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Abstract

Alzheimer’s disease causes a progressive dementia that currently affects over 35 million 

individuals worldwide and is expected to affect 115 million by 2050 (ref. 1). There are no cures or 

disease-modifying therapies, and this may be due to our inability to detect the disease before it has 

progressed to produce evident memory loss and functional decline. Biomarkers of preclinical 

disease will be critical to the development of disease-modifying or even preventative therapies2. 

Unfortunately, current biomarkers for early disease, including cerebrospinal fluid tau and amyloid-

β levels3, structural and functional magnetic resonance imaging4 and the recent use of brain 

amyloid imaging5 or inflammaging6, are limited because they are either invasive, time-consuming 

or expensive. Blood-based biomarkers may be a more attractive option, but none can currently 

detect preclinical Alzheimer’s disease with the required sensitivity and specificity7. Herein, we 

describe our lipidomic approach to detecting preclinical Alzheimer’s disease in a group of 

cognitively normal older adults. We discovered and validated a set of ten lipids from peripheral 

blood that predicted phenoconversion to either amnestic mild cognitive impairment or Alzheimer’s 

disease within a 2–3 year timeframe with over 90% accuracy. This biomarker panel, reflecting cell 

membrane integrity, may be sensitive to early neurodegeneration of preclinical Alzheimer’s 

disease.

We enrolled 525 community-dwelling participants, aged 70 and older and otherwise healthy, 

into this 5-year observational study. Over the course of the study, 74 participants met criteria 

for amnestic mild cognitive impairment (aMCI) or mild Alzheimer’s disease (AD) (Online 

Methods); 46 were incidental cases at entry, and 28 phenoconverted (Converters) from 

nonimpaired memory status at entry (Converterpre). The average time for phenoconversion 

to either aMCI or AD was 2.1 years (range 1–5 years). We defined three main participant 

groups in this paper: aMCI/AD, Converter and Normal Control (NC). The participants with 

aMCI and mild AD were combined into a single group (aMCI/AD) because this group was 

defined by a primary memory impairment, and aMCI is generally thought to reflect the 

earliest clinically detectable stage of AD. The aMCI/AD group included the Converters after 

phenoconversion. The Converters were included at two time points, prior to 

phenoconversion (Converterpre), when memory was not impaired, and after phenoconversion 

(post), when memory was impaired and they met criteria for either aMCI or AD. The NC 

group was selected to match the whole aMCI/AD group on the basis of age, education and 

sex. In the third year of the study, we selected 53 participants with either aMCI or AD for 

metabolomic and lipidomic biomarker discovery. Included in this aMCI/AD group were 18 

Converters. We also selected 53 matched cognitively normal control (NC) participants. For 

the Converters, blood from both time 0 (at entry to the study) and after phenoconversion was 

used; for the other subjects, blood from the last available visit was used. We used an internal 

cross-validation procedure to evaluate the accuracy of the discovered lipidomics profile in 

classifying 41 additional subjects, consisting of the remaining subset of 21 participants with 

aMCI/AD, including 10 Converters, and 20 matched NC participants (Supplementary Table 

1 and Supplementary Fig. 1).
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The aMCI/AD, Converter and NC groups were defined primarily using a composite measure 

of memory performance (the decline in Zmem for the Converters (Cpre versus Cpost) is shown 

Fig. 1a). In addition, composite measures of other cognitive abilities (Supplementary Fig. 2) 

and measures of memory complaints and functional capacities were compiled 

(Supplementary Tables 2 and 3). The discovery and validation groups did not differ on 

clinical measures (F(4,170) = 1.376, P = 0.244) or on any composite z-score (F(5,169) = 

2.118, P = 0.066), demonstrating the general equivalence of the participants used for the 

discovery and validation phases of the biomarker analysis.

