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The pharmacokinetic and pharmacodynamic disciplines address pharmacological traits, 
including efficacy and adverse events. Pharmacogenomics studies have identified 
pervasive genetic effects on treatment outcomes, resulting in the development of 
genetic biomarkers for optimization of drug therapy. Pharmacogenomics-based tests 
are already being applied in clinical decision making. However, despite substantial 
progress in identifying the genetic etiology of pharmacological response, current 
biomarker panels still largely rely on single gene tests with a large portion of the genetic 
effects remaining to be discovered. Future research must account for the combined 
effects of multiple genetic variants, incorporate pathway-based approaches, explore 
gene–gene interactions and nonprotein coding functional genetic variants, extend 
studies across ancestral populations, and prioritize laboratory characterization of 
molecular mechanisms. Because genetic factors can play a key role in drug response, 
accurate biomarker tests capturing the main genetic factors determining treatment 
outcomes have substantial potential for improving individual clinical care.

Keywords:  genetic architecture • genomics • heritability • linear mixed modeling  
• pharmacogenomics • polygenic architecture • polygenic modeling

The NIH has envisioned translation of 
the detailed information collected about 
the human genome into improvements in 
human health and well being [1]. Pharmaco­
genomics (PGx), the study of how genetic 
architecture influences pharmacological 
traits and outcomes, provides immediate 
applications for directing clinical decision 
making. Pharmacogenomic information can 
aid choices about selecting pharmacological 
treatments, optimal time courses and drug 
dosage on the basis of a patients’ genetic 
architecture.

Interpatient variability manifests itself in 
different ways for pharmacological traits, 
described quantitatively by pharmaco­
kinetics (PK) and pharmacodynamics (PD). 
Pharmacological traits include efficacy, 
adverse events and the balance between effi­
cacy and toxicity, defining the therapeutic 
‘window.’ Further definitions of these terms 
are presented in Box 1. By connecting genetic 

variation to measurable interpatient variabil­
ity, a course of action can be defined on an 
individual basis.

Investigating the genetic architecture of 
PGx traits can be pursued in multiple ways, 
and each of the approaches taken has advan­
tages and limitations, discussed further in 
this review. PGx studies typically reveal SNP 
biomarkers that link genetic variation to 
treatment outcomes. Elucidating the under­
lying molecular genetic mechanism under­
lying the association between genetic vari­
ants and pharmacological traits is a major 
goal in the PGx field. In contrast, genome-
wide association studies (GWAS) of complex 
diseases have yielded numerous variants with 
significant associations, but for a vast major­
ity of these results, the causative variants and 
mechanisms remain unknown [6]. In addi­
tion, pharmacogenomic variants tend to exert 
stronger effects on drug response phenotypes 
than those discovered for complex disor­
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ders – perhaps because a relatively limited number of 
genes influence PK and PD traits. Moreover, drugs are 
targeted to specific pathways thought to be involved 
in complex disease phenotypes, thereby narrowing 
the number of candidate genes, with each displaying a 
proportionally larger effect size. We assume here that 
complex disorders such as cardiovascular diseases and 
cancer represent a collection of disease subtypes each 
with similar symptoms – where drug therapy would 
typically target a specific subtype.

A series of limitations and challenges confront the 
field of PGx. One current limitation is the wide use of 
single common-variant/outcome trait association test­
ing. Alternative modeling methodologies and strategies 
that incorporate multiple genetic markers, as well as 
the inclusion of lower-frequency variants, may prove 
effective for enhancing PGx trait prediction. A chal­
lenge for PGx studies includes the difficulty of estimat­
ing the heritability of PGx traits, since it is untenable 
to administer medications to unaffected individuals. 
Attaining adequate statistical power presents a chal­
lenge when faced with the frequently small sample 
size in PGx studies, especially for adverse drug reac­
tion studies. Effective biomarker identification has 
also remained a challenge, with potential biomarkers 
that have not shown clinical efficacy [7,8], and impor­
tant work yet to be done understanding the biology 
underlying effective biomarkers [8]. In addition, the 
PGx field needs to broaden investigations of PGx traits 

across samples of diverse ancestry/race/ethnicity, to 
derive relevant actionable information for clinicians. 
Finally, ‘risk’ is difficult to define for PGx traits, as 
metrics for drug efficacy can be difficult to ascertain 
when compared with the probability (rate) of risk of a 
common complex disease.

Herein, we describe the current understanding of the 
genetic architecture of PGx traits. We discuss in detail 
some of the aforementioned challenges and limitations 
while also pointing out opportunities and future direc­
tions for the field of PGx. These include new methods 
development such as polygenic modeling, pathway 
analyses, and systems biology approaches for the devel­
opment of further robust biomarkers, all with the goal of 
discovering the etiology underlying interindividual vari­
ations in drug response, and designing robust biomarker 
panels predictive of treatment outcomes.

What have we learned?
Heritability of PGx traits: challenges  
& successes
The rationale for PGx is the underlying assumption 
that genetic variation plays a substantial role in phar­
macological outcome. The heritability of a PGx trait 
should be measurable if variant transmission from par­
ent to offspring is the basis of the genetic architecture 
influencing PGx traits. While determining the herita­
bility provides the rationale for a PGx study, estimating 
the heritability of PGx traits is nontrivial.

Box 1. Definitions

•	 Pharmacological trait: Measurable variation in response to pharmacological treatments.
•	 Pharmacokinetics (PK): The degree or rate of absorption, metabolism, distribution and elimination of a drug 

within a living system.
•	 Pharmacodynamics (PD): The relationship between drug concentration and effect on a living system, or the 

microorganisms affected within a living system by a drug.
•	 ADME: Absorption, distribution, metabolism and elimination.
•	 Efficacy: The quality of the effect of a pharmacological treatment on a living system in relation to the quantity 

of the drug.
•	 Adverse event: A detrimental response to a drug within a living system.
•	 Idiosyncratic adverse event: An unexpected response to a drug within a living system.
•	 Therapeutic window: The range of drug concentrations efficacious with minimal toxicity.
•	 Efficacy/toxicity balance: Drug levels have an impact on drug efficacy, but also toxicity.
•	 Pharmacogenomics (PGx): Study of the relationship between genetic variation and drug response, including 

but not limited to pharmacological traits, PK, PD, efficacy, toxicity and/or adverse events.
•	 NIH Pharmacogenomics Research Network (PGRN): A collaboration between an ever growing number of study 

sites, all investigating the pharmacogenomics of a variety of traits [2,3].
•	 The Pharmacogenomics Knowledgebase (PharmGKB): A database of comprehensively collected information 

