learning curves for CLASSIT using these domains are shown in Figure 14. For all of these trials 
the system parameters were held constant: acuity is at 2.0 and recognition criterion at 80 percent. 
For each domain, I also include the predictive error for the naive algorithm. As described in the 
previous section, this method predicts the mean value over all instances. For this experiment, I 
only show asymptotic performance (after 60 instances) for the naive algorithm - for these domains, 
the 'learning' curves for this approach would be almost completely flat. 

At the other extreme, the "ideal" error rate is also given for each of these domains. One can 
only determine the ideal error rate with artificial domains or when the 'best possible' hierarchy 
is known. This rate is determined by using the ideal hierarchy and the actual training sample 
of instances used during learning (in this case, 60 instances). With an infinite training set, the 
ideal error approaches zero; with finite sets this error indicates how far the particular sample used 
deviates from the norm. 

In all of these experiments, I use a noise-free test set. This means that there is only one test 
set instance for each class defined by the data generator. ~his may seem contrary to the usual 
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use of a. test set, where the larger the test set, the better. This is the case in natural domains, 
because one does not know what is noise and what is 'real' class structure. By using a large test 
set the researcher hopes to ignore the noise in the domain by averaging. In contra.st, with artificial 
domains, one knows the real class structure and can simply remove all noise from the test set. In 
this way, one can directly measure the ability of the learning system to acquire the desired 'real' 
class structure. Nordhausen (1989) also uses this type of noise-free test set in experiments with his 
Ins system. 

As can be seen from Figure 14, predictive accuracy is largely unaffected by differences in class 
structure. In all cases, predictive error quickly approaches the ideal error. Learning is slower for 
the six-class domain than with a binary class structure, but this is inevitable; the system cannot 
make very accurate predictions until it has seen at lea.st one instance from all six classes. I should 
note that predictive accuracy does not evaluate the shape of the concept hierarchy that CLASSIT 
produces. For example, the learning curve for the subset domain could have been duplicated by 
building a flat list of six classes. However, CLASSIT does build the structure with subclasses as 
shown in Figure 13(c). More importantly, Figure 14 does support the hypothsis that the system's 
performance does not depend on the class structure in a domain. 

3.2 Varying the number of irrelevant attributes 

In order to find the class structure for a domain, an unsupervised concept formation system must 
be able to discover which attributes are important and which should be ignored. This ability is 
important in truly unknown domains, where there may be many attributes and little knowledge 
about their semantics. If a system does not have this ability, then the user would be required to 
provide databases with only useful attributes that had something to do with the class structure. 
This is only one step away from supervised concept learning, where the user supplies information 
about concepts directly. 

In contrast, I hypothesize that CLASSIT is able to determine which attributes in the domain 
indicate class structure. Attributes that are not correlated with any concept I will refer to as 
irrelevant attributes. More precisely, for the artificial domains that follow, an irrelevant attribute 
has the same mean and standard deviation for all instances. 

In order to demonstrate that CLASSIT can find relevant attributes and ignore irrelevant ones, I 
use four artificial domains. The first domain has instances with four attributes, all of which are 
relevant: any of these are sufficient to predict class membership. These attributes do include some 
noise, but they are relatively clean. (The next section defines and discusses noise more completely.) 
The second domain simply adds four irrelevant attributes.to the data generator. The next domain 
adds four more· irrelevant attributes, and the final domain adds another eight such attributes, 
creating instances with four relevant attributes and 16 irrelevant ones. In all four domains, all 
attributes are numeric and the ideal class structure contains four top-level classes. See Appendix B 
for more description . 

.Figure 15 shows CLASSIT's ability with these artificial domains. For this experiment, acuity 
was at 1.0 and the recognition criterion at 0.8. Because the four relevant attributes have little 



58 J. H. GENNAR.I 

Absolute error 

25 

20 

15 

10 

5 

0 
0 

• 
i 
l 
I 

~1 

\\ 
II 

~ 
' \ 
\ 
·~ \ ,, 
\1\ 
',I \ 
\I 

\\ ' \ ~ I 
I \ 

I \ \ 

'\ I 

I \ \.... 

\ \ ...... ...... 

\ ........ ' ..... 
' .... ..... 
\, ', ......... 

No irrelevant attributes 
Four irrelevant attributes 
Eight irrelevant attributes 
Sixteen irrelevant attributes 

'\ "- ...... 

... ---·-..... ~-.:-:·:·.:-;~---=--~:=-=-=-~----------=-==-::: .. = .. =-=-=-=-:: ---------- -----
10 20 30 40 50 60 

Number of instances 

Figure 15. CLASSIT's predictive ability with irrelevant information. 

noise, the learning curve quickly approaches the ideal error. For this training set of 60 instances, 
the ideal error is 0.47. In contrast, the naive algorithm would have an average predictive error of 
20.0. As can be seen, the predictive performance of CLASSIT is largely unaffected by the number 
of irrelevant attributes. Although the asymptotic performance appears the same for all domains, it 
seems that learning is slightly slower with eight or sixteen irrelevant attributes. Presumably, this 
occurs because, with more irrelevant attributes, the system needs a little more time to 'find' the 
relevant attributes. 

Although this is a very clean, simple demonstration, I expect that the ability to ignore irrelevant 
attributes is quite important in most real applications. For this reason, most of the artificial 
domains used in this thesis include irrelevant attributes. In fact, if a domain has an extremely 
large number of attributes, many of which are not informatite, one may want to use the system to 
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actually remove from consideration the irrelevant attributes. In Chapter 6, I expand on this idea 
to define a mechanism for selectiv~ attention. 

3.3 Varying the noise 

Because CLASSIT uses probabilistic concept descriptions, it ha.s the capability to represent and 
work with noisy data. Rather than concepts that are described by logical conditions, such as 
"all widgets are red", CLASSIT can easily work with data where "most widgets are red (but not 
all)". This situation is known as a noisy domain. Supervised learning with noisy domains makes 
an additional distinction between noise in the class attribute versus noise in all other attributes 
(Quinlan, 1986). For unsupervised systems, there is no special class attribute, a.nd hence noise 
occurs when any attribute is 'corrupted' from its expected value. 

My hypothesis is that, since CLASSIT is designed for probabilistic concepts, it should perform 
well in the presence of noise. At the least, it should not show a sudden drop in performance with 
the addition of a small amount of noise. To test this, I use two noisy, artificial domains: one with 
symbolic attributes and one with numeric ones. 

For symbolic attributes, I use a domain with four attributes and four concepts, where all the 
attributes are relevant and concepts are noise-free: each class can be defined as a conjunction of four 
attribute-value pairs. CLASSIT can trivially learn the concepts from this domain. Now, suppose 
one corrupts the training set instances so that some percentage of the attribute values take an 
alternative value. 5 Figure 16 shows results as the system learns from noise-free data a.nd from data 
with 10 percent, 20 percent, and finally 30 percent noise. The recognition criterion was set at 70 
percent for this experiment. (Since this is a symbolic domain, the acuity parameter is not used.) 

For lower amounts of noise, there is no difference in asymptotic performance. At 30 percent 
noise, CLASSIT shows some difficulty, reaching only about 90 percent accuracy. Since, as usual, I 
use a noise-free test set, the system should be able to reach 100% accuracy even with noisy data. 
A possible explanation for this failure is that high levels of noise aggravate problems due to order 
effects. For some instance orders, the system is unable to recover from a poor decision based on 
some noisy instances seen early during training. Of course, this 10 percent difference in accuracy is 
small compared to the performance of a naive algorithm. There are four attribute values (one for 
each class) and since instances are drawn from the four classes with equal probability, an algorithm 
that simply predicts the most likely value would have an accuracy of 25 percent. 

For symbolic attributes, noise simply means that the attribute takes some other random value 
from the set of possible values for that attribute. However, for continuous values, noise must 
be defined in terms of the standard deviation for that attribute. In particular, a set of numeric 
concepts is noisy if the concepts are defined by large standard deviations relative to each other. 
Noisy numeric concepts have overlapping distributions for some attributes. 

For experiments with numeric noise, I use a simple d.omain with four classes and instances 
described by four attributes, one of which is irrelevant to. class membership (see Appendix B for 

5. Following Quinlan (1986), this noise value is chosen randomly from the range of possible attribute values such 
that each has equal probability. / 
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Figure 16. CLASSIT's predictive ability with noise in a symbolic domain. 

details). In order to increase the noise, I increase the standard deviation for each class, while 
holding the mean values constant. This causes the four classes to overlap with each other, so that 
one cannot be certain of the class membership of an instance by inspecting its attribute values. 
Instead, class membership is fuzzy and best modeled by probabilities. 

Figure 17 shows histograms for four different settings of standard deviation (a). These graphs 
were created by inspecting all 1500 instances used for each noise level (10 runs of 150 instances 
each) and counting the fr.eguency of the values for a particular attribute. At a= 2;0, there is very 
little noise and the four classes are defined very clearly. However, these classes overlap and merge 
as a is raised, and when a = 7.0, it appears that distinguishing among the four classes is almost 
hopeless. 

Figure 18 shows learning curves for CLASSIT at these four different noise levels. For all curves, 
acuity is set at 3.0 and the recognition criterion at 0. 7. The figure shows predictive ability out to 70 
instances; however, the curves remain much the same from the 30th instance through the 150th.6 

6. For the higher two noise levels, accuracy actually decreases slightly from instance 40 to instance 70. However, this 
trend reverses itself after the 70th instance, although the system neiver improves on the accuracy demonstrated 
after 30 instances. 
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Figure 18. Learning curves for noisy numeric data. 

The graph also presents ideal errors for the four domains; as before, these show the difference 
between the 150-instance training sets (the sample) and the ideal represented in the noise-free test 
sets. 

With the first two noise levels (u at 2.0 and 4.0), the system's performance is very close to the 
ideal error rate. With greater noise, CLASSIT shows some degradation in asymptotic accuracy. 
However, this drop in performance is not that great - as a comparison, the naive algorithm (for all 
noise levels) has an error of 20.0. 

In conclusion, w.ith either nominal or numeric data, CLASSIT shows an ability to learn with 
noisy data. Although asymptotic error does increase with higher levels of noise, the difference in 
performance is not large when compared to the error due to a naive algorithm. The ability to 
work in noisy domains should not be surprising: in contrast to systems that use logical concept 
definitions, CLASSIT's probabilistic representation is designed for precisely this type of domain. In 
effect, these noisy domains contain 'fuzzy' concepts, without strict boundaries. I expect that this 
type of domain is extremely common in real-world applicatibns. 
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Figure 19. Ideal concept hierarchies for two mixed-type data sets. 

4. Mixed real and symbolic domains 

One of the most unusual aspects of CLASSIT is that it allows for a mixture of symbolic and con­
tinuous attributes in the input domain. As described in Chapter 2, this has been rarely attempted 
in cluster analysis, and in machine learning only by a few researchers (Cheeseman et al., 1988; 
Reich, 1989; Anderson & Matessa, 1990). Although a number of the real domains presented earlier 
included both continuous and symbolic attributes, I have not yet provided strong evidence that the 
system can work with mixed data in general. 

In Chapter 3, I showed that CLASSIT uses an evaluation function that sums Info(Ci) across all 
attributes, i, regardless of whether i is a numeric or a symbolic attribute. However, it may be that 
one attribute type could unfairly outweigh the other in this summation. Although I have shown 
encouraging results with some mixed domains, I would like to show that CLASSIT is not unfairly 
biased toward one attribute type or the other. 

In order to demonstrate this ability, I use an artificial domain with six numeric attributes and 
six symbolic attributes. Half of these attributes (three from each type) are irrelevant with respect 
to class structure. Additionally, I use two versions of this domain that have somewhat different 
class structure. In both cases the ideal concept hierarchy is two levels deep, with six subclasses at 
level two. In one case, the top level is best divided by the relevant three numeric attributes, while 
the subclasses are differentiated by the symbolic attributes. The ideal hierarchy for this domain 
(Mixed-NTL, for numeric-top-level) can be seen in Figure 19(a). For this domain, all instances in 
classes Al and A2 have numeric values from the same distribution, and Al and A2 are distinguished 
only by their symbolic attributes. 

The second version of this domain (Mixed-STL) is the reverse of Mixed-NTL; its ideal hierarchy 
is shown in Figure 19(b ). Here, the top level is best split by the symbolic attributes, while the 
subclasses are distinguished by the numeric attributes. Hence, classes Al, A2, and A3 all have the 
same symbolic attributes, but are differentiated by their numeric attributes. Details of this domain 
can be found in Appendix B. 

The first experiment with these domains simply demonstrates that CLASSIT is able to build the 
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appropriate hierarchies for these contrasting databases. After 120 training set instances (probably 
fewer could be used), with acuity at- 1.0 and recognition criterion at 0.8, the concept hierarchies 
built by the system match the ideal hierarchies in Figure 19. 7 If the system were unfairly biased 
toward numeric attributes, then it would be unable to build the correct tree for Mixed-STL, building 
instead a tree with six top-level classes based on the numeric attributes. Similarly, if the system 
were biased toward symbolic attributes, it would have difficulty with Mixed-NTL. Hence, this 
demonstrates that CLASSIT is not heavily biased toward one type of attribute, and that it does use 
both attribute types during learning. 

Although this result is comforting, it is qualitative and does not test the predictive accuracy 
of the system. Additionally, I would like to compare CLASSIT's hybrid approach to mixed data 
with other methods. As discussed in Chapter 2, researchers in cluster analysis usually do not use 
integrated evaluation functions, and instead use conversion techniques to coerce all attributes to 
the same type. One can compare the value of these techniques by comparing the performance of 
CLASSIT with mixed data versus the performance of the system with converted attributes. 

Attributes can be ordered by the amount of information necessary to define their scale. For ex­
ample, the attribute types discussed in this thesis can be ordered in decreasing order of information 
as follows: continuous, ordinal, nominal, and binary. The fundamental problem with conversion 
techniques is that in order to convert from one attribute type to another, one must either lose 
information or add information to the domain. As Anderberg (1973, p. 30) states, 

Promoting a variable (attribute] implies the utilization of additional information or accep­
tance of a new assumption. Likewise, demotion of a variable involves relinquishing some 
information ... one must use critical judgement as to whether the technique is appropriate to 
the particular problem. Indeed, informed judgement is an alternative to all these techniques 
and sometimes provides the only means of taking account of important but unquantifiable 
considerations. 

In theory, the best that conversion techniques can hope for is to minimize the problems caused by 
adding or removing information. In practice, the choice of conversion method is often dependent 
on specific domain knowledge or expert 'informed judgement'. 

In order to evaluate conversion techniques, I conduct three experiments. Using an artificial 
domain, I consider two simple-minded conversion techniques: converting attributes from continuous 
to nominal ones and converting attributes from nominal to ordinal.8 Finally, with the heart-disease 
database, I consider the use of a more expert conversion to ordinal attributes. 

For each of these experiments, I compare the predictive accuracy of CLASSIT with two versions 
of the same data: one with attributes of mixed types, and one where the attributes have all 
been converted to a single type. Unless a conversion technique leads to significantly improved 
performance, one should prefer to use CLASSIT with mixed data. This position is supported both 

7. This result holds regardless of instance ordering - CLASSIT could bUild the correct hierarchy for all ten orders of 
the training-set data. 

8. Note that CLASSIT treats ordinal a.nd continuous attributes in the/same way; in either ca.se, µ and ~ are stored 
rather than a. list of values. 
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by the theoretical limitation of these techniques and by the effort required to choose and carry out 
any conversion of attributes. 

The easiest way to convert symbolic attributes to numeric ones is simply to arbitrarily assign 
a number to every known attribute value. Figure 20 shows results when the mixed-STL domain 
is converted in this manner. The graph includes three learning curves. The first curve shows 
CLASSIT learning from ~ata in mixed format, with six numeric and six nominal attributes. The next 
curve shows performance after converting the nominal attributes to numeric values in the sequence 
(1, 2, 3, ... ). The third curve shows a conversion to the sequence (10, 20, 30, ... ); these values are 
more consistent with other numeric attributes in the domain. For all curves, the predicted attribute 
is one of the original (unconverted) numeric attributes. 

In general, conversion of the data in this manner leads to slightly worse predictive accuracy. For 
this domain, significantly worse performance is very unlikely: even if the six nominal attributes 
are eliminated or made completely irrelevant, the system should be able to cluster using only the 
remaining numeric attributes. However, Figure 20 does ~how that these conversion techniques do 
not lead to improved predictive performance. 1 . 
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Figure 21. Predictive error when numeric data is converted to symbolic. 

In order to convert a numeric attribute to a set of nominal values, one must divide the continuous 
scale into a set of classes, each of which is then assigned a symbolic label. In effect, this task is 
a one-dimensional version of the general concept formation problem. In fact, some of the more 
involved solutions to this problem employ approaches such as agglomerative clustering, finding cut 
points based on normal distributions, and other tools from cluster analysis. 9 However, it seems that 
these approaches are simply increasing the complexity of the task: before clustering the instances, 
one must first cluster along the values of each numeric attribute. 

Figure 21 shows the result of applying a much simpler conversion technique for changing Mixed­
NTL into a purely symbolic domain. As before, prediction is on an unconverted symbolic attribute, 
and the conversion technique simply changes the six numeric attributes in the original database. 
In order to convert these attributes, I impose cut-points that create divisions of equal size over 
the range. For this domain, the numeric attributes range from 3.16 to 157.15. I have tried three 
different sizes for the divisions: defining 8 values of size 20.0, 16 values of size 10.0, and 153 values 
of size 1.0 (not every possible value is present in the training.set). Of these, it seems that the first 
choice is best, allowing CLASSIT to reach the same level of predictive ability as with mixed data. 

9. For example, Lebowitz (1985) uses cut points to convert numeric dii.ta for his UNIMEM system. 
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Figure 22. Predictive error when the heart disease data is converted to numeric. 

However, even for this choice, there is no advantage gained by converting the data. The easiest 
and most accurate way to represent the data for CLASSIT is in the original, mixed format. 

Both these experiments use an artificial domain and the simplest of measures. Perhaps there may 
be some advantage to converting attributes with real domains and with more informed experts. As 
mentioned in Section 2.1, the heart-disease database is also available in numeric form. The original 
data were converted to this numeric representation by domain experts, who presumably applied 
their knowledge to conversion decisions. Figure 22 shows results from this domain. As usual, the 
predicted attribute is symbolic with values sick or healthy. For both curves acuity is set at 1.0 and 
the recognition criterion at 0.8. 

As with other results, this graph does not show any advantage for converting the data. If any­
thing, it appears that CLASSIT learns more rapidly with the mixed data. In conclusion, converting 
attribute types as a pre-processing step to concept formation appears unnecessary for CLASSIT. 
Converting numeric attributes into nominal ones, or vice versa, does not improve the predictive 
performance of the system. 
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5. CLASSIT and instance ordering 

As an incremental concept learner, CLASSIT is by necessity dependent on the order of instance pre­
sentation. Because an incremental system updates its knowledge after every instance, two different 
orderings of the same data will result in two different learning curves. If the system successfully 
finds the optimal hierarchy with both orderings, then both learning curves will terminate at the 
same level of performance. Unfortunately, a hill-climbing system like CLASS IT has the potential to 
get 'stuck' at a local maximum. When this occurs with some data orders, CLASSIT will never find 
the optimal hierarchy, and therefore does not reach the optimal asymptotic performance. 

From an engineering point of view, this is a significant problem. For example, for all experiments 
in the thesis I have averaged results over ten different orders of the training-set instances. In this 
way, all experiments are likely to include both good and bad orders - orders where the system 
reaches optimal or near optimal performance and orders where it does not perform well. This 
technique makes it less likely that any result is due to a unusually good or unusually bad instance 
ordering. 

In contrast, one can argue that from a psychological viewpoint, order effects are not such a 
problem. In some cases, one may prefer the system to have different results with different orders. 
For example, there are some well-known phenomena such as recency and primacy effects that 
depend on the order of instances. However, since CLASSIT is not intended as a model of human 
learning, I will leave this argument in support of hill-climbing approaches, and treat order effects 
as an engineering problem to be understood and solved. 

The first thing to investigate is how often CLASSIT becomes stuck on a local optimum with 
respect to predictive accuracy. To test this, I used 25 different orders of an artificial data set with 
100 instances.10 Figure 23 shows both the mean and the standard deviations of the predictive 
error over the 25 different orders. The latter measures the difference in performance over different 
orders: the vertical lines indicate one standard deviation around the mean. This graph shows not 
only that the mean error descends, but that the standard deviation decreases as more instances are 
seen. Early on, there is considerable variability due to order effects, but after sufficient instances, 
CLASSIT usually does asymptote to the same performance level. For this domain, instance ordering 
has little effect on asymptotic predictive ability. 

This is a surprising result: in other domains, especially with missing information and noise, 
the system can sometimes get stuck on a local optimum (see Section 3.3 in this chapter, and 
Section 1.3 in Chapter 6). This suggests that there may be a relationship between noise and order 
effects; perhaps the system only becomes stuck at local optimum with relatively high levels of noise. 

In Chapter 3, I suggested that the merge and split operators give CLASSIT some ability to recover 
from local optimum; The next experiment tries to confirm this hypothesis with a lesion study. If 
the system is not allowed to use merge and split, its performance should be worse than when it 
uses these operators. In particular, I hypothesize that the decreasing standard deviations seen in 

10. This study used the 'subset' domain from Section 3. The figures in this section show results up to the 60th 
instance, simply to allow for more detail. The curves from instance/ 60 to instance 100 were uninteresting: both 
performance and standard deviations were unchanged. 
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Figure 23. Mean and standard deviations of predictive ability for 25 orderings. 

Figure 23 would not occur without merge and split. Using the same artificial domain as the last 
experiment, Figure 24 compares performance when merge and split are removed from CLASSIT's 
algorithm. 

