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FINITE-TIME BLOWUP AND ILL-POSEDNESS IN SOBOLEV SPACES OF THE

INVISCID PRIMITIVE EQUATIONS WITH ROTATION

SLIM IBRAHIM, QUYUAN LIN, AND EDRISS S. TITI

Abstract. Large scale dynamics of the oceans and the atmosphere are governed by the primitive equa-
tions (PEs). It is well-known that the three-dimensional viscous PEs is globally well-posed in Sobolev
spaces. On the other hand, the inviscid PEs without rotation is known to be ill-posed in Sobolev spaces,
and its smooth solutions can form singularity in finite time. In this paper, we extend the above results
in the presence of rotation. First, we construct finite-time blowup solutions to the inviscid PEs with
rotation, and establish that the inviscid PEs with rotation is ill-posed in Sobolev spaces in the sense that
its perturbation around a certain steady state background flow is both linearly and nonlinearly ill-posed
in Sobolev spaces. Its linear instability is of the Kelvin-Helmholtz type similar to the one appears in the
context of vortex sheets problem. This implies that the inviscid PEs is also linearly ill-posed in Gevrey
class of order s > 1, and suggests that a suitable space for the well-posedness is Gevrey class of order
s = 1, which is exactly the space of analytic functions.

MSC Subject Classifications: 35Q35, 35B44, 35Q86, 86A10, 76E07.

Keywords: primitive equations; rotation; blow-up; ill-posedness

1. introduction

We consider the following 3D primitive equations (PEs):

ut + uux + vux + wuz − νh∆u − νzuzz − Ω v + px = 0, (1.1)

vt + uvx + vvy + wvz − νh∆v − νzvzz +Ωu+ py = 0, (1.2)

pz + T = 0, (1.3)

Tt + uTx + vTy + wTz − κh∆T − κz∂zzT = 0, (1.4)

ux + vy + wz = 0 (1.5)

in the horizontal channel
{

(x, y, z) : 0 ≤ z ≤ 1, (x, y) ∈ R
2
}

, which are supplemented with the initial
value (u0, v0, T0), and satisfy the relevant geophysical boundary conditions (cf. [18, 43, 44, 45]). Here the
horizontal velocity (u, v), the vertical velocity w, the temperature T , and the pressure p are the unknown
functions of the variable (t, x, y, z). The parameters νh ≥ 0 and νz ≥ 0 denote to the horizontal and
vertical viscosities, κh ≥ 0 and κz ≥ 0 denote to the horizontal and vertical diffusivities, respectively. The
parameter Ω ∈ R denotes to the Coriolis parameter, which indicates the rate and direction of rotation.
We denote by ∆ = ∂xx + ∂yy the 2D horizontal Laplacian. When νh, νz , κh, κz > 0, system (1.1)–(1.5)
is derived as a formal asymptotic limit of the small aspect ratio (the ratio of the depth or the height to
the horizontal length scale) from the Rayleigh-Bénard (Boussinesq) system. The derivation was rigorously
justified first by Azérad and Guillén [2] in a weak sense, then by Li and Titi [42] in a strong sense with error
estimates in terms of the small aspect ratio. The global existence of strong solutions for the 3D PEs with
full viscosity and full diffusion was first established by Cao and Titi in [18], and later by Kobelkov in [34],
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see also the subsequent articles of Kukavica and Ziane [39, 40] for different boundary conditions, as well as
Hieber and Kashiwabara [31] for some progress towards relaxing the smoothness on the initial data by using
the semigroup method. With only horizontal viscosity, i.e., νh > 0 and νz = 0, the global well-posedness
of 3D PEs was established by Cao, Li and Titi in [14, 15, 16]. On the other hand, with only vertical
viscosity, i.e., νh = 0 and νz > 0, Cao, Lin and Titi established recently [17] the local well-posedness of
the PEs in Sobolev spaces by considering an additional weak dissipation, which is the linear (Rayleigh-like
friction) damping. Following [17], it can be shown that with this linear damping, the inviscid PEs (νh = 0
and νz = 0) is also locally well-posed in Sobolev spaces, with higher Sobolev regularity requirement on
the initial data. This linear damping helps the system overcome the ill-posedness in Sobolev spaces (see
discussion below) established by Renardy in [49] for the case without rotation, and current paper for the
case with rotation. See also [19] for a similar idea on the effect of this linear damping.

When νh = νz = 0, the inviscid PEs without coupling with the temperature is also called the hydrostatic
Euler equations. In the absence of rotation (Ω = 0), the linear ill-posedness of the inviscid PEs, near certain
background shear flows, has been established by Renardy in [49]. Later on, the nonlinear ill-posedness of
the inviscid PEs without rotation was established by Han-Kwan and Nguyen in [30], where they built an
abstract framework to show the inviscid PEs are ill-posed in any Sobolev space. Moreover, it was proven
that smooth solutions to the inviscid PEs, in the absence of rotation, can develop singularities in finite
time. (cf. Cao, Ibrahim, Nakanishi and Titi [13], and Wong [50].) However, the results mentioned above
do not include the case when the rotation rate Ω 6= 0, which is the subject matter of this paper.