We examined 124 plasma samples from the 106 discovery-phase participants for untargeted 

metabolomic analysis (Online Methods). Metabolomic and lipidomic profiling yielded 2,700 

positive-mode features and 1,900 negative-mode features. Metabolites defining the 

participant groups were selected using the least absolute shrinkage and selection operator 

(LASSO) penalty8,9. The LASSO analysis revealed features that assisted in unambiguous 

class separation between the two nonimpaired groups, the Converterpre group and the NC 

subjects who do not phenoconvert (Table 1). This untargeted analysis revealed considerably 

lower phosphatidylinositol in the Converterpre group and higher glycoursodeoxycholic acid 

in the aMCI/AD group compared to the NC group. These metabolites were unambiguously 

identified using tandem mass spectrometry (Supplementary Fig. 3).

The untargeted LASSO analysis revealed amino acids and phospholipids to be potent 

discriminators of the NC and aMCI/AD groups. Thus, we performed stable isotope dilution–

multiple reaction monitoring (MRM) mass spectrometry (SID-MRM-MS) to unambiguously 

identify and quantify lipids, amino acids and biogenic amines; this would discriminate our 

groups with emphasis on differences that might predict phenoconversion from NC to 

aMCI/AD. This targeted analysis revealed significantly lower plasma levels of serotonin, 

phenylalanine, proline, lysine, phosphatidylcholine (PC), taurine and acylcarnitine (AC) in 

Converterpre participants who later phenoconverted to aMCI/AD (Table 2).

A notable finding of this targeted metabolomic and lipidomic analysis was the identification 

of a set of ten metabolites, comprising PCs, (PC diacyl (aa) C36:6, PC aa C38:0, PC aa 

C38:6, PC aa C40:1, PC aa C40:2, PC aa C40:6, PC acyl-alkyl (ae) C40:6), 

lysophophatidylcholine (lysoPC a C18:2), and acylcarnitines (ACs) (Propionyl AC (C3) and 

C16:1-OH) that were depleted in the plasma of the Converterpre participants but not in that 

of the NC group (Fig. 1b). These metabolites remained depleted after phenoconversion to 

aMCI/AD (Converterspost) and were similar to the levels in the aMCI/AD group.

We then performed targeted quantitative metabolomic and lipidomic analyses using plasma 

from a separate group of 40 participants as an independent blinded cross-validation, as one 

sample from the aMCI/AD group was not available for lipidomic analysis. The validation 

samples were obtained from those clinically defined NC, Converterpre, aMCI/AD subjects. 

The samples were processed and analyzed using the same SID-MRM-MS technique as in 

the discovery phase. The targeted quantitative analysis of the validation set revealed similar 

levels for the ten-metabolite panel (Supplementary Fig. 4) as were observed in the discovery 

samples (Fig. 1b).

Mapstone et al. Page 3

Nat Med. Author manuscript; available in PMC 2017 March 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We used the metabolomic data from the untargeted LASSO analysis to build separate linear 

classifier models that would distinguish the aMCI/AD and Converterpre groups from the NC 

group. We used receiver operating characteristic (ROC) analysis to assess the performance 

of the classifier models for group classification. For the Converterpre and NC group 

classification, the initial LASSO-identified metabolites yielded a robust area under the curve 

(AUC) of 0.96 (Fig. 2a) and a more modest AUC of 0.83 for aMCI/AD and NC group 

classification. A separate classifier model using the discovered ten-metabolite panel from the 

targeted metabolomic analysis classified Converterpre and NC participants with an AUC of 

0.96 (Fig. 2b) and an AUC of 0.827 for the aMCI/AD versus NC classification. To validate 

our biomarker-based group classification, we applied the same simple logistic classifier 

model developed for the discovery samples to the independent validation samples. The 

model classified Converterpre and NC participants with an AUC of 0.92 (Fig. 2c) and an 

AUC of 0.77 for the aMCI/AD versus NC groups. This model yielded a sensitivity of 90% 

and specificity of 90%, for classifying the Converterpre and NC groups in the validation 

phase (Fig. 2c).