Surprisingly, accuracy is unaffected by the use of these opera.tors. Not only are the learning 
curves nearly identical (as shown in Figure 24a.), but the standard deviations also match. One 
possible explanation for this result is that merge and split ·are primarily opera.tors on the structure 
of the hierarchy. That is, they do not affect the definition of a concept as much as the location of 
that concept in memory. This suggests that efficiency and ~ot accuracy should be affected by these 
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Figure 24. Performance with and without merge and split. 

operators. This claim is supported by Figure 24b, which suggests that the use of merge and split 
increase the efficiency of the system. 

However, this increase is relatively slight. In general, I also believe that CLASSIT does not 
select this type of re-organizing or backtracking operators frequently enough. Merge and split are 
applied very infrequently, and this may be a fault in the algorithm, rather than in the nature of the 
domain. For example, over 25 orders of this database of one hundred instances, CLASSIT performed 
on average 1.56 top-level merges and only 0.20 splits. 

Ideally, one would prefer a system without order dependence. Since this may be impossible for 
CLASS IT, one would next hope that different orders only affect the shape of the learning curve, and 
not the asymptotic performance. For most domains, I expect that this is the case, as Figure 23 
shows. Nonetheless, I do also believe that CLASSIT does not perform sufficient hierarchy reorgani­
zation. It may be that additional operators, such as Fisher's (1987b) promote or Wallace's (1989) 
grab operator, can alleviate this problem. 

The previous experiment compared the performance of two different versions of CLASS IT. This 
leads directly to the next ·chapter, which considers a range of other variations and modifications 
to the system. Instead of exploring the generality of the system by trying a wide variety of input 
domains, I next explore the robustness and utility of the system by modifying the components of 
CLASSIT itself. 



CHAPTER 5 
Experimentation with Different Clustering Methods 

There are two basic ways to evaluate a machine learning system: either one can test a single 
learning system over different domains, or one can compare different methods over a fixed domain. 
The previous chapter provided an evaluation of the CLASSIT system over a. variety of domains. In 
contrast, this chapter presents a set of comparative studies in which the domain is held constant 
and the clustering method is modified. 

In particular, I look at three types of modifications to the learning system. First, I study the 
effect of the two parameters defined for CLASSIT: acuity and the recognition criterion. Independent 
of any justification for the parameters of a learning system, one can empirically and analytically 
demonstrate the effect of those parameters on the system's performance. Not only does this let one 
better understand the use of the parameters, but it should also demonstrate that the system is not 
extremely sensitive to particular parameter settings (Iba, Wogulis & Langley, 1988; Nordhausen, 
1989). 

Next, I present a set of comparative studies that involve more substantial modifications of CLAS­
SIT. As described in Chapter 2, a clustering method consists of two components: the algorithm 
used to cluster instances and the evaluation function that the algorithm uses to make decisions. 
Section 3 presents a study of evaluation functions, while Section 4 compares different algorithms. 
Each section presents a modified concept formation system in which either the algorithm or the 
evaluation function has been replaced. The ability of these alternative systems is then compared 
to the original version of CLASSIT. 

1. Parametric studies 

At one level, the effect of CLASSIT's parameters is straightforward: the recognition criterion affects 
the depth of the tree, while the acuity setting affects the breadth or branching factor of the tree. 
In particular, the recognition criterion affects how often individual instances are 'forgotten'; hence, 
the higher this parameter, the more instances CLASSIT saves, and the deeper (and larger) the 
concept hierarchy. Ultimately, with a criterion setting of 1.0, every instance is saved as a leaf 
node. Similarly, becau·se acuity sets a maximum value for 1/u, this parameter affects the breadth 
of the concept hierarchy. Higher values of acuity increase the cost of a new disjunct, and thus bias 
the system to prefer narrower trees (ultimately a binary tree), while lower values for acuity create 
wider, 'bushier' trees. 

Of course, with many domains, the shape of the learned hierarchy is dictated by the structure 
inherent in the data. For example, Chapter 4 showed that with a variety of input domains, CLASSIT 
can produce different concept hierarchies even with fixed values for acuity and the recognition 
criterion. In this chapter, I carry out the opposite experiments - observing performance with 
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Table 7. The effect of ~arameter settings on hierarchy depth and breadth 

Recognition criterion 0.5 0.6 0.7 0.8 0.9 1.0 

Average max. depth 3.8 3.9 4.1 4.5 5.1 5.9 

Acuity 0.25 0.5 1.0 2.0 3.0 4.0 5.0 6.0 

Average branching 5.85 4.22 3.52 3.33 3.10 2.96 2.98 2.77 

different parameter settings on a fixed domain. In order to isolate the effect of the parameters, I 
begin by considering the situation in which the input data has no class structure. 

Table 7 shows the results when CLASSIT with different parameter settings tries to build a concept 
hierarchy from instances that are all drawn from the same distribution. This situation can be either 
described as one where there are no classes, or as one with a single, very fuzzy class. In particular, 
the system sees 100 instances, each with three numeric attributes drawn from the same normal 
distribution with u = 15.0. For a variety of acuity settings, Table 7 shows the average branching 
factor, and for a variety of recognition criterion settings, the average maximum depth. 

1.1 Overfitting in concept formation 

Of course, these results are largely qualitative and simply confirm that the parameters do affect 
the hierarchy as expected. A more interesting analysis considers the effect of parameter settings 
on predictive performance of the system. In particular, I claim that appropriate settings of acuity 
and recognition criterion lets the system avoid overfi.tting the data (Quinlan, 1986). 

For concept formation, overfitting occurs when concepts are created that reflect noise rather 
than the actual class structure of the domain. As described in Chapter 4, most domains with 
continuous attributes are "noisy", and are therefore susceptible to this type of overfitting. For 
example, suppose a class of instances exists whose mean value on some attribute is x. If CLASSIT 

creates a small subconcept, C, from this class, then the members of C may have an average attribute 
value considerably d,ifferent than i. (The size of this difference depends on the amount of noise in 
the domain, and on the particular members of C.) Hence, predictions based on C will have more 
error than those based on the more general concept that includes all instances of the class. 

This type of overfitting can occur in two ways: the tree may be too deep or too wide. In either 
case, the system may be using a concept that is too specific for predictions, therefore leading to 
overfitting. Since acuity and recognition criterion affect the 9readth and the depth of the tree, one 
would expect these parameters to affect overfitting. In the next two subsections, I report how these 
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parameters affect predictive performance, and how they can be used to alleviate over:fitting. In 
each section I a.lse assess CLASSIT 7s dependency on the parameter, and suggest ideas for improving 
or eliminating the system parameter. 

1.2 Overfitting and the recognition criterion 

Without the use of a recognition criterion, the classification process often descends to a leaf node 
before making a prediction. When there is noise present, this value is not as accurate as one 
based on a larger class that is higher in the tree. Hence, high values for this parameter lead to to 
overfitting caused by a tree that is too deep. Conversely, an extremely low recognition criterion 
leads to extremely shallow trees. If the domain has subclass structure, this information may be 
lost, as the recognition criterion forces the system to truncate the tree. This leads to underfi.ttfog 

the data; predictive ability suffers because too many instances have been forced together into the 
same class. In summary, as I modify the recognition criterion, there should be a U-shaped curve in 
predictive ability; parameter values that are either too high or too low should result in lower scores 
than intermediate values. 

In order to test this hypothesis, I use an artificial domain with two classes, each of which is 
divided further into two subclasses. Each instance in this domain has six numeric attributes; two 
of these contain information that distinguishes the major classes, two have information specific to 
each subclass, and two attributes are irrelevant. Additional details about this domain can be found 
in Appendix B. In order to demonstrate overfitting, all attributes include a medium amount of 
noise. 1 For this experiment I use four test set instances without noise: one for each of the four 
subclasses. These are presented to the system after 150 training set instances. 

The results can be seen in Table 8. The error shown is an average absolute error over ten different 
orderings with acuity set at 3.0. CLASSIT tries to predict attribute number two; as can be seen from 
Appendix B, this is one of the sub-class attributes. For this domain, the best recognition criterion 
is 0.7; below this the subclass information is lost (underfitting), while settings greater than 0.7 lead 
to some degree of over:fitting. 

Also included in Table 8 are two boundary error scores. The "ideal" error indicates the average 
absolute error that would result if the learning system built the perfect hierarchy for the domain. 
One can define such a 'perfect' hierarchy for artificial domains because the generating function is 

known beforehand. For these data, the perfect hierarchy is a complete binary tree of depth two, 
having two major classes each with two subclasses. 

This ideal value sets an upper bound on the predictive performance of the algorithm. At the 
other extreme, one would expect almost any learning algorithm to do as well as simply predicting 
the average value seen. For this domain, always predicting the mean value of attribute two gives 

20.0 as the average absolute error. 

The above study explores the relationship between the recognition criterion and predictive perfor­
mance for a given amount of noise. A more interesting study would observe the effect of increasing 

1. For this experiment, attributes were generated with a er of 4.0; hence, the data are similar to that shown in 
Figure 17 (b ). I will shortly examine the relationship between the amount of noise and overfitting more carefully. 
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Table 8. Predictive ability with different recognition criterion values 

R.C. setting 

No. of nodes 

Max. depth 

Error 

0.5 0.6 0.7 

3.2 17.3 24.8 

1.1 2.7 3.3 

10.00 7.48 0.71 

Error for 'ideal' hierarchy 

Error based on root node 

0.8 

37.7 

4.2 

1.41 

0.51 

20.00 

0.9 

67.5 

5.4 

1.57 

1.0 

240.2 

8.8 

2.85 

amounts of noise on the ability of this parameter to alleviate overfitting. In particular, I hypothesize 
that as the noise in the domain increases, overfitting also increases, and a reasonable recognition 
criterion becomes more important. 

In order to test this hypothesis I need an artificial domain where one can systematically increase 
the noise present. As described in Chapter 4, a noisy numeric domains suggests that the standard 
deviations of some attributes are large enough to overlap with other concepts. To experiment with 
noise, I use the same data as presented in Chapter 4: four classes and four numeric attributes. Since 
I am exploring overfitting, and not underfitting effects, I do not need a domain with subclasses. 
At low levels of noise (low values of CT), the classes are well-defined and one would not expect any 
error due to overfitting. However, at higher levels of noise, the class divisions are not as clean, and 
become jagged as if containing subclasses (see Figure 17, Chapter 4). In this case, the system is 

vulnerable to errors due to overfitting. 

Figure 25 shows a three-dimensional plot of noise level versus recognition criterion versus pre­
dictive performance. Each point on the (x, y) plane corresponds to a. particular noise level (O' 
ranges from 2.0 to 7.0) and a particular parameter setting (from 0.5 to 1.0). For each of these, the 
predictive error is shown in the vertical z direction. As before, acuity is held constant at 3.0. 

As can be seen, for successively greater levels of noise, the magnitude of error due to overfitting 
increases, and it becomes necessary to set the recognition criterion to lower values. Readers should 
not infer from Figure 25 that CLASSIT is especially sensitive to noise: although overfitting causes 
some error at almost any level of noise, the highest level seen in the figure is 5.38 (when noise is 
at O' = 7.0 and the .recognition criterion at 1.0). This value should be compared to 20.0, the error 
due to predicting the average value. In conclusion, this parameter has a relatively small effect on 
predictive accuracy when the domain is noisy, and almost no effect when the domain has little or 
no noise. 

In addition to avoiding over:fitting, the recognition criterion also slows the growth of the hierar­
chy. Without this parameter, the number of nodes increase~ at least linearly with the number of 

I 

instances. When the recognition criterion is set to 1.0 (or 100 percent), then it is off- recognition 
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Figure 25. Overfitting as a function of noise and recognition criterion setting. 

does not occur until a. leaf node is reached. Thus, the difference between the last two columns 
of Table 8 shows a dramatic difference in hierarchy size. After 150 instances, using even a high 
parameter setting (90 percent) leads to a concept hierarchy of nearly one quarter the size, with an 
average maximum depth of 5.5 rather than 8.8. 

As mentioned in Chapter 3, this para.meter provides one model of forgetting. Currently, instances 
are 'forgotten' when the match score between instance and class is a.hove the percentage specified 
by the recognition criterion. Ultimately, a.s I discuss in Chapter 7, one would prefer a higher-level 
forgetting mechanism that is based on a more comprehensive theory, which might set a.nd modify 
the recognition criterion automatically. 
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1.3 Overfitting and acuity 

Just as the recognition criterion alters the depth of the hierarchy, acuity settings have an effect 
on the breadth or average branching factor of the hierarchy. Just as a shallow tree can lead to 
overfitting, a tree that is too broad can produce the same effect. If the branching factor is greater 
than the number of classes present in the data, then predictions are based on much smaller subsets 
of instances, leading to overfitting when there is noise present. 

Additionally, a poor setting for acuity can ca.use underfitting: when the parameter is set too 
high, it forces CLASSIT to build a binary tree, regardless of the class structure in the data. This 
causes predictive errors in two ways. First, instances of different classes may be placed in the same 
node in the hierarchy. If prediction is based on such a node, the data are underfit; the class is not 
specific enough for the data. Second, if the classification process descends far enough down the 
binary tree to distinguish all classes, then the data are overfit exactly as described in the previous 
section. 

Figure 26 presents a three-dimensional plot of predictive performance versus noise levels and 
acuity settings. The domain for this experiment is the same as used in the previous section, with 
the recognition criterion set at 0.80. In general, for a. given noise setting, performance follows a 
U-shaped curve as the acuity is raised. If acuity is too low, the hierarchy is too wide, and overfitting 
occurs. If acuity is too high, the hierarchy becomes a binary tree; with recognition criterion set at 
0.80, this causes prediction to be based on concepts that are too general for accurate prediction 
(underfitting).2 

Unlike results when the recognition criterion is modified (Figure 25), this graph does show some 
rather high error rates, especially with overfitting (low acuity and high noise). When acuity is low 
enough, CLASSIT makes so many disjuncts that instances are placed as singleton classes below the 
root node. When this happens with a test set instance, the only prediction the system can make is 
based on the root node, and as stated earlier, this node has an average error of 20.0. 

Figure 26 shows that overfitting due to acuity is subject to the amount of noise present; at low 
noise levels there is relatively little error due to overfitting, but this error becomes more severe 
as noise increases. Unfortunately, one can not simply choose high settings for acuity to avoid 
overfitting; as we have seen, this leads to underfitting. Ideally, one would prefer the system to 
work well regardless of parameter settings, or for there to at least be one setting that performs well 
regardless of noise level. As one can see from the figure, this is not the case for CLASSIT and acuity. 
Although the system is more sensitive to acuity settings than I would prefer, Figure 26 shows that 
there is at least some flexibility possible for acuity settings. This means that for any noise level, 
one can get reasonable predictive accuracy without determining the ideal acuity setting. 

For most acuity ~ettings, as the noise level increases, the predictive error increases. However, for 
high settings of acuity, the error actually decreases initially, as underfitting is alleviated by higher 
levels of noise. This is because a hierarchy that is too narrow actually helps in noisy domains; it 
forces the system to place together objects that may not look very similar. Figure 27 shows the 

2. I have also run this experiment with the recognition criterion at 1.0. As expected, this leads to somewhat better 
results with high levels of acuity settings. However, the error re~a.ins fairly high due to overfitting; with this 
recognition criterion setting, the tree is too deep. 
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Figure 26. Performance as a function of acuity and noise. 
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results of this effect. This presents a. plot of CLASSIT's asymptotic error ra.te ( a.fter 150 tra.ining 
insta.nces) with acuity set a.t two pa.rticula.r levels (3.0 and 6.0) versus the performance of a.n ideal 
learner (where every instance is clustered correctly, in this ca.se, into one four classes defined by the 
genera.tor). As before, the 'na.ive algorithm' error is 20.0, the average error based on the root. 

As described in Chapter 3, acuity is motivated by defining the smallest 'noticeable' dista.nce for 
continuous-valued attributes. Hence, the value chosen should be tied to the expected ra.nge for 
attributes. This suggests tha.t a. more sensible way to implement the acuity para.meter would be 
to have a different setting for every attribute. This also corresponds better to the definition of 
"just noticeable differences" presented in Chapter 3. As 11' will discuss in Chapter 7, a.n alternative 
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Figure 27. Best possible score versus two selected acuity settings. 

approach to acuity would use such an 'acuity vector' that would allow the system to dynamically 
modify each of these by observing the known range of each attribute. 

These studies have shown how different parameters settings affect CLASSIT's performance. They 
have shown that for noisy domains, the parameters can be used to avoid overfitting errors. Unfortu­
nately, the system is more sensitive to parameter settings than one would like. However, this is only 
a problem with noisy domains. For example, when experimenting with artificial domains in Chap­
ter 4, I was able to use the same parameter settings with a variety of input domains. Although the 
real domains required different parameter settings, modifications to these settings usually caused 
only small changes in performance. Finally, a better understanding of these parameters has led to 
some ideas for improving or eliminating them. 

2. Modifying the evaluation function 

One characterizing feature of any clustering system is the evaluation function used to make classifi­
cation decisions. For CLASSIT, this is category utility, as described and motivated in Chapter 3. In 
order to study the ability of this function, and to assess the contribution it makes to the complete 
system, this section compares CLASSIT to similar systems that use alternative evaluation functions. 

Ideally, the evaluation function should be independent from the algorithm employed by the 
system. In this case, one could substitute a number of di:ffer.ent evaluation functions for category 
utility, assessing each in turn, until arriving at the 'best' /measure. It is important to use the 

--- -- ---~- ------
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same algorithm for such experiments, so that the evaluation function is evaluated in isolation. In 
practice, there a.re a number of evaluation functions that cannot be used without substantially 
changing the algorithm, to the point where CLASSIT's basic assumptions about concept formation 
would be violated. 

In this section I consider a variety of different measures. I begin by describing those that require 
a considerably different algorithm than CLASSIT's. I then turn to two functions that may be used 
in place of category utility. In each case, I present results from some experimental comparisons, as 
well a qualitative discussion of the new evaluation function's effect. 

2.1 CLASSIT with other evaluation functions 

In Chapter 2, I outlined a variety of similarity measures and evaluation functions that clustering 
systems can use. Unfortunately, many of these cannot simply be substituted into CLASSIT. For 
example, the system needs to evaluate the quality of a set a classes; hence, similarity measures, 
which compute some form of distance between two instances, are largely inapplicable. Instead, I 
must use an evaluation function that can compute a score from a set of classes. 

Of course, there are ways to turn a similarity measure into an evaluation function. For example, 
the Euclidean distance between an instance x, and the mean of some class xi is 

K 1/2 

Distance(x, Xj) = [ L(Xk - Xjk)2] 
k=l 

This is clearly related to the evaluation function trace(W) for a set of instances: 

K l N; 

trace(W) = E-. ~)xi - Xjk) 2 

k Ni i 

As described in Chapter 2, the latter measure is a sum of the diagonal elements of the co-variance 
matrix (or scatter matrix). Wallace (1989) uses the entire co-variance matrix when computing 
an evaluation measure, since this is mathematically more complete. However, this approach adds 
computational and storage costs of K 2 for K attributes, and I do not believe that the gain in 
performance is worth this cost in complexity. 

CLASSIT can use trace(W) as its evaluation function. In order to use this function, the system 
must store the variance for each attribute in each concept. Then, to choose among competing 
operators, the system would try to minimize this average variance over all concepts and attributes. 
Of course, the existing system does something very similar to this. For numeric attributes, category 
utility computes' the gain in average 1/a, and then CLASSIT tries to maximize this value. Since 
variance is a2 , the only significant difference between category utility and trace(W) is that the 
latter subtracts the parent information: it looks at the gain in information between parent and 
child, rather than the absolute information (or variance) in the child. As we will see in the next 
section, this difference does have some effect on perform~ce. 

Since I suggest that a trace of the scatter matrix should be used instead of working with the entire 
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·. 

co-variance matrix, perhaps I should go further and suggest that even computing the variance (or 
standard deviation) is too expensive. An equivalent, cheaper measure is the first moment about the 
mean. Just as variance is related to Euclidean distance, this measure is related to the city-block 
distance. In particular, for I instances, with mean of x, the first moment about the mean is 

One would not expect this measure to do better than variance,3 but it may do almost as well and 
it should be considerably cheaper to compute. 

However, unlike variance, this measure cannot be computed incrementally. In particular, in order 
to know the first moment about the mean for a class of instances, one must store the value of each 
member instance. Not only is this a prohibitive storage cost, but accessing these values every 
time that the class is updated would contradict the basic incremental nature of CLASS IT. Hence, 
although it appears cheaper than a measure such as trace(W), it is actually more expensive and 
cannot be readily incorporated into the system. 

It is interesting that both trace(W) and the first moment about the mean give the best score to 
a hierarchy where every instance is in its own class. As discussed in Chapter 3, this is also true for 
category utility with numeric domains. This occurs beca~se because all of these functions are based· 
on some sort of distance, which is always zero for singleton classes. Previous clustering systems 
have avoided this issue by either building only binary trees (such as agglomerative methods), or 
by employing a user-supplied parameter k that defines the number of classes a priori (as in most 
iterative optimization methods). As described earlier, CLASSIT avoids this problem with the acuity 
parameter. In addition to corresponding to the just noticeable differences for continuous attributes, 
acuity sets an upper bound on the score for a new singleton class. This type of maximum score (or 
minimum distance) parameter can be used with any of these evaluation functions. 

There is probably no limit to the number of different evaluation functions one could try, especially 
if some creativity is used to adapt the function to CLASSIT's algorithm. For example, it may be 
possible to build an evaluation function based on some of the similarity measures for symbolic 
attributes presented in Chapter 2. For this study, I limit my comparisons to evaluation functions 
for numeric attributes, and to those that can be computed without great cost. The next two 
sections present comparative studies between category utility and two other evaluation functions: 
a variation on trace(W) and a function that measures the gain ratio from parent to child. 