The linear ill-posedness results show that the linearized 2D inviscid PEs (which implies the same results
for 3D case, see details below), around a special steady state background flow, has unstable solutions of the
form u(t, x, z) = e2πikxeσktuk(z), where ℜσk = λk for some λ ∈ R. Such Kelvin-Helmholtz type instability
forbids the construction of solutions in Sobolev spaces. Kelvin-Helmholtz type instability also appears in
the context of vortex sheets, see, e.g., [12] (see also the survey paper [9] and reference therein). To obtain
positive results, one must start from initial data u0 that are strongly localized in Fourier, typically for

which |û0(k, z)| . e−δ|k|
1/s

with δ > 0 and s ≥ 1. Such localization condition corresponds to Gevrey class
of order s in the x variable. Kelvin-Helmholtz type instability also forbids the construction of solutions in
Gevery class of order s > 1. This suggests that the suitable space for the well-posedness of the inviscid
PEs (with or without rotation) is Gevrey class of order s = 1, which is the space of analytic functions.
This is consistent with positive results in [32, 38]. Notably, for the Prandtl equations, which has some
similarity in its structure with the PEs, is shown in [27] that its linearization around a special background

flow has unstable solutions of similar form, but with ℜσk ∼ λ
√
k for k ≫ 1 arbitrarily large and some

positive λ ∈ R+. This implies that the optimal order s for Prandtl equation is s = 2, which is consistent
with the positive results in [23, 41]. This shows that the linear instability of the inviscid PEs is “worse”
than that of the Prandtl equations.

Although it is ill-posed in Sobolev spaces, the well-posedness of the inviscid PEs can be obtained by
assuming either real analyticityor some special structures (local Rayleigh condition) on the initial data
[10, 11, 28, 37, 38, 47]. In particular, the authors in [38] establish the local well-posedness in time of
the 3D inviscid PEs in the space of analytic functions, but the time of existence they obtained shrinks
to zero as the rate of rotation |Ω| increases toward infinity. This is contrary to the cases of the 3D fast
rotating Euler, NavierStokes and Boussinesq equations, where the limit of fast rotation leads to strong
“dispersion” or averaging mechanism that weakens the nonlinear effects allowing to establishing the global
regularity result in the case of the Navier-Stokes equations, and prolonging the life-span of the solution in
the case of Euler equations, by Babin, Mahalov and Nicolaenko [4, 5, 6, 7] (see also [20, 24, 26, 33, 35] and
references therein). In addition, we refer to [3, 29, 36, 46] for simple examples demonstrating the above
mechanism. In [32], we improve the results in [38] by establishing the local in time well-posedness in the
space of analytic functions for a time interval that is independent of the rate of rotation. Furthermore, we
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also establish a lower bound on the life-span of the solution that grows to infinity with the rotation rate
for “well-prepared” initial data. In a sense the results reported in this paper furnish a solid justification
and motivation for our study in [32]. Specifically, the purpose of this paper is to establish the finite-time
blowup and the ill-posedness in Sobolev spaces of the 3D inviscid PEs with rotation, and to investigate
the effect of rotation on the blowup time. Due to the linear ill-posedness in Sobolev spaces and Gevrey
class of order s > 1, it is natural to consider the question of well-posedness of the inviscid PEs (with or
without rotation) in Gevrey class of order s = 1, which is the space of analytic functions (cf. [32] and
[38]). By virtue of the finite-time blowup results, one can conclude that there is no hope to show the global
well-posedness of the 3D inviscid PEs, even with fast rotation. The optimal result one can expect is that
fast rotation prolongs the life-span of the 3D inviscid PEs (cf. [32]).

For this endeavor, we first simplify system (1.1)–(1.5). If initially T0 = 0, then it is easy to see that
any smooth solution (u, v, w, T ) to system (1.1)–(1.5), with initial data (u0, v0, T0) and suitable boundary
conditions, must satisfy T (t, x, y, z) ≡ 0. Moreover, if initially u0 and v0 are independent of the y variable,
then any smooth solution (u, v, w, T ) remains independent of the y variable. Notably, this is not true, e.g.,
in the case of weak wild solutions of the Euler equations (cf. [8]). Therefore, under these assumptions on
the initial data, namely,

T0(x, y, z) = T0(x, z) = 0, u0(x, y, z) = u0(x, z), v0(x, y, z) = v0(x, z), (1.6)

we obtain the reduced (adiabatic) inviscid PEs system:

ut + u ux + wuz − Ω v + px = 0, (1.7)

vt + u vx + wvz +Ωu = 0, (1.8)

pz = 0, (1.9)

ux + wz = 0 (1.10)

in the horizontal channel
{

(x, z) : 0 ≤ z ≤ 1, x ∈ R
}

. We supplement the above system with the initial
condition (u0, v0), subject to no-normal flow boundary condition on the top and bottom, and periodic in
the x variable:

w(t, x, 0) = w(t, x, 1) = 0,

u, v, w, p are periodic in x with period 1.
(1.11)

Observe that system (1.7)–(1.10) is the reduced 3D hydrostatic Euler equations with rotation. The finite-
time blowup of solutions or the ill-posedness of system (1.7)–(1.10) imply the blowup of solutions or the
ill-posedness of solutions of the original 3D system (1.1)–(1.5) in the inviscid case (νh = νz = 0), with
initial data satisfying (1.6). Therefore, we focus in this paper on system (1.7)–(1.10).

The paper is organized as follows. In section 2, we adopt ideas from [13, 50] and consider the initial data
depending on the rate of rotation to establish the finite-time blowup of solutions to system (1.7)–(1.10).
In section 3, we show the ill-posedness of the perturbation about a steady state background flow which
depends on Ω and has infinite energy. The perturbations about this background steady state are assumed
to satisfy the period boundary conditions (1.11). In particular, following [30, 49], we establish that the
perturbed system about this steady state background flow is both linearly and nonlinearly ill-posed in
Sobolev spaces, and is linearly ill-posed in Gevrey class of order s > 1. In section 4, we make some
concluding remarks, and study the effect of rotation on the blowup time based on the results established
in section 2. Finally, We propose some interesting problems for future study.