about the relationships between genes and PT, PK, PD, efficacy, adverse events and/or disease [4,5].
•	 Polygenic genetic architecture: The contribution of multiple common SNPs to phenotypic variance in 

aggregate.
•	 Polygenic modeling: Method that develops an additive polygenic risk score based on SNPs that pass a p-value 

threshold in a discovery set of samples, tested in an independent set of samples.
•	 Mixed Linear Modeling (MLM): Estimation of an additive genetic variance under a mixed linear model with a 

random effect representing the polygenic component of underlying trait variation.
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Defining the heritability of PGx traits encounters 
hurdles distinct from those found in the analysis of 
complex disorders. By definition, any drug response 
trait represents a gene–environment interaction, where 
the drug is only one component of multiple environ­
mental exposures, and multiple genes may contribute 
to the PGx response. Moreover, each drug, even closely 
related ones such as the statins, has different degrees 
of heritability and must be studied individually. Also, 
drug effects are highly dependent on the dosage, and 
hence, genetic factors differ with drug dose, as shown 
for the impact of SLCO1B1 variants on simvastatin’s 
muscle toxicity, only detectable when high doses are 
needed to control cholesterol levels [9]. Lastly, drug 
therapy commonly involves multiple drugs. As a result, 
predictive biomarker tests of the future will have to 
evolve to consider complex gene–gene–environment 
interactions.

Few drugs can be used in a familial setting to monitor 
the variability of drug response as most family members 
will not have a condition warranting treatment. Drug 
treatment of a group of individuals without a need for 
treatment is limited for safety and ethical reasons. In 
addition, sample size is often low for PGx studies, espe­
cially when investigating adverse events. Access to large 
numbers of related individuals taking a specific drug is 
limited to communities that have a common need for 
a particular drug, such as lipid lowering treatments [10]. 
This is distinct from estimating heritability for complex 
diseases or outcomes where twin and family studies 
are facilitated, even when trait complexity can present 
challenges for heritability estimation.

A few examples of familial studies of drug response 
clearly indicate the heritability of some PGx traits, 
underscoring considerable influence of genetic factors; 
these are presented in Table 1. For example, dicuma­
rol was monitored in the plasma for a group of identi­
cal and fraternal twins [11], revealing little difference 
in the variability of dicumarol half-life in plasma 
response between identical twins, minor differences 
between fraternal twins and wide differences between 
nonrelated subjects demonstrating a significant heri­
table component. Investigating heritability of PGx 
traits across communities of related individuals where 
a specific drug is commonly administered is another 
way to determine heritability of certain PGx traits. For 
instance, a study of the heritability of platelet response, 
measured by ex vivo platelet aggregometry, involved 
the administration of clopidogrel to 429 Amish per­
sons and revealed the platelet response to be highly 
heritable [10].

To circumvent limitations of familial studies for PGx 
traits, estimation of heritability in an ex vivo manner 
has been successful. This approach has been applied for 

measuring drug cytotoxicity within familial-derived 
lymphoblastoid cell lines (LCL) [13]. Further work with 
the LCL approach has lead to a detailed understanding 
of effective LCL study design, enabling identification 
of loci related to variability of PGx traits which in turn 
guide studies in humans and model organisms. For 
example, heritability of chemotherapeutic cisplatin-
induced cytotoxicity has been estimated at approxi­
mately 57% through the LCL approach, with evidence 
for multiple causative variants [14]. Table 2 presents a 
series of heritability results from cell line experiments. 
Detailed work has characterized factors that confound 
interpretation of these experiments, such as the portion 
of the genetic variation of drug-induced cytotoxicity 
accounted for by heritability of variation in cellular 
growth rate [13]. In addition, cellular assays are amena­
ble to high-throughput testing of multiple drugs. For 
example, one study investigated the cytotoxic effect 
of 29 chemotherapeutic agents on 125 LCL from 14 
extended families, and found a range of heritabilities 
from <15% (gemcitabine) to >60% (epirubicin) [15].

Furthermore, HapMap cell lines from multiple ances­
tries can be used in these cellular assay based studies to 
represent multiple ancestries, allowing for characteriza­
tion of the relationship between PGx traits across ances­
try groups. For example, an exploratory analysis used 
HapMap cells to investigate genetic variants and their 
functional consequences for the enzyme deoxycytidine 
kinase (DCK) in two ancestries, European and Afri­
can (Yoruba) [18]. DCK is a rate-limiting enzyme in the 
activation of nucleoside analogs. Cytarabine (ara-C), 
a chemotherapeutic agent commonly used in in acute 
myeloid leukemia, is one such nucleoside analog. DCK 
activity was lower for subjects heterozygous for cod­
ing changes compared with homozygous subjects, and 
DCK activity in general was higher in the African cell 
lines when compared with the European cell lines.

Another approach available for determining the 
genetic component influencing PGx traits involves 
Repeated Drug Administration (RDA). In this 
method, a drug is administered multiple times to unre­
lated individuals, and the variability in the PGx trait 
of interest between and within individuals is com­
pared [19]. RDA information can be used to calculate 
the Relative Genetic Component (rGC), an estimate 
on a scale of 0 to 1 of the genetic component of a PK 
or PD parameter. This measurement has also been 
referred to as ‘intraclass correlation’ or ICC [20]. The 
rGC measurement is calculated through the following 
formula: (variability between individuals - variability 
within individuals)/variability between individuals. 
The measurement can be interpreted as a rough esti­
mate of heritability, where a trait with high rGC will 
likely have high heritability. The rGC measurement can 
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also be calculated from monozygotic twin pairs, when 
dizygotic twins are not available [19]. For example, the 
genetic component of variation in renal clearance of 
amoxicillin, ampicillin, metformin, terodiline, digoxin 
and iohexol, was investigated using this approach [21]. 
Results from these rGC based studies are summarized 
in Table 3. Limitations of this approach include the high 
variability of PGx traits over limited time periods even 
in the absence of genetic factors, potentially leading to 
large error estimates.