2.2 Category value versus category utility 

The first alternative evaluation function I consider is a simple variation on category utility. Instead 
of measuring the information gain between parent and child levels, this function simply measures 
the absolute information of the child level. As defined in Chapter 3, category utility for K classes 
and I attributes is 

3. The only case where city-block distance may be more appropriatie' than Euclidean distance occurs when the 
attributes are interval rather than continuous or ratio scaled. 
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l·K 
(1) 

With this equation, the system sums the value of every child concept, Ck, and subtracts the 
information at the parent, Gp. Hence, this measures the ga.in in Info(C) from parent to child 
levels of the hierarchy. Rather than using the gain in concept value, one can define an evaluation 
function simply with the average value of the child concepts. Thus, I define category value as 
maximizing the average Info(C) without subtracting the parent information: 

Category Value = 
l·K 

(2) 

This evaluation function is of interest for two reasons. First, it can be used to carry out a simple 
lesion study for category utility. By deleting the parent term from the evaluation function and 
comparing performance, one can empirically observe the effects of that term. Since I expect that 
the parent term is useful, I hypothesize that when category value is used, performance will drop in 
some way. Second, some simple analysis shows that this function is closely related to trace(W). 

When comparing evaluation functions, it is possible that two functions may give different mag­
nitude scores yet still make the same clustering decisions given the same set of instances. More 
formally, I define two evaluation functions f ( x) and g( x) to be isotonic if, 

V(x, y), f(x) < f(y) ¢:::> g(x) < g(y) 

where x and y are competing partitions of instances into cla.c;ses. An intuitive example of this 
relationship is between sin( x) and 2sin( x ); these functions have maximums and minimums at the 
same places and are thus isotonic. 

Given this definition, we can see that for numeric attributes, category value is isotonic to 
trace(W)/ K (where K is the number of classes). In particular, P(Ck) is identical to 1/N;, and the 
difference between variance and standard deviation does not affect the maximums or minimums of 
the two equations. This means that the comparison between category value and category utility is 
also a comparison between an averaged trace(W) score and category utility. 

Surprisingly, catego!y value is also isotonic to category utility if the number of classes, K, is 
fixed. This means that for a static concept hierarchy, these two evaluation functions will classify 
an instance the same way. However, whenever the system considers merging, splitting, or creating 
a new disjunct, .the evaluation functions perform differently. In particular, category value prefers 
fewer children than category utility. 

For example, suppose that both evaluation functions are considering a split operation that in­
creases the number of concepts in the partition from th:r:ee to six. Suppose that category value 
prefers not to perform the split, keeping the number of children at three. In contrast, category 
utility subtracts the parent term from these scores: Info(Cp)/3 for when there are three concepts 
and Info(Cp)/6 for the split. Since the latter value is s~aller, this subtraction may be enough to 
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make category utility choose in favor of the split. This demonstrates that in some cases, category 
value prefers narrower trees than does category utility. 

If one C"onsiders that category value is isotonic to trace(W), then it is not so surprising that 
category value and category utility differ over how many children to create. Research in cluster 
analysis has never successfully addressed how many classes to create during concept learning (see 
Everitt, 1979); this number is either supplied, or if an agglomerative algorithm is used, there are 
always two children per level. The parent term (Info(Cp)) in category utility is needed to help 
discover the right branching factor for the hierarchy. 

Although this analysis says something about the shape of the hierarchy produced by one eval­
uation function versus another, nothing can be concluded about the predictive ability of these 
alternative hierarchies. In fact, as I show next, it is quite possible for very different hierarchy 
structures to have the same predictive accuracy. 

Figure 28 shows the learning curves for predictive performance of CLASSIT with category utility 
(henceforth, Classitcu) versus CLASSIT with category value (Classitcv ). This figure shows results 
with two domains: the heart-disease database and the glass forensic database. Both domains have 
mixed numeric/symbolic instances, and in both cases the task is to predict a binary symbolic 
attribute: sick or healthy for the disease database, and window glass or not window glass for the 
forensic database. 4 

Although there is some difference in performance, using category value does not seem to change 
either the learning rate or the asymptotic predictive accuracy to a large degree. If anything, 
Classitcv performs slightly better. This empirical demonstration certainly does not prove that the 
evaluation functions are equivalent with respect to predictive accuracy.5 However, to date, I have 
not found any real domains for which the alternative clustering systems have significantly different 
predictive ability. 

At first blush this was a very surprising result, suggesting that category utility has an unnecessary 
term: the parent information, lnfo(Cp), in equation (1). However, this is not a fair conclusion. 
Figure 28 only shows predictive accuracy, and this does not evaluate the structure of the concept 
hierarchies. As I suggested above, I expect that the hierarchies built by Classitcv and Classitcu 
are different, even though their predictive ability is about the same. 

In Chapter 4, I described two general performance measures for a concept learning system: 
accuracy and efficiency. The former primarily evaluates the quality of the learned concepts, while 
the latter evaluates the quality of the hierarchy used to organize and retrieve concepts. Since I 
hypothesized earlier that Classitcv and Classitcu would build different hierarchies, I must look at 
average retrieval efficiency, a measure of hierarchy performance, in addition to predictive accuracy. 
Finally, in order to carefully control the complexity of the domain, I should use artificial data. I 
also hypothesize th~t since Classitcv prefers narrow hierarchies, the wider the class structure in 
the data, the more problems this system may encounter. 

4. Chapter 4 describes these domains more completely. As before, acuity is set at 3.0 and recognition criterion at 
0. 7 for the heart-disease domain, while acuity is 0.1 and recognition criterion is 0.8 for the glass database. 

5. In fact, one can construct an artificial domain where different c~ncept hierarchies produced by the different 
evaluation functions have different predictive abilities. 



Percentage error 

50 

40 

30 

20 

CONCEPT FORMATION 

o o Glass: Cla.ssitcv 
0------------0 Glass: Cla.ssitcu 

c c Heart disease: Classitcv 
0------------0 Heart disease: Classitcu 

,.••.•_.&I •• ._ ________ a• - -·-··-• ·- - El 
....... i.i 

____ ... _ ................ ""',,, 

,'' ..... , 
/' " .. 

i.-:1~--.11"--'-.r ',',,, _ ..... -··"'·----------
'e···· ··o 

10 

0 
0 10 20 30 40 50 60 

Number of instances 
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Table 9 shows results from two simple variations on the artificial database described in Section 1.1. 
Each domain has a noise level of 5.0 (see Figure 17), acuity is set at 3.0, and the recognition criterion 
at 0.80. Results are shown after Classitcv and Classitcu have learned from 150 instances. I also 
include performance for an 'ideal' learner and a 'naive algorithm' method. Both of these are as 
defined in Section 1.2: the ideal learner is created from the domain generator, and the naive method 
makes predictions based on the average value. 

Table 9 shows both predictive accuracy and retrieval efficiency for these two domains. Effi­
ciency is defined as in Chapter 4: the average number of nodes inspected during classification of 
test set instances. Once again, this experiment produced some surprising results: category util­
ity and category .value produce hierarchies with roughly the same efficiency. Although Classitcv 

builds deeper hierarchies, which decrease retrieval efficiency, it also builds narrower hierarchies than 
Classitcu, which increase retrieval efficiency. However, my original hypothesis that the structure 
of the hierarchies are different still holds true. 

One way to demonstrate the difference between these hierarchies is to use top-level prediction. 
This is a simple variation of the prediction task. Instead 1of allowing CLASSIT to descend through 
the hierarchy before making a prediction, classification is halted after the first level in the hierarchy. 
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Table 9. Classitcv versus Classitcu on artificial domains. 

cs;J Predictive Top level Average Retrieval 
error prediction depth efficiency 

Cat. Utility 2.15 0.54 1.23 6.90 

Cat. Value 2.05 6.81 2.40 6.87 

Ideal learner 0.51 0.51 1.00 3.00 

(a) Three-class domain. Naive method error: 13.33 

Cat. Utility 2.08 2.41 1.35 9.65 

Cat. Value 1.99 23.28 3.77 9.53 

Ideal learner 0.68 0.68 1.00 6.00 

(b) Six-class domain. Naive method error: 30.00 

Not surprisingly, Classi tcv does very poorly with this task, since the top level rarely corresponds 
to the actual classes in the data. As expected, this problem is more serious for the six-class data, 
as in Table 9(b ), than when there are only three classes present, as in Table 9( a). In contrast, 
Classitcu does as well (or better) with top-level prediction than with the usual prediction task. 

In summary, both the predictive power and the retrieval efficiency of CLASSIT with category 
value is equal to that of the system with category utility. However, the hierarchy produced is quite 
different. This may be important to some applications of concept formation. For example, Iba and 
Gennari (in press) describe an application in which the top level of the concept hierarchy is used to 
define a motor schema. Each node at the top level corresponds to a state in the motor schema. If 
the top level of the hierarchy does not reflect the class structure of the data (as with Classitcv ), then 
the resulting motor schema will not represent a correct movement. For this application, category 

value would be a poor choice for an evaluation function. 

2.3 Gain ratio versus category utility 

For a second comparison of evaluation functions, I look at another simple modification to category 
utility. In contrast to category value, this function is not a simplification of category utility, but 
rather a modification that is designed to make the function more robust in the face of different 
amounts of information across attributes. 
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In particula.r, I define the gain ratio function as 

GainRatio = 
I· K · Info(Ci11 ) 

(3) 

The only difference between this function and category utility (equation 1) is that the information 
gain is normalized by Info(Ci11 ). Instead of using the absolute gain in information from parent to 
child, this evaluation function measures the percentage change in Info(C): the information gain 
over the information already present. 6 

This modification is motivated by the concern that different attributes may have Info( Ci) scores 
that are very different in magnitude. This is clearly the case for continuous attributes, since the 
magnitude of 1/(ji depends on the magnitude of the values for the attribute i. This can lead to a 
problem if the 'important' attributes are somewhat noisy and have low Info(C) scores: for category 
utility, these attributes may be overwhelmed by some 'unimportant' attribute that has Info(C) 
scores of a. higher magnitude. This problem should be alleviated by the gain ratio evaluation 
function. 

In order to clarify the intuition behind this function, consider an example in which the system 
is learning from a sequence of flower descriptions. It may be that the attributes associated with 
species (such as leaf type or petal size), have relatively low scores when compared to an 'irrelevant' 
attribute such as color (irrelevant at least for distinguishing species). Hence, Classitcu may learn 
classes based on colors: grouping all red flowers together, all yellow flowers together, etc. In contra.st, 
ClassitaR ( CLASSIT with the gain ratio evaluation function) should notice that, although the species 
attributes have low scores, they have a large percentage gain between levels in the hierarchy, and 
hence should outweigh the color attribute. Thus, ClassitaR should build the preferred hierarchy, 
dividing the instances into roses, carnations, irises, and the like. 

Although the motivation behind gain ratio appears reasonable in some cases, it can cause prob­
lems in other situations. As I showed above, the function can lead to useful hierarchies if the 
'important' attributes are noisy, and have low scores compared other 'unimportant' attributes. If 
this is not the case, then ClassitGR may perform poorly. Gain ratio emphasizes attributes with 
less information, and decreases the weight of attributes with more information (those with higher 
Info(C) scores). If the former, low-score attributes really are 'noise' with respect to the classes 
present, then the system will have more difficulty finding that class structure. In this respect, gain 
ratio is similar to an attribute-weighting scheme, such as discussed in Chapter 2. If the assumptions 
underlying the weights are correct, then the scheme will work well. If the assumptions are incorrect, 
the weights may actually hinder the system's ability to learn. 

Figures 29 and 30 compare the predictive performance of ClassitGR to Classitcu with some real­
world domains. Figure 29 shows results with the glass database, where Cla.ssitaR performs a.bout 
as well as Classitcu, and with the heart-disease database; In the latter case, ClassitaR performs 
significantly worse, suggesting that this domain is not suited for the gain ratio evaluation function. 

6. This function is very similar to the gain ratio criterion defined by Quinlan (1986); the most significant differences 
involve the definition of Info(C). 1 
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Figure 29. Classitaa with heart disease and glass databases. 

In Figure 30, ClassitaR also performs poorly. This result is from the automobile insurance 
database: acuity is 1.0, the recognition criterion is 0.9, and the predicted attribute is engine­
horsepower, a continuous attribute. 1 Also shown is the naive algorithm error, when the overall 
average is used to predict the attribute. As the graph shows, even this rather simple-minded 
attribute prediction method outperforms ClassitaR· 

These results show that the gain ratio evaluation function has some problems, especially in 
real-world, noisy domains. In at least one domain, ClassitoR performs as well as Classitcu on 
predictive accuracy. However, evidence from real domains does not identify the conditions under 
which ClassitoR js !Lccurate or inaccurate. In order to control the learning environment, I turn once 
again to artificial domains. 

In particular, I use a domain where the assumptions behind the gain ratio evaluation function 
are correct: the absolute Info(C) scores should be normalized so that higher magnitude values 
are not given too much weight. Although this domain is purely imaginary, it can be understood 

7. I have found similar results to these with attribute risk-symbol. / 
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Figure 30. ClassitaR with the automobile insurance database. 

87 

by analogy with the flower example presented earlier. The data generator, which is detailed in 
Appendix B, creates eight subclasses of instances corresponding to eight possible :flowers. There 
are eight attributes per instance, and these are arranged so that four attributes suggest a hierarchy 
based on 'color', while the four noisier attributes suggest a hierarchy based on 'species'. 

Figure 31 depicts these competing hierarchies, with the leaf nodes in the center, labeled Al, A2, 
etc., in correspondence with the labels used in the data generator. From these leaf nodes a tree 
extends upward, corresponding to the hierarchy Classitcu builds where instances are first divided 
by the less noisy 'color' attributes. Extending downward js an alternative hierarchy, corresponding 
to the hierarchy that ClassitaR builds where the instances are divided by their 'species' attributes. 

'' 

Although I can predict that ClassitaR's hierarchy will have a different structure than Classitcu's 
hierarchy, the effect on predictive accuracy is less clear. In fact, as we will see, once the two systems 
have seen sufficient instances, they have the same predict~ve accuracy. Their differing hierarchies 
correspond to alternative retrieval methods, yet both systems arrive at the same leaf concepts in 
memory. 

i 
In particular, given enough instances, both systems e~tablish all eight of the "leaf" categories 
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Figure 31. Competing hierarchies for Classitcu and Classitoa. 

shown in Figure 31. Once this happens, prediction is based on classes at that level (or lower). For 
example, suppose the system must classify a yellow, Species 1 instance (a 'Bl' flower). Initially, 
ClassitGR will group the instance with other Species 1 :flowers, while Classitcu will cluster the 
instance with yellow :flowers. However, the general CLASS IT algorithm continues sorting an instance 
until it creates a new disjunct. Assuming ClassitaR and Classitcu have seen other 'Bl' flowers, 
both systems will continue sorting the instance through their hierarchies until they reach a concept 
corresponding to the set of 'Bl' flowers. At this point, the instance will be classified as a new 
disjunct under 'Bl', and so prediction will be based on tha.t class. 

Figure 32 compares predictive ability with two attributes from the artificial domain: Attribute 1 
is a 'color' attribute, so it has lower magnitude scores (and hence higher Info(C) scores), while 
Attribute 5 is a 'species' attribute. Figure 32(a) shows lea.rnin~ curves for Attribute 1, while Figure 
32(b) shows curves for Attribute 5. In both cases, ClassitaR and Classitcu asymptote to the same 
level of predictive accuracy. Inspecting the hierarchies after they reach asymptote revealed that 
both systems have the eight 'leaf' categories well established'. 
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Figure 32. Learning curves for ClassitGR and Classitcu. 
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However, before CLASSIT defines the 'leaf' classes, one would expect a difference in predictive 
performance. As soon as ClassitaR builds the level one 'species' classes, then it can predict species 
attributes. Meanwhile, Classitcu is building the 'color' classes, and therefore may not be able to 
make predictions about species. This effect can be seen in Figure 32(b); learning about Attribute 5 
is slower for Classitcu than for ClassitGR· The converse is true for 'color' attributes, such as 
Attribute 1; this is demonstrated in Figure 32(a), where ClassitaR is slower than Classitcu. 

This effect is more dramatic if one forces the systems to use only the level-one classes to make 
predictions. (This is the top-level prediction task described earlier.) In this case, ClassitaR cannot 
make successful predictions about color attributes, while Classitcu cannot make prediction about 
species. This result is seen in Figure 33, which shows learning curves with top-level prediction for 
Attribute 1 (a 'color') and Attribute 5 (a 'species'). 

In summary, the use of gain ratio in this domain lets the system learn some attributes more 
quickly (though only at the expense of other attributes), and does not lead to better asymptotic 
performance. From this, one might conclude that gain ratio is almost useless, especially if one also 
considers its poor performance on real domains. However, there my be some situations where the 

gain ratio hierarchy is preferable. 

For example, suppose one uses the hierarchies shown in Figure 31 to predict information about 
a new white flower of Species 1. That is, suppose the test set contains instances that are from the 
same species as instances seen during training, but of a different, unseen color. In this case, the 
ClassitaR tree will still be able to predict species information, while the regular Classitcu tree may 
make a new disjunct out of the instance, and therefore make predictions based on the root node 

(as a 'naive' algorithm would). 
' 

In effect, gain ratio assumes that the lower noise attributes (the 'color' attributes, in this example) 
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Figure 33. Top-level prediction with ClassitGR and Classitcu. 

are not important and will not be used for predictive tasks. If there are test instances in new colors, 
this should not prevent the system from making predictions about species information. Silverstein 
and Pazzani (1990) suggest an extension of this idea where the system is told which attributes 
are likely to be used for prediction. The hope is that such a 'partially supervised' system would 
perform better than CLASS IT. 

The use of the gain ratio evaluation function affects the predictive accuracy of CLASSIT in at 
least two situations: if the test set contains new types of instances, as described above, and if 
the assumptions behind gain ratio are not met (as seen with the automobile database). However, 
as with the previous section, the most direct effects from the use of gain ratio are on the the 
structure of the hierarchy,. rather than predictive accuracy. Recall that I reported a similar result 
when experimenting with the merge and split operators (Chapter 4, Section 5). Just as with 
these alternative evaluation functions, removing merge and split affected the hierarchy but not the 
predictive accuracy of the system. 

In many ways this parallels the results of Mingers (1989) for supervised learning. He found that 
for decision trees, the function used to select attributes during learning had an effect on the size 
of the learned tree, but little effect on its accuracy. The experiments in this chapter suggest that 
these results can be extended directly to unsupervised concept formation. Since the learning that 
occurs during concept formation is much less constrained than for the supervised construction of 
decision trees, this suggest that Mingers' results may be mote far-reaching than anticipated. 
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3. Comparisons to other clustering algorithms 

A significant criticlsm of machine learning work on concept formation suggests that researche~s 
are 're-inventing the wheel' with respect to clustering algorithms. As I described in Chapter 2, 
researchers in cluster analysis have been working on the same basic problem since the 1960s. In fact, 
early machine learning work in conceptual clustering grew directly out of this tradition (Michalski 
& Stepp, 1983a). However, since most work in concept formation has not been compared to cluster 
analysis, the distinction between these two paradigms is unclear. Since concept formation is the 
more recent field, researchers in this field should make clear the strengths and advances of their 
work over older cluster analysis methods. 

In this section I try to answer these concerns with respect to CLASSIT. I begin by reviewing 
some important qualitative differences between cluster analysis and concept formation, focusing on 
those differences that affect an experimental comparison between methods. I then look at the two 
most well-used algorithms in cluster analysis: agglomerative clustering and iterative optimization. 
In contrast to the previous section that evaluated algorithms, here I compare algorithms, keeping 
the evaluation function across methods as similar as possible. For both algorithms, I present an 
experimental comparison with CLASSIT on both an artificial and a real domain. Finally, I include 
some qualitative judgements about these different algorithms, making some assessment of CLASSIT's 
incremental approach to the clustering problem. 

3.1 Concept formation versus cluster analysis 

As discussed earlier, perhaps the most important distinction between cluster analysis and concept 
formation is the difference between incremental processing and nonincremental processing. Concept 
formation takes as input a sequence of instances, and it learns from each instance. The input to 
a cluster analysis algorithm is a fixed set of instances, and the learned concepts are created by 
processing that entire set of instances. 

Since incremental methods do not reprocess instances during learning, one would hope that this 
approach is computationally more efficient than nonincremental clustering methods. This may or 
may not be true for a fixed set of n instances, but becomes much more likely if one wishes to reuse 
the learned set of concepts. For example, suppose a system has learned from a set of instances, A. 
If the system next needs to produce concepts for A+ 6, where 6 is a smaller set of new instances, 
then an incremental approach will be much more efficient. A cluster analysis method would require 
re-computing all A +t5 ·instances, while an incremental method will only process the 6 new instances. 

Because cluster analysis algorithms are not incremental, this experimental comparison will not 
include learning curves that show improved ability as a function of observed instances. It is possible 
to construct thes'e for nonincremental methods, but only at a high cost: for every test point on 
the learning curve, cluster analysis must be reapplied to the complete set of instances observed 
so far. For applications that require this type of incremental response, it seems clear that a 
nonincremental clustering system is inappropriate. Rather than comparing learning curves, the 
next sections compare the performance of CLASSIT and cluster analysis algorithms with a fixed set 
of instances. 
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A second obstacle to a comparison between cluster analysis and concept formation is the lack of 
a well-defined performance measure for cluster analysis methods. As described in Chapter 2, the 
standard use for cluster analysis is simply to have an expert examine the output and subjectively 
decide the value of the concepts produced. In order to quantitatively compare performance, I will 
apply the performance tasks defined for concept formation to cluster analysis. Specifically, I use 
the set of concepts or tree produced by a cluster analysis algorithm to predict missing attributes 
of test set instances. This compares the accuracy of concepts; if cluster analysis produces a tree of 
concepts, I can also look at the average retrieval efficiency of that tree. 