We then considered the effects of apolipoprotein E (APOE) genotype on our classification of 

the Converterpre and NC groups. APOE is involved in lipid metabolism, with the ε4 allele 

known to be a risk factor for AD. The proportion of ε4 allele carriers was similar in the 

aMCI/AD (19/69 = 27.5%), NC (17/73 = 23%) and Converter (5/28 = 17%) groups (χ2 = 

0.19, P = 0.68, not significant). We repeated the classification analyses using the ten-

metabolite model with APO ε4 allele as a covariate. The effect of the ε4 allele was not 

significant (P = 0.817), and classification accuracy for Converterpre and NC groups changed 

minimally from an AUC 0.96 to 0.968 (P = 0.992, not significant). Furthermore, a classifier 

model using only APOE ε4 produced an AUC of 0.54 for classifying the Converterpre and 

NC groups, implying virtually random classification. These findings indicate that the 

presumed pathophysiology reflected by the ten-metabolite biomarker panel is orthogonal to 

APOE-mediated effects.

Here we present the discovery and validation of plasma metabolite changes that distinguish 

cognitively normal participants who will progress to have either aMCI or AD within 2–3 

years from those destined to remain cognitively normal in the near future. The defined ten-

metabolite profile features PCs and ACs, phospholipids that have essential structural and 

functional roles in the integrity and functionality of cell membranes10,11. Deficits of the 

plasmalemma in AD have been described previously12. Studies have shown decreased 

plasma PC levels13 and lysoPC/PC ratios14 and increased cerebrospinal fluid (CSF) PC 

metabolites in patients with AD15, as well as decreased phosphatidylinositol in the 

hippocampus16 and other heteromodal cortical regions17. Furthermore, amyloid-β may 

directly disrupt bilayer integrity by interacting with phospholipids18. ACs are known to have 

a major role in central carbon and lipid metabolism occurring within the mitochondria11. 

They have also been associated with regulation, production and maintenance of neurons 

through enhancement of nerve growth factor production11, which is a known potent survival 

and trophic factor for brain cholinergic neurons, particularly those consistently affected by 

AD within the basal forebrain19–21. Decreasing plasma AC levels in the Converterpre 

participants in our study may indirectly signal an impending dementia cascade that features 

loss of these cholinergic neuronal populations. We posit that this ten–phospholipid 
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biomarker panel, consisting of PC and AC species, reveals the breakdown of neural cell 

membranes in those individuals destined to phenoconvert from cognitive intactness to aMCI 

or AD and may mark the transition between preclinical states where synaptic dysfunction 

and early neurodegeneration give rise to subtle cognitive changes2.

Most approaches to fluid-based biomarker discovery have focused on amyloid-β1–42 

(Aβ42), total tau and phosphorylated tau-181 obtained from CSF. Classification of 

symptomatic patients versus normal controls or other dementias or conversion from MCI to 

AD is high22, but the predictive value of these CSF biomarkers in preclinical patients is not 

as strong, suggesting that these markers may be useful only for confirmation of clinical 

diagnosis23. Blood-based biomarkers are not routinely used in clinical practice but may be 

more useful because they are easily obtained with less risk of complication in older adults. 

Studies focusing on Aβ42 or Aβ42/tau ratios derived from blood have been disappointing24, 

but recent studies suggest that assessment of the proteome and metabolome in blood may 

have more promise. One recent study using plasma identified 18 proteins that discriminated 

subjects with symptomatic AD from normal control subjects with nearly 90% accuracy and 

predicted conversion from symptomatic MCI to AD with 91% accuracy25. Another cross-

sectional study reported 18 plasma biomarkers, many related to inflammation, that correctly 

classified subjects with symptomatic AD and normal control subjects with a sensitivity and 

specificity of 85% and an AUC of 93% (ref. 26). The biomarker panel was externally 

validated in a cohort of normal control subjects and subjects with symptomatic AD with 

sensitivity and specificity of 80% and an AUC of 85%.