The PGx landscape: drug efficacy & adverse 
events
Among the many PGx success stories is the use of 
genetic information to facilitate prescription of opti­
mal warfarin dosage levels to prevent cardioembolic 
stroke, myocardial infarction and venous thrombosis 
as well as prevent adverse events. Warfarin is widely 
prescribed after placing arterial stents or after myocar­
dial infarction. However, warfarin causes serious side 
effects including hemorrhage, especially during drug 
initiation when patients are titrated to the optimal dos­
age level [33,34]. Variants in CYP2C9 influence the PK 
[35] and VKORC1 variants influence the PD of warfarin 
[36–39]. It is noteworthy that the two-gene biomarker 
test for warfarin dosing still represents an exception; 
most other genetic biomarker PGx tests only include 
one gene, and the identification of multigene robust 
biomarkers remains an important area for expansion 
within PGx research. An algorithm for estimating 
individualized warfarin dosages was defined using 

clinical and PGx data [40]. As a result, the FDA updated 
the label for warfarin, detailing the use of pharma­
cogenetic testing for clinical decision making [33]. 
Recent studies have evaluated genotypic biomarkers 
for warfarin dosing with different conclusions; one 
study indicated genotype-guided dosing of warfarin 
was ineffective when compared with dosing without 
genotypic information [41]. A separate study indicated 
genotype-guided dosing was associated with a patients 
being within the therapeutic range for a greater period 
of time when compared with the standard initiation of 
warfarin [42].

In another example, clopidogrel is prescribed to pre­
vent atherothrombotic events after myocardial infarc­
tion but exhibits notable variability in successfully 
preventing further cardiovascular events. This has at 
least in part been attributed to genetically determined 
variation in the drug metabolizing enzyme CYP2C19, 
largely responsible for converting clopidogrel to its 
active metabolite. The most common loss-of-function 
allele is CYP2C19*2 (rs4244285), associated with 
increased risk of cardiovascular events [43]. Indeed the 
CYP2C19*2 variant is considered a major determinant 
of prognosis for patients <45 years of age on clopidogrel 
treatment after myocardial infarction [44].

While the list of PGx traits continues to grow, trans­
lating the complex and sometimes conflicting research 
results from PGx to clinical action requires accessible 
information that is updated as new findings come to 
light. FDA labels are already being modified in response 
to emerging PGx findings, listed here [45]. However, 

Study type Trait Drug Heritability 
measure

Heritability 
estimate

SE Ref.

Pedigree Response (platelet aggregation) Clopidogrel h2 0.73 ±0.12 [10]

Twins Half-life Dicumarol h2 0.97 NA [11]

Twins Half-life Antipyrine h2 0.98 NA [11]

Pedigree Platelet response measured by 
phenotypes indirectly related to 
inhibition of COX-1

Aspirin 
(acetylsalicylic 
acid)

h2 0.266–0.762 SE [12]

  PRP aggregation 2 μg/ml collagen     0.451 ±0.080 [12]

  PRP lag time 2 μg/ml collagen     0.309 ±0.095 [12]

  Whole blood aggregation 1 μg/ml 
collagen

    0.365 ±0.073 [12]

  PRP aggregation 10 μmol/l ADP     0.475 ±0.083 [12]

  Whole blood aggregation 10 μmol/l 
ADP

    0.434 ±0.070 [12]

  PRP aggregation 10 μmol/l epinephrine     0.535 ±0.077 [12]

  β-thromboglobulin release     0.65 ±0.086 [12]

NA: Not applicable; PRP: Platelet rich plasma; SE: Standard error.

Table 1. Heritability of pharmacogenomics traits.
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FDA label changes are only one way to provide infor­
mation to clinicians for implementing PGx results in 
treatment decisions. The Clinical Pharmacogenetics 
Implementation Consortium (CPIC) [46], the Royal 
Dutch Association for the Advancement of Pharmacy 
(DPWG) [47] and other professional medical societ­
ies, have also been publishing pharmacogenetic dosing 
guidelines for an increasing number of drugs [48].

CPIC in particular has carefully reviewed the cri­
teria for translation of PGx traits, and as a result, has 
developed a framework for identifying key evidence 
justifying clinical implementation. Published CPIC 
guidelines target specific gene/drug pairs (Table  4), 
reviewing the existing research for each gene/drug pair 
[49]. In addition, CPIC provides a standardized web-
interface of gene/drug pair summary information, 
including outcome phenotype based on genotype, 
dosing recommendations and allele frequency differ­
ences and impact of specific variants across distinct 
ancestry. CPIC continues to review ongoing research 
on gene/drug pairs to determine whether the existing 
information needs updating or new gene–drug pairs 
can be recommended for clinical use.

The effect size of genetic variants affecting PGx 
traits tends to exceed that of SNPs derived from GWAS 
of complex human disorders. In Figure 1, we illustrate 
this trend by comparing the odds ratios for efficacy 
and toxicity related PGx results with those from the 
NHGRI GWAS catalog, where the phenotypic out­
come covers a range of non-PGx complex traits [65]. 
Figure 1 displays larger relative strength of effect size 
for PGx traits compared with the range of effect sizes 
observed with complex-trait GWAS. This observation 
is consistent with our expectation that PGx variants 
affect targeted subsets of genes and pathways; however, 
ascertainment bias cannot be excluded resulting from 
the different methods used for discovery of the genetic 
variants.

Functional role of genomic architecture in PGx 
traits
The PGx field faces challenges in understanding the 
mechanistic role of genomic variation in PGx traits. 
Much of the focus of interpretation of the relation­
ship between genetic variability and outcome for 
both complex disease and PGx has been centered 
on protein-coding regions. In PGx studies there has 
been a particular focus on candidate gene approaches 
targeting Absorption, Distribution, Metabolism and 
Execretion (ADME) genes in addition to GWAS. 
This makes particular sense for PGx traits, as genetic 
variation can have an impact on the protein structure 
of drug-metabolizing enzymes resulting in changes 
in enzymatic activity. Furthermore, there are known 

important PK pathways where the impact of genetic 
variation has been demonstrated on a protein-cod­
ing modification level. One example is CYP2D6, an 
enzyme involved in the metabolism of up to 25% of 
clinical drugs, where nonsynonomous variants can 
result in enzymatic changes and subsequent changes 
in catalytic activity [66]. Many of these very impor­
tant pharmacogenes (VIP) are summarized in the 
Pharmacogenomics Knowledge Base (PharmGKB) 

Drug h2 heritability estimate Ref.