3.2 Agglomerative algorithms versus CLASSIT 

Undoubtably the most well-used cluster analysis methods are those that use a hierarchical agglom- · 
erative algorithm. As described in Chapter 2, this algorithm begins by treating every instance as a 
separate class, and repeatedly combining these small classes until it puts together a single hierarchy 
that includes all instances. In order to decide which instances to combine, the algorithm requires 
a similarity matrix that shows how similar every instance is to every other instance. 

More specifically, in this section I will use an average linkage agglomerative clustering algorithm 
(henceforth, ALA) as implemented in the statistical package, SPss-x.8 This particular clustering 
method is useful for comparative studies because it is readily available, it is well known, and it 
makes clustering decisions in a way that is related to CLASSIT's use of category utility. ALA uses 
Euclidean distance as its similarity measure, and represents classes by their average values. As we 
showed in Section 5.2, this type of average distance measure is closely related to category utility. 

Before presenting a.n empirical comparison between ALA and CLAS SIT, I should point out some 
important differences that are apparent from a simple analysis of the algorithms. First, all agglom­
erative methods require the use of a similarity matrix of size O(N2), where N is the number of 
instances. Although both algorithms build and use a concept hierarchy of size O(N), only ALA 
requires this additional N 2 memory requirement. Second, the hierarchies that ALA builds are al­

ways binary trees. This means that these trees will usually be both deeper and contain more nodes 
than equivalent concept hierarchies built by CLASSIT. These additional memory requirements may 
be a significant drawback for ALA, especially if N is large. 

In order to measure the predictive performance of the agglomerative method, the final binary 
tree produced by ALA is passed to CLASSIT for testing. This lets one use the same test set and the 
same parameter settings (acuity and the recognition criterion) to evaluate the concept hierarchies 
created by the two methods. This means that the same performance system is used with both 
clustering methods, and allows for a direct comparison of the predictive accuracy of the competing 
concept hierarchies .. 

For this experiment I use both an artificial domain and the glass database. Since the glass domain 
includes a symbolic attribute, glass-type, this must be converted to a numeric attribute in order 
to be processed by ALA. Since the attribute is binary, I simply converted it to an attribute with 
range (0, 1). The artificial domain is of medium complexity with a fair degree of noise: there a.re 

8. This is also known as the centroid method. 
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Ta.ble 10 . . Agglomerative clustering versus CLASSIT. 

~ Predictive Average Retrieval 

error depth efficiency 

CLASS IT 2.40 2.63 8.87 

Agglomerative 1.71 4.67 9.33 

Ideal Learner 1.81 1.67 5.33 

(a) An artificial domain. Naive algorithm error: 30.00 

CLASSIT 0.139 2.93 9.09 

Agglomerative 0.182 11.73 24.2 

(b) The glass domain. Naive algorithm error: 0.452 

four top-level classes, two of which are further subdivided into two subclasses. Each instance has 
nine attributes, with four of these irrelevant to the class structure. The six subclasses overlap in 
the same way as the databases in Section 1; for this domain, a = 5.0. (See Appendix B for the data 
generator.) I use this artificial domain with both ALA and with iterative optimization methods; 
it tests these methods along a number of dimensions such as noise, number of classes, and class 
structure. 

For both the real and the artificial domain, CLASSIT and ALA learn from a training set of 60 
instances. Because agglomerative clustering is order independent, it only makes one pass over the 
data, while the results for CLASSIT are averaged over ten random orders. After learning from the 
training set instances, the accuracy of the competing hierarchies are compared with the same test 
set. For the artificial domain, I used a noise-free test set of six instances, while with the glass 
database I used an unseen set of 33 instances. The missing attribute during testing is glass-type 

for the real database and a subclass attribute for the artificial domain.9 Table 10 shows the average 
absolute error, the average retrieval depth, and the average retrieval efficiency (the number of nodes 
visited) for this experiment. 

The basic result demonstrated by this experiment is that, although ALA does as well or slightly 
better than CLASSIT on predictive accuracy, it does so only with a less efficient tree. This can be 
seen by the greater retrieval depths of ALA on both domains and by its poorer retrieval efficiency. 
For both domains I show the error for a 'naive algorithm' which makes bases predictions on the 

9. Because glass-type has been converted to a. numeric attribute, the results in Table 10 are not comparable to 
the predictive performance reported when this attribute is symbolic. 
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mean value of the missing attribute. For the artificial domain I also include an 'ideal case' based 
on the data genera.tor. 

Just as the naive algorithm does not provide a real upper bound, neither is the ideal performance 
really a lower bound. Whenever there is noise in the data genera.tor and a nnite training set, it is 
possible to outperform the ideal lea.mer. The 'ideal' error given in Table lO(a) indicates the amount 
that the training set deviates from the model. ALA outperforms this value by modeling the training 
set more exactly than is merited by the data generator. This difference should disappear as the 
size of the training set increases. 

Although these are preliminary results, they do not support the use of this agglomerative clus­
tering method. Unless there exist some domains where ALA significantly outperforms CLASSIT, 

the memory and retrieval cost of the agglomerative method suggest that one should prefer an in­
cremental clustering algorithm. For the domains I have tested, this seems to be true even when 
the application is not incremental. For any environment where instances must be processed con­
tinuously, an incremental algorithm would be desirable. 

3.3 Iterative optimization versus CLASSIT 

The second cluster analysis algorithm I compare to CLASSIT is known as iterative optimization. 
As this method was developed partly in response to the computational and memory costs of ag­
glomerative methods, iterative optimization is considerably more efficient than an agglomerative 
approach. As described in Chapter 2, this algorithm assumes that the number of classes, k, is 

known a priori. Given this number and an evaluation function, the algorithm iteratively assigns 
and re-assigns instances to one of the k classes, improving the score of the evaluation function with 
each assignment. When this score no longer rises, the algorithm terminates and returns the final 
set of classes. 

The two most important differences between these algorithms and CLASSIT are that k is required 
beforehand and that a set of classes is created rather than a hierarchy. Although these are clearly 
drawbacks if one is interested in building a general-purpose concept learner, there are many situa­
tions where neither difference is important. For example, users can easily apply the algorithm with 
a number of different settings for k, choosing the best output from these. Also, as I have suggested 
earlier, many users are only interested in the number and definition of the major classes, rather 
than an entire hierarchy of classes. In fact, there are routines designed to extract class information 
from a hierarchy, such as would be built by an agglomerative method (Everitt, 1980). 

As before, the instantiation of iterative optimization (henceforth 'IO') I use in this section is from 
the SPss-x statistical package. This method uses Euclidean distance, and therefore its evaluation 
function is equivalent to trace(W) (Hand, 1981). In order to compare the set of classes produced 
by IO to the concept hierarchy produced by CtASSIT, I construct a one-level hierarchy from the 
set of classes. As with ALA, I then pass this simple hierarchy to CLASSIT for testing on predictive 
accuracy. Unlike agglomerative methods, iterative optimization is order dependent, so the results 
I present for both IO and CtASSIT have been averaged over the same ten random orders. 

Table 11 presents the average absolute predictive error ini the same domains as in the previous 
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Table 1~. Iterative optimization versus CLASSIT. 

~ Ideal CLASS IT 
lter. Opti. lter. Opti. lter. Opti. 

Naive Alg. k=8 k=6 k=4 

Accuracy 1.81 2.40 2.82 5.07 9.47 30.00 

(a) An artificial domain. 

~ CLAS SIT 
lter. Opti. lter. Opti. lter. Opti. 

Naive Alg. 
k=6 k=4 k=2 

Accuracy 0.139 0.185 0.234 0.452 0.405 

(b) The glass database 

section. I chose values for k based on the domain. In the artificial domain, there are four major 
classes, and total of six subclasses. Since iterative optimization cannot capture subclass structure, 
it is unsurprising that it does poorly when k = 4. As the results show, this algorithm does best 
when k is set higher than the actual number of classes present. For the glass database, IO does not 
achieve good results until k = 6. 

As with agglomerative methods, these results show that for these values of k, iterative optimiza­
tion has somewhat poorer predictive accuracy than CLASSIT. One may wonder how IO performs 
with higher values of k. While this may lead to some additional improvement, higher values of k 
must eventually lead to poorer predictive scores, as the system begins to over:fit the data. 

In conclusion, for many applications iterative optimization seems less desirable than CLASSIT for 
two reasons: it requires the number of classes beforehand, and it builds a :fiat list of classes rather 
than a hierarchy. And ·as with any nonincremental system, iterative optimization is inappropriate 
when the application demands incremental response to new information. 

4. Chapter summary 

This chapter has evaluated CLASSIT by assessing various. parts of the system independently. Ex­
periments focused on three aspects of the system: the user-supplied parameters, the evaluation 
function, and finally, the algorithm itself. Before moving on to additional modifications to CLAS­

SIT, I should summarize the ma.in results that have eme11ged thus far. 
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During development a.nd the initial testing of CLASSIT, I believed that settings for the recognition 
criterion a.nd the acuity parameter had relatively little effect on predictive performa.nce. Unfor­
tunately, more extensive parametric studies show that the system is somewhat sensitive to these 
parameters, but I should stress that this problem is severe only with noisy domains. As shown in 
Chapter 4, for cleaner domains, a single setting of the parameters (usually 1 or 2 for acuity and 
803 for the recognition criterion) can be used with a wide range of input domains. These studies 
also demonstrated that the parameters were useful for avoiding errors due to overfitting. In addi­
tion to correcting my initial hypotheses, these experiments have led to some ideas for improving or 
eliminating the parameters (see Chapter 7). 

A comparison of alternative evaluation functions for CLASSIT also produced some unexpected 
results. In particular, I found that the choice of function affected the structure of the concept 
hierarchy rather than the predictive accuracy of the system. Recall that the two functions I tested 
were quite similar to category utility; I would expect that a significantly different function would 
affect predictive accuracy. Although somewhat surprising, these results with unsupervised learning 
confirm and extend the work of Mingers (1989) with supervised learning methods. 

Finally, I compared CLASSIT to some older cluster analysis methods for clustering. This com-· 
parison showed that CLASSIT performs about equally with these systems, at least on the domains 
examined. However, there were a number of important qualitative differences. Cluster analysis 
requires numeric data, while CLASSIT allows for symbolic or mixed formats as well as numeric 
attributes. Moreover, cluster analysis methods are nonincremental, and are therefore most ap­
propriate in applications without a need for incremental response. Finally, some cluster analysis 
methods have significant memory costs, while others need to know the number of classes a priori. 

These extra requirements suggest that one would prefer an incremental algorithm, such as CLASSIT, 
to cluster analysis methods. 

In addition to these observations, I would like to stress the value of a careful experimental study. 
As I have indicated, the experiments with CLASS IT have usually resulted in a surprise of one kind or 
another. This demonstrates the importance of experimentation; by forcing researchers to support 
their hypotheses about the system's behavior, their research becomes more accurate and precise. 
I hope that together, Chapters 4 and 5 present a clear picture of the scope and limitations of 
CLASSIT's ability. 



CHAPTER 6 

Partial Information and Attention 

Concept formation in a 'real' domain usually occurs without complete information about in­
stances. In an attribute-value representation, this situation occurs when some attributes of a.n 
instance have an 'unknown' value . There are two reasons why a learning agent may n~ed to work 
with this type of partial information. First, the environment may include instances with missing 
information. In diagnostic domains, information can be missing whenever a. test takes too much 
time (or is too expensive) to carry out. In visual domains, information may be absent when features 
are obscured, or because there is noise in the visual sensor. 

Second, a learning agent may work with incomplete information when the environment provides 
too much data, and the agent prefers using partial descriptions. Since any learning agent has 
limited processing capabilities, it may not be able to attend to all available information about an 
instance. Instead, it may prefer to focus on salient attributes, and ignore (treat as missing) the less 
important ones. In cognitive psychology, the ability of a person to focus on only part of the input 
data is known as using attention to select from perceptual data. 

This chapter describes CLASSIT's approach to missing information, whether this occurs naturally 
in the environment or as a result of attention. The first section presents the system's method for 
working with missing information in the environment, along with some experimental results with the 
voting database and with an artificial database. The next section presents an extension to CLASSIT 
that enables the system to use an attention mechanism. This mechanism includes a definition of 
salience: a score that indicates which attributes are most important for making clustering decisions. 
In this way, clustering can occur by only observing the more salient attributes, and ignoring (treating 
as unknown) the less important attributes. 

When describing the attention mechanism, I also briefly discuss its relationship to other work on 
attention, especially in cognitive psychology. Unlike much of the work in this thesis, this extension 
is motivated mostly by concerns for psychological plausibility. I further discuss this motivation for 
CLASSIT and the attention mechanism in Chapter 7, where I present the system as part of a larger 
cognitive architecture for intelligence. 

1. Concept formation with partial information 

Most real-world environments do not have complete descriptions for every instance. One of the 
most interesting· applications for CLASSIT is in the domain of visual perception, as described in 
Chapter 1. In such a domain, instances may be partially occluded, and attributes may be unob- · 
servable from some views. Additionally, the visual sensors may not provide a perfect description 
of the environment: the image may be degraded due to lighting, visibility, distance, or even errors 
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in the sensor. All of these problems can lead to an instance description with missing information.1 
The task for a learning agent is to recognize and learn from instances in spite of these omissions. 

Of course, missing information is not restricted to perceptual domains. As mentioned earlier, 
diagnostic databases are often incomplete since it is not usually practical or possible to include 
every piece of information about an instance. In general, a learning agent should be able to learn 
from degraded instances a.s long as most of the 'important' information is still present. If too much 
information is missing, one would expect the learner's asymptotic accuracy to suffer. Additionally, 
one may expect slower learning with even a relatively small amount of missing information. After 
I describe CLASSIT's mechanism for missing information, I present some empirical results that 
provide initial support for these claims. 

1.1 CLASSIT and missing information 

As with a number of design decisions, I have chosen to use one of the simplest methods for dealing 
with missing information. Because CLASSIT's evaluation function can be defined per attribute, one 
can simply leave unknown attributes out of its calculation. For example, for instances with complete 
information, the category utility score may be averaged over ten attributes. If an instance appears 
with three attributes as 'unknown', then CLASSIT uses an average over the seven known attributes 
when computing scores as this incomplete instance is sorted through the concept hierarchy. In 
effect, this method lets instances be described by different numbers of attributes. 2 Except for this 
modification to the evaluation function, CLASSIT learns from instances with partial information 
in the usual manner. Instances are sorted through the hierarchy and concepts are modified and 
created as dictated by the evaluation function. 

Because this approach is so simple, it has a number of advantages over other schemes. For 
example, one alternative for missing information would be to fill in some 'expected' value for the 
unknown attributes (Quinlan, 1986).3 However, it is unclear what expected value to use. One 
could either use the expected value stored in each child concept (an optimistic assumption, since 
it implies a good match between concept and instance), or one could use the expected value at the 
parent concept (the most likely value for the entire partition). This approach is also more expensive 
than simply leaving missing attributes out of the computation. With CLASSIT's method, if 40% of 
the attributes are missing, the system performs 40% less computation. 

CLASSIT treats missing information in the same way whether values are unknown because of 
the environment, because of some attentional mechanism, or because they have been omitted 
during testing. The prediction task used to evaluate the system (defined in Chapter 4) includes one 

1. This should be distinguished from noise in the da.ta. Noise occurs if a sensor gives an incorrect value for an 
attribute; an attribute is missing if the sensor does not give any value for that attribute. In Chapter 4, I discussed 
CLASSIT's approach to noise, whereas this chapter is devoted to missing information. 

2. This implies that concept descriptions may not always include information about every possible attribute. In 
general, I have not explored the ability of using different attributes to describe different instances. The current 
system still requires a list of all possible attributes, although computationally this input could be ignored. 

3. I should point out for Quinlan's (1986) ID3 system, finding an expected value is a more critical problem than for 
CLAS SIT. Because each decision in the tree is based on a single at:tribute, ID3 cannot simply ignore a missing 
a.ttribute as CLASSIT can. . 
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missing attribute: therefore, during testing, all test-set instances ha.ve one fewer attribute than those 
observed during learning. In the next sections, I look at the effect of missing information during 
training; in other words, I evaluate the system's ability to learn from incomplete information.4 

1.2 Missing information in the voting database 

Of the five natural domains described in Chapter 4, only the voting database includes significant 
amounts of missing information. Certainly, future experimentation should include additional testing 
in other real domains, but for now, this is the only domain I have used to test the system's ability 
with missing information. The results shown in Chapter 4 for this domain were based on a subset of 
the data.base (50 training-set instances) in which all instances contained complete information. In 
order to assess CLASSIT's ability with missing information, I have run two comparative experiments 
with voting records that include unknown attributes values. 

Figure 34 shows the learning curves from these experiments. As in Chapter 4, acuity is set to 1.0, 
the recognition criterion is 0.8, and results are averaged over ten orders. To compare performance, 
I used the same test set (of 30 instances) for all three runs. In order to isolate learning ability 
with missing information, rather than performance ability with missing information, all test set 
instances have complete information (except for the attribute to be predicted). 

For the first experiment, I randomly chose another training set of size 50 where each instailce 
contained at lea.st one unknown attribute value. For this training set, 11.8 percent of the attributes 
were 'unknown'. Unfortunately, it is not very fair to compare performance with this training set 
against performance with a complete information training set. It is very likely that a sample of 
congressional representatives who always vote (no missing information) is qualitatively different 
than a sample that includes representatives with missing votes or abstentions. Since the test set 
contains complete information, the system is learning from one type of instance, and being tested 
with instances from a somewhat different population. Thus, I would expect predictive ability to 
suffer, even if CLASSIT has a perfect mechanism for working with missing information. This result 
can be seen in Figure 34, where there is a difference in accuracy of about 10 percent. 

In order to avoid this problem and more directly evaluate the system, I compared results with a 
third training set. These data a.re simply an artificially degraded version of the original 'complete 
information' data set. The instances are degraded by randomly changing some percentage of 
their attribute values to 'unknown'. For this experiment, I used the same percentage of missing 
information (123) as the second training set. 

As Figure 34 shows, predictive accuracy with the degraded data is almost as good as with 
complete information. After 40 instances, accuracy with the degra.ded data shows some signs of 
overfitting; howe.ver, the error rate is still quite close to CLASSIT's ability with complete information. 
In general, all three curves show reasonably similar predictive ability. This may be due to the 
relatively small amount of missing information. Additionally, the class attribute (democrat or 

4. An alternative approach is to test the system with different amounts of missing information in the test set. This 
is closely related to the cued recall test from cognitive psycho~~gy; I do not explore it here, although Martin 
(1989) has carried out some preliminary experiments with COBWEB, the predecessor CLASSIT. 
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Figure 34. Performance with missing information in the voting domain. 

republican) is never set to 'unknown'. In order to better evaluate CLASSIT's ability with missing 
information, I next turn to experiments with artificial databases. 

1.3 Missing information in an artificial domain 

To test CLASSIT's ability in an artificial domain, I use the 'Mixed-NTL' domain as defined in 
Section 4 of Chapter 4 .. This domain con.ta.ins both continuous and symbolic attributes; I use a 
symbolic attribute for the prediction task. In order to introduce missing information into the do­
main, I used a filter that randomly sets an attribute value to 'unknown' at some desired probability. 
Figure 35 shows resµlts as one adds 53, 103, 203 and finally 303 missing information into this 
domain. In each case, the figure shows a learning curve over 200 training-set instances. 

These results show both that CLASSIT can learn in the face of significant amounts of missing 
information, and that learning proceeds more slowly under these conditions than with complete 
information. With up to ten percent missing information, there seems to be no difference in 
asymptotic accuracy, although the ten percent curve shows iSomewhat slower learning. For higher 

I 

levels of missing information, the system learns both mo11e slowly and asymptotes at a higher 
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Figure 35. Accuracy with missing information in an artificial domain. 

101 

error rate. One would expect missing information to lead to slower learning: when 30% of the 
data is missing, the system must observe 30% more instances before receiving the same amount of 
information as when learning from complete instances. 

Unfortunately, with 20 and 30 percent missing information, the system also shows a higher 
asymptotic error rate: about 10% rather than close to 0%. These rates can be compared to that 
for a naive algorithm, which has an error of about 83%. The higher asymptotes may be due to 
the system performing poorly with some instance orderings. Over 10 orders, after all 200 instances 
had been seen, the sta.Ilda.rd deviation for 10% missing information was only 1.6, whereas for 20%, 
a = 7.0 and for 30%, a = 8.9. This indicates that the variation in ability over different instance 
orders is much greater with higher levels of missing information. When a hill-climbing learning 
algorithm learns' ~ore slowly, it has more opportunity to get stuck at local optimum. 

2. Concept formation with attention 

For concept formation, attention means selectively observjng and using only some of the attributes 
in an instance description. Especially in domains with many attributes, it seems unnecessary to 
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inspect and process every attribute in a description. Instead, an attention mechanism should let the 
system classify an instance based only on a few important attributes. In order to do this, one must 
know the r.elative importance, or salience of attributes. Since one cannot expect this .information to 
be supplied a. priori, the system has a secondary learning task. In addition to learning concepts from 
the environment, CLASSIT must also learn the relative saliences of attributes in that environment. 

Such a mechanism for attention is useful for two reasons. First, it allows for more efficient pro­
cessing; it should decrease the number of attributes the system must inspect before reaching a 
classification decision. I expect that an attention mechanism will improve the efficiency of the sys­
tem but not its accuracy.5 For this reason, I stress retrieval efficiency as an important performance 
measure for attention. Second, research on incremental methods for attention is important because 
it takes a step toward a psychological model of human behavior. 

I begin this section by motivating this research with a brief review of other work in attention, 
especially in cognitive psychology. This is followed by a careful description of the attention mech­
anism for CLASSIT, defining both the algorithm and the measure for determining salience. Finally, 
the section concludes with some experimental results that demonstrate the ability of the system 
with an attention mechanism. 

