
UC San Diego
UC San Diego Previously Published Works

Title
Existence, Uniqueness, and Stability of Slowly Oscillating Periodic Solutions for Delay 
Differential Equations with Nonnegativity Constraints

Permalink
https://escholarship.org/uc/item/50g3p7jg

Journal
SIAM Journal on Mathematical Analysis, 47(6)

ISSN
0036-1410

Authors
Lipshutz, David
Williams, Ruth J

Publication Date
2015

DOI
10.1137/140980806
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/50g3p7jg
https://escholarship.org
http://www.cdlib.org/


SIAM J. MATH. ANAL. c© 2015 Society for Industrial and Applied Mathematics
Vol. 47, No. 6, pp. 4467–4535

EXISTENCE, UNIQUENESS, AND STABILITY OF SLOWLY
OSCILLATING PERIODIC SOLUTIONS FOR DELAY

DIFFERENTIAL EQUATIONS WITH NONNEGATIVITY
CONSTRAINTS∗

DAVID LIPSHUTZ† AND RUTH J. WILLIAMS‡

Abstract. Deterministic dynamical system models with delayed feedback and nonnegativity
constraints arise in a variety of applications in science and engineering. Under certain conditions
oscillatory behavior has been observed and it is of interest to know when this behavior is periodic.
Here we consider one-dimensional delay differential equations with nonnegativity constraints as pro-
totypes for such models. We obtain sufficient conditions for the existence of slowly oscillating periodic
solutions (SOPS) of such equations when the delay/lag interval is long and the dynamics depend
only on the current and delayed state. Under further assumptions, including possibly longer delay
intervals and restricting the dynamics to depend only on the delayed state, we prove uniqueness and
exponential stability for such solutions. To prove these results, we develop a theory for studying per-
turbations of these constrained SOPS. We illustrate our results with simple examples of biochemical
reaction network models and an Internet rate control model.

Key words. delay differential equation, state constraints, one-dimensional Skorokhod problem,
slow oscillation, periodic solution, Browder’s fixed point theorem, variational equation, exponential
stability
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1. Introduction. Dynamical system models with delay in the dynamics arise
in a variety of applications in science and engineering. Examples include Internet
congestion control models where the finiteness of transmission speeds leads to a de-
lay in receipt of congestion signals or prices [55, 56, 58, 57, 59, 67], neuronal models
where the spatial distribution of neurons can result in a propagation delay [4, 23],
epidemiological models where incubation periods result in delayed transmission of
disease [7], and biochemical models of gene regulation where transcription and trans-
lation processes can lead to a delay in signaling effects [1, 6, 46]. The books by
Erneux [18], Gopalsamy [19], and Smith [63] provide several examples and references
for delay differential equations that arise in applications. Oftentimes the quantities
of interest in such systems are nonnegative. For instance, rates and prices in Internet
models, proportions of a population that are infected, and concentrations of ions or
molecules are all nonnegative. In a delay differential equation model for such sys-
tems, sometimes the right-hand side of the equation (here called the drift function)
may naturally constrain all components to be nonnegative (see, e.g., section 3.2 of
[63]), but sometimes (e.g., because of the delay) the dynamics need to be modified
when one of the components of the current state becomes zero, to prevent that com-
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ponent from becoming negative. This can be thought of as imposing a regulating
control at the boundary, which creates a discontinuity in the right-hand side of the
differential equation.

In many cases, oscillatory (especially periodic) behavior can be important for
the functioning of such systems. While there is a considerable mathematical litera-
ture on oscillatory solutions of unconstrained delay differential equations (see, e.g.,
[19, 20, 22]), there is limited mathematical literature studying oscillatory solutions for
constrained delay differential equations with discontinuous dynamics at the bound-
ary. Some examples tied to specific applications include a biochemical application
studied in Mather et al. [46], where a simple biochemical reaction network model ex-
hibits oscillatory behavior; and an Internet rate control model in which the existence
of oscillatory behavior is shown numerically to arise from an unstable equilibrium
solution [47]. Even a one-dimensional delay differential equation with a nonnega-
tivity constraint is an interesting nonlinear system whose natural state descriptor is
infinite-dimensional because of the need to track position over the delay/lag period.
The behavior of the constrained system can be quite different from that of the anal-
ogous unconstrained system. For example, as we show in section 4.1, in the case of
dynamics that are linear in the unconstrained context, the additional nonnegativity
constraint can turn an equation with unbounded oscillatory solutions into one with
bounded periodic solutions.

As a first step toward studying oscillatory solutions of constrained delay differen-
tial equations, we provide sufficient conditions for existence, uniqueness, and stability
of periodic solutions for prototypical one-dimensional delay equations with nonnega-
tivity constraints of the form

(1.1) x(t) = x(0) +

∫ t

0

f(xs)ds+ y(t), t ≥ 0,

where x is a continuous function on [−τ,∞) that takes values in the nonnegative
real numbers, τ ∈ (0,∞) is the fixed length of the delay interval, xs is a continuous
function on the delay interval [−τ, 0] defined by xs(u) = x(s + u) for −τ ≤ u ≤ 0,
f is a real-valued continuous function defined on these continuous path segments,
and y is a continuous nondecreasing function that is constant on intervals where
x is positive. Indeed, y is a control that increases the minimal amount to keep x
nonnegative. As we shall see later in section 2, y is characterized by these properties
and is a continuous functional of x(0) +

∫ ·
0 f(xs)ds. We show in Lemma 2.2 that this

formulation is equivalent to one in which y is specified to be constant on intervals
where x is positive and is almost everywhere differentiable at times where x is zero,

where at such times t, dy(t)dt = max(−f(xt), 0). While these alternative formulations
are equivalent, our formulation has certain advantages that we exploit, related to the
continuous functional property of y (see Appendix A). Given f , we refer to (1.1) as a
delay differential equation with reflection (at the boundary), or DDER.

In this work, we focus on slowly oscillating periodic solutions (SOPS) of the
DDER (1.1). Here, slowly oscillating refers to the fact that the solution oscillates
about an equilibrium point and the time spent above/below the equilibrium point per
oscillation is greater than the length of the delay interval (see Definition 3.2). There is
a substantial literature on SOPS of unconstrained delay differential equations dating
back to the 1960s, when Jones [25] established the existence of a SOPS to the so-
called Wright’s equation—a certain nonlinear delay differential equation analyzed in
[78]. There are a number of subsequent contributions on the existence (see, e.g.,
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[4, 11, 15, 21, 23, 26, 49, 50, 51, 60, 64, 65, 70]) and uniqueness and stability (see, e.g.,
[10, 27, 28, 42, 43, 53, 72, 71, 73, 79, 80, 81, 82]) of such periodic solutions, with more
recent results focused on SOPS of delay differential equations with state-dependent
delays (see, e.g., [2, 29, 31, 32, 35, 37, 38, 39, 40, 41, 36, 68, 74]). For a more in-depth
discussion of these results we refer the reader to Chapter XV of [14] as well as the
recent survey by Walther [75].

For our results on existence of SOPS for constrained delay differential equations,
we restrict f to be a function that depends only on the current and delayed states,
i.e.,

(1.2) f(xt) = g(x(t), x(t− τ)), t ≥ 0,

where g is a real-valued, locally Lipschitz continuous function on the nonnegative
quadrant that is differentiable at (L,L), where L > 0 is the equilibrium point, and
g satisfies a type of negative feedback condition. Our assumptions on g are similar
to those imposed by Atay [4], although we allow somewhat relaxed boundedness
assumptions on g since, a priori, our nonnegativity constraint imposes a lower bound
on solutions of the DDER. For our results on uniqueness and stability of SOPS, we
further restrict the function f to depend only on the delayed state, i.e.,

(1.3) f(xt) = h(x(t − τ)), t ≥ 0,

where h is a real-valued continuously differentiable function on the nonnegative real
numbers satisfying a negative feedback condition. Our conditions on h and our proof
of uniqueness and stability are inspired by an approach used by Xie [80, 81] to prove
the uniqueness and stability of SOPS for unconstrained equations. While the general
outline of our approach for proving uniqueness and stability is similar to the one used
in [80, 81], substantial new difficulties arise due to the discontinuous dynamics at
the boundary. In particular, we develop a theory for understanding perturbations
of solutions in the constrained environment, which may be of independent interest.
We note that the stability results obtained here and in [80, 81] are local. In the
unconstrained setting, results have been obtained (see [30] and Chapter 10 of [3], as
well as references therein) on the global behavior of the unconstrained delay differential
equation under additional assumptions. However, these results assume that h is a
monotone function (i.e., h′(s) < 0 for all −∞ < s <∞), which is not a condition we
impose here.

The paper is organized as follows. A precise definition for a solution of a DDER
is given in section 2. Here our nonnegativity constraint is described and its relation
to the one-dimensional Skorokhod problem is explained (a formulation of the one-
dimensional Skorokhod problem is detailed in Appendix A). We also explain a parallel
formulation using delay differential equations with discontinuous right-hand side. Our
two main theorems on the existence of SOPS and on the uniqueness and stability of
SOPS are stated in section 3. In section 4, our results are illustrated using simple
examples of biochemical reaction network models and an Internet congestion control
model.

Our proof of the existence of SOPS is presented in section 5. A version of Brow-
der’s fixed point theorem, which implies the existence of a nonejective fixed point, is
used to show the existence of a nonconstant fixed point for a function that maps any
initial condition x0 in a certain set to the value of xt at the first time it returns to
that set. Such a fixed point corresponds to a SOPS of the DDER. Our proof follows
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an outline similar to those used in prior works [4, 11, 15, 21, 23, 25, 49, 60, 70] for un-
constrained systems. The main difference here is the presence of the lower boundary,
which leads to some technical difficulties but also prevents unbounded oscillations,
thereby allowing for a less restrictive class of functions g.

Our proof of the stability and uniqueness of SOPS is presented in section 6. For
sufficiently large delays, we can define a variant of a Poincaré map associated with a
SOPS of the DDER. Under our assumptions on h, its derivative operator evaluated
at the initial condition of the SOPS will have norm less than one, which is sufficient
to prove that the SOPS is exponentially stable. Uniqueness of the associated SOPS
then follows from its exponential stability and an application of theorems for fixed
point indices. Our proof follows the general outline of the method used in [80, 81] to
prove analogous results for unconstrained systems. However, the boundary constraint
prevents the use of established theory on the stability of periodic solutions to delay
differential equations. To understand perturbations of the constrained system, a vari-
ational equation (VE) along constrained solutions is developed (see section 6.4 and
Appendix B). Solutions of this VE may be discontinuous, which leads to significant
technical difficulties that do not appear in [80, 81].

We shall use the following notation throughout this paper. For a positive integer
n, let R

n denote n-dimensional Euclidean space and let Rn+ = {v ∈ Rn : vi ≥ 0
for i = 1, . . . , n} denote the closed nonnegative orthant in Rn. Given v ∈ Rn, let
|v| denote the Euclidean norm of v. When n = 1, we suppress the n and write R

for the real numbers and R+ for the nonnegative real numbers. For r, s ∈ R, let
r+ = max(r, 0), r− = max(−r, 0) and let r ∨ s = max(r, s), r ∧ s = min(r, s). For a
real number r, we say r is positive (resp., nonnegative, negative, nonpositive) if r > 0
(resp., r ≥ 0, r < 0, r ≤ 0).

Let τ ∈ (0,∞) denote a constant delay. For an interval of the form I = [−τ, 0],
[0,∞), or [−τ,∞), we will refer to the following sets of functions mapping I into the
real numbers. We let DI denote the set of functions from I into R that have finite left
and right limits at each finite value in I (at the left endpoint of I we only require a
finite right limit and at a finite right endpoint we only require a finite left limit). We
let CI denote the subset of continuous functions from I into R and we let C+

I denote
the further subset of continuous functions from I into R+. We endow DI and its
subsets with the topology of uniform convergence on compact intervals in I. Given
x ∈ DI and a compact interval J in I, we define the finite supremum norm:

‖x‖J = sup
t∈J

|x(t)| <∞.

For x ∈ DI , we say that x is increasing (resp., nondecreasing, decreasing, nonincreas-
ing) on I if x(s) < x(t) (resp., x(s) ≤ x(t), x(s) > x(t), x(s) ≥ x(t)) for all s, t ∈ I
satisfying s < t. For r ∈ R, we write x ≡ r to denote the function x ∈ CI that
is identically equal to r on I, where the interval I will be clear from context. For
x ∈ D[−τ,∞) and t ≥ 0, let xt ∈ D[−τ,0] be defined by xt(s) = x(t+ s), −τ ≤ s ≤ 0.