To our knowledge, this is the first published report of a blood-based biomarker panel with 

very high accuracy for detecting preclinical AD. This metabolic panel robustly identifies 

(with accuracy above 90%) cognitively normal individuals who, on average, will 

phenoconvert to aMCI or AD within 2–3 years. The accuracy for detection is equal to or 

greater than that obtained from most published CSF studies27,28, and blood is easier to 

obtain and costs less to acquire, making it more useful for screening in large-scale clinical 

trials and for future clinical use. This biomarker panel requires external validation using 

similar rigorous clinical classification before further development for clinical use. Such 

additional validation should be considered in a more diverse demographic group than our 

initial cohort. We consider our results a major step toward the NIA-AA (National Institute 

on Aging and Alzheimer’s Association) consensus statement mandate for biomarkers of 

preclinical AD2.

ONLINE METHODS

Neurocognitive methods

The University of Rochester Research Subjects Review Board and the University of 

California, Irvine Institutional Review Board each approved a common research protocol for 

this investigation. Content of informed consent forms was thoroughly discussed with 

subjects at the time of entry into the study and verbal and written consent was obtained from 

all subjects, including that for serial neuropsychological testing and blood draws for 

biomarker evaluation. A total of 525 volunteers participated in this study as part of the 

Rochester/Orange County Aging Study, an ongoing natural history study of cognition in 
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community-dwelling older adults (Supplementary Note). All participants were community-

dwelling older adults from the greater Rochester, NY, and Irvine, CA, communities. 

Participants were recruited through local media (newspaper and television advertisements), 

senior organizations and word of mouth. Inclusion criteria included age 70 or older, 

proficiency with written and spoken English and corrected vision and hearing necessary to 

complete the cognitive battery. Participants were excluded for the presence of known major 

psychiatric or neurological illness (including Alzheimer’s disease or MCI, cortical stroke, 

epilepsy and psychosis) at time of enrollment, current or recent (<1 month) use of 

anticonvulsants, neuroleptics, HAART, antiemetics and antipsychotics for any reason and 

serious blood diseases including chronic abnormalities in complete blood count and anemia 

requiring therapy and/or transfusion. Briefly, we prospectively followed participants with 

yearly cognitive assessments and collected blood samples following an overnight fast 

(withholding of all medications) (Supplementary Note). At enrollment, each participant 

completed detailed personal, medical and family history questionnaires. At baseline and at 

each yearly visit, participants completed measures assessing activities of daily living, 

memory complaints, and signs and symptoms of depression and were given a detailed 

cognitive assessment (Supplementary Table 2).

For this study, data from the cognitive tests were used to classify our participants into groups 

for biomarker discovery. We derived standardized scores (z-scores) for each participant on 

each cognitive test and computed composite z-scores for five cognitive domains (attention, 

executive, language, memory and visuoperceptual) (Supplementary Table 3). Normative data 

for z-score calculations were derived from the performance of our participants on each of the 

cognitive tests adjusted for age, education, sex and visit. To reduce the effect of cognitively 

impaired participants on the mean and s.d., age-, education-, sex- and visit-adjusted residuals 

from each domain z-score model were robustly standardized to have median 0 and robust 

s.d. of 1, where the robust s.d. = IQR/1.35, as 1.35 is the IQR (interquartile range) of a 

standard normal distribution.

We categorized the participants into groups of subjects with incident aMCI or early AD 

(combined into one category, aMCI/AD), cognitively NC subjects and those who converted 

to aMCI or AD over the course of the study (Converters) based on these composite scores. 

Impairment was defined as a z-score 1.35 below the cohort median. All participants 

classified as aMCI met recently revised criteria29 for the amnestic subtype of MCI30. We 

excluded other behavioral phenotypes of MCI in order to concentrate on the amnestic, which 

most likely represents nascent AD pathology31. All participants with early AD met recently 

revised criteria for probable AD32 with impairment in memory and at least one other 

cognitive domain. For the aMCI/AD group, scores on the measures of memory complaints 

(MMQ) and activities of daily living (PGC-IADL) were used to corroborate research 

definitions of these states. All Converters had nonimpaired memory at entry to the study 

(Zmem≥−1.35), developed memory impairment over the course of the study (Zmem≤−1.35) 

and met criteria for the above definitions of aMCI or AD. To enhance the specificity of our 

biomarker analyses, NC participants in this study were conservatively defined with Zmem ± 1 

s.d. of the cohort median rather than simply ≥−1.35, and all other z-scores ≥−1.35 s.d. 