2. blowup of solutions

In this section, we adopt the ideas in [13, 50]. We assume that u and v are odd in the x variable,
and that w and p are even in the x variable. Observe that such symmetric conditions are invariant under
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smooth dynamics of system (1.7)–(1.10). We first introduce the following proposition from [13] and provide
further analysis strengthening its conclusion. Observe that in [22] (see also [48, section 4], and references
therein), a similar problem, arising in a different fluid dynamic context, has been investigated.

Proposition 2.1. (see [13]) Consider the following nonlinear nonlocal degenerate elliptic boundary value
problem:

φ′ − (φ′)2 + φφ
′′

+ 2

∫ 1

0

(φ′(z))2dz = 0, φ(0) = φ(1) = 0. (2.1)

Then for each α ∈ (0, 1), the boundary value problem (2.1) has a nontrivial solution φα ∈ C2,α([0, 1]).

Recall that, for an integer k, and 0 < α < 1 the space Ck,α is endowed with the norm

‖f‖Ck,α = ‖f‖Ck + sup
x 6=y

|f(x)− f(y)|
|x− y|α .

Proof. For each m > 0, the existence of nontrivial solution to the boundary value problem (2.1) satisfying
the additional constraint

2

∫ 1

0

(φ′(z))2dz = m2 (2.2)

has been established in [13]. Let α ∈ (0, 1) and define

m :=

√

( 1 + α

2(1− α)

)2

− 1

4
> 0. (2.3)

That is

α =

√

m2 + 1/4− 1
2

√

m2 + 1/4 + 1
2

. (2.4)

Denoting by ψ := φ′, it was shown in [13] that the nontrivial solution φ of problem (2.1) satisfying (2.2)
can be written as

φ = C(m)(ψ+ − ψ)
ψ+

ψ+−ψ
− (ψ − ψ−)

−ψ
−

ψ+−ψ
− , (2.5)

where

ψ±(m) := ±
√

m2 + 1/4 + 1/2, (2.6)

and

C(m) =
1

B( ψ+

ψ+−ψ−

, −ψ−

ψ+−ψ−

)
. (2.7)

Here B(a, b) =
∫ 1

0 t
a−1(1− t)b−1dt is the Beta function. Moreover, it was also shown in [13] that φ, ψ and

z satisfy

(φ, ψ)(z = 0) = (0, ψ+), (φ, ψ)(z = 1) = (0, ψ−), ψ− ≤ ψ ≤ ψ+, (2.8)

and
dψ

dz
=

−1

C(m)
(ψ+ − ψ)

−ψ
−

ψ+−ψ
− (ψ − ψ−)

ψ+

ψ+−ψ
− . (2.9)

Therefore, ψ is a continuous and decreasing function of z, and smooth in (0, 1). From (2.8) and (2.9), one
has

z(ψ) = −C(m)

∫ ψ

ψ+

(ψ+ − ψ̃)
ψ
−

ψ+−ψ
− (ψ̃ − ψ−)

−ψ+

ψ+−ψ
− dψ̃, (2.10)
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and

z(ψ)− 1 = −C(m)

∫ ψ

ψ−

(ψ+ − ψ̃)
ψ
−

ψ+−ψ
− (ψ̃ − ψ−)

−ψ+

ψ+−ψ
− dψ̃. (2.11)

Next, we establish that φ(z) ∈ C2,α([0, 1]). From (2.5) and (2.9), we know when ψ is away from ψ+ and
ψ−, i.e., z is away from 0 and 1, φ(z) is smooth. Therefore, we only need to consider when ψ is close to
ψ+ and ψ−. From (2.10), one has

z(ψ) = C(m)B(
ψ+ − ψ

ψ+ − ψ−
;

ψ+

ψ+ − ψ−
,

−ψ−

ψ+ − ψ−
), (2.12)

where B(x; a, b) =
∫ x

0 t
a−1(1− t)b−1dt is the incomplete Beta function (0 ≤ x ≤ 1). Moreover, from (2.7),

we know that

z(ψ) =
B( ψ+−ψ

ψ+−ψ−

; ψ+

ψ+−ψ−

, −ψ−

ψ+−ψ−

)

B( ψ+

ψ+−ψ−

, −ψ−

ψ+−ψ−

)
= I(

ψ+ − ψ

ψ+ − ψ−
;

ψ+

ψ+ − ψ−
,

−ψ−

ψ+ − ψ−
), (2.13)

where I(x; a, b) = B(x;a,b)
B(a,b) is the regularized Beta function. When x ∈ (0, 1), by series expansion (cf. [1,

p. 944]), one has

I(x; a, b) =
xa(1 − x)b

aB(a, b)

{

1 +

∞
∑

n=0

B(a+ 1, n+ 1)

B(a+ b, n+ 1)
xn+1

}

. (2.14)

Therefore, for ψ− < ψ < ψ+, we can write

z(ψ) =
C(m)

ψ+
(ψ+ − ψ)

ψ+

ψ+−ψ
− (ψ − ψ−)

−ψ
−

ψ+−ψ
−

{

1 +

∞
∑

n=0

B( ψ+

ψ+−ψ−

+ 1, n+ 1)

B(1, n+ 1)