2.1 Previous work on attention 

Although attention is not often studied in conjunction with concept formation, there are a number 
of characteristics of the CLASSIT learning framework that led to an attentional mechanism as an 
obvious extension. First, although I am primarily interested in a learning system that is effective 
and computationally feasible, I have always tried to keep the design 'psychologically plausible'. 
Although the system cannot be considered an accurate model of human concept formation, I am 
interested in additions and modifications that could lead to such a model. An attention mechanism 
is exactly this type of addition. Second, I am most closely interested in applications of concept 
formation to perceptual processes, including vision. In this field, there are a number of "attention" 
theories, suggesting that such an addition would be useful in visual or perceptual domains. 

Treisman (1969) describes two stages in the human perceptual process. First, there is a fast, 
parallel processing of low-level features. For example, the eye seems to process a large amount 
of sensory data (such as a retinal image) in parallel. However, before recognition can occur, this 
parallel feature-extraction process reaches a perceptual limit, and must give way to a serial selection 
among sensory input (or among a set of perceptual analyzers). This sequential selection among 
input features, when it occurs during recognition and concept formation, is exactly the process I 
wish to model with an attention mechanism. 

It is important to note the relationship between this approach to attention and that of most 
research on visual attention. For example, LaBerge and Brown (1989) carefully detail a model of 
attention for shape recognition where the choice of what to focus on is known. This research begins 
with the assumption that a higher-order process tells the visual system to focus on certain features 

5. It is interesting to consider whether an attentional mechanism can evpr improve the accuracy of a learning system. 
After all, it has less information than a system with attention. 
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in the display.6 In contrast, determining the saliences of features, or choosing what to focus on is 
part of the problem for the attention mechanism I present here. In fact, using relative saliences is 
one way to model the higher-order focusing process. Of course, if some other focusing information 
is available, it can be used to either pre-set the salience levels, or even to remove the less salient 
attributes from training instances. 

Nosofsky (1986) uses a much looser definition of attention in his work with categorization. Here, 
selective attention takes place by defining a set of weights for the features in a domain. Higher 
weights on more salient features let the system effectively ignore the less salient features with lower 
weights. In contrast to the attention mechanism I propose, Nosofsky does not hypothesize any 
serial selection of attributes; all attributes are always processed. In addition, as Aha and McNulty 
(1989) point out, he does not describe how these weights may be learned. 

There is at least computational model from cognitive psychology that explicitly looks at atten­
tional learning without external feedback. Billman and Heit (1988) describe a model of learning 
from internal feedback that includes a focused sampling mechanism. Their system, CARI, learns 
relative saliences exactly as CLASSIT does: over time, the agent acquires knowledge about which 
features are most helpful for classification. Later, when the system must make decisions about a 
new instance, it inspects salient features with a higher probability than less salient ones. However, 
CARI is designed with a different representation and different goals from CLASSIT: it learns only 
simple rules about pairs of features, and does not produce a concept hierarchy of any kind. 

2.2 The CLASSIT attention algorithm 

At a computational level, the use of an attentional mechanism is similar to learning from incomplete 
information. In both cases, the basic concept learning algorithm is unchanged. As each instance 
is sorted through the hierarchy, the system must make decisions based on partial information. 
With attention, decisions about what information to ignore are made by the system; with missing 
information in general, information is removed by an external process, possibly in a random fashion. 
The attention mechanism I present here describes how the system chooses which attributes to 
ignore.7 

There are two parts to CLASSIT's attention mechanism. First, the system learns and stores 
relative saliences among attributes. Then, the system uses a sequential focusing algorithm that 
chooses among attributes, inspecting only enough information to make a confident clustering de­
cision. Salience is defined as the per-attribute contribute to category utility (see Equation 1 from 
Chapter 3). Hence, for a given attribute i, 

6. The open and interesting questions for this line of research involve how attention affects visual processes. Schnei­
der, Dumas, and Shiffrin (1984) also work from this starting point, while McNulty (1988) looks a.t these questions 
from a computational point of view. 

7. This chapter gives a. more detailed presentation of the attention mechanism originally described by Gennari 
(1989). 
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Saliencei = 
K 

where Info( Ci) is the information of attribute i in concept C, P(Ck) is the probability of the class 
k, and K is the number of classes at the current level. 

These scores produce an ordering of the attributes from most salient (attributes that should be 
inspected first) to least salient (attributes that probably need not be inspected). This ordering 
is dynamic because it is connected to the basic learning process. As the set of concepts changes 
durings learning, the salience scores also change, allowing for different attributes to emerge as most 
salient at different times. 

Given an order in which to inspect attributes, the system must decide how many attributes 
it should inspect before making a clustering decision. CLASSIT resolves this 'stopping condition' 
problem by imagining a worst-case scenario: it imagines that the unobserved attributes match some 
other concept perfectly, and then considers whether this information would change the current 
clustering decision. If so, then one must continue inspecting attributes; if not, one is guaranteed to 
have inspected sufficient attributes to make a decision. 

Finally, an attention mechanism needs an ability to recover from order effects. Like any incre­
mental system, CLASSIT can be fooled by unrepresentative initial instances: these may cause the 
system to have low initial estimates of the saliences for important attributes. To recover from 
this situation, the system probabilistically inspects attributes as a function of their salience scores, 
allowing even low-scoring attributes to be occasionally inspected. If such an attribute is 'noticed' 
in this way, and if that attribute actually is salient for the new instance, then its salience score is 
updated, and it will be more likely to be inspected in the future. 

Table 12 presents the attention algorithm used in CLASSIT. This mechanism is embedded within 
the basic concept formation algorithm as described in Table 2 in Chapter 3. In particular, attention 
is used whenever making a clustering decision: adding to an existing node, making a new disjunct, 
or carrying out a merge or a split operation. Attention and concept formation together carry out 
a nested hill-climbing search: a search to learn the salient attributes within a search to learn the 
best concept descriptions. Note that for each level in the concept hierarchy, there may be very 
different salience scores. Hence, CLASSIT restarts the attention algorithm at each level, inspecting 
completely different attributes at different levels. 

In order to determine if enough attributes have been inspected, the stopping condition (Step 4) 
considers two alternatives. First, the unobserved attributes may indicate membership in an alter­
native class. Although each existing class could be tested, I have limited this comparison to the 
second-best concept (just as the merge operator is limited to the best two concepts). Second, if 
this test indicates that further attribute inspection is unnecessary, the system considers a new dis­
junct. This condition covers the situation in which the unseen attributes indicate that this instance 
should be placed into a new singleton class. Only if both tests yield a lower score than that based 
on the observed attributes does the system ignore the remaiping attributes and continue with the 
classification. 
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Table 12. An algorithm for attention 

1. Select an unseen attribute with probability based on the salience scores 

stored at the parent node. 

2. Compute the salience of the selected attribute; store this new score at 

the parent. 
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3. Compute the category utility score for the best classification,)(, based 

only on attributes inspected thus far. 

4. Consider all remaining unseen attributes and compute scores if these 

attributes were to match either of the following alternative 

classifications: 

a) The second best concept. 

b) A disjunct. 

5. If either of these scores is better than J(, then go to step 1. 

Else, ignore remaining attributes. 

With little or no previous information, all attributes are equally salient, and the system must 
inspect most or all attributes before choosing a clustering operator. However, as more instances are 
observed, concepts should emerge in which some attributes contribute heavily to the total category 
utility score, while others contribute less. This means that the salience scores for attributes become 
more disparate, letting the system inspect only those attributes that have high scores. The attribute 
learning process is synchronous with the concept learning process: as the system defines concepts, 
it learns which attributes are more salient. 

As stated earlier, the purpose of an attention mechanism is to improve efficiency: by looking 
at fewer attributes, the system should be able to recognize or classify instances more quickly. Yet 
there is no improvement in computational efficiency with this algorithm. In particular, by applying 

the halting condition after observing each of n attributes (step 4 in the table), I have added an 
O(n2) cost to the algorithm.8 However, I am assuming that the cost of observing an attribute 
is far greater than the .time required for an internal computation. This seems very reasonable if 
one imagines an application to robotics, where considerable work and real time may be needed 
to observe features (Tan & Schlimmer, 1989), or to diagnosis, where observing an attribute may 
mean carrying o.ut a lengthy test. Given this assumption, efficiency can be defined as the number 
of attributes inspected, since this cost outweighs other computational costs. 

8. Note that there is a small constant on this cost: on average, if attention observes half of the attributes, then the 
cost of the halting condition is at most (n 2 - n)/4. . 
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Figure 36. Performance with attention on the voting database. 

2.3 Experimentation with attention 

50 

This section reports tests of the basic hypothesis about an attention mechanism: with attention, 
the concept formation system can process instances more efficiently without a loss in predictive 
accuracy. To check this claim, I use four of the real domains described in chapter 4: the voting 
database, the glass database, the heart-disease database, and the automobile database.9 

For each domain, I show performance with and without attention, comparing both efficiency 
and accuracy. Figures 36 through 39 show results with these data sets. For each domain, the 
experimental procedure and parameter settings (and results without attention) are the same as 
those described in Chapter 4. Unfortunately, the attention algorithm is non-deterministic: because 
it inspects attributes with probabilities based on the salience scores, performance may vary with 
different executions, even when the same data is presented in the same order. Hence, predictive 
performance of the attention algorithm is averaged both over ten orderings of the training data, 
and over five executions for each ordering. 

Efficiency was defined in Chapter 4 as the average number of nodes inspected during test-set 
classification. In order to evaluate the ability of an attention mechanism, this definition must be 
augmented to include attributes as well as nodes. More exactly, during the classification of a test 
set instance, I count the number of nodes in the current partition and multiply this by the number 
of attributes inspected at that partition. The sum over levels is the 'work' reported in Figures 36 
through 39. 

9. Because of the size of the database, it was impractical to experiment, with attention using the LRS star database. 
I 



Work 

80 
70 
60 
50 
40 
30 
20 
10 
0 

,,-' 
• 

0 

Work 

80 

60 

,,.,' 
.......... 

1t' 

CONCEPT FORMATION 

CLASS IT 

CLASSIT with attention 

-·-----·---....... 
.,,.,, ........ ----

Percentage error 

50 

40 

30 

20 

10 

0 

' ' ~ ... 

·-\ ' ....... ·--• ......... 

CLAS SIT 

CLASSIT with attention 

10 20 30 40 50 60 0 10 20 30 40 50 60 

Number of instances Number of instances 

Figure 37. Performance with attention on the glass database. 

CLASS IT 

CLASSIT with attention 

.....• -···········~ 

Percentage error 

50 

40 

30 

20 

.... 
I 

' ._ 

' I 
I 

~---- ......... 

CLASS IT 

CLASSIT with attention 

~--·--• ..... -·-----4 

40 ,. ...... ~--- .. --......... 
: 
' 20 10 

0 0 
0 10 20 30 40 50 60 0 10 20 30 40 50 60 

Number of instances Number of instances 

· 'Figure 38. Performance with attention on the heart-disease database. 

107 

I also have included an artificial domain that was designed especially for an attention mechanism. 
This domain is quite clean, with little or no overlap between classes. Instances are described by 
twenty attributes, of which twelve are completely irrelevant to class structure. The results in ,. 
Figure 40 show that learning is slower with attention, si*e the system must search for the salient 



108 

Work 

350 

300 

250 

200 

150 

100 

50 

0 
0 

Work 

350 

300 

250 

200 

150 

100 

50 

0 
0 

J. H. GENNARI 

CLASS IT 

CLASSIT with attention 

Absolute error 

1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0 

CLASSIT 

CLASSIT with attention 

10 20 30 40 50 60 0 10 20 30 40 50 60 

10 

Number of instances Number of instances 

Figure 39. Performance with attention on the automobile database. 

CLAS SIT 

CLASSIT with attention 

·--- --
·---·-­------·- --· 

20 30 40 50 60 

Number of instances 

CLASS IT 

CLASSIT with attention 

Absolute error 

10 

8 

6 

4 

2 

0 
0 

• \ 
\ 
\ 
\ 
I • I 
I 

\ 
I 
I 
I 
I 

~~\. 

\\, 
·--.... -- ... -----· ---- -·-----

10 20 30 40 50 60 

Number of instances 

·Figure 40. Performance with attention on an artificial database. 

attributes. However, once the system finds these attributes, predictive performance is equal with 
and without attention. This slower learning can also be seen to some degree in the glass and 
heart-disease domains. 

In all these domains, the attention mechanism roughly doubles the efficiency of CLASS IT. As 
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expected, the shape of the efficiency curve does not change: with or without attention, the work 
appears to rise a.s the log of the number of instances seen. As hypothesized, this improvement in 
efficiency does not cause a major loss in predictive accuracy, although the auto and voting databases 
show slightly better predictive performance without attention. 

3. Discussion 

At one level, the attention mechanism described in this chapter resulted from exploratory research 
with concept formation and missing information. That is, I believed that CLASSIT did not need 
to use all attributes in order to build useful (accurate) concepts. Instead, I posited that the most 
salient attributes could be discovered by the system, and that the system could perform well while 
inspecting only the salient features of its environment, just as it could perform well with only partial 
descriptions of the data. The mechanism presented here is the result of this line of inquiry. 

I certainly that the results shown here have satisfied these initial goals. As a rough approximation 
over all domains, CLASS IT seems able to learn accurate concept hierarchies while only inspecting (on 
average) half of the available attributes. However, this initial success has led to a set of additional 
objectives, most of which are only partially fulfilled. 

For example, I would like to pursue the relationship between attention as defined by cognitive 
psychology and the algorithm used by CLASSIT. Also, I am not satisfied with the way that the 
attention mechanism re-starts with each new level in the ~oncept hierarchy. They may also be 
other, more successful ways of defining salience and of determining a 'stopping condition' when 
inspecting attributes. The next chapter includes a closer look at these issues, and describes some 
preliminary ideas for solutions. 
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CHAPTER 7 
Reaching beyond CLASSIT 

Any new scientific theory or engineering advance can be evaluated in two ways. First, the work 
can be evaluated simply by comparing its abilities to the researcher's goals: a new model should 
explain phenomena and a piece of engineering should meet its specifications. Second, a.ny significant 
scientific advance should motivate additional research in new directions a.nd should be useful in a 
variety of applications. I hope that this thesis provides an evaluation of CLASSIT a.long the first 
dimension. My goals should be clear, and I have given evidence that CLASSIT meets these goals. 
Along the second dimension, perhaps the best way to evaluate a system is observe the effect of 
that research over the course of time. Another way is to examine the new ideas and related work 
that result from the new system. Therefore, this chapter presents some initial ideas for extending 
CLASSIT in new directions and in new applications. 

Before suggesting new directions to move in, one should present a clear picture of what has been 
accomplished so far. Hence, this chapter begins with a summary of the research contributions 
of CLASSIT. Next, I describe some potential improvements to the system parameters, and some 
possible modifications to the data structures and algorithm. The final two sections of the chapter 
describe how CLASSIT might be used as part of a larger system. First, I describe how concept 
formation might used as part of a vision system, aiding the transition from pixel information to 
higher-level representations for visual recognition. Second, I describe a general purpose architecture, 
ICARUS, designed as an integrated model of an intelligence agent (or robot) reacting with the 
environment. CLASSIT was developed vy'ith this architecture in mind, and is designed to be used in 
a number of ICARUS components that a.re currently under development and testing. 

1. Summary of contributions 

Although CLASSIT does not provide a truly new framework for concept formation, it is an extension 
of existing work, especially Fisher's (1987) COBWEB, in a number of important ways. By building 
on CoBWEB's algorithm for concept formation, I have been able to experiment with a number of 
previously untested hypotheses and assumptions. In particular, some of the featured abilities of 
CLASSIT are also true of COBWEB, but were never tested or carefully evaluated. This research also 
goes beyond COBWEB in generality - the system can be used in domains .where COBWEB is not 
applicable. In summary, I believe that CLASSIT is a robust and general-purpose system for concept 
formation. Its abilities include: 

• The ability to learn a variety of class structures. CLASSIT (like COBWEB) can work with 
domains that have many or few classes, organized in a hierarchy or as a fiat list. 

• The ability to learn from noisy domains. CLASSIT's probabilistic representation of concepts 
allow it to easily work in domains with noise. (This is also true of COBWEB, but had not been 
well-tested.) 

110 
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• The ability to learn. with symbolic, numeric, and mixed-format data. CLASSIT's evaluation 
function is defined for either numeric or symbolic attributes. Likewise, its concept represen-' 
tations allow for a hybrid representation of numeric and symbolic information. The ability to 
work with mixed-format data allows the system a much greater range of application than most 
other concept formation systems. 

• The ability to ignore irrelevant attributes. Regardless of the number of irrelevant attributes, 
CLASSIT (and COBWEB) can learn concepts based on only a few distinguishing attributes. 

• The ability to learn from data with missing information. Since CLASSIT's evaluation function 
is computed per-attribute, the system can ignore attributes that are missing or deleted from 
the input. (Again, this is true for COBWEB, but had not been well-tested.) 

• The ability to learn the relative salience of attributes in an input domain. CLASSIT can then use 
this information with an attention mechanism, focusing on the salient attributes, and making 
clustering decisions with only a subset of the available information. This mechanism is an 
exploratory attempt to define attention for concept formation in a psychologically consistent 
way. 

I have demonstrated each of these abilities with both real and artificial domains. Experiments with 
real domains provide a demonstration that a particular ability is useful in the natural world, while 
experiments with artificial domains more precisely demonstrate the scope and limitations of the 
system. 

In addition, I have experimented with some of the components of CLASSIT independently. These 
experiments include comparative studies, where I compare different versions of the learning system 
with the same training and test-set instances. I have compared CLASSIT with: 

• Other evaluation functions. I found that predictive accuracy was not strongly affected by any 
of a set of related evaluation functions. Instead, these alternatives had a more direct effect on 
the structure of the concept concept hierarchy built by CLASSIT. 

• Cluster analysis methods. Compared to CLASSIT, traditional cluster analysis methods are 
special purpose, allowing only numeric attributes, working only in nonincremental settings, 
and sometimes requiring additional domain information. However, even in settings where 
cluster analysis was applicable, CLASSIT appeared to perform as well as these more specific 
methods. 

These studies give additional evidence that CLASSIT is a robust system. 

Finally, an important contribution of the thesis is the experimental methodology followed through­
out the work. This methodology stresses the importance of well-specified experiments with a variety 
of domains. In order to evaluate a learning system, the researcher must define both a learning task 
and a quantitative performance task. For CLASS IT, I define performance tasks for both the accu­
racy of the learned concepts, and for the efficiency of the system's concept hierarchy. Using these 
measures, my claims were supported and sometimes overturned by experimentation. This approach 
to research helps avoid ad hoc learning systems, and forces the researcher to support hypotheses 
about the behavior of the system. 
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2. Extensions to CLASSIT 

Before considering completely new research directions and applications for CLASSIT, I begin by 
addressing some problems and possible improvements to the existing system. This section makes 
suggestions for improvement in three areas - improvements for the system parameters; a more 
general organization of concepts; and some alternative algorithms for attention. 

2.1 Improving CLASSIT's parameters 

As described in Chapter 5, CLASSIT currently uses two parameters: an acuity parameter a.nd a 
recognition criterion. Ideally, a. learning system should be parameter-free: a system that includes 
parameters suggest that it must be "fine tuned" to every new domain. Hence, one area for im-. 
provement would be to either remove these system parameters or to ma.ke CLASSIT less sensitive 
to their values. 

The recognition criterion is used to determine when an instance is close enough to an existing 
concept that it need not be saved or classified further through the hierarchy. The easiest way 
to eliminate this parameter is to save all instances, and never 'recognize' an instance until the 
classification process reaches a leaf node. However, as shown in Chapter 5, this is too high a price 
to pay. Not only is retrieval less efficient, but in noisy domains, accuracy is lower as the system 
begins over:fitting the data.. 

One way to improve this parameter is to recognize that its value represents a tradeoff between 
careful learning and rapid recognition. High values suggest that the system learn precisely where 
the new instance belongs in the concept hierarchy, and that the hierarchy may need modification 
to accommodate this instance. Low values for this parameter mean that the system is interested in 
a quickly recognizing the new instance. In this case, the system carries out minimal learning and 
treats the hierarchy more as a static knowledge structure. 

This suggests some ways to automatically set the recognition criterion. For example, there 
may be distinct 'learning' and 'recognition' episodes for a given domain. A larger system may 
also have timing constraints - when it needs to recognize something quickly, it can use a lower 
recognition criterion. More generally, the system could track the changes to its concept hierarchy 
and modify the recognition criterion based on the amount of learning occurring. Initially, the 
recognition criterion should have a high value, possibly even 100%, thus forcing the system to save 
all instances. However, as the concept hierarchy becomes relatively sta.tic, the system can assume 
that most of the learning for this domain is complete, and therefore the recognition criterion can 
be lowered. 

In general, this s~ggests a dynamic parameter tha.t adjusts to the amount of learning that occurs. 
For example, if the environment changes after some point in time, one would expect the system 
to emphasize learning rather than recognition until it became familiar with the new environment. 
Schlimmer and Granger (1986) address similar issues as "tra~king concept drift". One simple way 
to track changes is to record how often the system invokes the operators "merge" and "split". 
When these are used, the tree is reorganized, and hence the,recognition criterion should probably 

I 
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be raised. If these are rarely used, then the system can assume it has learned about the current 
environm~nt, a.nd can lower the recognition criterion. 

For a.ny continuous attribute, CLASSIT also employs an acuity parameter. This parameter is 
used to determine when two continuous data values are so close as to be effectively the same. 
Unfortunately, I expect that this parameter will be very difficult to completely eliminate. Because 
continuous data can take an infinite variety of ranges a.nd values, it seems natural to adjust the 
system to account for differences in the range of values. Acuity is similar to the coupling parameter 
of Anderson (1988) and Anderson and Matessa (1990). Fried and Holyoke (1984) also use an 
analogous initial variance for continuous attributes. 