(Supplementary Note).
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At the end of year 3 of the study, 202 participants had completed a baseline and two yearly 

visits. At the third visit, 53 participants met criteria for aMCI/AD and 96 met criteria for 

NC. Of the 53 aMCI/AD participants, 18 were Converters and 35 had incident aMCI or AD. 

The remaining 53 participants did not meet our criteria for either group and were not 

considered for biomarker profiling. Some of these individuals met criteria for nonamnestic 

MCI, and many had borderline or even above average memory scores that precluded their 

inclusion as either aMCI/AD or NC (Supplementary Fig. 1). We matched 53 NC participants 

to the 53 aMCI/AD participants based on sex, age and education level. We used blood 

samples obtained on the last available study visit for the 53 MCI/AD and 53 NC for 

biomarker discovery. We included two blood samples from each of the 18 Converters, one 

from the baseline visit (Converterpre) when Zmem was nonimpaired and one from the third 

visit (Converterpost) when Zmem was impaired and they met criteria for either aMCI or AD. 

Thus, a total of 124 samples from 106 participants were submitted for biomarker discovery.

We employed internal cross-validation to validate findings from the discovery phase. Blood 

samples for validation were identified at the end of the fifth year of the study, and all 106 

participants included in the discovery phase were excluded from consideration for the 

validation phase (Supplementary Fig. 1). Cognitive composite z-scores were recalculated 

based on the entire sample available, and the same procedure and criteria were used to 

identify samples for the validation phase. A total of 145 participants met criteria for a group: 

21aMCI/AD and 124 NC. Of the 21 aMCI/AD, 10 were Converters. We matched 20 NC 

participants to the aMCI/AD participants on the basis of age, sex and education level as in 

the discovery phase. In total, 40 participants contributed plasma samples to the validation 

phase, as 1 aMCI/AD subject’s plasma sample was not able to be used. As before, the 10 

Converters also contributed a baseline sample (Converterpre) for a total of 50 samples.

Neurocognitive statistical analyses

The neurocognitive analyses were designed to demonstrate the general equivalence of the 

discovery and validation samples on clinical and cognitive measures. We used separate 

multivariate ANOVA (MANOVA) to examine discovery and validation group performance 

on the composite z-scores and on self-reported measures of memory complaints, memory 

related functional impairment and depressive symptoms, as well as a global measure of 

cognitive function. In the first MANOVA, biomarker sample (discovery, validation) was the 

independent variable and MMQ, IADL, geriatric depression scale and mini-mental state 

examination were the dependent variables. In the second MANOVA, biomarker sample 

(discovery, validation) was the independent variable, and the five cognitive domain z-scores 

(Zatt, Zexe, Zlan, Zmem and Zvis) were the dependent variables. Significance for the two-sided 

tests was set at α = 0.05, and we used Tukey’s honestly significant difference (HSD 

procedure for post hoc comparisons. All statistical analyses were performed using SPSS 

(version 21).

Lipidomics methods

Reagents—Liquid chromatography–mass spectrometry (LC-MS)-grade acetonitrile, 

isopropanol, water and methanol were purchased from Fisher Scientific (New Jersey, USA). 

High purity formic acid (99%) was purchased from Thermo-Scientific (Rockford, IL). 
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Debrisoquine, 4-nitrobenzoic acid (4-NBA), Pro-Asn, glycoursodeoxycholic acid andmalic 

acid were purchased from Sigma (St. Louis, MO, USA). All lipid standards including 14:0 

LPA, 17:0 Ceramide, 12:0 LPC, 18:0 Lyso PI and PC(22:6/0:0) were procured from Avanti 

Polar Lipids (USA).

Metabolite extraction—Briefly, the plasma samples were thawed on ice and vortexed. 