( ψ+ − ψ

ψ+ − ψ−

)n+1}

. (2.15)

Letting

h1(ψ) :=
∞
∑

n=0

B( ψ+

ψ+−ψ−

+ 1, n+ 1)

B(1, n+ 1)

( ψ+ − ψ

ψ+ − ψ−

)n+1

, (2.16)

then h1(ψ) ≥ 0 and h1(ψ) is smooth on ψ ∈ (ψ−, ψ+]. Combine (2.9) and (2.15), we find that for z ∈ (0, 1),

dψ

dz
= −C(m)

ψ
−

−ψ+

ψ+

( ψ+

1 + h1(ψ(z))

)

−ψ
−

ψ+

(

ψ(z)− ψ−

)

ψ++ψ
−

ψ+
z

−ψ
−

ψ+ . (2.17)

From this expression and since h1(ψ(z))) is smooth on z ∈ [0, 1), we conclude that dψ
dz is continuous on

z ∈ [0, 1), and smooth on z ∈ (0, 1). Observe that α = −ψ−

ψ+
, thus we have

lim
z→0+

|dψdz (z)−
dψ
dz (0)|

|z − 0|α = lim
z→0+

C(m)
ψ
−

−ψ+

ψ+

( ψ+

1 + h1(ψ(z))

)

−ψ
−

ψ+

(

ψ(z)− ψ−

)

ψ++ψ
−

ψ+

= lim
ψ→ψ+

C(m)
ψ
−

−ψ+

ψ+

( ψ+

1 + h1(ψ)

)

−ψ
−

ψ+
(ψ − ψ−)

ψ++ψ
−

ψ+

= C(m)
ψ
−

−ψ+

ψ+ ψ

−ψ
−

ψ+

+ (ψ+ − ψ−)
ψ++ψ

−

ψ+ <∞.

(2.18)
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Therefore, ψ(z) ∈ C1,α([0, 1)), and thus φ(z) ∈ C2,α([0, 1)). Similarly, from (2.11), for ψ− < ψ < ψ+, we
can write

1− z(ψ) = I(
ψ − ψ−

ψ+ − ψ−
;

−ψ−

ψ+ − ψ−
,

ψ+

ψ+ − ψ−
)

=
−C(m)

ψ−
(ψ − ψ−)

−ψ
−

ψ+−ψ
− (ψ+ − ψ)

ψ+

ψ+−ψ
−

{

1 +

∞
∑

n=0

B( −ψ−

ψ+−ψ−

+ 1, n+ 1)

B(1, n+ 1)
(
ψ − ψ−

ψ+ − ψ−
)n+1

}

.

(2.19)

Letting

h2(ψ) :=

∞
∑

n=0

B( −ψ−

ψ+−ψ−

+ 1, n+ 1)

B(1, n+ 1)
(
ψ − ψ−

ψ+ − ψ−
)n+1, (2.20)

then h2(ψ) ≥ 0 and h2(ψ) is smooth on ψ ∈ [ψ−, ψ+). Combine (2.9) and (2.19), we find that

dψ

dz
= −C(m)

ψ+−ψ
−

ψ
−

( −ψ−

1 + h2(ψ(z))

)

−ψ+

ψ
−

(

ψ+ − ψ(z)
)

ψ++ψ
−

ψ
−

(1− z)
−ψ+

ψ
− . (2.21)

From this expression and since h2(ψ(z))) is smooth on z ∈ (0, 1], observe that −ψ+

ψ−

> 1 and since ψ(z) ∈
C1,α([0, 1)), we know that indeed ψ(z) ∈ C1,α([0, 1]). Therefore, φ(z) ∈ C2,α([0, 1]). �

Under the assumption about symmetry on the initial data in system (1.7)–(1.10), we establish the
following blowup result.

Theorem 2.2. Let φ(z) be a nontrivial solution of the boundary value problem (2.1), and let f(x) be
a smooth odd periodic function with period 1, satisfying f ′(0) = 1. Suppose that (u, v, w, p) is a smooth
solution to system (1.7)–(1.10), subject to the boundary condition (1.11), with initial condition

u0(x, z) = −f(x)φ′(z), v0(x, z) = −Ωf(x). (2.22)

Then the solution blows up at sometime T ∈ (0, 1].

Before proving this theorem, let us simplify system (1.7)–(1.10) further. From (1.10) and (1.11), we
know

∫ 1

0

ux(t, x, z)dz = 0. (2.23)

Differentiating (1.7) and (1.8) with respect to x, we have

uxt + u uxx + u2x + wxuz + wuxz − Ω vx + pxx = 0, (2.24)

vxt + ux vx + uvxx + wxvz + wvxz +Ωux = 0. (2.25)

Thanks to (2.23), integrating (2.24) with respect to z over the interval [0, 1], an integration by parts
together with (1.9), (1.10) and (1.11), implies:

pxx =

∫ 1

0

[

− 2(uux)x +Ωvx

]

dz. (2.26)

Let
W (t, z) = w(t, 0, z), V (t, z) = −vx(t, 0, z).

Plugging (2.26) back to (2.24), and by virtue of the oddness of u and v (thanks to (1.10)), system (2.24)–
(2.25) restricts on the line x = 0 becomes

Wtz − (Wz)
2 +WWzz + 2

∫ 1

0

W 2
z (t, z)dz − ΩV +Ω

∫ 1

0

V (t, z)dz = 0, (2.27)

Vt −WzV +WVz +ΩWz = 0. (2.28)
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By virtue of (1.11) and (2.22), the corresponding initial and boundary conditions are

W (0, z) = φ(z), V (0, z) = Ω, (2.29)

W (t, 0) =W (t, 1) = 0. (2.30)

We have the following proposition concerning the uniqueness of solutions to system (2.27)–(2.30).