We let L1(R+) denote the Banach space of Lebesgue measurable functions f :
R+ → R with finite L1-norm,

‖f‖L1(R+) =

∫ ∞

0

|f(s)|ds <∞,

in which functions equal almost everywhere are identified. Given Banach spaces X
and Y , we let L(X,Y ) denote the vector space of bounded linear operators from X
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Fig. 1. Solutions of a DDER (in black) and of an unconstrained delay differential equation (in
gray) with identical initial conditions and both with linear drift function f(ϕ) = L − ϕ(−τ), where
f is interpreted as a function on either C+

[−τ,0]
or C[−τ,0], depending on the equation.

into Y . We shall use ‖·‖ to denote the norm on X or Y , depending on the context.
For A ∈ L(X,Y ), we let ‖A‖ = sup{‖Ax‖ : x ∈ X, ‖x‖ = 1} denote the operator
norm of A. For an open subset U of X that contains the zero element and a function
f : U → Y , we say that f(x) = o(‖x‖) if lim‖x‖→0‖f(x)‖/‖x‖ = 0.

2. Delay differential equations with reflection. In this section, we define a
solution of a DDER and explain its relation to the one-dimensional Skorokhod problem
and to a delay differential equation with discontinuous right-hand side. Throughout
this section, fix a delay τ ∈ (0,∞) and a continuous function f : C+

[−τ,0] → R.

Definition 2.1. A solution of the DDER associated with f is a continuous
function x ∈ C+

[−τ,∞) such that there exists y ∈ C+
[0,∞) such that

(i) (x, y) satisfies (1.1),
(ii) y(0) = 0 and y is nondecreasing, and

(iii)
∫ t
0
x(s)dy(s) = 0 for all t ≥ 0.

See Figure 1 for an example of a solution of the DDER and the corresponding
solution of the unconstrained delay differential equation.

Remark 2.1. We say a function y : [0,∞) → R has a point of increase (to the
right) at time t ≥ 0 if y(t + s) > y(t) for all s > 0 sufficiently small. The condition∫ t
0 x(s)dy(s) = 0 for all t ≥ 0 in Definition 2.1 can be interpreted as follows: y can
have a point of increase (to the right) at time t only if x(t) = 0.

Remark 2.2. It will be assumed throughout the paper that given ϕ ∈ C+
[−τ,0],

there exists a unique solution x of the DDER with x0 = ϕ. We do not prescribe
any further conditions than continuity on f ; however, usually additional assumptions
are required to guarantee existence and uniqueness of solutions. For example, if
f is locally Lipschitz continuous and a condition for nonexplosion of solutions in
finite time is imposed, then existence and uniqueness of solutions hold. In particular,
under Assumptions 3.1 and 3.2 or under Assumption 3.3, which are the respective
assumptions for our main results, Theorems 3.4 and 3.8, given ϕ ∈ C+

[−τ,0], there

exists a unique solution x to the DDER with x0 = ϕ.
In the following, we relate solutions of the DDER to the one-dimensional Sko-

rokhod problem, which was introduced by Skorokhod [62] to constrain a continuous
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function to be nonnegative. The one-dimensional Skorokhod problem and its associ-
ated one-dimensional Skorokhod map are defined in Appendix A, where some relevant
properties are discussed. Roughly speaking, given z ∈ C[0,∞) satisfying z(0) ≥ 0, the

solution to the one-dimensional Skorokhod problem is a pair (x, y) ∈ C+
[0,∞) × C+

[0,∞)

satisfying x(0) = z(0) and x(t) = z(t) + y(t) for t ≥ 0, where x is a constrained
version of z and y is a nondecreasing continuous control that acts only when x is at
the zero boundary and increases the minimal amount to keep x nonnegative. It is a
well-known fact in the theory of the one-dimensional Skorokhod problem that given
z ∈ C[0,∞) satisfying z(0) ≥ 0, there is a unique solution (x, y) and y is given by

y(t) = sup
0≤s≤t

(z(s))−, t ≥ 0.(2.1)

The one-dimensional Skorokhod map (Φ,Ψ) : C[0,∞) → C+
[0,∞) × C+

[0,∞) maps z to

the unique solution (x, y) of the one-dimensional Skorokhod problem, i.e., (x, y) =
(Φ,Ψ)(z). Despite the requirement in the formulation of the one-dimensional Sko-
rokhod problem that z satisfy z(0) ≥ 0, the one-dimensional Skorokhod map (Φ,Ψ)
is in fact well defined on all of C[0,∞) (see (A.1)–(A.2)).

Given a solution x of the DDER, (1.1) can be rewritten, for t ≥ 0, as

x(t) = z(t) + y(t),(2.2)

z(t) = x(0) +

∫ t

0

f(xs)ds.(2.3)

It follows from the conditions on x and y in Definition 2.1 that (x|[0,∞), y) is a solution
of the one-dimensional Skorokhod problem for z. Therefore, y is unique and given by
(2.1). In the notation of the one-dimensional Skorokhod map,

(2.4) (x|[0,∞), y) = (Φ,Ψ)(z).

Lemma 2.2. Suppose that x is a solution of the DDER. Then x is locally Lipschitz
continuous on [0,∞) and so is absolutely continuous there. For the almost every t > 0
at which x is differentiable, its derivative satisfies

(2.5)
dx(t)

dt
=

{
f(xt) if x(t) > 0,

0 if x(t) = 0.

Furthermore, x is continuously differentiable at all t > 0 such that x(t) > 0.
Proof. By the continuity of t → f(xt), z defined in (2.3) is locally Lipschitz

continuous on [0,∞) and continuously differentiable on [0,∞). By (2.4) and Proposi-
tion A.2, x inherits the local Lipschitz property from z on [0,∞). Hence x is absolutely
continuous on [0,∞) and differentiable at almost every t > 0. Consider t > 0 such
that x(t) > 0. Then y is constant in a neighborhood of t, so by (2.2) and (2.3), x is

continuously differentiable there and dx(t)
dt = f(xt). Now consider t > 0 such that x

is differentiable and x(t) = 0. By considering derivatives from the left and the right

and using the nonnegativity of x, we see that dx(t)
dt = 0.

The following lemma is an immediate consequence of Lemma 2.2.
Lemma 2.3. For a solution x of the DDER define ẋ : [0,∞) → R by

(2.6) ẋ(t) =

{
f(xt) if x(t) > 0,

0 if x(t) = 0.
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Then

(2.7) x(t) = x(0) +

∫ t

0

ẋ(s)ds, t ≥ 0.

Remark 2.3. Note that we are abusing the usual “dot” notation here—when
x(t) = 0, the derivative of x only exists at almost every such t. We find it convenient
to have a notation for the right member in (2.6).

Delay differential equations with discontinuous right-hand sides are often used
in engineering models (see, e.g., [56, 58, 57, 59]) to account for state constraints.
Consider, for example, the equation

(2.8)
dx(t)

dt
=

{
f(xt) if x(t) > 0,

f(xt)
+ if x(t) = 0,

where a solution of (2.8) is any absolutely continuous function x ∈ C+
[−τ,∞) satisfying

(2.8) at the almost every t ∈ (0,∞) where x is differentiable. In the following lemma
we provide a one-to-one correspondence between solutions of (2.8) and solutions of
the DDER.

Lemma 2.4. A function x ∈ C+
[−τ,∞) is a solution of (2.8) if and only if x is a

solution of the DDER associated with f .
Proof. Suppose that x is a solution of (2.8). Define y ∈ C+

[0,∞) by y(t) =∫ t
0 1{x(s)=0}f(xs)−ds for all t ≥ 0. Then x and y satisfy (1.1), y is nondecreas-

ing, y(0) = 0, and y can have a point of increase only when x is zero. Therefore, x is
a solution of the DDER. Conversely, suppose that x is a solution of the DDER. By
Lemma 2.2, x is absolutely continuous and (2.8) holds when x(t) > 0. At t > 0 such
that x(t) = 0 and x is differentiable, by (2.2), (2.3), and (2.5), y is differentiable at

t with dy(t)
dt = −f(xt) ≥ 0, where the inequality follows because y is nondecreasing.

Thus, dx(t)dt = 0 = f(xt)
+ at such t, which proves that x is a solution of (2.8).

3. Main results. In this section, we define a SOPS and present our main results
on sufficient conditions for the existence, uniqueness, and stability of SOPS to the
DDER.

3.1. Slowly oscillating periodic solutions. In order to define a SOPS, we
assume that there is a positive equilibrium point for the DDER, which is defined as
follows.

Definition 3.1. A point L > 0 is an equilibrium point of the DDER if x ≡ L
on [−τ,∞) is a solution of the DDER.

A solution x of the DDER that oscillates about an equilibrium point L such
that the times when x is at the equilibrium point are separated by more than the
delay τ is called slowly oscillating. Throughout this paper, we consider periodic
solutions with this property, which we denote with an asterisk: x∗. We focus on the
situation where there is exactly one equilibrium point L, which will be ensured either
by Assumptions 3.1 and 3.2 or by Assumption 3.3.

Definition 3.2. A solution x of the DDER is called a periodic solution with
period p > 0 if

(3.1) x(t+ p) = x(t) for all t ≥ −τ.

Suppose L > 0 is an equilibrium point of the DDER. A periodic solution x∗ of the
DDER is a SOPS if there exist points q0 ≥ −τ , q1 > q0 + τ and q2 > q1 + τ such that
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Fig. 2. An example of a SOPS where q0 = −τ . In the figure, �1 = inf{t ≥ q1 : x∗(t) = 0} and
�2 = inf{t ≥ �1 : x∗(t) > 0}.

(3.1) holds with p = q2 − q0, and

x∗(q0) = L,

x∗(t) > L, q0 < t < q1,(3.2)

0 ≤ x∗(t) < L, q1 < t < q2.

See Figure 2 for an example of a SOPS of the DDER when q0 = τ .

3.2. Existence of SOPS. To establish the existence of a SOPS, we assume that
f depends only on the current and delayed states of the system

(3.3) f(ϕ) = g(ϕ(0), ϕ(−τ)), ϕ ∈ C+
[−τ,0],

where g : R2
+ → R is a continuous function satisfying two assumptions. The first

assumption is used to establish the existence of an equilibrium point and to specify
regularity properties of g.

Assumption 3.1. The function g : R2
+ → R is locally Lipschitz continuous, there

is a constant L > 0 such that g(L,L) = 0, g is differentiable at (L,L),

(3.4) A = −∂1g(L,L) ≥ 0, B = −∂2g(L,L) > 0,

and B > A ≥ 0. Here ∂ig denotes the first partial derivative with respect to the ith
argument of g, i = 1, 2.

The condition (3.4) imposes a negative feedback condition on the local lineariza-
tion about the equilibrium; for this linearization, the condition B > A is known to
be necessary for the equilibrium solution to be unstable. The following is a global
negative feedback type of condition.

Assumption 3.2. For all r, s ∈ R+,
(i) (g(r, s)− g(r, L))(s− L) < 0 if s �= L, and
(ii) (g(r, s)− g(L, s))(r − L) ≤ 0 if r �= L.

Remark 3.1. From Assumptions 3.1 and 3.2 it follows that (i) if r ≥ L and
s > L, then g(r, s) < 0, and (ii) if r ≤ L and s < L, then g(r, s) > 0. Furthermore,
g(r, r)(r − L) ≤ g(L, r)(r − L) < 0 for all r �= L, which ensures that L is the unique
equilibrium point of the DDER.

In [4], a third set of assumptions bounding g(L, ·) and providing linear growth con-
ditions on g in both arguments is imposed in part to prevent unbounded oscillations.
The presence of the lower boundary in (1.1) prevents unbounded oscillations and a
version of the third set of assumptions is instead a consequence of Assumptions 3.1
and 3.2, as follows.
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Fig. 3. For a fixed parameter B > 0, u ≡ 0 is an unstable equilibrium solution to (3.6) for
parameters τ and A in the crosshatched region, which is given by {(A, τ) : A ∈ [0, B) and τ > τ0},
where τ0 is the function of A and B given by (3.8).

Lemma 3.3. Under Assumptions 3.1 and 3.2, there exists G ∈ (0,∞) such that
g(L, s) ≤ G for all s ∈ R+. Additionally, there exist constants κ1, κ2 ∈ (0,∞) such
that

(3.5) |g(r, s)| ≤ κ1|r − L|+ κ2|s− L|, 0 ≤ r, s ≤ L+ τG.