For metabolite extraction, 25 µL of plasma sample was mixed with 175 µL of extraction 

buffer (25% acetonitrile in 40% methanol and 35% water) containing internal standards (10 

µL of debrisoquine (1 mg/mL), 50 µL of 4, nitrobenzoic acid (1 mg/mL), 27.3 µl of 

ceramide (1 mg/mL) and 2.5 µL of LPA (lysophosphatidic acid) (4 mg/mL) in 10 mL). The 

samples were incubated on ice for 10 min and centrifuged at 14,000 r.p.m. at 4 °C for 20 

min. The supernatant was transferred to a fresh tube and dried under vacuum. The dried 

samples were reconstituted in 200 µL of buffer containing 5% methanol, 1% acetonitrile and 

94% water. The samples were centrifuged at 13,000 r.p.m. for 20 min at 4 °C to remove fine 

particulates. The supernatant was transferred to a glass vial for Ultraperformance liquid 

chromatography–electrospray ionization quadrupole time-of-flight mass spectrometry 

(UPLC-ESI-QTOF-MS) analysis.

UPLC-ESI-QTOF-MS–based data acquisition for untargeted lipidomic profiling

Each sample (2 µL) was injected onto a reverse-phase CSH C18 1.7 µM 2.1×100 mm 

column using an Acquity H-class UPLC system (Waters Corporation, USA). The gradient 

mobile phase comprised of water containing 0.1% formic acid solution (Solvent A), 100% 

acetonitrile (Solvent B) and 10% acetonitrile in isopropanol containing 0.1% formic acid 

and 10 mM ammonium formate (Solvent C). Each sample was resolved for 13 min at a flow 

rate of 0.5 mL/min for 8 min and then 0.4 mL/min from 8 to 13 min. The UPLC gradient 

consisted of 98% A and 2% B for 0.5 min and then a ramp of curve 6 to 60% B and 40% A 

from 0.5 min to 4.0 min, followed by a ramp of curve 6 to 98% B and 2% A from 4.0 to 8.0 

min, a ramp to 5% B and 95% C from 9.0 min to 10.0 min at a flow rate of 0.4 mL/min and 

finally a ramp to 98% A and 2% B from 11.0 min to 13 min. The column eluent was 

introduced directly into the mass spectrometer by electrospray ionization. Mass 

spectrometry was performed on a quadrupole time-of-flight (Q-TOF) instrument (Xevo G2 

QTOF, Waters Corporation, USA) operating in either negative (ESI−) or positive (ESI+) 

electrospray ionization mode with a capillary voltage of 3,200 V in positive mode and 2,800 

V in negative mode and a sampling cone voltage of 30 V in both modes. The desolvation gas 

flow was set to 750 l h−1, and the temperature was set to 350 °C. The source temperature 

was set at 120 °C. Accurate mass was maintained by introduction of a lock-spray interface 

of leucine-enkephalin (556.2771 [M+H]+ or 554.2615 [M−H]−) at a concentration of 2 

pg/µL in 50% aqueous acetonitrile and a rate of 2 µL/min. Data were acquired in centroid 

MS mode from 50 to 1,200 m/z mass range for TOF-MS scanning as single injection per 

sample, and the batch acquisition was repeated to check experimental reproducibility. For 

the metabolomics profiling experiments, pooled quality control (QC) samples (generated by 

taking an equal aliquot of all the samples included in the experiment) were run at the 

beginning of the sample queue for column conditioning and every ten injections thereafter to 

assess inconsistencies that are particularly evident in large batch acquisitions in terms of 

retention time drifts and variation in ion intensity over time. This approach has been 
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recommended and used as a standard practice by leading metabolomics researchers33. A test 

mix of standard metabolites was run at the beginning and at the end of the run to evaluate 

instrument performance with respect to sensitivity and mass accuracy. The overlay of the 

total ion chromatograms of the quality control samples depicted excellent retention time 

reproducibility. The sample queue was randomized to remove bias.