Proposition 2.3. Let (W1, V1) and (W2, V2) be two solutions of the same initial boundary value problem
(2.27)–(2.30) satisfying the regularity W1,W2 ∈ L2(0, T ;H2) and V1, V2 ∈ L2(0, T ;H1), with the same
initial data. Then W1 =W2 and V1 = V2 for any t ∈ [0, T ).

Proof. Denote byW =W1−W2, W̄ = 1
2 (W1+W2), V = V1−V2, and V̄ = 1

2 (V1+V2). Then (2.27)–(2.30)
implies that

Wtz − 2W̄zWz +WW̄zz + W̄Wzz + 4

∫ 1

0

W̄zWzdz − ΩV +Ω

∫ 1

0

V dz = 0, (2.31)

Vt −Wz V̄ − W̄zV +WV̄z + W̄Vz +ΩWz = 0, (2.32)

with boundary condition
W (t, 0) =W (t, 1) = 0. (2.33)

Multiplying (2.31) by Wz, and (2.32) by V , integrating with respect to z over the interval [0, 1], then an
integration by parts together with the boundary condition (2.33) gives

1

2

d

dt

(

‖Wz‖2L2(0,1) + ‖V ‖2L2(0,1)

)

=

∫ 1

0

(5

2
W̄zW

2
z − W̄zzWWz +Wz V̄ V +

3

2
W̄zV

2 −WV̄zV
)

dz. (2.34)

Using Hölder inequality, Young’s inequality, Sobolev inequality, and thanks to (2.33), we can apply Poincaré
inequality to obtain

d

dt

(

‖Wz‖2L2(0,1) + ‖V ‖2L2(0,1)

)

≤ C
(

‖W̄‖H2(0,1) + ‖V̄ ‖H1(0,1)

)(

‖Wz‖2L2(0,1) + ‖V ‖2L2(0,1)

)

. (2.35)

Thanks to Grönwall inequality, and since Wz(0, z) = V (0, z) = 0, for any t ∈ [0, T ), we have

‖Wz(t)‖2L2(0,1) + ‖V (t)‖2L2(0,1) ≤
(

‖Wz(0)‖2L2(0,1) + ‖V (0)‖2L2(0,1)

)

× exp
(

C

∫ t

0

‖W̄ (s)‖H2(0,1) + ‖V̄ (s)‖H1(0,1)ds
)

= 0. (2.36)

By Poincaré inequality, we conclude that ‖W (t)‖L2(0,1) = 0. Thus, W1 = W2 and V1 = V2 for any
t ∈ [0, T ). �

Now let us return to the proof of Theorem 2.2.

Proof. (Proof of Theorem 2.2) From Proposition 2.1, we conclude that φ(z) ∈ H2(0, 1). Thanks to Propo-
sition 2.3, one can observe that

W (t, z) =
φ(z)

1− t
, V (t, z) ≡ Ω (2.37)

is the unique solution of (2.27)–(2.28) subject to initial and boundary conditions (2.29)–(2.30). Then we see
W (t, z) blows up at t = 1, and therefore, the solution (u, v, w, p) must blow up at sometime T ∈ (0, 1]. �

The above approach follows from [13]. In addition, we provide another approach that adopts ideas from
[50]. This approach requires some additional conditions on the initial data, but avoids technical issue on
the function φ as in Proposition 2.1. Moreover, this approach allows the initial data to be analytic, which
guarantees the existence of solutions to the inviscid PEs in the space of analytic functions thanks to the
results in [32, 38].
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Theorem 2.4. Suppose that (u, v, w, p) is a smooth solution to system (1.7)–(1.10), subject to the boundary
condition (1.11), with initial condition (u0, v0) satisfying the following conditions:

u0(x, z) and v0(x, z) are smooth odd periodic functions in x with period 1, (2.38)

u0(x, z) satisfies the compatibility condition

∫ 1

0

u0(x, z)dz = 0, (2.39)

∂xv0(0, z) = −Ω for all z ∈ [0, 1], (2.40)

∂xzu0(0, 0) = 0, ∂xzzu0(0, z) < 0 for all z ∈ [0, 1]. (2.41)

Then the solution blows up at sometime T ∈ (0, −3
∂xu0(0,1)

].

Before proving this theorem, we first state the following lemma, which is Lemma 2.4 in [50]. Since our
settings are slightly different from [50], we provide a detailed proof in here.

Lemma 2.5. (see [50] Lemma 2.4) The smooth solution (u, v, w, p) stated in Theorem 2.4 satisfies

∂xzu(t, 0, 0) = 0, (2.42)

and, as long as the solution remains smooth at time t, we have

∂xzzu(t, 0, z) < 0, for all z ∈ [0, 1]. (2.43)

In other words, condition (2.41) is invariant in time.

Proof. For arbitrary y0 ∈ R and z0 ∈ [0, 1], consider the following system of characteristic equations










dX
dt = u(t,X, Z),
dY
dt = v(t,X, Z),
dZ
dt = w(t,X, Z)

(2.44)

with the initial data










X(0) = 0,

Y (0) = y0,

Z(0) = z0.