Proof. The existence of G follows because g(L, ·) is continuous on [0, L] and is
negative on (L,∞). The existence of κ1 and κ2 follows because g is locally Lipschitz
continuous with g(L,L) = 0.

Under Assumption 3.1, consider the linear delay differential equation obtained by
linearizing g about its equilibrium point and centering about the equilibrium:

(3.6)
du(t)

dt
= −Au(t)−Bu(t− τ).

Equation (3.6) has characteristic equation

(3.7) λ+A+Be−λτ = 0.

Let θ0 be the unique solution in [π/2, π) to cos θ0 = −A/B, which we write as θ0 =
cos−1(−A/B), and define

(3.8) τ0 =
θ0√

B2 −A2
.

If τ > τ0, the characteristic equation (3.7) will have a solution λ with positive real
part, from which it follows that the equilibrium solution u ≡ 0 of (3.6) is unstable
(see Theorem 4.7 in [63] or the discussion beginning at the bottom of p. 134 in [24]).
See Figure 3 for a depiction illustrating when the equlibrium solution is unstable (for
fixed B). This, along with the negative feedback condition in Assumption 3.2, will
allow us to prove the following result on the existence of a SOPS.

Theorem 3.4. Under Assumptions 3.1 and 3.2, if τ0 is given by (3.8), then for
any τ > τ0, there exists a SOPS of the DDER.

The proof of Theorem 3.4 is given in section 5.
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3.3. Uniqueness and stability of SOPS. To establish uniqueness and stabil-
ity of SOPS, we impose more restrictive conditions on f ; in particular, we assume
that f depends only on the delayed state:

(3.9) f(ϕ) = h(ϕ(−τ)), ϕ ∈ C+
[−τ,0],

where h : R+ → R is a continuous function that satisfies two sets of assumptions.
The first set of assumptions imply Assumptions 3.1 and 3.2 that are used in proving
the existence of a SOPS. It also includes assumptions on the regularity of h and its
asymptotic behavior at infinity.

Assumption 3.3. The function h : R+ → R is continuously differentiable on R+;
there are constants α > 0, β > 0 such that lims→∞ h(s) = −α, h(0) = β; and there
is a constant L > 0 such that h(L) = 0, h′(L) < 0, and (s − L)h(s) < 0 for all
L �= s ∈ R+.

The following lemma is an immediate consequence of Assumption 3.3 and Lem-
ma 2.3.

Lemma 3.5. Under Assumption 3.3, H = sup {|h(s)| : s ∈ R+} < ∞. If x is a
solution of the DDER associated with h, then x is uniformly Lipschitz continuous on
[0,∞) with Lipschitz constant H:

(3.10) |x(t) − x(s)| ≤ H |t− s|, 0 ≤ s, t <∞.

On setting g(r, s) = h(s) for r, s ≥ 0, Assumption 3.3 implies that g satisfies
Assumptions 3.1 (with A = 0 and B = −h′(L)) and 3.2. Also, τ0 in (3.8) is given by

(3.11) τ0 = − π

2h′(L)
> 0.

Theorem 3.4 ensures that for each τ > τ0 there exists a SOPS of the DDER. For our
proof of the uniqueness and stability of a SOPS, we assume that h′(s) converges to
zero sufficiently fast as s→ ∞, as follows.

Assumption 3.4. The function h : R+ → R is continuously differentiable on R+,
its derivative h′ is in L1(R+), and m = sup{|sh′(s)| : s ∈ R+} <∞.

In [80], the stronger condition that sh′(s) → 0 as s→ ±∞ is imposed. However,
the presence of the lower boundary in (1.1) allows us to relax this condition.

The following lemma is an immediate consequence of Assumption 3.4 and the
fundamental theorem of calculus.

Lemma 3.6. Under Assumption 3.4, Kh = sup{|h′(s)| : s ∈ R+} < ∞ and so h
is uniformly Lipschitz continuous with Lipschitz constant Kh:

(3.12) |h(s)− h(r)| =
∣∣∣∣∫ s

r

h′(u)du
∣∣∣∣ ≤ Kh|s− r|, 0 ≤ r, s <∞.

We can now present our main result on the uniqueness and stability of SOPS. We
first define a notion of uniqueness for SOPS.

Definition 3.7. We say a SOPS x∗ of the DDER is unique up to time trans-
lation if given any other SOPS x† of the DDER, there exists t† ∈ [0, p) such that
x∗(t) = x†(t† + t) for t ≥ 0.

Remark 3.2. Given any SOPS x∗ of the DDER, there is a family of SOPS that
are equivalent up to time translation. In particular, for any t† ≥ 0, the function
x† ∈ C+

[−τ,∞) given by x†(t) = x∗(t† + t) for all t ≥ −τ is a SOPS of the DDER.

Theorem 3.8. Suppose that Assumptions 3.3 and 3.4 hold and that τ0 is given
by (3.11). Then there exists τ∗ ≥ τ0 such that for any τ > τ∗, there exists a SOPS of
the DDER and it is unique up to time translation. Furthermore, the SOPS satisfies
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the following property, which we call exponential stability: there are positive constants
ε, γ, Kγ, and Kρ such that for any member x∗ of the family of equivalent (up to
time translation) SOPS and for p equal to the period of x∗, if ϕ ∈ C+

[−τ,0] satisfies

‖ϕ− x∗σ‖[−τ,0] < ε for some σ ∈ [0, p), then there is a ρ ∈ (−p, p) satisfying
(3.13) |ρ| ≤ Kρ‖ϕ− x∗σ‖[−τ,0],
and such that

(3.14) ‖xt − x∗t+p+σ+ρ‖[−τ,0] ≤ Kγe
−γt‖ϕ− x∗σ‖[−τ,0],

for all t ≥ 0, where x denotes the unique solution of the DDER with x0 = ϕ.
The proof of Theorem 3.8 is given in section 6.

4. Applications. In this section, we illustrate our results with some simple
examples of deterministic models of biochemical reaction networks and an Internet
congestion control model. Both biochemical reaction network examples model the
concentration of a single protein. In the first example, the delay arises due to de-
layed degradation, whereas in the second example, the delayed dynamics are due to a
lengthy production time. The Internet congestion control example models a pricing
mechanism that controls the rate at which data packets are transmitted from a source
to a link. Here the delayed dynamics are due to the finiteness of transmission speeds.

4.1. Biochemical reaction network with delayed protein degradation.
We consider a simple biochemical model for the production and degradation of a
protein X in which X may be degraded by either of two mechanisms, one of which
involves a delay. Fix τ > 0 and k1, k2, k3, k4, k5 > 0. In the model, X is produced
by components external to the system at rate k1 and each molecule of X degrades at
rate k2, which is represented by the following reactions:

(4.1) ∅ k1→ X, X
k2→ ∅,

where ∅ denotes “nothing” (or a quantity external to the system). Furthermore, X is
a transcription factor activating the production of a protein P , i.e., when X is present
in the system it attaches to the promoter region of the DNA template for P at rate
k3, thus initiating the production process for P . The production process for P is a
multistage process, including lengthy transcription and translation stages, which leads
to a delay in its production. After a molecule of P is produced, it quickly combines
with a molecule of X (if one is available), at rate k4, and the resulting complex is
eliminated from the system, or otherwise P rapidly degrades, at rate k5. Thus, X
can be degraded by the production of a molecule of P and the subsequent removal of
a molecule of X by a molecule of P . The reactions involving P are the following:

(4.2) ∅ k3(X)⇒ P, X + P
k4→ ∅, P

k5→ ∅,
where the double arrow indicates a delayed reaction and the term above the double
arrow indicates that the reaction is initiated at a rate proportional to the number of
molecules of X in the system. Let x(t) and p(t) denote the respective concentrations
of proteins X and P at time t. The reactions (4.1) and (4.2) suggest the following
deterministic dynamics for x and p:

dx(t)

dt
= k1 − k2x(t) − k4x(t)p(t),

dp(t)

dt
= k3x(t− τ) − k4x(t)p(t) − k5p(t).
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The above equations naturally preserve the nonnegativity constraints for the concen-

trations x(t) and p(t)—whenever x(t) = 0, dx(t)dt > 0 holds, and whenever p(t) = 0,
dp(t)
dt ≥ 0 holds.

Consider the situation where k4 and k5 are very large constants compared with
k1, k2, k3, and k4 is considerably larger than k5. As an approximation, we consider
the formal limit when k4 → ∞ first and then k5 → ∞. In this formal limit, whenever
a molecule of P is produced, it instantly combines with a molecule of X (provided
there is one) and the resulting complex is eliminated from the system; otherwise P
instantly degrades. As a consequence, the net effect of the reactions in (4.2) is that
a molecule of P does not remain in the system for a positive amount of time and
whenever there are molecules of X in the system, they are eliminated via delayed
degradation at a rate equal to the rate at which molecules of P are produced, i.e.,
at rate k3x(t − τ). In this limiting case, x satisfies the following delay differential
equation with discontinuous right-hand side:

(4.3)
dx(t)

dt
=

{
k1 − k2x(t) − k3x(t − τ) if x(t) > 0,

(k1 − k2x(t)− k3x(t− τ))+ if x(t) = 0.

By Lemma 2.4, solutions of (4.3) are in one-to-one correspondence with solutions
of the DDER associated with f(ϕ) = g(ϕ(0), ϕ(−τ)) = k1 − k2ϕ(0) − k3ϕ(−τ). If
k3 > k2, then g satisfies Assumptions 3.1 and 3.2 with equilibrium point L = k1

k2+k3
.

Then by Theorem 3.4, for

τ >
cos−1(−k2/k3)√

k23 − k22
,

there exists a SOPS of the DDER.
In [6], Bratsun et al. analyzed a similar deterministic biochemical reaction model

with delayed degradation of a protein molecule and linear g, but without the nonnega-
tivity constraint. They observed that for sufficiently large delays, solutions exhibited
unbounded oscillations. Here we have shown that the addition of a nonnegativity
constraint can turn an equation with unbounded oscillatory solutions into one with
bounded periodic solutions that obey the natural constraints of the model.

4.2. Biochemical reaction network with delayed autorepression. We
consider a simple model for a biochemical reaction network in which the quantity
of an autorepressor protein (a protein that inhibits its own production) is affected
by three factors: production, enzymatic degradation, and dilution. In this case, the
dimerized form of the protein represses its own transcription process. The production
of the protein monomer, which includes transcription, translation, protein folding,
etc., is lengthy (see Figure 4). To simplify the analysis, rather than considering each
step as a separate reaction, we treat the production of a protein as one process with
a time delay. In simple biochemical reaction network models of genetic circuits, it
has been observed that this type of delayed autorepression can lead to oscillations in
protein concentration (see, e.g., [5, 34, 48, 61, 66, 69]) and in [46], Mather et al. use
analytical tools to demonstrate that these models can exhibit what they term degrade-
and-fire oscillations, where the “period” of oscillation can be long relative to the delay
length. (The term “period” is used in a rough sense as they do not establish the exis-
tence of nonconstant periodic solutions.) In the following, we show that, for sufficiently
long delays, there exists a SOPS and, moreover, for possibly longer delays the SOPS is
unique and exponentially stable. In addition, we show that asymptotically as the delay
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Fig. 4. A depiction of the simple biochemical reaction network described in Example 4.2.

increases, the period of oscillation can be made arbitrarily large relative to the delay
by choosing production and degradation parameters appropriately (see (4.4) below).

Fix τ > 0 and a, b, c, C0, R0 > 0. In the simple model proposed by Mather et
al. [46], the deterministic dynamics of the system are described by the following delay
differential equation:

dx(t)

dt
=

aC2
0

(C0 + x(t− τ))
2 − bx(t)

R0 + x(t)
− cx(t), t ≥ 0.

Here x(t) represents the concentration of the protein monomer at time t. The first
term on the right is the production rate with delayed negative feedback—the squared
term in the denominator arises because the dimerized form of the protein represses
transcription. The second and third terms represent the effects of enzymatic degrada-
tion and dilution, respectively. In the above model, the nonnegativity of the protein
concentration is ensured by the form of the delay differential equation: if x(t) = 0,

then dx(t)
dt > 0. In [46], R0 and c are very small and the authors consider the limiting

case of the deterministic system where R0 = 0 and c = 0, which corresponds to the
setting where the enzymatic degradation rate is constant and the effects of dilution
are negligible. However, in this formal limit, the delay differential equation loses the
inherent nonnegativity of its solutions, and the equation must be modified at the
boundary, i.e., when x(t) = 0. One way to account for the nonnegativity constraint
is to consider solutions of the DDER associated with (3.9) and

h(ϕ(−τ)) = aC2
0

(C0 + ϕ(−τ))2
− b, ϕ ∈ C+

[−τ,0].