5-fluorouracil 0.26–0.65 (dose dependent) [16]

Docetaxel 0.21–0.70 (dose dependent) [16]

Cisplatin 0.47 [14]

Daunorubicin 0.18–0.63 (dose dependent) [17]

5-Fluorouracil 29.2 [15]

Arsenic trioxide 24.4 [15]

Azacitidine 20.7 [15]

Bleomycin 17.3 [15]

Busulfan 14.2 [15]

Carboplatin 43.2 [15]

Cladribine 27.3 [15]

Cytarabine 41.7 [15]

Daunorubicin 37.1 [15]

Docetaxel 30.1 [15]

Doxorubicin 35.3 [15]

Epirubicin 59.5 [15]

Etoposide 41.3 [15]

Floxuridine 27 [15]

Fludarabine 13.5 [15]

Gemcitabine 8.1 [15]

Hydroxyurea 43.2 [15]

Idarubicin 45.8 [15]

Mitomycin 26.7 [15]

Mitoxantrone 46.5 [15]

Oxaliplatin 50 [15]

Paclitaxel 45.9 [15]

Rapamycin 15.1 [15]

Temozolomide 63.5 [15]

Teniposide 36.4 [15]

Topotecan 46.1 [15]

Vinblastine 31.2 [15]

Vincristine 23.1 [15]

Vinorelbine 34.1 [15]

Table 2. Cell-line based estimates of heritability for drug 
cytotoxicity.
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Study type Trait Drug Relative genetic 
component 
estimate

95% CI Ref.

RDA Renal clearance Metformin 0.94 NA [22]

RDA Renal clearance Amoxicillin 0.91 NA [23]

RDA Renal clearance Ampicillin 0.64 NA [23]

RDA Renal clearance Terodiline 0.37 NA [24]

RDA Renal clearance Iohexol 0.2 NA [25]

RDA Renal clearance Digoxin 0.12 NA [26]

RDA Metabolism by CYP1A2 Caffeine 0.69 NA [19,27]

RDA Metabolism by NAT2 Caffeine 0.95 NA [19,27]

RDA Metabolism by xanthine oxidase Caffeine 0.24 NA [19,27]

RDA Metabolism by UGT2B7 Oxazepam 0.98 NA [19,27]

RDA Metabolism by ADH Ethanol 0.57 NA [19,27]

RDA Metabolism by CYP2D6 Dextromethorphan 0.97 NA [19,27]

RDA Metabolism by CYP3A4 
(adriamycinol-AUC[0-Inf] to 
adriamycin-AUC[0-Inf])

Adriamycin 0.55 0.00–0.86 [28]

RDA Metabolism by CYP3A4 (terminal 
elimination half-life (unbound 
drug))

Cyclosporine 0.83 0.12–0.97 [28]

RDA Metabolism by CYP3A4 
(erythromycin N-demethylation 
rate)

Erythromycin 0.89 0.65–0.98 [28]

RDA Metabolism by CYP3A4 (serum 
AUC[0–24])

Ethinylestradiol 0.79 0.48–0.94 [28]

RDA Metabolism by CYP3A4 (serum 
AUC[0–24])

Ethinylestradiol 0.94 0.83–0.98 [28]

RDA Metabolism by CYP3A4 (serum 
AUC[0–24])

Ethinylestradiol 0.86 0.48–0.96 [28]

RDA Metabolism by CYP3A4 
(ethylmorphine N-demethylation 
metabolic ratios)

Ethylmorphine 0.98 0.87–1.00 [28]

RDA Metabolism by CYP3A4 (plasma 
clearance)

Midazolam 0.96 0.92–0.98 [28]

RDA Metabolism by CYP3A4 (plasma 
AUC[0–24])

Nifedipine 0.82 0.55–0.94 [28]

RDA Metabolism by CYP3A4 (plasma 
AUC[0-Inf])

Nifedipine 0.98 0.95–0.99 [28]

RDA Metabolism by CYP3A4 (plasma 
AUC[0–24])

Nitrendipine 0.66 0.00–0.92 [28]

RDA Pharmacokinetics of nevirapine 
(plasma AUC[0–6])

Nevirapine European 
Americans: 0.904 
African–Americans: 
0.902

European Americans: 
0.64–0.97  
African–Americans: 
0.42–0.98

[29]

Twins AUC[0–12] d0-digoxin 0.89 NA [30]

AUC: Area under the curve; NA: Not applicable; RDA: Repeated drug administration.  

Table 3. Repeated drug administration and resultant relative genetic component measurements.
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[67]. However, GWAS and now full-genome sequenc­
ing have identified many biomarkers that do not cause 
functional protein-coding modification, or are located 
in genes whose role in drug disposition, response or tox­
icity was previously not well characterized. For exam­
ple, a distal enhancer variant >100 kb downstream of 
the coding region of CYP2D6 strongly increases gene 
expression in the liver, accounting for cases of ultra 
rapid metabolism [68]. Likewise, in a genome wide 
association study of flucloxacillin-induced liver injury, 
a novel association between ST6GAL1, an enzyme 
with a possible role in B-cell immune response, and 
the drug induced liver toxicity was identified [69]. In 
some cases, there are genetic variants that account for 
substantial outcome variability, and are already used 
as a clinical biomarker, but we have a more limited 
understanding of the impact of that genetic factor, 
such as the functional mechanisms of HLA variants 
and drug response variability [70,71].

Resolving the mechanistic etiology of the impact of 
genetic variation on PGx traits is a critical focus for 
future PGx studies. Exploration of the function of 
nonprotein coding genetic regions will be essential, 
including regulatory regions and noncoding RNA 
[72]. Regulatory variants may account for a large por­
tion of genetic variability, and should be incorporated 
into analyses as knowledge of the functional impact of 
genetic variation on genetic enhancers, promoters and 
gene expression is accrued and shared through projects 
such as ENCODE and related databases [73–76].

Beyond PGx GWAS: polygenic analyses
New methodologies will continue to drive advances 
in the field of PGx. The majority of PGx results have 
arisen from investigation of the association between 
single, common, genetic variants and pharmacological 
outcome. As found with GWAS for common complex 
traits [6], this approach may have varied or limited suc­
cess in future studies, as the genetic architecture of any 
trait can be complex. On a biological level, a variety 
of potential genetic mechanisms influencing PGx traits 
fail to be captured when investigating only the relation­
ship between single, common, genetic-variants and out­

comes. Thus, we need to diversify the methodologies 
being used to better define polygenic traits.

One alternate approach considers polygenic genetic 
architecture, or the contribution of multiple common 
SNPs to phenotypic variance in aggregate. Two meth­
ods have already been used for a variety of complex 
outcomes for non-PGx traits: mixed linear modeling 
(MLM) and polygenic modeling. Both methods test a 
polygenic model for the relationship between multiple 
SNPs and outcome, as illustrated in Figure  2. MLM 
estimates the additive genetic variance under a mixed 
linear model with a random effect representing the 
polygenic component of trait variation. The software 
tool GCTA (Genome-wide Complex Trait Analysis) 
has been developed for use of MLM in estimation of 
the proportion of phenotypic variance accounted for 
by genome-wide association genotypic data [77]. The 
MLM/GCTA approach has been used successfully 
for identifying the collective contribution of GWAS-
polymorphisms to traits including height [78], Crohn’s 
disease, bipolar disorder and Type 1 diabetes [79] and 
other complex outcomes [80,81].