(2.45)

By virtue of oddness of u and v in the x variable, the solution (X,Y, Z) must satisfies

X(t) ≡ 0, Y (t) ≡ y0. (2.46)

It means that particles starting from the line segment

L :=
{

(x, y, z) : x = 0, y = y0, z ∈ [0, 1]
}

(2.47)

can only move along this line segment. Moreover, when z0 = 0 or z0 = 1, thanks to the boundary
condition (1.11), the solution must satisfy additionally Z(t) ≡ 0 or Z(t) ≡ 1, respectively. This means
that the particles stationed at (0, y0, 0) and (0, y0, 1) do not move. Now we follow the same procedures as
in the proof of Theorem 2.2, and denote by

W (t, z) = w(t, 0, z), V (t, z) = −vx(t, 0, z). (2.48)

We obtain again the system

Wtz − (Wz)
2 +WWzz + 2

∫ 1

0

W 2
z (t, z)dz − ΩV +Ω

∫ 1

0

V (t, z)dz = 0, (2.49)

Vt −WzV +WVz +ΩWz = 0. (2.50)
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By virtue of (1.10), (1.11) and (2.40), the corresponding initial and boundary conditions are

W (0, z) = −
∫ z

0

∂xu0(0, s)ds, V (0, z) = Ω, (2.51)

W (t, 0) =W (t, 1) = 0. (2.52)

From (2.51), thanks to Proposition 2.3, we observe that V ≡ Ω is the unique solution to equation (2.50).
Plugging this back into equation (2.49), we obtain

Wtz − (Wz)
2 +WWzz + 2

∫ 1

0

W 2
z (t, z)dz = 0. (2.53)

By taking one derivative with respect to z of (2.53), we have

Wtzz −WzWzz +WWzzz = 0. (2.54)

From (2.41), (2.51) and (2.52), we know that Wzz(0, 0) = 0 and W (t, 0) = 0. These together with (1.10)
and (2.54) imply that

∂xzu(t, 0, 0) =Wzz(t, 0) = 0. (2.55)

By taking two derivatives with respect to z of (2.53), we have

Wtzzz −W 2
zz +WWzzzz = 0. (2.56)

Since the particles on the line segment L only move along this line, therefore, (2.56) implies

d

dt
Wzzz(t, Z(t)) =

d

dt
wzzz(t, 0, Z(t)) =Wtzzz(t, Z(t)) +WWzzzz(t, Z(t)) =W 2

zz(t, Z(t)) ≥ 0. (2.57)

Let T > 0 such that the solution (u, v, w, p) of system (1.7)–(1.10) remains smooth on [0, T ]. Then
(2.57) implies that as long as Wzzz(0, Z(0)) > 0, we have Wzzz(T , Z(T )) > 0. In order to show that
Wzzz(T , z∗) > 0 for each z∗ ∈ [0, 1], we need to find z0 ∈ [0, 1] such that Z(0) = z0 and Z(T ) = z∗. For
this purpose, we define

τ = T − t, Z̃(τ) = Z(t). (2.58)

Then, we have the following ordinary differential equation

dZ̃(τ)

dτ
=
dZ(t)

dt

dt

dτ
= −dZ(t)

dt
= −W (t, Z(t)) = −W (T − τ, Z̃(τ)), (2.59)

with initial condition
Z̃(0) = Z(T ) = z∗. (2.60)

Since W is smooth on t ∈ [0, T ], we have a unique solution Z̃(τ) on τ ∈ [0, T ]. Define z0 := Z̃(T ),

then we see from (2.58) that Z(0) = Z̃(T ) = z0 and Z(T ) = Z̃(0) = z∗. From (1.10) we know that
∂xxzu(t, 0, z) = −Wzzz(t, z), therefore,

∂xzzu(t, 0, z) < 0, for all z ∈ [0, 1]. (2.61)

�

We also need the following lemma. For details, see Lemma 2.5 in [50].

Lemma 2.6. (see [50] Lemma 2.5) Let f : [0, 1] → R be a C2 function with the following properties:

(i) f ′(0) = 0 and f ′′(z) > 0 for any z ∈ [0, 1],

(ii)
∫ 1

0
f(z)dz = 0.

Then f(1) > 0 and
∫ 1

0

f2(z)dz ≤ 1

3
f(1)2. (2.62)
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Now let us return to the proof of Theorem 2.4.

Proof. (Proof of Theorem 2.4) From the proof in Lemma 2.5, we know under the assumptions in Theorem
2.4, we have

Wtz − (Wz)
2 +WWzz + 2

∫ 1

0

W 2
z (t, z)dz = 0. (2.63)

From Lemma 2.5, we know Wz(t, ·) = −∂xu(t, 0, ·) satisfies both conditions in the Lemma 2.6. Therefore,

we have Wz(t, 1) > 0 and
∫ 1

0 Wz(t, z)
2dz ≤ 1

3Wz(t, 1)
2. Using this inequality in (2.63), and restrict at the

point z = 1, thanks to the boundary condition (2.52), we have

Wzt(t, 1) =Wz(t, 1)
2 − 2

∫ 1

0

Wz(t, z)
2dz ≥ 1

3
Wz(t, 1)

2. (2.64)

Since Wz(0, 1) > 0, it follows that

Wz(t, 1) ≥
3Wz(0, 1)

3−Wz(0, 1)t
. (2.65)

Then we see Wz(t, 1) blows up before or at the time 3
Wz(0,1)

= −3
∂xu0(0,1)

. Therefore, the solution (u, v, w, p)

must blow up at sometime T ∈ (0, −3
∂xu0(0,1)