If a > b, then h satisfies Assumptions 3.3 and 3.4 with α = b, β = a−b and equilibrium

point L = C0(
√
a/b− 1). By Theorem 3.4, for τ > π

4C0

√
a/b3, there exists a SOPS

of the DDER. Furthermore, by Theorem 3.8, there is a τ∗ ≥ π
4C0

√
a/b3 such that

for τ > τ∗, the SOPS is unique and exponentially stable. Now for each τ > τ0, let
xτ denote a SOPS of the DDER with delay τ and let pτ denote its period. Then
according to Corollary 6.13,

(4.4) lim
τ→∞

pτ

τ
=
a

b
+ 1.
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Thus, given the freedom to choose the constants a > b > 0, the period of oscillation
can be made arbitrarily large relative to the delay, asymptotically as τ → ∞.

4.3. Internet congestion control with delayed transmission rates. De-
terministic delay differential equations have been used as approximate (fluid) models
for the dynamics of data transmission rates and prices in Internet congestion control
models [67], where the finiteness of transmission speeds leads to delayed dynamics. In
such models, control protocols are often designed to steer transmission rates toward
equilibrium points using a (delayed) negative feedback mechanism. There is a con-
siderable body of work on obtaining sufficient conditions for stability of equilibrium
points for such models (see, e.g., [13, 56, 58, 57, 59, 83]). In the following, we ana-
lyze a simple one-dimensional model and apply our results to understand conditions
under which the equilibrium point is not stable and there exists periodic oscillatory
behavior. Despite the fact that control protocols are typically designed to prevent
such sustained oscillations, it is useful to understand the model when the protocol
fails to stabilize the equilibrium point.

We consider the one-dimensional case of a model introduced in [55] and further
analyzed in [56, 58, 57, 59]. In this simple model, packets are transmitted from a
single source, with nonnegative transmission rate r(t) at time t, through a single link
with capacity c ∈ (0, 1) at rate r(t − τf ), where τf > 0 is referred to as the forward
delay. At time t, the link “charges” packets a nonnegative price x(t). The price is
sent back to the source, which at time t observes the delayed price x(t − τb), where
τb > 0 is referred to as the backward delay. The transmission rate r(t) is then given
as a function of the delayed price x(t − τb). The control protocol, which governs the
dynamics of the pricing mechanism, is designed to achieve a specified equilibrium
transmission rate. In [55], the dynamics of the price x are given by the following
differential dynamics which depend on the delayed transmission rate r(t − τf ):

dx(t)

dt
=

⎧⎪⎪⎨⎪⎪⎩
r(t − τf )

c
− 1 if x(t) > 0,(

r(t− τf )

c
− 1

)+

if x(t) = 0.

The transmission rate at time t is a function of the delayed price x(t− τb):

r(t) = exp (−ax(t− τb)) , t ≥ 0.

Here a > 0 is a constant referred to as the gain. Upon substitution, we see that the
dynamics of the price x are described by the following delay differential equation with
discontinuous right-hand side:

(4.5)
dx(t)

dt
=

{
h(x(t − τ)) if x(t) > 0,

h(x(t − τ))+ if x(t) = 0,

where τ = τf + τb (referred to as the round-trip time) and

(4.6) h(ϕ(−τ)) = exp(−aϕ(−τ))
c

− 1, ϕ ∈ C+
[−τ,0].

By Lemma 2.4, solutions of (4.5) are in one-to-one correspondence with solutions of
the DDER associated with f(ϕ) = h(ϕ(−τ)). Note that h satisfies Assumptions 3.3
and 3.4 with equilibrium point L = − log(c)/a, so by Theorem 3.4, if τ > π/2a, there
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exists a SOPS of the DDER. Furthermore, by Theorem 3.8, there is a τ∗ ≥ π/2a such
that if τ > τ∗, then the SOPS is unique and exponentially stable. As noted above,
Internet congestion control protocols are typically designed to prevent such oscillatory
behavior. Indeed, in [55] it is noted that as the delay τ increases, solutions to (2.8)
with h as in (4.6) exhibit sustained oscillatory behavior. To counteract this behavior,
a is often designed so as to depend on the delay τ , e.g., in [55] it is observed that if a
is allowed to depend on τ such that a(τ) = b/τ for b ∈ (0, π/2), then the equilibrium
solution is exponentially stable for all τ > 0.

5. Existence of SOPS. In this section we prove Theorem 3.4, which provides
sufficient conditions for the existence of SOPS to the DDER. The general outline is to
define an appropriate cone in C+

[−τ,0] and a return map on the cone such that noncon-

stant fixed points of the return map are in one-to-one correspondence with SOPS of
the DDER. This approach was first implemented by Jones [25] to prove the existence
of SOPS to a certain unconstrained delay differential equation. Subsequently, nu-
merous authors adopted this general approach for establishing the existence of SOPS
of unconstrained delay differential equations under various conditions on the drift g
(see, e.g., [4, 11, 15, 21, 23, 49, 60, 70]). We adopt this approach as well, though some
new difficulties need to be addressed in our context because of the lower boundary
constraint and the associated discontinuous dynamics.

Throughout this section, we assume that f is of the form exhibited in (3.3) and
that Assumptions 3.1 and 3.2 hold.

5.1. Browder’s fixed point theorem.
Definition 5.1. Let X be a topological space, f : X → X a continuous function,

and x0 ∈ X a fixed point of f . Then x0 is an ejective fixed point if there exists an
open neighborhood U of x0 such that for every x ∈ U \ {x0}, there exists a positive
integer n = n(x) such that the nth iterate of f , fn(x), is not in U .

The following is a version of Browder’s fixed point theorem [8] and is a special case
of Corollary 1.1 in [50], which gives sufficient conditions for the existence of nonejective
fixed points. Recall that given a topological spaceX , a function f : X → X is compact
if the closure of f(V ) is compact whenever V ⊂ X is bounded.

Theorem 5.2. Let K be a closed, bounded, convex, infinite-dimensional subset
of a Banach space. Suppose that f : K → K is a continuous, compact function. Then
f has a fixed point in K that is not ejective.

Briefly, our proof of Theorem 3.4 proceeds as follows. We first perform a spatial
shift and rescale time in (1.1) so that the equilibrium solution is at the origin and the
delay interval [−τ, 0] is normalized to [−1, 0]. We show that it suffices to prove the
existence of a corresponding SOPS for this normalized equation. We denote solutions
of the normalized equation with a hat: x̂. Existence will be proved by finding a
suitable set K̃ in the Banach space C[−1,0] and proving that if x̂ is a nonconstant

solution of the normalized equation such that x̂0 ∈ K̃, then x̂ is slowly oscillating
and x̂t ∈ K̃ for some t > 0. We will define a function Λ on K̃ that maps the unique
constant solution to itself and nonconstant x̂0 ∈ K̃ to x̂t, where t is the first time after
time zero that x̂t ∈ K̃. An element of K̃ that is mapped by Λ to itself corresponds
to a periodic solution (which may be constant). Under Assumptions 3.1 and 3.2, for
τ > τ0, the unique constant solution will be an ejective fixed point of Λ and Browder’s
fixed point theorem will imply the existence of a nonejective fixed point, which will
correspond to a SOPS.
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5.2. Normalized solutions. It will be convenient to work with normalized
solutions of the DDER (1.1), obtained from a solution x of the DDER by subtracting
off L and rescaling time so that the delay is of length one. The normalized solutions
will satisfy a normalized version of (1.1). We work with this normalized equation here
as well as in the proof of uniqueness and stability (sections 6.1 and 6.2). There is no
loss of generality in this as there is a one-to-one correspondence between solutions of
the normalized equation and those of the original DDER, as we will show below in
Lemma 5.5.

We first need some definitions. Recall that g is assumed to satisfy Assumptions 3.1
and 3.2. Let ĝ : [−L,∞)2 → R be the function defined by

(5.1) ĝ(r, s) = g(r + L, s+ L), r, s ∈ [−L,∞).

Then ĝ inherits the following properties from g: the function ĝ is locally Lipschitz
continuous, ĝ(0, 0) = 0, and ĝ is differentiable at (0, 0) with

−∂1ĝ(0, 0) = A ≥ 0, −∂2ĝ(0, 0) = B > 0,

where B > A ≥ 0 are as in Assumption 3.1. By Assumption 3.2, ĝ satisfies the
following inequalities:

ĝ(r, s) > ĝ(r, 0) if − L ≤ s < 0,(5.2)

ĝ(r, s) < ĝ(r, 0) if s > 0,(5.3)

ĝ(r, s) ≥ ĝ(0, s) if − L ≤ r ≤ 0,(5.4)

ĝ(r, s) ≤ ĝ(0, s) if r ≥ 0.(5.5)

By (5.2) and (5.4), if r ≤ 0 and s < 0, then ĝ(r, s) > 0, and similarly, by (5.3) and
(5.5), if r ≥ 0 and s > 0, then ĝ(r, s) < 0. Finally, for positive constants G, κ1, and
κ2 as in Lemma 3.3, we have ĝ(0, s) ≤ G for all s ≥ −L and

(5.6) |ĝ(r, s)| ≤ κ1|r|+ κ2|s|, −L ≤ r, s ≤ τG.

We can now define a solution of a normalized DDER associated with ĝ, or DDERn

for short.
Definition 5.3. A solution of the normalized DDERn associated with ĝ is a

continuous function x̂ ∈ C[−1,∞) such that there exists ŷ ∈ C+
[0,∞) such that

(5.7) x̂(t) = x̂(0) + τ

∫ t

0

ĝ(x̂(s), x̂(s− 1))ds+ ŷ(t), t ≥ 0,

and
(i) x̂(t) ≥ −L for all t ≥ 0,
(ii) ŷ(0) = 0, ŷ is nondecreasing, and

(iii)
∫ t
0 (x̂(s) + L)dŷ(s) = 0 for all t ≥ 0.

Given a solution x̂ of the DDERn, (5.7) can be rewritten as

x̂(t) = ẑ(t) + ŷ(t), t ≥ 0,(5.8)

ẑ(t) = x̂(0) + τ

∫ t

0

ĝ(x̂(s), x̂(s− 1))ds, t ≥ 0.(5.9)

Adding L to either side of (5.8), we see that (x̂|[0,∞) + L, ŷ) is a solution of the one-
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Fig. 5. An example of a SOPSn with q̂0 = −1.

dimensional Skorokhod problem for ẑ + L (see Appendix A), so by Proposition A.4,

(5.10) ŷ(t) = sup
0≤s≤t

(ẑ(s) + L)−, t ≥ 0.

From the conditions on ĝ, zero is the unique equilibrium point for the DDERn, i.e.,
x̂ ≡ 0 is the only constant solution of the DDERn. Next, we define a slowly oscillating
periodic solution (SOPSn) of the DDERn, which we denote with an asterisk: x̂∗.

Definition 5.4. A solution x̂ of the DDERn is called periodic if there exists
p̂ > 0 such that

(5.11) x̂(t+ p̂) = x̂(t), for all t ≥ −1.

A periodic solution x̂∗ of the DDERn is called a slowly oscillating periodic solution
(SOPSn) if there exists q̂0 ≥ −1, q̂1 > q̂0 + 1, and q̂2 > q̂1 + 1 such that (5.11) holds
with p̂ = q̂2 − q̂0, and

x̂∗(q̂0) = 0,

x̂∗(t) > 0 for q̂0 < t < q̂1,(5.12)

−L ≤ x̂∗(t) < 0 for q̂1 < t < q̂2.

See Figure 5 for an example of a SOPSn of the DDERn when q̂0 = −1.
The following lemma provides a one-to-one correspondence between solutions of

the DDER and solutions of the DDERn as well as between SOPS and SOPSn. The
proof is a straightforward verification and so we omit it.