As described in Chapter 5, acuity is based on the idea of 'just noticeable differences' from 
psychophysics. This implies that there should be a different acuity value for every attribute. A 
possible modification of the acuity parameter is to use a vector of acuity values, and then to require 
that the system learn the values for this vector. In particular, each value in this acuity vector 
can be dependent in some way on the range (or variance) of the corresponding attribute. Higher 
variances suggest that greater acuity values are needed, and vice versa. Of course, this does not 
eliminate acuity: an initial setting is needed and the user must specify the relationship between 
variance and acuity values. Since the variances change over time, the acuity values would also 
change. The implications of changing what was a constant parameter into a dynamic variable are 
unclear. 

2.2 Modifying CLASSIT's concept hierarchy 

CLASS IT currently uses a concept tree and enforces a strict partitioning of instances into classes at 
each level. One possible improvement for the system is to relax these assumptions. For example, 
one can allow an instance to be a member of two classes, rather than a single class. This implies 
that concepts may have more than a single parent, indicating that it is a member of both concepts. 
This is a step toward the approach taken by Cheeseman et al (1988), where each instance belongs 
to all classes with some probability. Lebowitz (1987) also supports a form of 'clumping' in his 
UNIMEM system. 

This changes the basic data structure from a tree to a directed acyclic graph (DAG), which is a 
more general structure than a strict hierarchy. There may be a number of applications and domains 
that include instances that should properly be in more than one category. Also, one can consider 
a path through the concept DAG as a chain of reasoning, or as the steps needed before recognition 
occurs. A concept hierarchy allows only one route to each concept, whereas a DAG would allow a 
concept to have more than one 'recognition chain'. 

In fact, this more :flexible recognition can lead to more accurate predictive ability. Martin (1990) 
is currently investigating a closely related idea of "overlapping categories". For certain domains 
that are poorly represented with disjoint concepts, he reports greatly improved accuracy when the 
system builds overlapping categories. 

This change in data structure necessitates a change in both the algorithm and the evaluation 
function. The algorithm must be changed since the system no longer chooses a single concept at 
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each level. The evaluation function must also be changed, since it cannot simply compute the 
information at the parent when there is more than one parent. These are only some of the design 
decisions needed to modify CLASSIT so that it builds concept DAGs. 

2.3 Modifying the attention algorithm 

As suggested at the end of Chapter 6, I am not completely satisfied with the attention algorithm 
currently used by CLASSIT. In particular, the system treats attention as an isolated subroutine 
that is restarted at each level as the recognition process sorts an instance through the concept 
hierarchy. Although this approach has some advantages, in this section I present two alternative 
ways of integrating recognition and attention. 

One way to easily improve efficiency is to modify the attention algorithm so that an attribute is 
only observed once during the recognition process. The observations made at one level are inherited 
at the next level; hence, more and more attributes are 'known' as one descends the hierarchy. Except 
for at the top level, this variation would have more attributes available when it makes clustering 
decisions. Since the system can ignore irrelevant attributes, this suggests that accuracy may be 
improved, or at least not worsened by this alternative attention method. Whenever CLASSIT uses an 
attribute value more than once during classification, this version of attention would only 'observe' 
the attribute once. If work is measured by counting observations, and does not include the cost 
of storing and retrieving attribute values, then this modification will improve efficiency. Thus, 
efficiency is improved without sacrificing accuracy. 

A second alternative is to completely invert the relationship between the classification process 
and the attention mechanism. Instead of classification calling attention as a subroutine to make a 
clustering decision, the attention mechanism would call the entire recognition process each time it 
considers inspecting a new attribute. This approach is closer to the psychological view of attention: 
a poor job of recognition may demand that the system observe more attributes, while a 'good' 
recognition may let the system stop observing attributes, even if only a few are known. 

Unfortunately, this modification raises a number of unsolved design problems. First, salience 
scores cannot be stored as they were, with a different set of values at every parent node in the 
tree. The simplest solution is to store only a single set of saliences for the entire hierarchy. This 
would define salience for the entire domain, rather than for a particular set of concepts. Second, 
the stopping condition currently used by CLASSIT cannot easily be extended to this version of 
attention. One possibility for a stopping condition is to compare alternative clustering paths 
through the hierarchy, rather than the second-best class at a given partition. However, this idea 
raises a number of additional problems when sorting an instance down more than one path through 
the concept hierarchy. In spite of these dilemmas, allowing attention to call recognition rather than 
the reverse is an interesting research direction. 
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3. CLASSIT and visual processing 

As described in Chapter 3, much. of the motivation for this research arose from the needs of an' 
unsupervised robot as it explores an environment. This section focuses on one problem from this 
application: visual processing and concept formation. 

Although there are many representation schemes for visual information, one common way to 
represent input is as a two dimensional grey-scale grid of pixels. To apply concept formation 
to this domain, I treat ea.ch 'view' as an instance and ea.ch pixel location in a view as a single 
attribute. Thus, instances in this domain have an extremely large number of attributes. As in 
the current system, a visual concept is similar to the representation for an instance. However, 
concepts summarize a number of views, so each attribute in a visual concept includes a mean and a 
standard deviation for the grey-scale values. These concepts are "probabilistic grids" that indicate 
the probabilities of values in the visual field. 

Matching and retrieval in this framework would differ little from the current system, with each cell 
contributing to the overall category utility score.1 This approach to recognition in visual domains 
is similar to simple template matching, where an instance is matched, pixel for pixel, to a template 
of the desired concept. However, here the templates a.re not exact, but may be very 'fuzzy' if they 
include high standard deviations. Also, the match process is not all-or-none, but instead returns a 
score. The system can then make decisions simply by choosing the match with the highest score. 

The sheer number of attributes, and the difficulty of observing all attributes, make this applica­
tion an obvious one for some form of an attention mechanism. However, the approach described 
in Chapter 6 is probably too fine grained for visual data. Rather than attending to one pixel at a 
time, the system could focus on small regions of the instance. This is a coarser-grained attention 
mechanism, but should still avoid inspecting all attributes in the instance. These ideas are similar 
to those of McNulty (1988) in the domain of letter recognition. 

It should be clear that there remain a large number of open research questions for this application 
of concept formation. For example, it may be possible to organize visual concepts into a different 
type of specific to general hierarchy, where the concept grids have higher resolution and detail for 
specific concepts and lower resolution for more abstract, general concepts. Another open issue is 
to evaluate how well 'fuzzy' matching will work with three-dimensional objects or with multiple 
views of the same object. In summary, I believe that CLASSIT suggests a promising approach to 
this area of research, especially because of its ability to deal with numeric values and noise. 

4. The ICARUS architecture 

The ICARUS project is an ongoing research effort to define and build on an integrated cognitive 
architecture (Langley, Thompson, Iba, Gennari & Allen, in press). By an 'architecture' we mean 
a single framework of research assumptions and constraints that can be used to address a variety 

1. Preliminary experiments with this method (along with techniques to handle variations in scaling, translation, and 
rotation) on a two-dimensional letter-recognition task have produced encoura.ging results (Tami Tracey, personal 
communication). I 
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of tasks. In general, we are attempting to build a. system tha.t could control the behavior of a.n 
autonomous agent (e.g., a. robot) in a. reactive environment. Since this architecture encompasses a 
variety of abilities under one theoretical framework, it is comparable to Anderson's (1983) ACT* 
architecture a.nd Laird, Rosenbloom a.nd Newell's (1986) SOAR system. 

The ICARUS architecture includes a number of important assumptions and biases about rep­
resentation, performance and learning. For example, it states that an agent should have direct 
interaction with the environment via sensory input and robotic effectors. However, we are cur­
rently working with a simulated world rather than actual robotics, a.nd we treat early vision and 
primitive motor control as solved problems, leaving this work to other researchers. Thus, we are 
working at a somewhat more abstract level than robotics. 

ICARUS also assumes that all symbols and representations of knowledge are ultimately grounded 

in some sensori-motor description. This implies that concept formation must work with real-valued 
attributes such as the size, position, and velocity of objects, rather than higher-level symbolic 
features. This assumption forces us to model cognition at a 'lower', more primitive level than many 
AI researchers. 

An important goal of this project is to create a well-integrated system. Hence, although ICARUS 
supports a number of distinct research projects, we ultimately expect these to be tied together in 
a single system. For this reason, the design of ICARUS includes a number of shared data structures 
and control mechanisms. For example, there is a a sensory (or perceptual) buffer for receiving 

information about the environment, and a motor buffer for sending commands to move or affect 
the environment in some way. In addition, ICARUS assumes a single long-term memory structure, 
represented as a probabilistic concept hierarchy. 

Finally, ICARUS uses concept formation as the single retrieval and learning mechanism for long­
term memory. Because this is so central to the architecture, CLASSIT provides a foundation for 
lcARUS. There are currently three major components of ICARUS: a system for planning, DiEDALus; 
a system for motor control, MiEANDER; and a system for object recognition, LABYRINTH. For each 
of these, concept formation is the central learning mechanism, and some form of the CLASSIT 
system has been incorporated into these systems. I next briefly describe these three components, 
emphasizing the role of concept formation in each. 

4.1 Concept formation with composite objects 

CLASSIT and most of its predecessors in machine learning and cluster analysis use instances that 
are described by a simple list of attribute-value pairs. However, objects in the physical world may 
have components organized in a complex relational structure. LABYRINTH (Thompson & Langley, 
in press) is a compbnent of ICARUS that carries out concept formation over composite objects, i.e., 
instances with attribute values which are objects that can be further decomposed. For example, a 
cup may be described as having two components: a handle and a body. These components may be 
represented as simple attribute-value lists, or they may be further divided into subparts. 

LABYRINTH includes a number of extensions to CLASSIT that let it operate in a domain with com­
posite objects. First, the representation of instances and cohcepts include part-of links. Instances 
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are presented to the learning agent as a tree whose root is an entire composite object and whose 
leaves are primitive components. Likewise, concepts can include part-of pointers to other nodes in 
the hierarchy that may act a.s components for that concept. Recognition of a structured instance 
occurs in a bottom-up fashion, beginning by classifying the simple components of the object, and 
only later the composite objects. Second, although LABYRINTH uses the same evaluation function 
as CLASSIT, it requires an additional operator when classifying composite objects. This is used 
to generalize similar components when incorporating the composite instance into a concept. Since 
there a.re a number of applications that are best represented with complex instance descriptions, 
the ability to work with structured instances is an important advance for concept formation. 

4.2 Concept formation and plan acquisition 

In order to achieve its goals, an intelligent agent must be able to plan; that is, to order its actions in 
the world. DJEDALUS (Allen & Langley, 1990) is a means-ends planner that uses a concept hierarchy 
to retrieve and organize plan knowledge. Instances and concepts for DJEDAL us consists of three 
parts: a state description, the differences between this current state and a. desired state, and the 
operator that should be applied. These descriptions include many attributes that contain relational 
information, such as (on block! block2). Unlike CLASSIT, DJEDALUS can work with this type of 
attribute, using partial matching to compare attributes between a concept and an instance. 

Given a state description and a desired state (an instance without an operator), the performance 
task for DJEDALUS is to predict the missing operator. Like CLASSIT, the system finds this operator 
by sorting the instance through the concept hierarchy, and returning the operator stored with the 
best match. Initially, it operates as a simple means-end planner, applying an operator that reduces 
differences between the goal state and the current state. As it gains knowledge about successful 
plans, it operates more like a case-based planner, using its experience from previous plans to 
constrain operator selection. Finally, when the concept hierarchy includes abstract, internal nodes 
that summarize many experiences, the system acts as a schema-based planner, using more abstract 
knowledge to select operators. 

4.3 Concept formation and motor learning 

In order to carry out actions, ICARUS must include a component for motor control. The MJEANDER 
system represents and carries out primitive motor control operations, such as manipulating a limb 
or moving through the environment. Like other components of ICARUS, this system organizes and 
retrieves its knowledge in a concept hierarchy. However, unlike high-level planning, instances and 
concepts in this .hierarchy are simple motor schemas: a sequence of locations and velocities of body 
parts that specify a movement. 

MJEANDER uses OXBOW, a variation of CLASSIT, to learn to recognize and classify observed 
movements (Iba & Gennari, in press). Unlike instances in CLASSIT, movements are not simple 
attribute value lists, but are instead a restricted type of composite objects. A movement is made 
up of an ordered list of states, each of which includes a tifD.e stamp, together with the velocity and 
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positions of all joints used in the movement. Different movements may have different numbers of 
states. Like LABYB.INTH, Oxaow incorporates a number of advances to support concept formation 
with this more complex type of instance. 

5. Conclusion 

Progress in a scientific field requires two types of research: uninhibited leaps into unexplored 
territory, and careful evaluation of a particular set of ideas. If there is only the latter type of work, 
then the field would miss the revolutionary new ideas of an Einstein. However, without careful 
testing and evaluation, there would be no one to repudiate the claims of creative charlatans. 

Much as it might be more exciting to claim otherwise, this thesis falls mainly into the testing and 
evaluation side of machine learning. My system is not a radical breakthrough; instead, it verifies 
and expands on some known ideas for concept formation. I state this without apology for without 
this type of work, no science can sustain itself. 

Having placed my work on the humble side of the fence, I should make clear that I am not 
resigned to forever plodding through endless tests and experiments with concept formation. My 
interest in ICARUS, and in psychological phenomena such as attention, shows that my heart still 
yearns for the larger, more exciting goals of machine learning. A robot that can process perceptual 
information and learn to build up useful memory structures would be a very dramatic application 
of concept formation. 

Yet even these 'engineering' breakthroughs are of smaller scope than the goals of cognitive psy­
chology. If concept formation research can lead to an understanding of human learning abilities, 
then it will speed the development of systems capable of real human intelligence. However, under­
standing human learning is an extremely difficult task, and the ultimate research goals of cognitive 
psychology are dauntingly distant. 

My practical approach is to tackle the problem from the far side of the fence - breaking it 
apart and carefully understanding the myriad issues piece by painstaking piece. This slow, arduous 
work includes the research in this thesis: understanding the behavior of algorithms under different 
conditions, comparing variations of the system, and systematic experimentation with a variety of 
domains. Although I have pursued some rather humble tasks in this dissertation, it is the higher 
level goals from cognitive psychology, robotics, or artificial intelligence that drive my research. 
I hope that in some small way, CLASSIT will someday lead to a breakthrough in the study of 
intelligence. 
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Appendix A 

Sample instances from the five natural databases. 

1. The voting database 

The voting database consists of instances with 17 binary attributes, with the last attribute 
indicating political party (the class attribute). Chapter 4 uses a subset of this database with no 
missing information; Chapter 6 shows results with missing information. 

Complete information: 

y y y n n y y y y n n n n n y y dem 

n n n y y n y y y y n y y y n y rep 

nyynyyynyyynyynyd~ 

y n y n n n n y y y n n n n y y d~ 

n n n y y y n n n y n y y y n n rep 
y y n y n n y y y n y n n y n y dem 

n n n y y n n n n n n y y y n y rep 

y n n n y y n n n n y y n y n y dem 

y y n y y y n n n y n y y y n n rep 

n n y n n y y y y y n n n y n y d~ 

y y y n n n y y y n n n n n y y dem 

n n y n n y y y y y y n y y n y dem 

Missing information: 

y ? y n n n y y y n ? n n n y ? dem 

y n y n n n y y y n y n n n y ? dem 

n y n y y y n n n n n y y ? 

n n y n n y y y y y n y n y 
y y y n n n y y ? y n n n n 

n n n y n y y? y_n n y y y 
nnnyynnnnnnyny 

y n y n n ? y y y n ? ? n ? 

n y rep 

y ? d~ 

y ? d~ 

n y rep 

? y rep 

? ? d~ 

y n y n n n. y y y n n n n n y ? d~ 

y n y n n n y y y n n n n n y ? dem 
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2. The glass data.base 

The glass database consists of 9 numeric attributes and a symbolic class attribute that indicates 
the window type. The numeric attributes are the refractive index, and percentage of weight of 
various oxides. These oxides are: sodium, magnesium, aluminum, silicon, potassium, calcium, 
barium and iron (attributes #2 - #9). For all experiments I predicted the class attribute as 
a binary attribute with values of 'window glass' (winfl, win) and 'not window glass' (tabla, 
head, cont). 

1. 51761 12.81 3.54 1.23 73.24 0.58 8.39 0.00 0.00 winfl 

1. 51779 13.21 3.39 1.33 72.76 0.59 8.59 0.00 0.00 winfl 

1. 51806 13.00 3.80 1.08 73.07 0.56 8.38 0.00 0.12 win 

1. 52315 13.44 3.34 1. 23 72. 38 0. 60 8.83 0.00 0.00 head 

1. 51888 14.99 0.78 1. 7 4 72 . 50 0 . 00 9.95 0.00 0.00 table 

1. 51590 13.24 3.34 1.47 73.10 0.39 8.22 0.00 0.00 win 

1.52369 13.44 0.00 1.58 72.22 0.32 12.24 0.00 0.00 cont 

1.51824 12.87 3.48 1.29 72.95 0.60 8.43 0.00 0.00 winfl 

1. 51778 13.21 2.81 1.29 72.98 0.51 9.02 0.00 0.09 winf l 

1. 51769 12.45 2.71 1.29 73.70 0.56 9.06 0.00 0.24 winfl 

1.51653 11.95 0.00 1.19 75.18 2.70 8.93 0.00 0.00 head 

1. 51838 14.32 3.26 2.22 71.25 1.46 5 . 79 1. 63 0 . 00 head 

1. 51594 13.09 3.52 1.55 72.87 0.68 8.05 0.00 0.09 win 

1. 51751 12.81 3.57 1.35 73.02 0.62 8.59 0.00 0.00 winfl 

1.51905 13.60 3.62 1.11 72. 64 0.14 8.76 0.00 0.00 winfl 
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3. The heart-disease database 

This data.base is used in both mixed format, with 8 symbolic and 6 numeric attributes, and as a 
'numerie' database, with 13 numeric attributes and a symbolic class attribute. 

In order, the attributes are age; sex; chest pain type (angina, abnang, notang, asympt) Resting 
blood pressure; cholesterol; fasting blood sugar less than 120 (true or false); resting ecg (norm, 
abn, hyper); max heart rate; exercise induced angina (true or false); oldpeak; slope (up, fl.at, down) 
number of vessels colored; thal (norm, fixed, reverse). Finally, the patient is either healthy (0) or 
with some degree of heart-disease (1, 2, 3). 

As a mixed database: 

67.0 fem asympt 120.0 354.0 fal norm 163.0 true 0.6 up 0.0 norm fine 

63.0 male asympt 130.0 254.0 fal hyp 147.0 fal 1.4flat 1. 0 rev sick 

63.0 male asympt 140.0 203.0 true hyp 165.0 true 3.1 down 0.0 rev sick 

67. 0 male asympt 140.0 192.0 :fal norm 148.0 fal 0.4 flat 0.0 fix tine 

66.0 tem abnang 140.0 294.0 fal hyp 163.0 fal 1. 3 flat 0.0 norm tine 

66.0 male notang 130.0 256.0 true hyp 142.0 true 0.6 flat 1.0 tix sick 

44.0 male abnang 120.0 263.0 tal norm 173.0 tal 0.0 up 0.0 rev tine 

49.0 male abnang 130.0 266.0 fal norm 171.0 fal 0.6 up 0.0 norm fine 

68.0 tem angina 150.0 283.0 true hyp 162.0 fal LO up 0.0 norm fine 

68.0 male abnang 120.0 284.0 tal hyp 160.0 fal 1.8 flat 0.0 norm sick 

As a numeric database: 

48.0 1. 0 2.0 130.0 246.0 0.0 2.0 180.0 0.0 0.2 2.0 0.0 3.0 fine 

62.0 1. 0 2.0 120.0 326.0 0.0 0.0 172.0 0.0 0.2 1.0 0.0 3.0 fine 

53.0 0.0 4.0 138.0 234.0 0.0 2.0 160.0 0.0 0.0 1.0 0.0 3.0 fine 

66.0 1.0 4.0 125.0 249.0 1.0 2.0 144.0 1. 0 1.2 2.0 1. 0 3.0 sick 

65.0 1.0 4.0 140.0 217.0 0.0 0.0 111. 0 1. 0 6.6 3.0 0.0 7.0 sick 

45.0 0.0 2.0 130.0 234.0 0.0 2.0 175.0 0.0 0.6 2.0 0.0 3.0 tine 

66.0 0.0 4.0 200.0 288.0 1.0 2.0 133.0 1. 0 4.0 3.0 2.0 7.0 sick 

64.0 1.0 4.0 110.0 239.0 0.0 0.0 126.0 1. 0 2.8 2.0 1. 0 7.0 sick 

62.0 0.0 4.0 124.0 209.0 0.0 0.0 163.0 0.0 0.0 1.0 0.0 3.0 fine 

43.0 0.0 3.0 122.0 213.0 0.0 0.0 165.0 0.0 0.2 2.0 0.0 3.0 fine 

41.0 1. 0 3.0 112.0 250.0 0.0 0.0 179.0 0.0 0.0 1.0 0.0 3.0 fine 

64.0 1. 0 4.0 120.0 246.0 0.0 2.0 96.0 1.0 2.2 3.0 1.0 3.0 sick 
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4. The auto insurance database 

This database contains 16 numeric and 8 symbolic attributes about vehicles as follows: risk 
factor; losses; vehicle make; aspiration; doors; body; drive; wheel-base; length; width; height; 
weight; engine-type; cylinders; engine-size; fuel-system; bore; stroke; compression; horsepower; 
rpm; city-mpg; hwy-mpg; price. 