]. �

Remark 1. The requirements (2.38)–(2.41) allow the initial condition to be real analytic. As an example,
consider u0 and v0 to be:

u0(x, z) = λ(−z2 + 1

3
) sinx, v0(x, z) = −Ω sinx, (2.66)

with λ > 0. For analytic initial data, system (1.7)–(1.10) is local well-posed (cf. [32, 38]). Therefore, for
arbitrary Ω ∈ R, we have initial data such that the solution of 3D inviscid PEs exists, and also blows up in

finite time. For initial data (u0, v0), notice that
∫ 1

0 u0(x, z)dz = 0 and v0 is independent of the z variable.
This implies that the baroclinic mode of the initial data is (u0, 0), and the barotropic mode of the initial
data is (0, v0). We know from above that the guaranteed blowup time is

−3

∂xu0(0, 1)
=

9

2λ
. (2.67)

3. ill-posedness

In this section, we first review the results in [30, 49] about the linear and nonliear ill-posedness of the 2D
hydrostatic Euler equations in the absence of rotation. Consider Ω = 0 and v0 = 0 in system (1.7)–(1.10),
by the uniqueness of smooth solution one concludes that v ≡ 0. Therefore, in this case, system (1.7)–(1.10)
is reduced to

ut + uux + wuz + px = 0, (3.1)

pz = 0, (3.2)

ux + wz = 0, (3.3)

which is the 2D hydrostatic Euler equations without rotation. We consider the problem in the horizontal
channel

{

(x, z) : 0 ≤ z ≤ 1, x ∈ T
}

, with initial condition u0, subject to no-normal flow boundary condition
on the top and bottom, and periodic in the x variable:

w(t, x, 0) = w(t, x, 1) = 0,

u, w, p are periodic in x with period 1.
(3.4)
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Observe that

(U,W )(t) = (U(z), 0), P = 0 (3.5)

is a steady state solution of system (3.1)–(3.3) with boundary condition (3.4). Here U is any shear flow
depending only on the z variable. Linearizing (3.1)–(3.3) around (3.5), we have

ũt + U ũx + w̃U ′ + p̃x = 0, (3.6)

p̃z = 0, (3.7)

ũx + w̃z = 0. (3.8)

Thanks to (3.8), we introduce the stream function ψ such that

(ũ, w̃) = (ψz,−ψx). (3.9)

Differentiating (3.6) with respect to z, and thanks to (3.7) and (3.9), we have

∂tψzz + U(z)ψxzz − ψxU
′′(z) = 0. (3.10)

Observe that he no-normal flow boundary condition implies the associated boundary conditions

ψ(t, x, 0) = ψ(t, x, 1) = 0. (3.11)

The ill-posedness of equation (3.10) for certain background shear flow U(z) was established in [49]. We
summarize this result in the following theorem.

Theorem 3.1. (see [49]) Equation (3.10) with the boundary conditions (3.11) has solutions of the form

ψ(x, z, t) = χ(z) exp(2πinx− inct)), (3.12)

where c solves the following equation
∫ 1

0

(

U(z)− c
)−2

dz = 0, (3.13)

and χ is given by

χ(z) = K(U(z)− c)

∫ z

0

(U(z)− c)−2dz (3.14)

for some constant K. Moreover, there is a smooth shear flow profile U(z) such that there exist purely
imaginary root c = iβ of (3.13), with 0 6= β ∈ R. This implies Hadamard instability, since the growth rate
is nβ with β is independent of n.

Remark 2. From Theorem 3.1, we see equation (3.10) with the boundary conditions (3.11) has solutions
of the form ψ(x, z, t) = e2πinxenβtχ(z) with 0 6= β ∈ R. Such Kelvin-Helmholtz type instability, which
also appears in the context of vortex sheets, implies the linear ill-posedness of the inviscid PEs in Sobolev
spaces and in Gevrey class of order s > 1. This suggests that the suitable space for the well-posedness of
the inviscid PEs is Gevrey class of order s = 1, which is exactly the space of analytic functions. This is
consistent with results in [32, 38].

In [30], the authors consider the nonlinear perturbation of system (3.1)–(3.3) around (3.5)

ũt + ũũx + U ũx + w̃ũz + w̃U ′ + p̃x = 0, (3.15)

p̃z = 0, (3.16)

ũx + w̃z = 0. (3.17)

Defining the vorticity ω̃ := ũz, and differentiating (3.15) with respect to z, thanks to (3.16) and (3.17),
one obtains

ω̃t + ũω̃x + Uω̃x + w̃ω̃z + w̃U ′′ = 0, (3.18)
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in which ũ := ψz and w̃ := −ψx, where ψ is the stream function solves

ψzz = ω̃, ψ|z=0,1 = 0. (3.19)

The following theorem from [30] establishes the nonlinear ill-posedness of (3.18)–(3.19) in any Sobolev
space.

Theorem 3.2. (see [30]) There exists a stationary background shear flow U(z) such that the following
holds. For all s ∈ N, α ∈ (0, 1], and k ∈ N, there are families of solutions (ω̃ǫ)ǫ>0 of (3.18)–(3.19), and
corresponding times tǫ = O(ǫ| log ǫ|), and (x0, z0) ∈ T× (0, 1) such that

lim
ǫ→0

‖ω̃ǫ‖L2([0,tǫ]×Ωǫ)

‖ω̃ǫ|t=0‖αHs(T×(0,1))

= +∞, (3.20)

where Ωǫ = B(x0, ǫ
k)×B(z0, ǫ

k).