Lemma 5.5. Let x be a solution of the DDER associated with g. If x̂ ∈ C[−1,∞)

is defined by

(5.13) x̂(t) = x(τt) − L, t ≥ −1,

then x̂ is a solution of the DDERn associated with ĝ. Furthermore, if x is a SOPS
with period p, then x̂ is a SOPSn with period τ−1p. Conversely, let x̂ be a solution of
the DDERn associated with ĝ. If x ∈ C+

[−τ,∞) is defined by

(5.14) x(t) = x̂(τ−1t) + L, t ≥ −τ,

then x is a solution of the DDER associated with g. Furthermore, if x̂ is a SOPSn

with period p̂, then x is a SOPS with period τ p̂.
By the unique correspondence between solutions x of the DDER and x̂ of the

DDERn described in Lemma 5.5, x̂ inherits the following properties from x that are
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described in Lemmas 2.2, 2.3, and 2.4. Again the proof is straightforward and we
omit it.

Lemma 5.6. Suppose that x̂ is a solution of the DDERn. Then x̂ is locally Lips-
chitz continuous on [0,∞) and so is absolutely continuous there. Define ˙̂x : [0,∞) → R

by

˙̂x(t) =

{
τ ĝ(x̂(t), x̂(t− 1)) if x̂(t) > −L,
0 if x̂(t) = −L.

(5.15)

Then dx̂(t)
dt = ˙̂x(t) at the almost every t > 0 that x̂ is differentiable and

(5.16) x̂(t) = x̂(0) +

∫ t

0

˙̂x(s)ds, t ≥ 0.

Furthermore, x̂ is continuously differentiable on open intervals I ⊂ [−1,∞) such that
x̂(t) > −L for all t ∈ I. Moreover, a function x̂ ∈ C[−1,∞) is a solution of the DDERn

if and only if it is absolutely continuous and at the almost every t ∈ (0,∞) where x̂
is differentiable,

(5.17)
dx̂(t)

dt
=

{
τ ĝ(x̂(t), x̂(t− 1)) if x̂(t) > −L,
τ ĝ(x̂(t), x̂(t− 1))+ if x̂(t) = −L.

5.3. Slowly oscillating solutions. In this section we prove that solutions of
the DDERn with initial condition in a certain subset of C[−1,0] are slowly oscillating.
Throughout this section, let G, κ1 and κ2 be as in Lemma 3.3 so that (5.6) holds.
Define

K =
{
ϕ̂ ∈ C[−1,0] : ϕ̂(−1) = 0, ϕ̂(t) ≥ 0 for all t ∈ [−1, 0]

}
,(5.18)

K̂ = {ϕ̂ ∈ K : exp(τκ1·)ϕ̂(·) is nondecreasing on [−1, 0]} ,(5.19)

K̃ =
{
ϕ̂ ∈ K̂ : ‖ϕ̂‖[−1,0] ≤ τG

}
.(5.20)

Then K̃ is a closed, convex, bounded, infinite-dimensional subset of the Banach space
C[−1,0]. The zero element of K̃ is the function ϕ̂ ≡ 0 on [−1, 0].

The following lemma will be used to approximate ĝ(r, s) when both r and s are
in a small neighborhood of zero and are either both positive or both negative.

Lemma 5.7. For each η ∈ (0, 1), there exists δ ∈ (0, L) such that

(5.21) |ĝ(r, s)| ≥ η|Ar +Bs| for all (r, s) ∈ Bδ,

where Bδ = {(r, s) ∈ R2 : rs ≥ 0 and |r|, |s| ≤ δ}.
Proof. In the proof of Lemma 3 in [4], the author proved the above lemma when

A > 0. Here we prove the lemma when A = 0 using a method similar to the one used
to prove Lemma 3 in [4].

Fix η ∈ (0, 1). For a proof by contradiction, suppose that there does not exist
δ ∈ (0, L) for which (5.21) holds (when A = 0). Let {δn}∞n=1 be a sequence in (0, L)
such that δn → 0 as n → ∞. Then there exists a sequence {(rn, sn)}∞n=1 such that
for each n, (rn, sn) ∈ Bδn , sn �= 0 and

(5.22) |ĝ(rn, sn)| < ηB|sn|.
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By the definition of Bδn , we can assume that either rn and sn are both nonnegative
for all n or both nonpositive for all n. We consider the case that they are both
nonnegative for all n, with the case that they are both nonpositive for all n being
similar. By (5.5) and (5.22), for each n, sn > 0 and

(5.23) −ĝ(0, sn) ≤ −ĝ(rn, sn) < ηBsn.

Substituting the first order approximation −ĝ(0, sn) = Bsn+o(sn) into (5.23), divid-
ing by B|sn| on either side, and letting n→ ∞, we arrive at the contradiction 1 ≤ η,
which proves the lemma in the case A = 0.

To prove the existence of SOPSn of the DDERn, we first show that solutions of
the DDERn with initial conditions in K̃ are slowly oscillating. The next lemma is an
adaptation of an analogous result in the unconstrained setting, which is detailed in
Lemma 4 of [4]. The main difference in the following lemma is the presence of the
lower boundary constraint.

Lemma 5.8. Suppose τ > 1/B and ϕ̂ ∈ K̃ \ {0}. Let x̂ ∈ C[−1,∞) be the unique
solution of the DDERn with x̂0 = ϕ̂. Then there is a positive constant Q (depending
only on τ , ĝ and L), and countably many points 0 < q̂1 < q̂2 < · · · such that

(i) x̂(q̂k) = 0 for k = 1, 2, . . . ,
(ii) 0 < q̂1 < Q,

1 < q̂k+1 − q̂k < 1 +Q for k = 1, 2, . . . ,
(iii) x̂(t) > 0 for t ∈ (0, q̂1),

x̂(t) < 0 for t ∈ (q̂2k−1, q̂2k) for k = 1, 2, . . . ,
x̂(t) > 0 for t ∈ (q̂2k, q̂2k+1) for k = 1, 2, . . . ,

(iv) the function exp(τκ1·)x̂(·) is nonincreasing on the intervals (q̂2k−1, q̂2k−1+1)
and nondecreasing on the intervals (q̂2k, q̂2k + 1), for k = 1, 2, . . . , and

(v) x̂(t) ≤ τG for all t ≥ −1.
Furthermore, if lims→∞ ĝ(0, s) exists and is negative, then Q can be chosen to depend
only on ĝ and L.

Remark 5.1. We call q̂1, q̂2, . . . the zeros of x̂.
Proof. Fix τ > 1/B and choose η ∈ (0, 1) such that ητ > 1/B. Let δ ∈ (0, τG∧L)

be such that (5.21) holds. Suppose that ϕ̂ ∈ K̃ \ {0} and x̂ is the unique solution of
the DDERn with x̂0 = ϕ̂. By (5.19), x̂(0) = ϕ̂(0) > 0. Let q̂1 = inf{t ≥ 0 : x̂(t) ≤ 0}.
The negative feedback conditions (5.3) and (5.5) imply that x̂ is nonincreasing on
(0, q̂1). In order to show that x̂ is eventually zero, we first prove that it reaches the
δ neighborhood of zero. Let t1 = inf{t ≥ 0 : x̂(t) ≤ δ}. Suppose that t1 > 1. Then
x̂(0) > δ and x̂ is nonincreasing on [0, t1]. For all t ∈ [1, t1], the drift ĝ(x̂(t), x̂(t− 1))
is bounded above by

−d1 = max{ĝ(r, s) : δ ≤ r, s ≤ τG} < 0.

It then follows from Lemma 5.6 that

(5.24) t1 ≤ 1 +
τG − δ

τd1
.

We show that q̂1 < t1 + 2. For a proof by contradiction, suppose that q̂1 ≥ t1 + 2.
Since x̂ is nonincreasing on [t1, t1 + 1], it follows that x̂(t − 1) ≥ x̂(t1 + 1) for all
t ∈ [t1 + 1, t1 + 2]. Then (5.21) implies that, for all t ∈ [t1 + 1, t1 + 2],

ĝ(x̂(t), x̂(t− 1)) ≤ −η(Ax̂(t) +Bx̂(t− 1)) ≤ −ηBx̂(t1 + 1).
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By Lemma 5.6 and the fact that ητ > 1/B, we see that x̂(t1 + 2) ≤ x̂(t1 + 1) −
τηBx̂(t1+1) < 0, which contradicts the fact that q̂1 ≥ t1+2. With this contradiction
thus obtained, we have

q̂1 < t1 + 2 ≤ 3 +
τG − δ

τd1
≤ 3 +

G

d1
.

Next, we show the derivative of x̂ at q̂1 is negative. If q̂1 ≥ 1, this follows from
Lemma 5.6 and the negative feedback condition implied by (5.3) and (5.5). On the
other hand, if q̂1 < 1, then suppose, for a proof by contradiction, that the derivative
of x̂ at q̂1 is zero. Then ĝ(0, x̂(q̂1− 1)) = 0, which, by the negative feedback condition

on ĝ, implies that x̂(q̂1 − 1) = ϕ̂(q̂1 − 1) = 0. From the definition of K̃, we must
have x̂(t) = ϕ̂(t) = 0 for all t ∈ [−1, q̂1 − 1]. Combining this with (5.5) and (5.6)

implies 0 ≥ ĝ(x̂(t), 0) ≥ −κ1x̂(t) for all t ∈ [0, q̂1]. Thus dx̂(t)
dt ≥ −τκ1x̂(t) for all

t ∈ [0, q̂1] and so x̂(q̂1) ≥ exp(−τκ1q̂1)x̂(0) > 0, contradicting the definition of q̂1.

Hence dx̂(t)
dt |t=q̂1 < 0.

Continuing, we show that x̂ is negative on (q̂1, q̂1 + 1] and exp(τκ1·)x̂(·) is non-
increasing on [q̂1, q̂1 + 1]. Define q̂2 = inf{t > q̂1 : x̂(t) ≥ 0}. We first show that
q̂2 ≥ q̂1 + 1. Suppose, for a proof by contradiction, that q̂2 ∈ (q̂1, q̂1 + 1). Then
q̂2 − 1 ∈ (q̂1 − 1, q̂1), so x̂(q̂2 − 1) ≥ 0. By Lemma 5.6, this would imply that x̂ is non-
increasing in a neighborhood of q̂2, which contradicts the definition of q̂2. Therefore
x̂ is negative on (q̂1, q̂1 + 1). Now, for t ∈ [q̂1, q̂1 + 1] such that x̂(t) > −L, we have x̂
is differentiable at t and

d

dt
(exp(τκ1t)x̂(t)) = exp(τκ1t)(τκ1x̂(t) + τ ĝ(x̂(t), x̂(t− 1)))

≤ τ exp(τκ1t)(κ1x̂(t) + ĝ(x̂(t), 0))

≤ τκ1 exp(τκ1t)(x̂(t) + |x̂(t)|) = 0,

where we have used (5.3) and (5.6). For t ∈ (q̂1, q̂1 + 1] such that x̂(t) = −L and x̂ is
differentiable at t, it follows from Lemma 5.6 that

d

dt
(exp(τκ1t)x̂(t)) = −τκ1L exp(τκ1t) < 0.

Hence, exp(τκ1·)x̂(·) is nonincreasing on [q̂1, q̂1 + 1]. Combining this with the fact
that x̂(t) < 0 for t ∈ (q̂1, q̂1 + 1) we obtain that x̂(q̂1 + 1) < 0.

By employing arguments similar to those above, we can show that q̂2 is bounded,
x̂ is positive on (q̂2, q̂2 + 1], and exp(τκ1·)x̂(·) is nondecreasing on [q̂2, q̂2 + 1]. For
this, let t2 = inf{t ≥ q̂1 +1 : x̂(t) ≥ −δ}. Suppose t2 > q̂1 +2. Then by the definition
of t2 and the fact that x̂ is bounded below by −L, we have x̂(t) ∈ [−L,−δ] for all
t ∈ [q̂1 + 1, t2]. Thus, for all t ∈ [q̂1 + 2, t2], ĝ(x̂(t), x̂(t− 1)) is bounded below by

d2 = min{ĝ(r, s) : −L ≤ r, s ≤ −δ} > 0.

By (5.17), at the almost every t ∈ [q̂1, t2] that x̂ is differentiable, dx̂(t)dt ≥ τd2. Since x̂
is absolutely continuous, it follows that

t2 ≤ q̂1 + 2 +
L− δ

τd2
≤ q̂1 + 2 +

LB

d2
.

We can again use a proof by contradiction, analogous to the one used to prove q̂1 <
t1 + 2, to obtain the bound

(5.25) q̂2 < t2 + 2 < 7 +
G

d1
+
LB

d2
.
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Furthermore, using arguments analogous to the ones used on the interval [q̂1, q̂1+1], we
have the derivative of x̂ at q̂2 is strictly positive, x̂ stays positive for all t ∈ (q̂2, q̂2+1],
and exp(τκ1·)x̂(·) is nondecreasing on [q̂2, q̂2+1]. The main difference here is that we
do not need to consider the case that x̂ is at the lower boundary when showing that
exp(τκ1·)x̂(·) is nondecreasing.