Polygenic modeling develops an additive polygenic 
risk score for a given trait based on a group of SNPs fil­
tered by a GWAS-based p-value threshold in a discov­
ery sample set. The polygenic risk score is then tested 
in an independent set of samples. This approach has 
been successfully used to detect the contribution of 
multiple variants with small effects to the heritability of 
diseases/traits/outcomes such as schizophrenia [82], mul­
tiple sclerosis [83], height [84], body mass index [85] and 
rheumatoid arthritis [86]. Polygenic modeling analyses 
for complex traits yield results consistent with simulated 
genetic models in which hundreds of associated loci har­
bor common causal variants and a smaller number of 
loci harbor multiple rare causal variants [86]. The herita­
bility estimates derived from these polygenic approaches 
have been consistent with previously reported estimates 
for these complex traits. MLM and polygenic mod­
eling methods are now being applied to PGx data. 
MLM/GCTA analyses have been used to investigate 
asthma PGx traits [87], and paclitaxel-induced sensory 
peripheral neuropathy [88].

Study type Trait Drug Relative genetic 
component 
estimate

95% CI Ref.

Twins AUC[0–12] d3-digoxin 0.79 NA [30]

Twins Oral clearance Digoxin (oral) 0.36 NA [31]

Twins Renal clearance Digoxin (oral) 0.19 NA [31]

Twins Renal clearance Metformin 0.95 NA [32]

AUC: Area under the curve; NA: Not applicable; RDA: Repeated drug administration.  

Table 3. Repeated drug administration and resultant relative genetic component measurements (cont.).
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Figure 1. Contrasting the effect size and minor allele frequency range of pharmacogenomic variants versus 
variants from the NHGRI GWA catalog. Black circles are the NHGRI GWAS catalog results, plotted by OR results in 
logarithmic (base10) scale versus minor allele frequency. Each green cross represents a replicated efficacy result 
for a pharmacogenomics study. Each red X represents a replicated toxicity result for pharmacogenomics. The solid 
lines represent the 80% power equivalent curves across minor allele frequency, from top to bottom for n = 1 × 103, 
10 × 103 and 100 × 103, respectively (assuming n/2 cases and n/2 controls). 
OR: Odds ratio.

0.0 0.1 0.2 0.3

Minor allele frequency

0.4 0.5

200

100

20

10

O
R

 (
lo

g
-s

ca
le

)

5

3

2

1

future science group

Genomic architecture of pharmacological efficacy & adverse events    Review

Paclitaxel is a chemotherapeutic agent commonly 
prescribed to treat carcinomas of the breast, ovaries, 
lung, head and neck. Peripheral neuropathy is one of 
the most common toxicities with paclitaxel treatment, 
and occurs in a substantial subset of patients. Known 
causes of peripheral neuropathy do not completely 
explain the incidence of toxicity amongst patients 
treated with paclitaxel, suggesting a genetic basis for 
susceptibility to the toxicity. Small candidate gene 
studies have had mixed results identifying variants 
related to variability paclitaxel-induced peripheral neu­
ropathy [4,89]. One study reports a high risk odds ratio 
(OR: 19.1) for paclitaxel neurotoxicity associated with 
CYP3A4*22 [90], as a result of reduced metabolic activ­
ity of the *22 allele [91], but this result requires replica­
tion (CYP3A4*22 is not on earlier GWAS panels and 
cannot be readily imputed). GWAS for this PGx trait 
have identified some candidate SNPs, but replication 
has been inconsistent [2,92].

Chhibber et  al. (2014) [88] investigated a polygenic 
etiology of paclitaxel-induced neuropathy. They esti­
mated the variance explained by common SNPs (MAF 
>1%) for two outcomes: the maximum grade of sensory 
peripheral neuropathy, and the dose at first instance of 
peripheral neuropathy. They investigated the variance 
explained by all autosomal SNPs, SNPs selected based 
on genomic location, and SNPs in gene sets selected 
based on prior knowledge regarding possible mecha­
nisms of the pathogenesis of paclitaxel-induced periph­
eral neuropathy using the GCTA software tool. They 
found whole genome estimates of heritability were not 
significant; however, using a pathway-based approach 
for filtering SNPs yielded significant results. Specifically, 
the Axonogenesis GO Term set (GO: 0007409) had 
significant estimates of heritability close to 20%, sug­
gesting a portion of the heritability of paclitaxel-induced 
neuropathy is driven by genes involved in the regulation 
of axon extension. These results show both the utility of 
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Figure 2. Overview of polygenic analysis methods. On the left, the general workflow of using Mixed Linear 
Modeling pursued using the software genome-wide complex trait analysis. On the right, the general workflow of 
Polygenic Modeling. Both methodologies allow the user to identify multiple SNPs related to pharmacogenomics 
outcome, with different information resulting from each approach. 
GWAS: Genome-wide association study.
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polygenic approaches for PGx traits, as well as the utility 
of exploring pathway-based expert knowledge filtering 
of SNPs before investigating polygenic architecture.

McGeachie et  al. (2013) estimated the heritability 
of bronchodilator response (∼30%), airway hyper­
responsiveness (∼50%) and asthma liability (∼61%) 
due to SNPs in aggregate using the MLM/GCTA 
approach [87]. Linkage studies have yielded comparable 
heritability estimates for both bronchodilator response 
(∼12–40%) and airway responsiveness (~67%) 
[20,93,94], supporting the validity of the polygenic mod­
eling approach. In addition, the estimate obtained for 
the heritability of asthma corresponds to published 
asthma heritability from twin studies ranging from 70 
to 90% [95]. With polygenic approaches, the total vari­
ance explained by a series of alleles should approach 
the heritability estimates by other methods, unless 

there are nonadditive mechanisms or causal alleles are 
not well tagged in the GWAS SNP panels. This study 
indicates polygenic modeling can provide heritability 
estimates within the range of heritability measured in 
familial studies. Therefore, MLM/GCTA are suitable 
for providing narrow-sense heritability estimates for 
PGx traits where family or other approaches are not 
possible for estimating heritability.