Stable isotope dilution–multiple reaction monitoring mass spectrometry

LC-MSmass spectrometry (LC-MS/MS) is increasingly used in clinical settings for 

quantitative assay of small molecules and peptides such as vitamin D, serum bile acid and 

parathyroid hormone under Clinical Laboratory Improvement Amendments environments 

with high sensitivities and specificities34. In this study, targeted metabolomic analysis of 

plasma samples was performed using the Biocrates Absolute-IDQ P180 (BIOCRATES, Life 

Science AG, Innsbruck, Austria). This validated targeted assay allows for simultaneous 

detection and quantification of metabolites in plasma samples (10 µL) in a high-throughput 

manner. The methods have been described in detail35,36. The plasma samples were 

processed as per the instructions by the manufacturer and analyzed on a triple-quadrupole 

mass spectrometer (Xevo TQ-S, Waters Corporation, USA) operating in the MRM mode. 

The measurements were made in a 96-well format for a total of 148 samples, and seven 

calibration standards and three quality control samples were integrated in the kit. Briefly, the 

flow injection analysis tandem mass spectrometry (MS/MS) method was used to quantify a 

panel of 144 lipids simultaneously by multiple reaction monitoring. The other metabolites 

are resolved on the UPLC and quantified using scheduled MRMs. The kit facilitates absolute 

quantitation of 21 amino acids, hexose, carnitine, 39 acylcarnitines, 15 sphingomyelins, 90 

phosphatidylcholines and 19 biogenic amines. Data analysis was performed using the MetIQ 

software (Biocrates), and the statistical analyses included the nonparametric Kruskal-Wallis 

test with follow-up Mann-Whitney U-tests for pairwise comparisons using the STAT pack 

module v3 (Biocrates). Significance was adjusted for multiple comparisons using 

Bonferroni’s method (P < 0.025). The abundance is calculated from area under the curve by 

normalizing to the respective isotope labeled internal standard. The concentration is 

expressed as nmol/L. Human EDTA plasma samples spiked with standard metabolites were 

used as quality control samples to assess reproducibility of the assay. The mean of the 

coefficient of variation (CV) for the 180 metabolites was 0.08, and 95% of the metabolites 

had a CV of <0.15.

Sample size considerations

The signal intensity of the metabolites within similar groups was normally distributed with a 

standard deviation of 1.5. If the true difference in the Converterpre and NC groups’ mean is 

twofold, we will have over 90% power to detect differential metabolites at an overall 

significance level of 5% with Bonferroni’s adjustment using 30 subjects per group.

Lipidomics statistical analyses

The m/z features of metabolites were normalized with log transformation that stabilized the 

variance, followed by a quantile normalization to make the empirical distribution of 

intensities the same across samples37. The metabolites were selected among all those known 

to be identifiable using a ROC regularized learning technique38,39 based on the LASSO 
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penalty8,9 as implemented with the R package ‘glmnet’40, which uses cyclical coordinate 

descent in a path-wise fashion. We first obtained the regularization path over a grid of values 

for the tuning parameter λ through tenfold cross-validation. The optimal value of the tuning 

parameter lambda, which was obtained by the cross-validation procedure, was then used to 

fit the model. All the features with nonzero coefficients were retained for subsequent 

analysis. This technique is known to reduce overfitting and achieve similar prediction 

accuracy as the sparse supporting vector machine. The classification performance of the 

selected metabolites was assessed using area under the ROC curve (AUC). The ROC can be 

understood as a plot of the probability of classifying correctly the positive samples against 

the rate of incorrectly classifying true negative samples. So the AUC measure of an ROC 

plot is a measure of predictive accuracy. To maintain rigor of independent validation, the 

simple logistic model with the ten-metabolite panel was used, although a more refined 

model can yield greater AUC. The validation phase was performed in a blinded fashion such 

that the sample group was not known by the statistical team.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Memory composite z-scores and trend plots for the ten-metabolite panel in the discovery 

phase. (a) Box and whisker plot shows the composite memory z-scores (Zmem) of the 

combined discovery and validation samples (Supplementary Table 3). The performance of 

the Converter group (Cpre, Converters at baseline) after phenoconversion (Cpost) is plotted 

for direct comparison. The plot shows Zmem, as described in Supplementary Table 3. The 

dotted line centered on 0 represents the median memory composite z-score for the entire 

cohort of 525 participants, and the black horizontal line represents the cut-off for impairment 