{ 0 78 honda std four wagon fwd 96.50 157.10 63.90 58.30 2024 ohc four 
92 1bbl 2.92 3.41 9.20 76 6000 30 34 7295} 

{ O 118 mazda std four sedan rwd 104.90 176.00 66.10 54.40 2670 ohc four 
140 mpfi 3.76 3.16 8.00 120 5000 19 27 18280} 

{ O 106 honda std two hatch fwd 96.50 167.60 66.20 53.30 2289 ohc four 
110 1bbl 3.16 3.68 9.00 86 6800 27 33 9096} 

{ O 85 honda std four sedan fwd 96.50 176.40 65.20 54.10 2304 ohc four 
110 1bbl 3.15 3.58 9.00 86 5800 27 33 8845} 

{ 1 158 audi std four sedan fwd 105.80 192.70 71.40 56.70 2844 ohc five 
136 mpfi 3.19 3.40 8.50 110 5500 19 25 17710} 

{ 1 118 dodge std two hatch fwd 93.70 157.30 63.80 50.80 1876 ohc four 
90 2bbl 2.97 3.23 9.41 68 5500 37 41 5572} 

{-1 74 volvo std four wagon rwd 104.30 188.80 67.20 57.50 3042 ohc four 
141 mpfi 3.78 3.16 9.50 114 5400 24 28 16515} 

{-1 74 volvo turb four wagon rwd 104.30 188.80 67.20 57.50 3157 ohc four 
130 mpfi 3.62 3.15 7.50 162 5100 17 22 18950} 

{ 3 194 nissan std two hatch rwd 91.30 170.70 67.90 49.70 3071 ohcv six 
181 mpfi 3.43 3.27 9.00 160 5200 19 25 17199} 

{ 2 134 toyota std two hard rwd 98.40 176.20 65.60 52.00 2536 ohc four 

146 mpfi 3.62 3.50 9.30 116 4800 24 30 9639} 
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5. The LRS star database 

As used by CLASSIT, this data.base contains class information, fluxes from 44 blue-ba.nd channel 
wavelengths, followed by fluxes from 49 red-band channel wavelengths. The class information 
is a number, but without more information a.bout its semantics, it must be treated as a. symbolic 
attribute. The original database also includes the astronomical position of each star (right-ascension 
a.nd declination), and scaling factors, but these were not used for clustering. 

Here are two sample instances: 

{ 42 14966.77 14946.297 15342.541 16137.868 14112.801 13309.645 12771.742 
12148.88 11471.069 10313.045 9171.77 8754.345 9037.418 8396.666 7866.022 

7764.041 7451.989 7121.642 7134.8906 7216.566 7286.6123 7008.154 7260.06 

7266.193 6803.421 6680.2197 6833.8926 7070.9893 6769.4443 6332.8643 6707.8613 

6664.8626 6660.3636 6347.3003 4972.668 4869.6934 4661.785 4183.7466 4631.,292 

4666.8843 4166.619 3667.601 3673.3662 3694.1016 7388.07 7001.4297 6786.6622 

6801.809 6776.417 6638.231 4662.861 4446.2773 3924.606 3831.324 3419.6096 

3186.3337 3069.786 3016.619 2681.641 2820.2068 2648.666 2066.0981 2016.2606 

2027.0983 1906.628 1825.6473 1662.3181 1692.5006 1349.1791 1636.1202 1374.6116 

1294.6177 1619.9097 1141.4961 1108.2911 1151.7996 888.46044 1077.0446 726.9725 
1224.0869 1177.6319 1114.2986 890.9661 857.74766 937.93176 938.0666 843.13947 

888.2986 766.0131 968.60066 887.0177 877.13837 676.47327} 

{ 28 7729.6216 7749.091 7315.261 8026.9287 8011.0083 8054.817 8796.448 

9337.731 9981.371 10963.328 12137.066 12746.263 12726.769 12379.991 12408.432 

11858.486 11331.301 11162.266 10404.891 10068.26 9996.866 9312.437 8796.73 

8435.943 8136.2837 7660.9864 7086.078 6742.826 6236.732 6833.817 6616.762 

4796.964 4818.679 4686.31 4106.8076 4013.773 3863.481 3665.4617 3616.5098 

3616.89 3721.4443 3360.8691 3389.6987 3064.67 9799.441 8831.7296 7338.2847 
6318.171 6160.2827 4632.666 3966.0664 3317.087 3184.103 2966.9543 2834.441 

2670.3384 2408.2186 2486.7962 2229.438 2611.7346 2353.6068 2146.6713 2366.9066 

2400.6764 2361.8446 2391.3666 2337.0442 2208.8672 2431.7186 2235.362 2039.0266 

2046.937 1946.2815 1976.9698 1975.8325 1739.8008 1630.2704 1702.6637 1676.1118 

1611.6867 1367.1617 1366.7169 1460.8734 1374.1876 1242.0381 1124.1136 1262.0094 

1102.8966 1243.6693 1118.6782 1162.8777 1006.6016 782.1728} 
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Appendix B 

Data Generators 

This appendix includes descriptions of the data generators used to build all of the artificial data 
sets used in the dissertation. For each generator, I include references to the chapter and section 
that used the artificial domain created by that generator. 

These genera.tors were written in C, and although I do not give complete program listings, there 
should be enough detail to easily re-create the data sets. Each generator includes a set of class 
definitions, where there is a function that prints a single instance from that class. Unless otherwise 
noted, all classes are chosen with equal probability. Numeric attributes values are usually created 

with a call to bellrand(µ, a), where µ is the mean and O' is the standard deviation. 'bellrand' 
uses a standard polynomial approximation to produce values with a normal distribution. 

1. The class complexity generators 

Chapter 4, Section 3.1 describes an experiment with three artificial data sets. There are three 
genera.tors for these: 'makebinary' for the binary domain, 'make-six' for the six-class domain, 
and 'make-sub' for the subset domain. All three generators create instances with nine numeric 
attributes. 

Makebinary has two classes: 

!•-----------------------------------------------------------------------•/ 
make-class1(name) 

char name [] ; 

{ 

float bellrand(); 

print:f ("%6. 2:f %6. 2:f 'l.6. 2:f ", 

bellrand(90.0, 2.0), bellrand(14.0, 1.0), bellrand(40.0, 2.0)); 

print:f("'l.6.2:f %6.2:f %6.2:f ", 

bellrand(SO.O, 5.0), bellrand(90.0, 10.0), bellrand(120.0, 20.0)); 

printf ("%6. 2:f %6. 2:f %6. 2:f ", 

bellrand(20.0, 3.0), bellrand(20.0, 3.0), bellrand(20.0, 3.0)); 

print:f(" %s\n", name); 

} /• end of make-class1 •/ 

make-class2(name) 

char name [] ; 

{ 
float bellrand(); 
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print:f("%6.2:f %6.2:f %6.2f ", 

bellrand(90.0, 2.0), bellrand(14.0, 1.0), bellra.nd(40.0, 2.0)); 

print:f("%6.2:f %6.2:f %6.2:f ", 

bellrand(50.0, 5.0), bellrand(90.0, 10.0), bellrand(120.0, 20.0)); 

print:f("%6.2f %6.2:f 'l.6.2:f ", 

bellrand(20.0, 3.0), bellrand(20.0, 3.0), bellrand(20.0, 3.0)); 

printf(" %s\n", name); 

} /• end o:f malte-class2 •/ 

!•-----------------------------------------------------------------------•! 

Make-six has six classes: 

/•-----------------------------------------------------------------------•/ 
malte-classi(name) 

char name [) ; 

{ 
float bellrand(); 

print:f("%6.2:f %6.2:f 'l,6.2:f " 

bellrand(100.0, 2.0), bellrand(10.0, 1.0), bellrand(35.0, 2.0)); 

print:f("%6.2:f %6.2f 'l.6.2:f ", 

bellrand(30.0, 5.0), bellrand(90.0, 10.0), bellrand(120.0, 20.0)); 

print:f("%6.2f %6.2f 'l.6.2:f ", 

bellrand(80.0, 3.0), bellrand(80.0, 3.0), bellrand(80.0, 3.0)); 

print:f(" %s\n", name); 

} /• end o:f make-class1 •/ 

make-class2(name) 

char name [] ; 

{ 
float bellrand(); 

print:f("%6.2f %6.2:f %6.2:f " 

bellrand(90.0, 2.0), bellrand(14.0, 1.0), bellrand(40.0, 2.0)); 

printf("%6.2:f %6.2:f %6.2:f ", 

bellrand(50.0, 5.0), bellrand(90.0, 10.0), bellrand(120.0, 20.0)); 

printf("%6.2f %6.2f %6.2:f ", 

bellrand(20.0, 3.0), bellrand(20.0, 3.0), bellrand(20.0, 3.0)); 

printf(" %s\n", name); 

} /• end of make-class2 •/ 

malte-class3(name) 

char name [] ; 

{ 
float bellrand(); 
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printf("%6.2f ~S.2f %6.2f ", 

bellrand(SO.O, 2.0), bellrand(18.0, 1.0), bellrand(46.0, 2.0)); 

print:f("%6.2f %6.2f %6.2f ", 

bellrand(70.0, 5.0), bellrand(90.0, 10.0), bellrand(120.0, 20.0)); 

printf("%6.2t %6.2f %6.2t ", 

bellrand(100.0, 3.0), bellrand(100.0, 3.0), bellrand(lOO.O, 3.0)); 

printt(" %s\n", name); 

} /• end of make-class3 */ 

malte-class4(name) 

char nameO; 

{ 
float bellrand(); 

printt("%6.2t %6.2t %6.2f " 

bellrand(70.0, 2.0), bellrand(22.0, 1.0), bellrand(50.0, 2.0)); 

printf("%6.2f %6.2f %6.2:f ", 

bellrand(90.0, 5.0), bellrand(90.0, 10.0), bellrand(120.0, 20.0)); 

printf("%6.2:! %6.2f %6.2f ", 

bellrand(40.0, 3.0), bellrand(40.0, 3.0), bellrand(40.0, 3.0)); 

printf(" %s\n", name); 

} /* end of malte-class4 */ 

malte-classS(name) 

char name [] ; 

{ 
float bellrand(); 

print:f("%6.2:! %6.2f %6.2f " 

bellrand(60.0, 2.0), bellrand(26.0, 1.0), bellrand(55.0, 2.0)); 

printf("%6.2:! %6.2f %6.2f ", 

bellrand(110.0, 5.0), bellrand(90.0, 10.0), bellrand(120.0, 20.0)); 

printf("%6.2f %S.2f %6.2f ", 

bellrand(60.0, 3.0), bellrand(60.0, 3.0), bellrand(60.0, 3.0)); 

print:f(" %s\n", name); 

} /* end of malte-classS */ 

malte-class6(name). 

char name [] ; 

{ 

:float bellrand () ; 

printf("%6.2f %6.2f %6.2f " 

bellrand(SO.O, 2.0), bellrand(30.0, 1.0), b~llrand(60.0, 2.0)); 

printf("%6.2f %6.2f %6.2f " 
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bellrand(130.0, 5.0), bellrand(SO.O, 10.0), bellrand(120.0, 20.0)); 

print:f ( "%6. 2:f %6. 2f %6. 2:f 00 ·, 

bellrand(90.0, 3.0), bellrand(90.0, 3.0), bellrand(90.0, 3.0)); 

print!(" %s\n", name); 

} /* end o:f make-class6 •/ 

!•--------------------------------------------------------------------~-•/ 

Make-sub has two classes, each of which has three sub-classes: 

/*-----------------------------------------------------------------------•/ 
make-class1(name) 

char nameD; 

{ 
:float 

int 

bellrand(); 

rand(); 

print:f("%6.2:f %6.2:f %6.2:f " 

bellrand(100.0, 2.0), bellrand(20.0, 2.0), bellrand(20.0, 2.0)); 

print:f("%6.2:f %6.2:f %6.2! ", 

bellrand(SO.O, 5.0), bellrand(90.0, 10.0), bellrand(120.0, 20.0)); 

switch (rand(3)) { 

case 1: print:f("%6.2f %6.2:f %6.2:f ", 

bellrand(SO.O, 3.0), bellrand(SO.O, 3.0), bellrand(SO.O, 3.0)); 

print:f(" %s1\n", name); break; 

case 2: printf("%6.2f %6.2:f %6.2:f ", 

bellrand(20.0, 3.0), bellrand(20.0, 3.0), bellrand(20.0, 3.0)); 

print!(" %s2\n", name); break; 

case 3: print:f("%6.2:f %6.2:f %6.2:f ", 

bellrand(100.0, 3.0),bellrand(100.0, 3.0),bellrand(100.0, 3.0)); 

print:f(" %s3\n", name); break; } 

} /* end o:f make-class! */ 

make-class2(name) 

char nameD; 

{ 
:float 

int 

bellrand(); 

rand(); 

print:f("%6.2:f Y,6.2:f %6.2:f " 

bellrand(120.0, 2.0), bellrand(60.0, 2.0), bellrand(60.0, 2.0)); 

print:f("%6.2:f %6.2:f %6.2:f ", 

bellrand(70.0, 5.0), bellrand(90.0, 10.0), bellrand(120.0, 20.0)); 

switch (rand(3)) { 

case 1: print:f("%6.2:f %6.2:f %6.2:f ", 

bellrand(40.0, 3.0), bellrand(40.0, 3.0), bellrand(40.0, 3.0)); 
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printf(" %111\n", name); break; 

case 2: printf("Y.6.2f Y.6.2f Y.6.2f ", 

bellrand(60.0, 3.0), bellrand(60.0, 3.0), bellrand(60.0, 3.0)); 

printf(" Y.s2\n", name); break; 

case 3: printf("Y.6.2f Y.6.2f Y.6.2f ", 

bellrand(90.0, 3.0), bellrand(90.0, 3.0), bellrand(90.0, 3.0)); 

printf(" Y.s3\n", name); break; } 

} /• end of make-class2 •/ 

!•-----------------------------------------------------------------------•! 

2. The irrelevant attribute generator 

In Chapter 4, Section 3.2, I describe an experiment with successively more and more irrelevant 
attributes. Below, I list the generator for this domain. This program produces instances with four 
relevant attributes and either O, 4, 8 or 16 irrelevant attributes, depending on the user's input (the 
parameter 'nirr'). There are four classes, and all attributes are numeric. 

!•-----------------------------------------------------------------------•/ 
make-class1(name, nirr) 

int nirr; 

char name[] ; 

{ 
float bellrand(); 

print:f("Y.5.2f Y.S.2f Y.5.2f Y.6.2f", bellrand(20.0, 3.0), 

bellrand( 6.0, 1.0), bellrand(12.0, 2.0), bellrand(60.0, 4.0)); 

switch (nirr) { 

case O: break; 

} 

case 4: printirr(1); break; 

case 8: printirr(2); break; 

case 16: printirr(4); break; 

print:f (" Y.s \n", name) ; 

} /• end of make-claas1 •/ 

make-class2(name, nirr) 

int nirr; 

.char name[]; 

{ 
float bellrand () ; 

printf("Y.5.2f Y.5.2f Y.5.2f Y.6.2f", bellrand(40.0, 3.0), 

bellrand( 9.0, 1.0), bellrand(22.0, 2.0), bellrand(SO.O, 4.0)); 

switch (nirr) { 

case 0: break; 



case 4: printirr(1); 

case 8: printirr(2); 

case 16: printirr(4); 

} 
printf(" Y.s\n", name); 

} I• end of make-class2 •I 

make-class3(name, nirr) 

int nirr; 

char name[] ; 

{ 
float bellrand(); 
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break; 

break; 

break; 

printf("Y.S.2f Y.S.2f Y.S.2f Y.6.2f", bellrand(60.0, 3.0), 

bellrand(12.0, 1.0), bellrand(32.0, 2.0), bellrand(100.0, 4.0)); 

switch (nirr) { 

case 0: break; 

} 

case 4: printirr(1); break; 

case 8: printirr(2); break; 

case 16: printirr(4); break; 

printf(" Y.s\n", name); 

} /• end of make-class3 •/ 

make-class4(name, nirr) 

int nirr; 

char name[] ; 

{ 
float bellrand(); 

printf("Y.S.2f Y.S.2f Y.6.2f Y.6.2f", bellrand(80.0, 3.0), 

bellrand(15.0, 1.0), bellrand(42.0, 2.0), bellrand(120.0, 4.0)); 

switch (nirr) { 

case 0 : break; 

} 

case 4: printirr(1); break; 

case 8: printirr(2); break; 

case 16: printirr(4); break; 

printf(" Y.s\n", name); 

} /• end of make-class4 •/ 

!•-----------------------------------------------------------------------•/ 
printirr(cnt) 

int cnt; 
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{ 
int i; 
for (i=O; i< cnt; i++) 

printf(" %6.2f Y.6.2f Y.5.2f Y.5.2f", bellrand(90.0, 8.0), 

bellrand(100.0, 5.0), bellrand(15.0, 1.0), bellrand(40.0, 3.0)); 

} 

/•-----------------------------------------------------~----------------•/ 

3. The numeric noise generator 

In Section 3.3 of Chapter 4 and in the parametric studies of Chapter 5 (Sections 1.2 and 1.3), I 
use artificial numeric domains where the amount of noise varies. As described in the dissertation, 
this is accomplished by changing the standard deviation of each class. For this generator, this is 
done with the parameter 'sig': 

malte-classl(name,sig) 

char nameO; 

float sig; 

{ 
float bellrand(); 

printf("Y.6.2f Y.6.2f Y.6.2f Y.6.2f ", bellrand(100.0, sig), 

bellrand(120.0, sig), bellrand(120.0, sig), bellrand(120.0, sig)); 

printf(" Y.s\n", name); 

} /* end of malte-class1 •/ 

malte-class2(name, sig) 

char name [] ; 

float sig; 

{ 
float bellrand () ; 

printf("Y.6.2f %6.2f Y.6.2f Y.6.2f ", bellrand(lOO.O, sig), 

bellrand(140.0, sig), bellrand(140.0, sig), bellrand(140.0, sig)); 

printf(" Y.s\n", name); 

} /* end of malte-class1 */ 

malte-class3(name, sig) 

char nameO; 

float sig; 

{ 
float bellrand(); 

printf("Y.6.2f Y,6.2f Y.6.2f Y,6.2f ", bellrand(lOO.O, sig), 

bellrand(160.0, sig), bellrand(160.0, sig),j bellrand(160.0, sig)); 

printf(" Y.s\n", name); 



} /• end of malte-class1 •/ 

make-class4(name, sig) 

char nameO; 

float sig; 

{ 
:float bellrand(); 

CONCEPT FORMATION 

printt("%6.2f Y.6.2f %6.2f Y.6.2f ", bellrand(100.0, sig), 

bellrand(180.0, sig), bellrand(180.0, sig), bellrand(1BO.O, sig)); 

printf(" Y.s\n", name); 

} /• end of make-class4 •/ 

4. The generators for mixed domains 
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In Section 4 of Chapter 4, I describe "Mixed-NTL" and "Mixed-STL'', a pair of artificial domains 
with both numeric and symbolic attributes. The generators for these domains each produce four 
classes of instances with six numeric and six symbolic attributes. However, as seen in Figure i9, 
these six classes are structured differently for the two domains. For Mixed-NTL, the attribute 
values are such that the system should build three classes divided by the numeric attributes, each 
with two subclasses distinguished by the symbolic attributes. For Mixed-STL, the situation is 
reversed: the system should build two main classes divided by the symbolic attributes, each with 
three subclasses distinguished by the numeric attributes. 

Both domains also include six irrelevant attributes: these are the first three numeric attributes, 
and the first three symbolic attributes. For the symbolic attributes, irrelevant values are generated 
by the function "pickaval", while relevant attributes are generated by the "chosenl", "chosen2" 
and "chosen3" functions. 