From the above, we see that x̂q̂2+1 ∈ K̂ \ {0}. By (5.5) and (5.6), we have
ĝ(x̂(t), x̂(t − 1)) ≤ ĝ(0, x̂(t − 1)) ≤ G for all t ∈ [q̂2, q̂2 + 1] and so ‖x̂q̂2+1‖[−1,0] ≤
τG. It follows that x̂q̂2+1 ∈ K̃ \ {0} and by shifting the time origin, the preceding
argument can be repeated countably many times to prove that (i)–(iv) hold with
Q = 3 + max(Gd−1

1 , LBd−1
2 ). Furthermore, by the negative feedback condition on

ĝ and the definitions of q̂1 and q̂2, x̂ is nonincreasing on [0, q̂1] and nonpositive on
[q̂1, q̂2]. Therefore x̂(t) ≤ τG for all t ∈ [−1, q̂2] and the argument can be repeated
countably many times to complete the proof of (v).

To see that the final line in the lemma holds, suppose that lims→∞ ĝ(0, s) < 0.
Then sup{ĝ(0, s) : δ ≤ s < ∞} < 0, where we have used continuity and the negative
feedback condition on ĝ. Furthermore, by (5.5),

−d†1 = sup{ĝ(r, s) : δ ≤ r, s <∞} ≤ sup{ĝ(0, s) : δ ≤ s <∞} < 0.

Then we can use d†1 in place of d1 in (5.24). Since d2 does not depend on τ , it follows
that Q can be chosen to depend only on ĝ and L.

For the remainder of the section, we fix a delay τ as in Lemma 5.8. Consider the
function Λ : K̃ → C[−1,0] defined by

(5.26) Λ(ϕ̂) =

{
0 if ϕ̂ ≡ 0,

x̂q̂2+1 if ϕ̂ �≡ 0,

where x̂ denotes the unique solution of the DDERn with x̂0 = ϕ̂ and q̂2 is the second
zero of x̂, as in Lemma 5.8. In Lemma 5.11, we will show that Λ is a continuous
mapping from K̃ into itself. It will then follow from Lemma 5.8 that nonconstant
fixed points of Λ are initial conditions for SOPSn of the DDERn. The following two
lemmas are used in the proof of Lemma 5.11 to show that Λ is continuous. The first
lemma proves continuity of solutions of the DDERn in their initial condition on the
set K̃. For the following lemma, recall that we have equipped R2 with the Euclidean
norm.

Lemma 5.9. There exists a positive constant Kg <∞ such that

(5.27) |ĝ(r, s)− ĝ(r†, s†)| ≤ Kg|(r, s)− (r†, s†)| for all r, s, r†, s† ∈ [−L, τG].

Furthermore, whenever x̂ and x̂† are solutions of the DDERn with x̂0, x̂
†
0 ∈ K̃, then

(5.28) ‖x̂− x̂†‖[−1,t] ≤ 2 exp(2Kgt)‖x̂0 − x̂†0‖[−1,0] for all t ≥ 0.

Proof. The bound (5.27) is due to the Lipschitz continuity of g on the compact
rectangle [−L, τG]× [−L, τG]. For the proof that (5.28) holds, let t ≥ 0. Part (v) of
Lemma 5.8 implies that x̂(s), x̂†(s) ∈ [−L, τG] for all s ∈ [−1, t]. Using (5.9), (5.27)
and taking supremums over s ∈ [0, t], we have

‖ẑ − ẑ†‖[0,t] ≤ ‖x̂0 − x̂†0‖[−1,0] +Kg

∫ t

0

‖x̂− x̂†‖[−1,s]ds.
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Since x̂|[0,∞) + L = Φ(ẑ + L), we can apply Proposition A.1 and then extend the
supremum norm on the left to the interval [−1, t] to obtain

‖x̂− x̂†‖[−1,t] ≤ 2‖x̂0 − x̂†0‖[−1,0] + 2Kg

∫ t

0

‖x̂− x̂†‖[−1,s]ds.

Since t ≥ 0 was arbitrary, (5.28) follows from Gronwall’s inequality.
Lemma 5.10. The function ϕ̂ → q̂2, where q̂2 is the second zero of x̂ as defined

in Lemma 5.8, is continuous as a function from K̃ \ {0} into [0,∞).

Proof. Fix ϕ̂ ∈ K̃ \ {0}. Let x̂ denote the associated solution of the DDERn and
let q̂1 and q̂2 be as in Lemma 5.8. By part (iii) of Lemma 5.8, q̂2 is bounded by 1+2Q,
which only depends on τ , ĝ, and L. Choose η ∈ (0, 12 ) such that 0 < q̂1− η < q̂1+ η <

q̂2 − η. It follows from (5.28) that we can choose ε > 0 so that whenever ϕ̂† ∈ K̃
satisfies ‖ϕ̂− ϕ̂†‖[−1,0] < ε and x̂† denotes the solution of the DDERn with x̂†0 = ϕ̂†,
then x̂† is positive on [0, q̂1− η], negative on [q̂1+ η, q̂2− η], and positive on [q̂2+ η, p̂].
Then, by the continuity of x̂† and the fact that the zeros of x̂† must be separated by

at least one, we have q̂†1 ∈ (q̂1 − η, q̂1 + η) and q̂†2 ∈ (q̂2 − η, q̂2 + η), where q†1 and q†2
are the zeros of x̂†, proving the desired continuity result.

Lemma 5.11. The function Λ is a continuous and compact function that maps
K̃ into K̃.

Proof. By Lemma 5.8, Λ maps K̃ into itself. Since q̂2 < 1 + 2Q, (5.28) implies
that Λ is continuous at ϕ̂ ≡ 0. The continuity of Λ at ϕ̂ �≡ 0 follows from (5.28),
the bound on q̂2, and Lemma 5.10. The compactness property of Λ is implied by the
theorem of Arzelà and Ascoli, since x̂ is bounded and differentiable on [q̂2, q̂2+1] with
its derivative on the interval uniformly bounded by

|τ ĝ(x̂(t), x̂(t− 1))| ≤ τ · sup {|ĝ(r, s)| : (r, s) ∈ [0, τG]× [−L, 0]} <∞,

where we have used that ĝ is continuous on this compact set.

5.4. Ejective equilibrium solution. In order to prove the existence of a SOPS,
it remains to show that the zero solution of the DDERn is an ejective fixed point for
Λ. It will then follow from Theorem 5.2 that there exists another fixed point that is
nonejective which will correspond to a SOPSn. The following lemma is the analogue
of Lemma 6 in [4].

Lemma 5.12. Let τ0 be given by (3.8). If τ > τ0, then ϕ̂ ≡ 0 is an ejective fixed
point of Λ.

Proof. As in the proof of Lemma 6 in [4], we claim that there exists γ ∈ (0, L) such

that whenever x̂ is a solution of the DDERn with x̂0 ∈ K̃ \ {0} and 0 < q̂1 < q̂2 < · · ·
are the zeros of x̂ defined as in Lemma 5.8, then

(5.29) sup{|x̂(t)| : t ≥ q̂k} ≥ γ for all k = 1, 2, . . . .

Observe that by part (v) of Lemma 5.8, the supremum in (5.29) is bounded, though
it is not necessarily achieved. For a proof by contradiction, suppose that for each
γ ∈ (0, L), there is a SOPSn x̂ with x̂0 ∈ K̃ \ {0} such that sup{|x̂(t)| : t ≥ q̂2k} < γ
for some k = 1, 2, . . . , where 0 < q̂1 < q̂2 < · · · denote the zeros of x̂. Since
x̂(t) > −γ > −L for all t ≥ q̂2k, it follows that ŷ is constant on [q̂2k,∞). Thus,

given x̂q̂2k+1 (which lies in K̃ \ {0} by Lemma 5.8), the dynamics of x̂ on [q̂2k +1,∞)
are identical in the constrained and unconstrained settings. In particular, this implies
that the unique solution x̃ to the related unconstrained delay differential equation
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with x̃0 = x̂q̂2k+1 ∈ K̃\ {0} satisfies sup{|x̃(t)| : t ≥ 0} < γ. However, this contradicts
the first part of the proof of Lemma 6 in [4], yielding the desired contradiction.

We are left to show there exists δ > 0 such that given any ϕ̂ ∈ K̃ \ {0}, there
exists a positive integer n such that

‖Λn(ϕ̂)‖[−τ,0] > δ.

The proof closely follows the latter half of the proof of Lemma 6 in [4] and we briefly

summarize it here. Fix 0 < δ < γ
τκ2

∧γ. Let ϕ̂ ∈ K̃ \ {0}, x̂ denote the solution of the
DDERn with x̂0 = ϕ̂, and 0 < q̂1 < q̂2 < · · · denote the zeros of x̂. By the negative
feedback condition on ĝ, for each k = 1, 2, . . . , we can choose σk ∈ [q̂k, q̂k + 1] such
that |x̂(σk)| = ‖x̂‖[q̂k,q̂k+1]. It suffices to show that x̂(σ2k) > δ for some k ≥ 1. For a
proof by contradiction, suppose that

(5.30) |x̂(σ2k)| ≤ δ < γ for k = 1, 2, . . . .

By (5.4), (5.6), and our choice of δ, for each k = 1, 2, . . . and t ∈ [q̂2k+1, q̂2k+1 + 1],

0 ≥ τ ĝ(x̂(t), x̂(t− 1)) ≥ τ ĝ(0, x̂(t− 1)) ≥ −τκ2|x̂(t− 1)| ≥ −τκ2δ > −γ.

It follows from Lemma 5.6 that |x̂(σ2k+1)| < τκ2δ < γ for all k = 1, 2, . . . . This
combined with (5.30) implies that |x̂(σk)| < max(τκ2δ, δ) < γ for all k = 2, 3, . . . ,
which, in light of our definition of σk, contradicts (5.29). With this contradiction thus
obtained, we have ‖x̂q̂2k+1‖[−1,0] > δ for some k ≥ 1, completing the proof.

5.5. Proof of existence.
Proof of Theorem 3.4. By Browder’s fixed point theorem, the mapping Λ : K̃ → K̃

has a nonejective fixed point. By Lemma 5.12, the constant function ϕ̂ ≡ 0 is an
ejective fixed point of Λ and so there must be another fixed point ϕ̂ ∈ K̃ \ {0}.
Let x̂ denote the unique solution of the DDERn with x̂0 = ϕ̂. Since the DDERn

is autonomous, it follows that x̂ is periodic with period p̂ = q̂2 + 1. Moreover, by
Lemma 5.8, x̂ is a SOPSn. Last, it follows from Lemma 5.5 that the associated
solution x, defined via (5.14), is a SOPS.

6. Uniqueness and stability of SOPS. In this section we prove Theorem
3.8, which provides sufficient conditions for the uniqueness and exponential stability
of SOPS to the DDER. Both our proof of uniqueness and our proof of exponential
stability follow a general outline similar to arguments used by Xie [80, 81], where
similar results were proved for the unconstrained setting. However, some substantial
additional difficulties arise in our context due to the lower boundary constraint.

Throughout this section we assume that f in (1.1) is of the form exhibited in
(3.9) and that h satisfies Assumption 3.3. In sections 6.3–6.7, we additionally assume
that h satisfies Assumption 3.4.

Intuitively, our proof proceeds as follows. As the delay τ increases, the amplitude
of an associated SOPS will grow approximately linearly with τ . As a result, for large
delays, any SOPS x∗ will spend “most” of its time either at the lower boundary
or “far” above the equilibrium point. Since h′ converges to zero at infinity (see
Assumption 3.4), perturbations of x∗(t − τ), for x∗(t − τ) large, will have a small
effect on the drift. This, together with the fact that a SOPS x∗ cannot be linearly
perturbed when at the boundary, will imply that x∗ is exponentially stable. More
specifically, when the delay τ is sufficiently large, we can construct a variant of a
Poincaré map Γ defined on a neighborhood of x∗0 in C+

[−τ,0], such that Γ is continuously
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Fréchet differentiable on the neighborhood and its derivative operator evaluated at
x∗0, DΓ(x∗0), has norm less than one. By using the approximation

‖Γ(x0)− x∗0‖[−τ,0] ≈ ‖DΓ(x∗0)‖‖x0 − x∗0‖[−τ,0] < ‖x0 − x∗0‖[−τ,0],

for x0 ∈ C+
[−τ,0] in a small neighborhood of x∗0, we will show that x∗ is exponentially

stable. Then, by an argument involving fixed point indices, we show that if every
SOPS of the DDER is exponentially stable, as is the case for sufficiently large delays
τ , then there is at most one SOPS (up to time translation).