MLM/GCTA methods were largely developed for 
GWAS data of complex traits, and at this point, most 
GWAS for non-PGx traits have very large sample size. 
With PGx traits, low sample size is common and this 
can limit the utility of polygenic approaches unless 
strategies are implemented to increase sample size, such 
as multi-institution collaborations to combine datas­
ets. In addition, all methods have expectations of the 
type of phenotype that will be used, implicit in the 
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development of the method. Pharmacological measure­
ments and outcome measures can be complex, such as 
ordinal variables or survival times subject to censoring, 
to which current polygenic models can be difficult to 
apply. Despite these limitations, polygenic analyses are 
showing utility in providing an additional tool for seek­
ing information about the relationship between genetic 
architecture and PGx traits and estimates of heritability 
of these traits.

Further limitations of MLM/GCTA methods 
include the underlying assumptions that genotype 
effects are predominantly additive, thereby limiting 
assessment of the ‘mutational burden’ as a measure of 
genetic influence on a trait, including response to ther­
apy. For example, this approach ignores the pervasive 
influence of epistatic gene–gene interactions, where the 
effect of one variant is contingent on the presence of 
another variant. Also, while this approach may yield an 
estimate of the trait’s heritability, it remains to be deter­
mined whether mutational load of many variants can 
serve as clinical biomarker panels to guide therapeutic 
decision.

Future methods
In addition to polygenic analyses, other approaches 
may provide keys to elucidating the etiology of PGx 
traits. Different predictive models based on genetic 
architecture may be necessary to explain many PGx 
traits that remain to be elucidated. These models may 
not include loci of large effect, and some of these mod­
els may not be additive and fail assumptions of linear 
regression. Novel approaches are being introduced 
and refined at a fast rate, and these may emerge as 
key tools for exposing further the genetic architecture 
underlying PGx traits. New technologies for character­
izing the genome are also emerging. These technolo­
gies include large-scale high-throughput sequencing to 
detect comprehensive genetic variation data including 
low-frequency variants [96], genetic and genomic varia­
tion such as copy-number variants, new gene expres­
sion technologies and methods to detect the complex 
epigenetic landscape of the human genome. One can 
argue that drug therapy ranks among those environ­
mental stimuli that alter the epigenetic chromatin 
landscape, thereby adding another dimension to PGx. 
Novel analysis methods include pathway [97] and prior 
knowledge based approaches [98], rare variant analyses 
[99,100] and interaction studies [101]. Integration of these 
diverse large-scale datasets has the potential for driving 
PGx discovery and clinical applications.

Pathway approaches are becoming more com­
mon, taking advantage of prior knowledge previously 
obtained in molecular and cellular biology studies. 
Diverse databases cataloging the results of countless 

PGx studies include the PharmGKB database men­
tioned earlier. In addition, newly developed tools allow 
users to tap simultaneously into multiple database 
sources for pathway based analyses, such as Biofilter 
[102–104] and PARIS [102]. Furthermore, as mentioned, 
pathway based approaches can serve as ‘input’ for poly­
genic analyses, reducing the search space for variables 
by collapsing multiple genes into groups [88].

Methods are now emerging that enable exploring 
rare-variant data, usually defined as SNPs with allele 
frequencies <0.01, data of greater abundance with com­
prehensive sequencing data becoming available. The 
impact of rare variants on PGx traits are just begin­
ning to be explored. Examples of already discovered 
rare-variants for PGx traits include rare variants found 
within the SLCO1B1 gene, where haplotypes have 
been associated with reduced methotrexate clearance 
during treatment of childhood acute lymphoblastic 
leukemia. SLC01B1 variants accounted for 10.7% of 
the population variability in clearance. Of those vari­
ants, common nonsynonymous variants contributed 
the most to variability, but rare nonsynonymous vari­
ants contributed to 1.9% of total variation in clearance 
[105]. This example illustrates the promise of searching 
for rare variants but also cautions against optimistic 
expectations regarding clinical utility. In this case, the 
rare variants contribute a relatively small portion to 
the variability attributable to SLCO1B1, and for clini­
cal utility in and an individual patient, the SLCO1B1 
phasing is typically unknown, adding uncertainty to 
any clinical recommendations.

Rare-variant collapsing strategies have now been 
developed for assessing their influence on traits, as 
the power for detecting the relationship between 
single low-frequency variants is limited. Collapsing 
approaches provide a way to identify specific patterns 
of genetic variation predictive of outcome variation. 
Several collapsing methods have been published in the 
past 5 years [106–114]. An example of a novel collaps­
ing strategy is BioBin [115–117], a low-frequency variant 
collapsing method that considers the cumulative effect 
of rare variants within genetic features chosen by the 
users. These features can include genes but can also be 
pathways, or other biologically based criteria such as 
evolutionarily conserved regions.

The role of epistasis in PGx traits
One of the reasons for the popularity of the GWAS and 
candidate gene approach is the simplicity of the regres­
sive model for interpretation, and clear guidelines for 
ascertainment of significance and multiple hypothesis 
testing corrections. However, a variety of tools exist for 
the development of more complex predictive models 
beyond single-variant/outcome association testing for 
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common variants. For example, step-wise regression 
can be used to develop models with additional terms, 
instead of using single variant data. More complex 
models may show better outcome prediction, such as 
gene-by-gene (GxG) interaction models.

The overall role of dynamic GxG interactions 
remains a matter of debate. One can argue that a sub­
stantial portion of the ‘missing heritability’ of com­
plex traits is accounted for by epistasis [118], but few 
studies document this in PGx. It may require identi­
fying the interplay of more than one genetic variant 
to adequately predict the outcome of drug administra­
tion [119]. An example of an interaction has been found 
between the dopamine D2 receptor and the dopamine 
transporter, encoded by DRD2 and DAT, respectively. 
Both genes harbor several common regulatory variants 
but only DRD2 is associated with lethal risk resulting 
from cocaine abuse when each gene is studied sepa­
rately. Yet, a combination of a single variants from both 
DRD2 and DAT convey a seven- to eight-fold increased 
risk in a highly significant interaction model [120]. Such 
cases of gene–gene–environment interaction may be 
more prevalent than currently anticipated and need to 
be explored on a broader basis.