Remark 3. The shear flow U(z) indicated in Theorem 3.2 is the same as the one indicated in Theorem 3.1,

and it can be chosen to be analytic. For instance, U(z) = tanh ( z−1/2
d ) for small d as indicated in [21].

Now, we extend Theorem 3.1 and Theorem 3.2 to the case when Ω 6= 0 for system (1.7)–(1.10). We
consider system (1.7)–(1.10) in the horizontal channel

{

(x, z) : 0 ≤ z ≤ 1, x ∈ R
}

. Observe that in this
situation, we can consider the steady state background flow

(U, V,W, P ) = (U(z),−Ωx, 0,−1

2
Ω2x2) (3.21)

for system (1.7)–(1.10). Here the x-direction component U is the shear flow indicated in Theorem 3.1 and
Theorem 3.2, the y-direction component V is a Couette shear flow, depending on Ω, in the x variable.
Observe that this background flow has infinite energy. However, we will consider next the perturbation
around this steady state background flow for system (1.7)–(1.10) and obtain

ũt + ũũx + Uũx + w̃ũz + w̃U ′ + p̃x − Ωṽ = 0, (3.22)

ṽt + ũṽx + Uṽx + w̃ṽz = 0, (3.23)

p̃z = 0, (3.24)

ũx + w̃z = 0, (3.25)

with periodic boundary conditions

w̃(t, x, 0) = w̃(t, x, 1) = 0,

ũ, ṽ, w̃, p̃ are periodic in x with period 1.
(3.26)

In order to show the ill-posedness of system (3.22)–(3.26) in Sobolev spaces, we assume by contradiction
that it is well-posed. Then by uniqueness we see that if ṽ0 = 0, then ṽ ≡ 0. Therefore, system (3.22)–(3.25)
reduces to system (3.15)–(3.17). If we only consider linear terms, system (3.22)–(3.25) reduces to system
(3.6)–(3.8). It follows directly from Theorem 3.1 and Theorem 3.2 that the perturbed system (3.22)–(3.26)
is both linearly and nonlinearly ill-posed in any Sobolev space, and is linearly ill-posed in Gevrey class of
order s > 1. To be more specific, we have:

Theorem 3.3. The inviscid PEs (1.7)–(1.10) with boundary condition (1.11) is both linearly and nonlin-
early ill-posed in Sobolev spaces, and is linearly ill-posed in Gevrey class of order s > 1, in the sense that
the perturbed system (3.22)–(3.26) around the certain steady state background flow (3.21) is both linear
and nonlinearly ill-posed in Sobolev spaces, and is linearly ill-posed in Gevrey class of order s > 1.

Remark 4. Although the perturbed system (3.22)–(3.25) is linearly ill-posed in Sobolev spaces and Gevrey
class of order s > 1, it can be shown that it is locally well-posed in the space of analytic functions since
U(z) is analytic, following [32, 38].
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4. Conclusion

From the results in section 2 and 3, we see that the 3D inviscid PEs, with arbitrary Ω ∈ R and with
initial data satisfying (1.6), can form singularities in finite time, and is both linearly and nonlinearly ill-
posed in Sobolev spaces and linearly ill-posed in Gevrey class of order s > 1. From the Kelvin-Helmholtz
type of instability of the inviscid PEs, it is natural to consider the question of well-posedness of the inviscid
PEs (with or without rotation) in Gevrey class of order s = 1, i.e., the space of analytic functions (cf.
[32] and [38]). Moreover, there is no hope to show the global well-posedness of the 3D inviscid PEs, even
with fast rotation. The optimal result one can expect is that fast rotation prolongs the life-span of the 3D
inviscid PEs (cf. [32]).

Both approaches in section 2 restrict the system to the line x = 0, and use the oddness of the solution to
simplify the system. This has the same spirit in [25], where the author established the blowup of solutions
to Prandtl equation.

By virtue of Remark 1, we know that the guaranteed blowup time of the solution is T = 9
2λ . For

initial data (u0, v0) defined in (2.66), (u0, 0) and (0, v0) correspond to the baroclinic and barotropic mode,
respectively. When |Ω| ≫ 1, we have:

• when λ = |Ω|, the baroclinic mode satisfies (u0, 0) ∼ |Ω|, and the whole initial data satisfies
(u0, v0) ∼ |Ω|. The guaranteed blowup time in this case satisfies T ∼ 1

|Ω| ;

• when λ = 1, the baroclinic mode satisfies (u0, 0) ∼ 1, while the whole initial data satisfies
(u0, v0) ∼ |Ω|. The guaranteed blowup time in this case satisfies T ∼ 1;

• when λ = 1
|Ω| , this implies a smallness condition on the baroclinic (u0, 0) ∼ 1

|Ω| , while the whole

initial data satisfies (u0, v0) ∼ |Ω|. The guaranteed blowup time in this case satisfies T ∼ |Ω|.

Based on the observations above, one can expect that the lower bound of the life-span of the 3D inviscid
PEs in the space of analytic functions can be prolonged with fast rotation, and with some smallness
conditions on the size of the baroclinic mode. This result will be reported in [32].

It remains interesting to know whether for arbitrary Ω there exists a blowup solution with initial data
(u0, v0) whose barotropic and baroclinic modes are both of order 1. Moreover, to estimate the corresponding
blowup time T as |Ω| → ∞. Observe that if the blowup time T ∼ 1 as |Ω| → ∞, this would imply that
fast rotation does not prolong the life-span of the solution to the 3D inviscid PEs unless, as it has been
noted above, a smallness condition on the size of the baroclinic mode is met.
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