There are two main differences between our approach and that of Xie. First,
the main technical difference is the argument by Xie relies on previously developed
theory for a VE along a solution of an unconstrained delay differential equation, which
does not apply in the constrained setting. Here we develop a VE along constrained
solutions. This is done for our current setting in section 6.4 and more generally in
Appendix B and may be of independent interest. Second, in contrast to [80], we do
not allow the drift function to have a linear dependence on the current state x∗(t).
In the unconstrained setting, a transformation can be used to reduce the equation to
one in which the drift depends only on the delayed state. Here, such a transformation
is not readily available to us due to the effect of the lower boundary constraint.

6.1. Normalized solutions. As in section 5.2, we normalize solutions of the
DDER (1.1) by subtracting off L and rescaling time so that the normalized delay
interval is of length one. We will work with solutions of the normalized DDER, or
DDERn for short, in sections 6.1 and 6.2.

Let ĥ : [−L,∞) → R be the normalized function defined by

(6.1) ĥ(s) = h(s+ L), s ≥ −L.

We note some important properties that ĥ inherits from h. By Assumption 3.3, ĥ
is continuously differentiable on [−L,∞), lims→∞ ĥ(s) = −α, ĥ(−L) = β, ĥ(0) = 0,

ĥ′(0) < 0, sĥ(s) < 0 for all s �= 0, and ĥ is bounded by H . On setting g(r, s) = h(s)
for all r, s ≥ 0, Assumption 3.3 implies that Assumptions 3.1 and 3.2 hold for g and

that ĝ(r, s) = ĥ(s) for all r, s ≥ −L, where ĝ is defined in (5.1). Hence, the definitions
and results from section 5 hold for g and ĝ so defined from h.

The following three propositions are used to further describe ĥ. They are adapted
from Remark 1 and Lemma 1 of [52] and Lemma 5 of [80]. The main difference is

that ĥ is defined only on [−L,∞), whereas the function f in [52, 80] is defined on the
whole real line. The proofs found in [52, 80] can be readily adapted for our current

setting. The first proposition is a straightforward consequence of the facts that ĥ is
continuous, satisfies a negative feedback condition, and has a finite nonzero limit at
infinity, ĥ(0) = 0, and ĥ′(0) < 0.

Proposition 6.1. There exists C ≥ 1 such that ĥ(r1) ≥ Cĥ(r2) for all 0 ≤ r1 ≤
r2 <∞ and ĥ(s1) ≤ Cĥ(s2) for all −L ≤ s2 ≤ s1 ≤ 0.

Proposition 6.2. There exists d > 0 such that

(6.2)

∫ r

s

ĥ(u)du ≥ d

C2
(r − s)|s| for all − L ≤ s ≤ r ≤ 0.

Proof. Define Ĥ(s, r) =
∫ r
s ĥ(u)du for all r, s ∈ [−L, 0]. Since ĥ is continuous,

continuously differentiable, and satisfies a negative feedback condition, ĥ(0) = 0, and
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ĥ′(0) �= 0, there exists d > 0 such that |Ĥ(s, 0)| ≥ d|s|2 for all s ∈ [−L, 0]. If

−L ≤ s < r ≤ 0, then by Proposition 6.1, 0 ≤ Ĥ(r, 0) ≤ C|r|ĥ(r) and Ĥ(s, r) ≥
C−1(r − s)ĥ(r) > 0, which imply the following:

Ĥ(s, r) =
Ĥ(s, 0)

1 + Ĥ(r, 0)Ĥ(s, r)−1
≥ Ĥ(s, 0)

1 + C2|r|(r − s)−1

≥ ds2(r − s)

r − s+ C2|r|

≥ d

C2
(r − s)|s|,

where the last inequality uses the fact that |s|
r−s+C2|r| ≥ 1

C2 for all −L ≤ s < r
≤ 0.

Proposition 6.3. Given M > m > 0, there exist two constants γ(1) > 0
and τ (1) ≥ τ0 (depending on m,M and ĥ) such that, if m ≤ r ≤ M , rs ≥ −L,
|s| ≥ τ |ĥ(rs)|, and τ ≥ τ (1), then

|s| > γ(1)τ.

Proof. Briefly, the proof is as follows. Due to the facts that ĥ′(0) < 0, sĥ(s) < 0 for

all s �= 0 and lims→∞ ĥ(s) = −α, it follows that there exist constants a, b, c ∈ (0,∞)

and δ ∈ (0, L) such that |s(ĥ(s))−1| ∈ (a, b) for all |s| ≤ δ, and |ĥ(s)| ≥ c for

all s ∈ [−L,−δ] ∪ [δ,∞). Combining, we see that |s(ĥ(s))−1| < b + |s|c−1 for all

s ∈ [−L,∞). Thus, if m ≤ r ≤M , rs ≥ −L, and |s| ≥ τ |ĥ(rs)|, we have

mτ ≤ |rs(ĥ(rs))−1| < b+ |rs|c−1,

and so

|s| > c

(
mτ − b

M

)
≥ γ(1)τ for all τ ≥ τ (1),

where γ(1) = 1
2 cmM

−1 and τ (1) = 2m−1b.
Throughout the remainder of this section let x̂∗ denote a SOPSn with q̂0 = −1

and let ẑ∗ and ŷ∗ be defined as in (5.9) and (5.10) with ĝ(r, s) = ĥ(s) and with x̂∗, ŷ∗

and ẑ∗ in place of x̂, ŷ, and ẑ, respectively. For the following, note that we can use
G = sup{h(s) : s ≥ 0} ∈ (0,∞) for the G in Lemma 3.3.

Lemma 6.4. The SOPSn x̂∗ is continuously differentiable on [−1, q̂1] and (q̂1 +
1, q̂2]; increasing on [−1, 0), decreasing on (0, q̂1], nonincreasing on [q̂1, q̂1 + 1], and
increasing on (q̂1 + 1, q̂2]; and bounded above by τG. Furthermore, x̂∗ and ẑ∗ satisfy

x̂∗(t) = ẑ∗(t) for t ∈ [0, q̂1],(6.3)

x̂∗(t) = max(ẑ∗(t),−L) for t ∈ [q̂1, q̂1 + 1].(6.4)

Proof. By (5.9) and the continuity of ĥ and x̂∗, ẑ∗ is continuously differentiable
on [0,∞). Since x̂∗ is above the lower boundary on [0, q̂1], ŷ

∗ is zero there and (6.3)

follows from (5.8). By (5.9), with ĝ(r, s) = ĥ(s), (6.3), and the negative feedback

condition on ĥ, x̂∗ is continuously differentiable and decreasing on (0, q̂1] and ẑ∗ is
nonincreasing on [0, q̂1 + 1]. Thus, (5.10) implies that ŷ∗(t) = (ẑ∗(t) + L)− for all
t ∈ [0, q̂1 + 1]. Substituting into (5.8), we obtain (6.4) and hence x̂∗ is nonincreasing
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on [q̂1, q̂1 + 1]. By (5.9) and the negative feedback condition on ĥ, ẑ∗ is increasing
on (q̂1 + 1, q̂2 + 1). From (5.10), we see that ŷ∗ is constant on [q̂1 + 1, q̂2 + 1] and it
follows from (5.8) and (5.9) that x̂∗ is continuously differentiable on (q̂1 + 1, q̂2 + 1]
and increasing on (q̂1 +1, q̂2 +1). Last, the upper bound on x̂∗ follows from the facts
that x̂∗ is periodic with period q̂2 + 1, decreasing on (0, q̂1), negative on (q̂1, q̂2),
and continuously differentiable on [q̂2, q̂2 + 1] with its derivative bounded by τG
there.

The following lemma has been adapted from Lemma 3 in [52] for our use.
Lemma 6.5. Suppose q̂1 + 1 ≤ t1 < t2 ≤ q̂1 + 2. Then

(6.5) x̂∗(t) ≤ C(t− t1)x̂
∗(t2) + (t2 − t)x̂∗(t1)

C(t− t1) + (t2 − t)
, t ∈ [t1, t2].

Proof. If t = t1 or t = t2, then equality holds in (6.5). Fix t ∈ (t1, t2) and let
t0 ∈ (t1, t). By Lemma 6.4 and the periodicity of x̂∗, x̂∗ is continuously differentiable
and above the lower boundary on [t0, t2], so the mean value theorem and Lemma 5.6
imply there exist s1 ∈ (t0, t) and s2 ∈ (t, t2) such that

x̂∗(t)− x̂∗(t0)
t− t0

= τĥ(x̂∗(s1 − 1)) and
x̂∗(t2)− x̂∗(t)

t2 − t
= τĥ(x̂∗(s2 − 1)).

Applying Proposition 6.1 and the fact that x̂∗ is nonincreasing on [q̂1, q̂1 + 1], we
obtain the inequality

x̂∗(t)− x̂∗(t0)
t− t0

≤ C · x̂
∗(t2)− x̂∗(t)
t2 − t

,

which, after rearranging, yields

x̂∗(t) ≤ C(t− t0)x̂
∗(t2) + (t2 − t)x̂∗(t0)

C(t− t0) + (t2 − t)
, t ∈ [t0, t2].

Since the above inequality holds for all t0 ∈ (t1, t), (6.5) follows from the continuity
of x̂∗.

In Lemmas 6.6, 6.7, and 6.8 below, we provide estimates for x̂∗ that depend on
the size of q̂2,1, where we have defined q̂2,1 = q̂2 − q̂1 − 1. The lemmas and their
proofs have been adapted from Lemmas 8, 10, and 11 in [80]. The main difference
is that the SOPSn x̂∗ is bounded below by −L and the drift term does not have
(a linear) dependence on x̂∗(t). In the following, C and d are the constants from
Propositions 6.1 and 6.2.

Lemma 6.6. If q̂2,1 ≤ 1, then

x̂∗(t) ≥ |x̂∗(q̂1 + 1)|
C2

· t− q̂2
q̂2,1

, t ∈ [q̂2, q̂1 + 2],(6.6)

x̂∗(t) ≥ |x̂∗(q̂1 + 1)|
C2

·
[
1− q̂2,1
q̂2,1

+
τd

C2
(t− q̂1 − 2)

]
, t ∈ [q̂1 + 2, q̂2 + 1].(6.7)

Proof. Suppose that q̂2,1 ≤ 1. Since x̂∗ is nonpositive and nonincreasing on
[q̂1, q̂1+1] and x̂∗(t) > −L for all t ∈ (q̂1+1, q̂1+2], we have the following inequalities:

−x̂∗(q̂1 + 1) = τ

∫ q̂2

q̂1+1

ĥ(x̂∗(s− 1))ds ≤ Cτĥ(x̂∗(q̂2 − 1))q̂2,1,

(6.8)

x̂∗(t) = τ

∫ t

q̂2

ĥ(x̂∗(s− 1))ds ≥ C−1τĥ(x̂∗(q̂2 − 1))(t− q̂2), t ∈ [q̂2, q̂1 + 2],(6.9)
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where we have used Lemma 5.6 and Proposition 6.1. Combining (6.8) and (6.9) yields
(6.6).

Letting t1 = q̂1 + 1 and t2 = q̂2 in (6.5), we see that

(6.10) x̂∗(t) ≤ (q̂2 − t)x̂∗(q̂1 + 1)

C(t− q̂1 − 1) + (q̂2 − t)
≤ x̂∗(q̂1 + 1)

Cq̂2,1
(q̂2 − t), t ∈ [q̂1 + 1, q̂2],

where the last inequality holds because x̂∗(q̂1+1) < 0 and C ≥ 1. Then by Lemma 5.6,
Proposition 6.1, (6.10), and (6.2), we have, for t ∈ [q̂1 + 2, q̂2 + 1],

x̂∗(t)− x̂∗(q̂1 + 2) = τ

∫ t−1

q̂1+1

ĥ(x̂∗(s))ds

≥ τ

C

∫ t−1

q̂1+1

ĥ

(
x̂∗(q̂1 + 1)

Cq̂2,1
(q̂2 − s)

)
ds

≥ τ q̂2,1
|x̂∗(q̂1 + 1)|

∫ x̂∗(q̂1+1)(q̂2−t+1)/Cq̂2,1

x̂∗(q̂1+1)/C

ĥ(u)du

≥ τd

C4
|x̂∗(q̂1 + 1)|(t− q̂1 − 2).