One challenge for seeking more complex models is 
the number of options to investigate, when investigat­
ing pairwise GxG and SNP-by-SNP (SNP×SNP) inter­
action models, as the number of potential interactions 
skyrockets as the number of variants grows. Tools exist 
for generating pair-wise GxG interaction models that 
address this. For example, Biofilter [104] is a tool that 
allows users to filter and annotate genetic data, as well 
as generate pairwise SNP×SNP models prioritized by 
the biological evidence supporting the genetic inter­
action. Multifactor dimensionality reduction (MDR) 
performs an exhaustive analysis of all n-wise inter­
acting loci to generate models [101]. The Analysis Tool 
for Heritable and Environmental Network Associations 
(ATHENA) is a software tool that combines advanced 
filtering and machine learning analytical techniques to 
generate multi-variable models that can predict categor­
ical or quantitative outcomes [121,122]. ATHENA can 
be used for both G×G/SNP×SNP interaction models 
that move beyond pairwise interactions, as well as for 
metadimensional analysis, where different data types of 
high-throughput genetic predictor variables are incor­
porated. However, all these methodologies require large 
sample cohorts, which are rarely encountered in PGx 
studies.

Clinical & regulatory decision making: moving 
from ‘bench to bedside’
The list of drugs for which genetic information has 
potential utility in guiding individualized therapy is 

growing. Clinical implementation is lagging behind 
our current knowledge in part because of multiple 
challenges faced in clinical practice. Recognizing the 
mandate to optimize drug therapy, the FDA main­
tains a website with current assessments of how cli­
nicians should utilize PGx information (see Table of 
Pharmacogenomic Biomarkers in Drug Labels [45]). 
As more of the complex genetic architecture of PGx 
traits is uncovered, substantial challenges remain for 
translating PGx findings to the clinic. Key questions 
include: Is this an effective biomarker with clinical 
utility? How many individuals will be helped by geno­
typing a specific PGx variant? Will there be an impact 
on survival, recovery and/or prevention of a major 
adverse reaction and how much of an impact? Will a 
genetic variant manifest only in one population or is 
there evidence of consistency across multiple ancestral 
populations? Will the cost of genotyping for a PGx 
variant confer sufficient benefit to offset the cost?

A major concern for moving PGx findings to the 
clinic is the impact of ancestry on genetic variation. 
Highly significant associations between variants and 
PGx traits may differ considerably across ancestries, 
which has a direct impact on dosing decisions. For 
example, a significant association was found between 
the HLA-B*1502 variant and carbamazepine-induced 
(CBZ-induced) Stevens–Johnson syndrome in Han 
Chinese and Thai individuals [123–126]. However, sepa­
rate studies have indicated that HLA-B*1502 is not a 
marker for all forms of CBZ-induced hypersensitivity 
in individuals of European decent [127,128]. In one study, 
the only four individuals out of 12 cases with CBZ-
induced hypersensitivity had the HLA-B*1502 marker; 
these four individuals also had Asian ancestry [128].

Ancestry specific PGx differences in association of 
the arginine (Arg) 16 allele in the beta

2
-anderegenic 

receptor (beta
2
-AR) with asthma severity and broncho­

dilator response [129] have been found. Two admixed 
populations, Puerto Ricans and Mexicans, have dif­
ferent proportions of European, African and Native 
American ancestry. These two populations have the 
highest and lowest asthma prevalence, morbidity and 
mortality respectively. In the study by Choudhury et al. 
(2005), associations between bronchodilator response, 
asthma severity and the beta

2
-AR (Arg) 16 allele were 

found in Puerto Ricans, but not in Mexicans. These 
results are likely accounted for by the presence of more 
than one causative variant in the same gene, or in inter­
action genes, with distinct population distribution.

We have mentioned already CYP2C9 variation and 
warfarin dosing. Polymorphisms in CYP2C9 account 
for 18% of the variance in warfarin dose, and poly­
morphisms in VKORC1 account for 30%, in Euro­
pean Americans; however, these variants account for a 
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smaller portion of variability in patients with Asian or 
African Ancestry [40,130–137]. Additional CYP2C9 vari­
ant alleles with reduced activity (CYP2C9*5, *6, *8 and 
*11) have been found to contribute to dose variability 
among African–Americans [55,138].

The field of PGx already has a record of investiga­
tions in groups beyond European Americans, when 
contrasted with much of the initial work of GWAS that 
was focused on European American ancestry. CPIC 
guidelines usually contain statements about existing 
knowledge of gene/drug pair information across ances­
try. Work is being done to determine repeated drug 
administration rGC values across ancestry [29]. These 
analyses incorporating multiple ancestries should con­
tinue to be an important pursuit for the field of PGx 
moving forward. FDA labeling should also consistently 
reflect what populations PGx discoveries were made 
in, as that may impact the utility of a biomarker for a 
given patient.

Finally, substantial inconsistencies exist in study 
design, dosing regimens, study population and analy­
sis methods for the field of PGx. For example, three 
studies, with differences in ethnic background and 
disease state of patients, study size and methods used 
to measure response to treatment, have reported con­
tradictory results on the association of the FcγRIIIA 
158V/F polymorphism and response to etanercept 
or infliximab in patients with Rheumatoid Arthritis 
[139–141]. Such inconsistencies are common between 
PGx studies, making interpretation of results across 
studies challenging, even for the same PGx trait. 
Furthermore, huge variability exists in the information 
that is reported when a PGx study is published. A stan­
dardized way of reporting PGx results and more con­
sistency in study design could assist in developing clear 
guidelines for what constitutes a validated and action­
able PGx result, and provide the means for comparing 
results across studies. The CPIC-authored studies have 
made recommendations for evaluating PGx results and 
reporting information accessible to clinicians [46].

Conclusion
Current understanding of the genetic architecture of 
PGx traits presents a picture of a substantial impact 
of genetic variation on PK, PD, adverse events and 
other pharmacological outcomes. We have detailed 
here several examples of successes for the field of PGx. 
This information is being moved into the clinic for 
aiding decision making and results of these studies 
guide future drug development. While this knowledge 
is proving useful, we have outlined here key consid­
erations for future PGx research and use of clinical 
biomarkers. Figure  3 provides an overview of impor­
tant aspects that should be integrated in PGx studies 

to identify more robust markers for PGx traits and 
advance a more comprehensive understanding of the 
relationship between genetic architecture and drug 
response.