(−1.35 s.d.). Error bars represent ±s.e.m. As defined, all converters had nonimpaired 

memory at baseline and impaired memory after phenoconversion. NC, n = 73; Cpre, n = 28; 

Cpost, n = 28; and aMCI/AD, n = 46. (b) The SID-MRM-MS–based quantitative profiling 

data was subjected to the nonparametric Kruskal-Wallis test using the STAT pack module 

(Biocrates). Results are shown for a panel of ten metabolites in the NC group (n = 53), Cpre 

(n = 18), Cpost (n = 18) and aMCI/AD (n = 35) groups, respectively. The abundance of each 

metabolite is plotted as normalized concentrations units (nM). The black solid bars within 

the boxplot represent the median abundance, and the dotted line represents mean abundance 

for the given group. Error bars represent ± s.d. QC, quality control samples. The P values for 

analytes between groups were P ≤ 0.05. The two metabolites with P values <0.005 are 

indicated with an asterisk. Each Kruskal-Wallis test was followed by Mann-Whitney U-tests 

for post hoc pairwise comparisons (NC versus Cpre and NC versus aMCI/AD). Significance 

was adjusted for multiple comparisons using Bonferroni’s method (P < 0.025).
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Figure 2. 
ROC results for the lipidomics analyses. (a–c) Plots of ROC results from the models derived 

from the three phases of the lipidomics analysis. Simple logistic models using only the 

metabolites identified in each phase of the lipidomics analysis were developed and applied 

to determine the success of the models for classifying the Cpre and NC groups. The red line 

in each plot represents the AUC obtained from the discovery-phase LASSO analysis (a), the 

targeted analysis of the ten metabolites in the discovery phase (b) and the application of the 

ten-metabolite panel developed from the targeted discovery phase in the independent 

validation phase (c). The ROC plots represent sensitivity (i.e., true positive rate) versus 1 – 

specificity (i.e., false positive rate).
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Table 1

Putative metabolite markers resulting from binary comparison of the study groups

Metabolite
LASSO
coefficient Comparison groups Mode

Mass/charge
ratio

Phospatidylinositol (18:0/0:0) ↓ (−0.674) NC versus Converterpre NEG 599.3226

Proline-asparagine dipeptide ↑ (0.192) NC versus aMCI/AD POS 230.1146

Glycoursodeoxycholic acid ↑ (0.107) NC versus aMCI/AD POS 450.3196

Malic acid ↓ (−0.024) NC versus aMCI/AD POS 134.0207

The markers were chosen on the basis of significant predictive value as determined by LASSO coefficient analysis. The positive estimated LASSO 
coefficient suggests elevation in corresponding comparison group (aMCI/AD and Converterpre) compared to NC participants. Arrows indicate 

upregulation or downregulation in the comparison group as compared to the NC participants. NEG, negative; POS, positive.
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Table 2

Difference detection of putative metabolites using SID-MRM-MS

Metabolite Fold change Comparison groups Mode P value

PC ae C38:4 ↓ NC versus Converterpre POS 0.00417

Proline ↓ NC versus Converterpre POS 0.00003

Lysine ↓ NC versus Converterpre POS 0.0020

Serotonin ↓ NC versus Converterpre POS 0.0160

Taurine ↓ NC versus Converterpre POS 0.0030

DOPA ↑ NC versus Converterpre POS 0.0001

Phenylalanine ↓ NC versus Converterpre POS 0.00001

Acylcarnitine C7-DC ↓ NC versus aMCI/AD POS 0.0001

The arrows indicate upregulation or downregulation in the comparison group as compared to the NC participants. DOPA, dihydroxyphenylalanine; 
C7-DC, pimelyl-L-carnitine.
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