The Mixed-STL data generator: 

makeA1(name) 

char name [] ; 

{ 
float 

char 

bellrand(); 

•pickaval(), •chosen1(), •chosen2(), •chosen3(); 

printf("Y.6.2f Y.6.2f Y.6.2f Y,6.2f Y.6.2f Y.6.2f", 

bellrand(30.0, 10.0), bellrand(15.0, 5.0), bellrand(25.0, 2.0), 

bellrand(10.0, 2.0), bellrand(100.0, 5.0), bellrand(60.0, 2.0)); 

printf (" Y.7·s Y.7s Y.7s %7s Y.7s Y.7s", 

pickaval(4), pickava1(5), pickaval(2), 

chosen1(11), chosen2(11), chosen3(11)); 

printf(" Y.s\n", name); 

} /• end of makeA1 •/ 

/. 
makeA2(name) 
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char nameO; 

{ 
:float 

char 

bellrand(); 

•pickaval(), •choaen1(), •choaen2(), •choaen3(); 

printt("'/.6.2f '/.6.2f '/.6.2f '/.6.2f '/.6.2f Y.S..2f", 

bellrand(30.0, 10.0), bellrand(16.0, 6.0), bellrand(26.0, 2.0), 

bellrand(20.0, 2.0), bellrand(160.0, 6.0), bellrand(60.0, 2.0)); 

printt(" '/.7s '/.7s '/.7s Y.7s '/.7s '/.7s", 

pickaval(4), pickaval(6), pickaval(2), 

chosen1(12), chosen2(12), chosen3(12)); 

printt(" '!.s\n", name); 

} /• end ot makeA2 •/ 

makeA3 (name) 

char name [] ; 

{ 
·:float 

char 

bellrand () ; 

•pickaval(), •chosen1(), •chosen2(), •chosen3(); 

printf("'/.6.2f '/.6.2f Y.6.2:f Y.6.2f '/.6.2:f Y.6.2:f", 

bellrand(30.0, 10.0), bellrand(16.0, 6.0), bellrand(26.0, 2.0), 

bellrand(30.0, 2.0), bellrand(70.0, 6.0), bellrand~40.0, 2.0)); 

printf (" '!.7s '/.7s '/.7s Y.7s '/.7s '/,7s", 

pickaval(4), pickaval(6), pickaval(2), 

chosen1(13), chosen2(13), chosen3(13)); 

printf(" '!.s\n", name); 

} /• end ot makeA3 •/ 

makeB1 (name) 

char name [] ; 

{ 
float 

char 

bellrand(); 

*Pickaval(), •chosen1(), •chosen2(), •chosen3(); 

printf("'/.6.2t Y.6.2:f '/.6.2:f Y.6.2:f '/.6.2:f Y.6.2:f", 

bellrand(30.0, 10.0), bellrand(16.0, 6.0), bellrand(26.0, 2.0), 

bellrand(40.0, 2.0), bellrand(60.0, 6.0), bellrand(30.0, 2.0)); 

printf(" '!.7s '/.7s '/.7s '!.7s '/.7s '!.7s", 

pickaval(4), pickaval(6), pickaval(2), 

chosen1(21), chosen2(21), chosen3(21)); 

printf(" '!.s\n", name); 

} /• end o:f makeB1 •/ 

makeB2(name) 
1: 
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char nameO; 

{ 
float 

char 

bellrand(); 

•pickaval(), •chosen1(), •chosen2(), •chosen3(); 

printf("Y.6.2f Y.6.2f Y.6.2f Y.6.2f Y.6.2f Y.6.2f", 

bellrand(30.0, 10.0), bellrand(16.0, 5.0), bellrand(26.0, 2.0), 

bellrand(50.0, 2.0), bellrand(200.0, 7.0), bellrand(20.0, 2.0)); 

printf(" Y.7s Y.7s Y.7s Y.7s Y.7s X7s", 

pickaval(4), pickaval(S), pickaval(2), 

chosen1(22), chosen2(22), chosen3(22)); 

printf(" Xs\n", name); 

} /• end of makeB2 •/ 

makeB3(name) 

char nameO; 

{ 
:tloat 

char 

bellrand() ; 

•pickaval(), •chosen1(), •chosen2(), •chosen3(); 

printf("Y.6.2f %6.2f %6.2f %6.2f %6.2f Y.6.2f", 

bellrand(30.0, 10.0), bellrand(16.0, 5.0), bellrand(25.0, 2.0), 

bellrand(60.0, 2.0), bellrand(110.0, 5.0), bellrand(10.0, 2.0)); 

printf(" %7s %7s %7s Y.7s %7s X7s", 

pickaval(4), pickaval(S), pickaval(2), 

chosen1(23), chosen2(23), chosen3(23)); 

printf(" Y.s\n", name); 

} /• end of makeB3 •/ 

!•--------------------------------------------------------------~--------•! 
char •pickaval(n) 

int n· • 
{ 

switch (rand(n)) { 
case 1: return ("bull"); 

case 2: return ("hogwash"); 

case 3: return ("fiddle"); 

case 4: :return ("nuts"); 

case 6: return ("foobar"); 

case e: return ("bananas"); } 
} 

!•--------------------------------------------------;~-------------------•! / 

char •chosen1(class) 
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int class; 

{ 

} 

svitch (clau) { 

case 11: case 12: case 13: return ("red"); 

case 21: case 22: case 23: return ("green");} 

char •chosen2(class) 

int class; 

{ 

} 

char 

int 

{ 

} 

switch (class) { 

case 11: case 12: 

case 13: it (rand(100) < 75) return ("red"); return ("black"); 

case 21: case 22: 

case 23: if (rand(100) < 85) return ("green"); return ("red"); } 

•chosen3(class) 

class; 

switch (class) { 

case 11: i:f (rand(100) < 90) return ("burp"); return("squeal"); 

case 12: i:f (rand(100) < 80) return ("burp") j return("belch"); 

case 13: i:f (rand(100) < 75) return ("burp"); return("squeal"); 

case 21: i:f (rand(100) < 70) return ("squeal"); return("burp"); 

case 22: i:f (rand(100) < 65) return ("squeal"); return("moan"); 

case 23: i:f (rand(100) < 85) return ("squeal"); return("burp"); } 

!•-----------------------------------------------------------------------•! 

The Mixed-NTL data generator (This is also used in Chapter 6, Section 1.3): 

makeA 1 (name) 

char name[] ; 

{ 
float 

char 

bellrand ( ) ; 

•pickaval(), •chosen!(), *chosen2(), •chosen3(); 

print:f("%6.2:f %6.2:f %6.2:f %6.2:f %6.2! %6.2:f", 

bellrand(30.0, 10.0), bellrand(15.0, 6.0), bellrand(25.0, 2.0), 

bellrand(10.0, 2.0), bellrand(100.0, 6.0), bellrand(60.0, 2.0)); 

print:f(" %7s %7s %7s %7s %7s %7s", 

pickaval(4), pickaval(6), pickaval(2), 

chosen1(11), chosen2(11), chosen3(11)); 



print:f(" 'Y.s\n", name); 

} /* end of make!i •/ 

CONCEPT FORMATION 

ma.keA2(name) 

char nameO; 

{ 
float 

char 

bellrand(); 

•pickaval(), •chosen1(), •chosen2(), •chosen3(); 

printf("%6.2f %6.2f %6.2f %6.2f %6.2f %6.2f", 

bellrand(30.0, 10.0), bellrand(15.0, 5.0), bellrand(25.0, 2.0), 

bellrand(20.0, 2.0), bellrand(150.0, 5.0), bellrand(50.0, 2.0)); 

printf(" %7s %7s %7s %7s %7s %7s", 

pickaval(4), pickaval(5), pickaval(2), 

chosen1(12), chosen2(12), chosen3(12)); 

printf(" %s\n", name); 

} /• end of ma.keA2 •/ 

ma.keA3(name) 

char name [] ; 

{ 
float 

char 

bellrand () ; 

*pickaval(), •chosen1(), •chosen2(), •chosen3(); 

printf("%6.2f %6.2:f %6.2f %6.2f %6.2f %6.2f", 

bellrand(30.0, 10.0), bellrand(15.0, 5.0), bellrand(25.0, 2.0), 

bellrand(30.0, 2.0), bellrand(70.0, 5.0), bellrand(40.0, 2.0)); 

printf(" %7s %7s %7s %7s %7s %7s", 

pickaval(4), pickaval(5), pickaval(2), 

chosen1(13), chosen2(13), chosen3(13)); 

printf(" %s\n", name); 

} /• end of ma.keA3 •/ 

ma.keBi(name) 

char name [] ; 

{ 

float 

char 

bellrand () ; 

•pickaval(), •chosen!(), •chosen2(), •chosen3(); 

printf("%6.2f %6.2f %6.2f %6.2f %6.2f %6.2f", 

bellrand(30.0, 10.0), bellrand(15.0, 5.0), bellrand(25.0, 2.0), 

bellrand(10.0, 2.0), bellrand(100.0, 5.0), bellrand(60.0, 2.0)); 

printf(" %7s %7s %7s %7s %7s %7s", 

pickaval(4), pickaval(5), pickaval(2), 

chosen1(21), chosen2(21). chosen3(21)); · 
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printf(" Y.1\n", name); 

} /* end of malteB1 •/ 

malteB2(name) 

char nameO; 

{ 

float 

char 

bellrand(); 

•pickaval(), •chosen!(), •chosen2(), •chosen3(); 

printf("Y.6.2f Y.6.2f %6.2f %6.2f Y.6.2f %6.2f", 

bellrand(30.0, 10.0), bellrand(15.0, 5.0), bellra:nd(25.0, 2.0), 

bellrand(20.0, 2.0), bellrand(150.0, 5.0), bellra:nd(50.0, 2.0)); 

printf(" Y.7s %7s %7s Y.7s Y.7s %7s", 

pickaval(4), pickaval(5), pickaval(2), 

chosen1(22), chosen2(22), chosen3(22)); 

printf(" %s\n", name); 

} /• end of makeB2 •/ 

makeB3 (name) 

char nameO; 

{ 

float 

char 

bellrand(); 

•pickaval () , •chosen!(), •chosen2 (), •chosen3 () ;' 

printf ( 11 %6. 2f Y.6. 2f %6. 2t %6. 2f Y.6. 2f %6. 2f", 

bellrand(30.0, 10.0), bellrand(15.0, 5.0), bellra:nd(25.0, 2.0), 

bellrand(30.0, 2.0), bellrand(70.0, 5.0), bellrand(40.0, 2.0)); 

printf(" Y.7s %7s %7s Y.7s Y.7s %7s", 

pickaval(4), pickaval(S), pickaval(2), 

chosen1(23), chosen2(23), chosen3(23)); 

printf (" Y.s\n", name); 

} /• end of makeB3 •/ 

/•-----------------------------------------------------------------------•/ 
char •pickaval(n) 

int n; 

{ 

switch (rand(n)) { 
case 1: return ("bull"); 

case 2: return ("hogwash"); 

case 3: return ("fiddle"); 

case 4: return ("nuts"); 

case 5: return ("toobar"); 

case 6: return ("bananas") ; } 
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} 

!•-----------------------------------------------------------------------•/ 
char •chosen1(class) 

int class; 

{ 

S'li'itch (class) { 
case 11: return ("red"); 

case 21: return ("green"); 

case 12: return ("white"); 

case 22: return ("black"); 

case 13: return ("blue"); 

case 23: return ( "yellov") ; 

} 

char •chosen2(class) 

int class; 

{ 
svitch (class) { 
case 11: if (rand(100) < 76) 

case 21: if (rand(100) < 90) 

case 12: if (rand(100) < 70) 

case 22: if (rand(iOO) < 90) 

case 13: if (rand(100) < 60) 

case 23: if (rand(100) < 86) 

default: return ("garbage"); 

} 

char •chosen3(class) 

int class; 

{ 
svitch (class) { 
case 11: if (rand(100) 

case 21: if (rand(100) 

case 12: if (rand(100) 

case 22: if (rand(100) 

case 13: i:f (rand(100) 

case 23: if (rand(100) 

< 90) 

< 66) 

< 76) 

< 90) 

< 80) 

< 86) 

default: return ("scream"); } 

} 

} 

return ("red"); 

return ("green"); 

return ("white"); 

return ("black"); 

return ("blue"); 

return ("yellow"); 

} 

return ("burb"); 

return ("belch"); 

return ("fart"); 

return ("groan"); 

return ("moan"); 

return ("squeal"); 

/•--------------------------------------------------r---------------------•/ 
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5. The genera.tor for testing overfitting 

In Section 1.2 of Chapter 5, I describe a. doma.in for testing overfitting a.nd the recognition 
criterion. The cla.ss structure for this experiment is a. complete bina.ry tree of depth two: two ma.in 
classes ea.ch with 2 subclasses. However, the generator simply chooses among the four subclasses 
with equa.l probability. For this genera.tor, the first two and the la.st two subclasses should form 
top-level classes. As ca.n be seen, there are six numeric attributes per instance. 

!•-----------------------------------------------------------------------•/ 
make-classl(name) 

char nameO; 

{ 
:float bellrand(); 

printt("%5.2:f Y.5.2:f %5.2:f ", 

bellrand(100.0, 4.0), bellrand(120.0, 4.0), bellrand(120.0, 4.0)); 

printt("%5.2:f %5.2:f %5.2:f ", 

bellrand(100.0, 4.0), bellrand(120.0, 4.0), bellrand(120.0, 4.0)); 

print:f(" %s\n", name); 

} /• end of mtabl •/ 

_ make-class2 (name) 

char nameO; 

{ 
:float bellrand(); 

print:f("%5.2:f Y.5.2f Y,5.2:f " 

bellrand(100.0, 4.0), bellrand(140.0, 4.0), bellrand(140.0, 4.0)); 

print:f("%5.2:f Y.5.2f Y.5.2:f ", 

bellrand(lOO.O, 4.0), bellrand(120.0, 4.0), bellrand(120.0, 4.0)); 

print:f(" Y.s\n", name); 

} /• end of mtabl •/ ' 

make-class3(name) 

char nameO; 

{ 

:float bellrand(); 

printf("%5.2:f Y,5.2:f Y.5.2:f " 

bellran4(100.0, 4.0), bellrand(160.0, 4.0), bellrand(160.0, 4.0)); 

print:f("%5.2:f Y,5.2:f %5.2f ", 

bellrand(100.0, 4.0), bellrand(180.0, 4.0), bellrand(180.0, 4.0)); 

print:f(" Y.s\n", name); 

} /• end o:f mtabl •/ 

make-class4(name) 
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char nameO; 

{ 
:float bellrand(); 

printf ( 11 ~.S. 2f %5. 2f %5. 2f 11 , 

bellrand(100.0, 4.0), bellrand(180.0, 4.0), bellrand(180.0, 4.0)); 

printf ( 11 ~.S. 2f %5. 2f %5. 2f 11 , 

bellrand(100.0, 4.0), bellrand(180.0, 4.0), bellrand(180.0, 4.0)); 

printf( 11 %s\n11 , name); 

} /• end of mtab4 •/ 

!•-----------------------------------------------------------------------•! 

6. The generator for the gain ratio function 
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In Section 2.3 of Chapter 5, I use ari. artificial domain to compare the system's ability with two 
different evaluation functions: gain ratio against category utility. Although I describe this database 
in terms of flower colors and flower species, this is by analogy only; the actual domain is completely 
artificial, with eight numeric attributes per instance. 

However, there are two very different types of attributes. The first four attributes are the 'color' 
attributes, those with lower magnitude values that Classitcu uses at the top level of its hierarchy. 
The second four attributes are the species attributes, those with higher magnitude values that 
ClassitaR uses first. This two sets of attributes suggest conflicting class hierarchies, as seen in 
Figure 31. 

As usual, the generator simply has a set of eight sub-classes, and chooses among them with equal 
probability. 

!•-----------------------------------------------------------------------•/ 
makeA1(name) 

char name[] ; 

{ 
float bellrand(); 

printf( 11 ~,5.2f %5.2f %5.2f %5.2f %5.2f %5.2f %5.2f %5.2f 11 , 

bellrand(3.0,0.6),bellrand(2.0,0.6),bellrand(3.0,0.6),bellrand(2.0,0.6), 

bellrand(150.0, 10.0), bellrand(650.0, 10.0), 

bellrand(150.0,.10.0), bellrand(650.0, 10.0)); 

printf( 11 %s\n11 , name); 

} /• end of makeA1 •/ 

makeA2(name) 

char name[] ; 

{ 
float bellrand () ; 

printf( 11 %5.2f %5.2f %5.2f %5.2f %5.2f %5.2f %5.2~ %5.2f 11 , 

bellrand(3.0,0.6),bellrand(2.0,0.6),bellrand(3.0,0.6),bellrand(2.0,0.6), 
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bellrand(400.0, 10.0), bellrand(900.0, 10.0), 

bellrand(400.0, 10.0), bellrand(900.0, 10.0)); 

print:f(" %s\n", name); 

} /• end of mtab1 •/ 

makeE1 (name) 

char nameO; 

{ 
:float bellrand(); 

print:f ( "%5. 2:f %5. 2:f %5. 2:f %5. 2:f %5. 2:f %5. 2:f %5. 2:f i'.5. 2f ", 

bellrand(5.0,0.6),bellrand(4.0,0.6),bellrand(5.0,0.6),bellrand(4.0,0.6), 

bellrand(180.0, 10.0), bellrand(680.0, 10.0), 

bellrand(180.0, 10.0), bellrand(680.0, 10.0)); 

printt(" %s\n", name); 

} /• end o:f mtab1 •/ 

makeE2(name) 

char name [] ; 

{ 
:float bellrand(); 

print:f("%5.2:f %5.2:f %5.2:f %5.2:f %5.2:f %5.2t %5.2:f %5.2f ", 

bellrand(5.0,0.6),bellrand(4.0,0.6),bellrand(5.0,0.6),bellrand(4.0,0.6), 

bellrand(430.0, 10.0), bellrand(930.0, 10.0), 

bellrand(430.0, 10.0), bellrand(930.0, 10.0)); 

print:f (" %s \n", name); 

} /• end o:f mtab1 •/ 

makeX1(name) 

char name [] ; 

{ 
float bellrand(); 

printt("%5.2f %5.2:f %5.2'f %5.2'f %5.2f %5.2f %5.2:f %5.2f ", 

bellrand(16.0,0.6),bellrand(15.0,0.6),bellrand(16.0,0.6),bellrand(15.0,0.6), 

bellrand(150.0, 10.0), bellrand(650.0, 10.0), 

bellrand(160.0, 10.0), bellrand(650.0, 10.0)); 

print:f(" %s\n''.. name); 

} /• end o:f mtab1 •/ 

makeX2(name) 

char name [] ; 

{ 
float bellrand(); 
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print:f("%5.2:f %5.2f %5.2:f %5.2:f %5.2f %5.2f %5.2f %5.2f ", 

bellrand(16.0,0.6),bellrand.(15.0,0.6),bellrand(16.0,0.6),bellrand(15.0,0.6), 

bellrand(400.0, 10.0), bellrand(900.0, 10.0), 

bellrand(400.0, 10.0), bellrand(900.0, 10.0)); 

print:f(" %s\n", name); 

} /• end of mtab2 •/ 

makeY1(name) 

char nameD; 

{ 
float bellrand() ; 

print:f("%5.2:f %5.2:f %5.2f %5.2:f %5.2:f %5.2:f %5.2:f %5.2:f ", 

bellrand(14.0,0.6),bellrand(13.0,0.6),bellrand(14.0,0.6),bellrand(13.0,0.6), 

bellrand(180.0, 10.0), bellrand(680.0, 10.0), 

bellrand(180.0, 10.0), bellrand(680.0, 10.0)); 

printf(" %s\n", name); 

} /• end of mtab1 •/ 

makeY2(name) 

char name [] ; 

{ 

float bellrand(); 

printf("%5.2:f %5.2f %5.2f %5.2f %5.2f %5.2:f %5.2:f %5.2:f ", 

bellrand(14.0,0.6),bellrand(13.0,0.6),bellrand(14.0,0.6),bellrand(13.0,0.6), 

bellrand(430.0, 10.0), bellrand(930.0, 10.0), 

bellrand(430.0, 10.0), bellrand(930.0, 10.0)); 

printf(" %s\n", name); 

} /* end of mtab3 •/ 

/•--------------~-------------------------------------------------------•/ 

7. The generator for comparing algorithms 
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In Section 3 of Chapter 5, I compare CLASSIT against an agglomerative algorithm and against an 
iterative optimization method. The artificial domain I use for these experiments includes 4 classes, 
2 of which ( classl and class3) are further divided into subclasses. Attributes #3 through #5 are 
irrelevant, and attributes #7 through #9 indicate the sub-class divisions. Attribute #9 is used for 
the prediction task. 

!•-----------------------------------------------------------------------•/ 
make-class1(name) 

char name [] ; 

{ 
float bellrand(); 



148 J. H. GENNARI 

int rand(); 

printf("%6.2t %6.2f %6.2f ", 

bellrand(100.0, 5.0), bellrand(120.0, 5.0), bellrand(120.0, 5.0)); 

printt("%6.2f %6.2t %6.2f ", 

bellrand(50.0, 10.0), bellrand(90.0, 10.0), bellrand(120.0, 20.0)); 

switch (rand(2)) case 1: printf("%6.2f %6.2f %6.2:f ", 

bellrand(180.0,5.0), bellrand(180.0,5.0), bellrand(180.0,5.0)); 

printf(" %s1\n", name); break; 

case 2: printf ("%6. 2f %EL 2:f %6. 2f ", 

bellrand(120.0,5.0), bellrand(120.0,5.0), bellrand(120.0,5.0)); 

printf(" %s2\n", name); break; } 

} /* end of make-class1 */ 

make-class2(name) 

char name[] ; 

{ 
float bellrand(); 

printf("%6.2f %6.2f %6.2:f " 

bellrand(100.0, 5.0), bellrand(140.0, 5.0), bellrand(140.0, 5.0)); 

print:f("%6.2f %6.2::f %6.2:f ", 

bellrand(50.0, 10.0), bellrand(90.0, 10.0), bellrand(120.0, 20.0)); 

printt("%6.2f %6.2:f %6.2::f ", 

bellrand(140.0, 5.0), bellrand(140.0, 5.0), bellrand(140.0, 5.0)); 

print::f(" %sO\n", name); 

} /* end of make-class2 */ 

make-class3(name) 

char name [] ; 

{ 

float 

int 

bellrand () ; 

rand(); 

printf("~6.2f %6.21 Y.6.2f '', 

bellrand(100.0, 5.0), bellrand(160.0, 5.0), bellrand(160.0, 5.0)); 

print::f("%6.2f %6.2f %6.2f ", 

bellrand(50.0, 10.0), bellrand(90.0, 10.0), bellrand(120.0, 20.0)); 

S'llitch (rand(2)) { 

case 1: print::f("%6.2:f %6.2::f %6.2::f ", 

bellrand(160.0,5.0), bellrand(160.0,5.0), bellrand(160.0,5.0)); 

printf(" %s1\n", name); break; 

case 2: print::f("%6.2f %6.2::f %6.2f ", 

bellrand(200.0,5.0), bellrand(200.0,5.~), bellrand(200.0,5.0)); 

printf(" %s2\n", name); break;} 



CONCEPT FORMATION 

} /• end of make-class3 •/ 

make-class4(name) 

char name [] ; 

{ 
:float bellrand(); 

print:f("%6.2f %6.2f %6.2f " 

bellrand(100.0, 5.0), bellrand(180.0, 5.0), bellrand(180.0, 5.0)); 

printf("%6.2f %6.2f %6.2f ", 

bellrand(50.0, 10.0), bellrand(90.0, 10.0), bellrand(120.0, 20.0)); 

print:f("%6.2f %6.2f %6.2f ", 

bellrand(100.0, 5.0), bellrand(i00.0, 5.0), bellrand(100.0, 5.0)); 

print:f(" %s1\n", name); 

} /• end of ma.ke-class4 •/ 

!•--------------------------------------------------~--------------------•/ 
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