Improving the way the PGx field has been sharing 
PGx association results, and expanding what is consid­
ered ‘validation’ and ‘replication’ for PGx association 
results, has broad potential for improving the utility of 
PGx findings as robust clinical biomarkers. Standard­
ized reporting of PGx results will assist in compiling 
evidence and subsequent interpretation of multiple 
study results. Furthermore, molecular evaluation and 
validation of the mechanism by which polymorphisms 
have an effect on outcome needs to be an important 
step after association studies have identified variants of 
interest. While seeking replication of association results 
over multiple studies can provide evidence for a bio­
marker, establishing the biological mechanistic role of 
a genetic variant on outcome can identify robust mark­
ers for clinical trial [8,72]. Multiple polymorphisms have 
known effects on protein coding genes, such as the 
well understood ADME genes. However, GWAS have 
identified numerous genetic variants outside of protein 
coding genes. As nearly 80% of the human genome is 
transcribed while only 1.2% encodes proteins, and as 
countless genomic regions carry epigenetic regulatory 
marks, our emerging understanding of the dynamic 
nature of nonprotein-coding regions of the genome 
must be leveraged for studying functionality of SNPs 
identified in association studies.

The field of PGx and GWAS of complex traits have 
focused almost exclusively on SNPs of common fre­
quency. Rare variants, as well as other genetic variation 
such as copy number variation and mitochondrial vari­
ants may also prove important moving forward. Much 
of the original GWAS for complex traits was limited 
to individuals of European descent. The PGx field 
has stronger track record of studies across ancestry, 
accruing information about variation in drug response 
and genetic variation across multiple ancestries. Such 
ancestry information has clinical relevance and is 
being incorporated with FDA drug labeling.

An emphasis on cross-disciplinary work has become 
increasingly critical, with involvement of clinicians, 
genetic epidemiologists, statisticians, bioinformaticists 
and molecular and cellular biologists. The Pharmaco­
genomics Research Network (PGRN), and the related 
Pharmacogenomics Statistical Analysis Resource 
(P-STAR), exemplify cross-disciplinary collaborations 
supporting PGx discovery. Furthermore, novel com­
putational and statistical methods will prove critical, 
given the explosion of data generated in recent years. 
Simulations will be useful for exploring models for 
PGx traits.
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Figure 3. Uncovering the genetic etiology of pharmacogenomic traits: methodologies and data. Along the top of the figure: 
pharmacogenomics studies should incorporate multiple types of analyses, beyond GWAS moving forward. Lower part of the figure: 
pharmacogenomics methods need to incorporate multiple types of genomic data, and consider the importance of environment as 
a modifier. Combining these elements may to yield improved predictions of pharmacogenomics outcomes. Furthermore, detailed 
molecular genetics studies following up on genomic association discovery will be important for identifying robust biomarkers for 
clinical decision-making. 
GWAS: Genome-wide association study. 
DNA/histone lower part of figure adapted with permission from [142].
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Future work utilizing electronic health records will 
provide new dimensions for the successful development 
of PGx phenotypes, cohorts, studies and hypotheses, 
made available on a large scale through consortia such 
as the eMERGE network [143]. For analytical methods 
development, future efforts should include extension 
of MLM/GCTA/polygenic methods for better han­
dling non-normal PGx traits, investigating sensitivity 
of heritability estimates with model specification and 
covariate selection and the development of integrated 

analysis methods for simultaneously incorporating dif­
ferent types of genomic features (genetic and epigenetic) 
and prior knowledge (pathways, gene sets, etc.) in each 
PGx study. Going beyond additive models, future stud­
ies should also focus on dynamic (epistatic) gene–gene 
interactions, and the impact of environmental influence.

Future perspective
PGx research has already yielded numerous examples of 
the pervasive effect of genetic factors on drug response. 
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These advances demonstrate that clinical applications 
of pharmacogenomic biomarker tests have outstanding 
potential to enhance efficacy and reduce adverse effects, 
considered a main cause of morbidity and mortal­
ity – thereby showing promise for advancing the NIH 
mandate for the future of genomics. However, much of 
the genetic influence on treatment outcomes remains 
hidden, leaving uncertain how many genes and genetic 
variants contribute to pharmacological traits, how com­
mon and rare variants affect response and whether 
gene–gene interactions play a role. These relationships 
form the ‘pharmacogenomics architecture’ that still 
needs to be elucidated, presaging a profound evolution 
of the field of PGx, as is occurring in genomics stud­
ies of complex disorders. New approaches and studies 
across multiple human populations will prove critical 

for the characterization of the genetic architecture of 
pharmacogenomic traits required for realizing the full 
potential of PGx in guiding the development of optimal 
individualized therapies. With these advances realized 
over the next 5–10 years, the findings of PGx will dra­
matically increase use of genotypic data by clinicians 
in decisions on individual therapies, with substantially 
improved health outcomes.
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Executive summary

What have we learned?
•	 Heritability of pharmacogenomic traits: challenges & successes

–– Defining the heritability of pharmacogenomic (PGx) traits encounters hurdles distinct from those found in 
the analysis of complex disorders.

–– Heritability estimates in PGx: methods and current estimates.
•	 The PGx landscape: drug efficacy & adverse events

–– PGx in the clinic: warfarin, clopidogrel.
–– Dosing guidelines: US FDA Labels and Clinical Pharmacogenetics Implementation Consortium (CPIC).
–– Larger relative strength of effect size for PGx traits compared with the range of effect sizes observed with 

complex-trait genome-wide association studies.
•	 Functional role of genomic architecture in PGx traits

–– Focus of interpretation of the relationship between genetic variability and outcome for PGx has been 
centered on protein-coding regions.

–– Much more to discover.
    –  Mechanistic etiology of genetic variation on PGx traits is a critical focus for future PGx studies.

Beyond PGx genome-wide association studies: polygenic analyses
•	 Polygenic genetic architecture

–– Contribution of multiple common SNPs to phenotypic variance in aggregate.
•	 Two methods have already been used for a variety of complex outcomes for non-PGx traits:

–– Mixed linear modeling.
–– Polygenic modeling.

•	 Overview of current method use, discovery and limitations.
Future methods
•	 Summary of other methods of utility for future PGx research.
•	 The role of epistasis in PGx traits.
Clinical & regulatory decision-making: moving from ‘bench to bedside’
•	 As more of the complex genetic architecture of PGx traits is uncovered, substantial challenges remain for 

translating PGx findings to the clinic.
•	 Highly significant associations between variants and PGx traits may differ considerably across ancestries, which 

has a direct impact on dosing decisions.
•	 Substantial inconsistencies exist in study design, dosing regimens, study population and analysis methods for 

the field of PGx that should be addressed.
Conclusion
•	 Much has been learned in the PGx field about the genetic architecture of PGx; however, there is more to be 

understood.
•	 A variety of additional methods and approaches should be included in future PGx research.
•	 There are many challenges still faced by the field, but ultimately promise for incorporating understanding of 

individuals genetic architecture for personalized/precision medicine.
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