The estimate (6.7) then follows from the above inequality and (6.6).
Lemma 6.7. If 1 ≤ q̂2,1 ≤ 3/2, then

x̂∗(q̂1 + 3) ≥ τd

4C4
|x̂∗(q̂1 + 1)|.(6.11)

Proof. Suppose that 1 ≤ q̂2,1 ≤ 3/2. Letting t1 = q̂1 + 1 and t2 = q̂1 + 2 in (6.5),
we have, for t ∈ [q̂1 + 1, q̂1 + 2],

x̂∗(t) ≤ C(t− q̂1 − 1)x̂∗(q̂1 + 2) + (q̂1 + 2− t)x̂∗(q̂1 + 1)

C(t− q̂1 − 1) + (q̂1 + 2− t)
(6.12)

≤ x̂∗(q̂1 + 1)

C
(q̂1 + 2− t),

where the last inequality holds because x̂∗(q̂1 +1) and x̂∗(q̂1 +2) are nonpositive and
C ≥ 1. By Lemma 5.6, Proposition 6.1, (6.12), and (6.2), we have

x̂∗(q̂1 + 3) = τ

∫ q̂1+2

q̂2−1

ĥ(x̂∗(s))ds(6.13)

≥ τ

C

∫ q̂1+2

q̂2−1

ĥ

(
x̂∗(q̂1 + 1)

C
(q̂1 + 2− s)

)
ds

≥ τ

|x̂∗(q̂1 + 1)|

∫ 0

x̂∗(q̂1+1)(2−q̂2,1)/C
ĥ(u)du

≥ τd

C4
|x̂∗(q̂1 + 1)|(2− q̂2,1)

2.

The estimate (6.11) then follows since 1 ≤ q̂2,1 ≤ 3/2.

Lemma 6.8. There exists τ (2) ≥ τ0 (depending only on ĥ) such that if τ > τ (2),
then q̂2,1 < 3/2.

Proof. Let δ ∈ (0, 1/2) and set r = δC−1. Choose constants m and M satisfying
0 < m < r < M . Let γ(1) > 0 and τ (1) ≥ τ0 be such that Proposition 6.3 holds.
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Then set τ (2) = τ (1) ∨ LC(δγ(1))−1. Fix τ > τ (2) and suppose q̂2,1 ≥ 3/2. We will
obtain a contradiction. Since q̂1 + 1 < q̂2 − 1 − δ, we have x̂∗(t) ∈ (−L, 0] and x̂∗

is increasing and differentiable with dx̂∗(t)
dt = τĥ(x̂∗(t − 1)) at all t ∈ [q̂2 − 1 − δ, q̂2].

Then by Proposition 6.1, we obtain the inequality

x̂∗(q̂2 − 1) < x̂∗(q̂2 − δ) = −τ
∫ q̂2

q̂2−δ
ĥ(x̂∗(s− 1))ds ≤ −τδC−1ĥ(x̂∗(q̂2 − 1)).

It follows from the conclusion of Proposition 6.3, with s = x̂∗(q̂2 − 1)Cδ−1, that

(6.14) x̂∗(q̂2 − 1) ≤ −τδγ(1)C−1 < −L,

a contradiction. Therefore, we must have q̂2,1 < 3/2.

Lemma 6.9. There exist τ (3) ≥ τ0 and γ > 0 (both depending only on ĥ) such
that if τ > τ (3), then

(6.15) ‖x̂∗‖[−1,∞) ≥ τγ.

Proof. Note that we can define a function h̃ : R → R such that h̃(s) = ĥ(s) for
all s ∈ [−L,∞), h̃ is continuously differentiable, sh̃(s) < 0 for all s �= 0, h̃′(0) < 0,

and lims→−∞ h̃(s) exists and is positive. Then −h̃ satisfies the condition H1 in [80].
Therefore, we can apply Theorem 12 in [80] (with τ in place of ε−1) to obtain that
there exist τ† ≥ τ0 and γ† > 0 (depending only on h̃) such that if τ > τ† and x̂∗ is

a SOPS of the unconstrained delay differential equation dx̂∗(t)
dt = τh̃(x̂∗(t − 1)), then

(6.15) is satisfied with γ† in place of γ.
Now define

τ (3) = max

(
τ†, τ (2),

8LC

|ĥ(L/C2)|
,
16L

β

)
,(6.16)

γ = min

(
γ†,

|ĥ(L/C2)|
4C

,
dL

4C4
,
β

16

)
,(6.17)

and assume that τ > τ (3) and x̂∗ is a SOPSn. We treat the following two cases
separately. First, consider the case that x̂∗(t) > −L for all t ≥ −1. Then the
dynamics of x̂∗ are the same as in the unconstrained case, so x̂∗ is a solution of the

unconstrained delay differential equation dx̂∗(t)
dt = τh̃(x̂∗(t− 1)). By our choice of τ (3)

and γ, (6.15) is satisfied.
Next, consider the case that x̂∗(t) = −L for some t ≥ −1. From (5.12), Lemma 6.4,

and the periodicity of x̂∗, we see that x̂∗ has a global minimum at q̂1+1, so x̂∗(q̂1+1) =
−L. By our choice of τ (3) and Lemma 6.8, q̂2,1 < 3/2. Suppose that 1 ≤ q̂2,1 < 3/2.
By (6.11) and (6.17), we have x̂∗(q̂1 + 3) ≥ τdL

4C4 ≥ τγ. Next, suppose that 1/2 ≤
q̂2,1 ≤ 1. By (6.7) and (6.17), we have x̂∗(q̂2 + 1) ≥ τdL

2C4 ≥ τγ. Finally, suppose that
0 < q̂2,1 ≤ 1/2. For a proof by contradiction, assume that (6.15) does not hold. Then
(6.6), (6.7), and the periodicity of x̂∗ imply that x̂∗(t) ≥ L

C2 for all q̂2+1/2 ≤ t ≤ q̂2+1.
By periodicity, the estimate holds for all −1/2 ≤ t ≤ 0 as well. It then follows from
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(5.9), (6.3), Proposition 6.1, and (6.17) that for 1/2 ≤ t ≤ 1,

ẑ∗(t) ≤ x̂∗(0) + τ

∫ t

1/2

ĥ(x̂∗(s− 1))ds

< τγ − τ

C
|ĥ(L/C2)|(t− 1/2)

≤ − τ

C
|ĥ(L/C2)| (t− 3/4) .

From (6.16), we see that ẑ∗(t) ≤ −L for all t ∈ [7/8, 1] and so x̂∗(t) = −L there.
Thus, by (5.8), (5.9), and the fact that ŷ∗ is nondecreasing,

x̂∗(2) ≥ x̂∗(15/8) + τ

∫ 2

15/8

ĥ(−L)ds ≥ −L+
τβ

8
≥ τγ,

a contradiction. With the contradiction thus obtained, (6.15) must hold if τ > τ (3),
q̂2,1 ≤ 1/2, and x̂∗(t) = −L for some t ≥ −1, completing the proof.

6.2. Convergence of scaled SOPSn. In this section we prove the convergence
of scaled SOPSn as τ goes to infinity. Throughout this section we assume that h
satisfies Assumption 3.3.

Define τ0 > 0 as in (3.11). By Theorem 3.4 and Lemma 5.5, given τ > τ0, there
exists a SOPSn x̂∗ of the DDERn. Since the DDERn is autonomous by performing
a time shift on x̂∗, we can assume that q̂0 = −1. Define the scaled functions x̄∗ ∈
C[−1,∞), ȳ

∗ ∈ C+
[0,∞), and z̄

∗ ∈ C[0,∞) by

x̄∗(t) = τ−1x̂∗(t), t ≥ −1,(6.18)

ȳ∗(t) = τ−1ŷ∗(t), t ≥ 0,(6.19)

z̄∗(t) = τ−1ẑ∗(t), t ≥ 0.(6.20)

By (5.8)–(5.10) and (6.18)–(6.20), x̄∗, ȳ∗, and z̄∗ satisfy

x̄∗(t) = z̄∗(t) + ȳ∗(t), t ≥ 0,(6.21)

z̄∗(t) = x̄∗(0) +
∫ t

0

ĥ(τx̄∗(s− 1))ds, t ≥ 0,(6.22)

where

(6.23) ȳ∗(t) = sup
0≤s≤t

(z̄∗(s) + τ−1L)−, t ≥ 0.

By adding τ−1L to both sides of (6.21), we see that (x̄∗|[0,∞)+ τ
−1L, ȳ∗) is a solution

of the one-dimensional Skorokhod problem for z̄∗ + τ−1L (see Appendix A).
In the following lemma we prove that x̄∗ is uniformly Lipschitz continuous with

a Lipschitz constant that depends only on h. Note that Lemma 3.5 and (6.1) imply

that H = sup{|ĥ(s)| : s ∈ [−L,∞)} <∞.
Lemma 6.10. The scaled functions x̄∗, ȳ∗, and z̄∗ satisfy, for 0 ≤ s < t <∞,

|x̄∗(t)− x̄∗(s)| ≤ H |t− s|,(6.24)

|ȳ∗(t)− ȳ∗(s)| ≤ H |t− s|,(6.25)

|z̄∗(t)− z̄∗(s)| ≤ H |t− s|.(6.26)

Since x̄∗ is periodic, (6.24) in fact holds for −1 ≤ s < t <∞.



4496 DAVID LIPSHUTZ AND RUTH J. WILLIAMS

Fig. 6. Graph of x̄ as described in (6.27).

Proof. By (6.22) and the bound on ĥ, (6.26) holds. Then by Proposition A.2 and
because Osc(z̄∗, [s, t]) ≤ H |t − s| for all 0 ≤ s ≤ t < ∞, it follows that (6.24) and
(6.25) hold.

Recall the definitions of α and β from Assumption 3.3. Let q̄ = α−1β. Define
x̄ ∈ C+

[−1,∞) to be a periodic function with period q̄ + 2 satisfying

(6.27) x̄(t) =

⎧⎪⎨⎪⎩
β(t+ 1) for t ∈ [−1, 0],

β − αt for t ∈ [0, q̄],

0 for t ∈ [q̄, q̄ + 1].

See Figure 6 for a graph of x̄. Define z̄ ∈ C[0,∞) and ȳ ∈ C+
[0,∞) by

z̄(t) = x̄(0) +

∫ t

0

h̄(x̄(s− 1))ds, t ≥ 0,(6.28)

ȳ(t) = sup
0≤s≤t

(z̄(s))−, t ≥ 0,(6.29)

where

(6.30) h̄(s) =

{
−α if s > 0,

β if s = 0.

Note that (x̄|[0,∞), ȳ) is the unique solution of the one-dimensional Skorokhod problem
for z̄ (see Appendix A).

Theorem 6.11. Suppose {τn}∞n=1 is a sequence in (τ0,∞) such that τn → ∞ as
n → ∞. For each n, let x̂τn be a SOPSn with delay τn, zeros −1, q̂τn1 , q̂τn2 , . . . , and
period p̂τn = q̂τn2 +1. Define x̄τn , ȳτn, and z̄τn as in (6.18)–(6.20), but with τn, x̄

τn , ȳτn ,
z̄τn, x̂τn , ŷτn , and ẑτn in place of τ , x̄∗, ȳ∗, z̄∗, x̂∗, ŷ∗, and ẑ∗, respectively. Then
(x̄τn , ȳτn , z̄τn , q̂τn1 , q̂τn2 , p̂τn) converges to (x̄, ȳ, z̄, q̄, q̄ + 1, q̄ + 2) in C[−1,∞) × C[0,∞) ×
C[0,∞) × R+ × R+ × R+ as n→ ∞.

Proof. For each n ≥ 1, x̄τn(−1) = 0 and (6.24)–(6.26) hold with x̄τn , ȳτn ,
and z̄τn in place of x̄∗, ȳ∗, and z̄∗, respectively. Thus, on each compact interval
in [−1,∞) (resp., [0,∞), [0,∞)), the functions x̄τn (resp., ȳτn , z̄τn), n ≥ 1, are
uniformly bounded and Lipschitz continuous. Therefore, by the theorem of Arzelá
and Ascoli and a diagonal sequence argument, there is a subsequence, also denoted
{τn}∞n=1, and a triple (x̄†, ȳ†, z̄†) in C[−1,∞) × C[0,∞) × C[0,∞) such that x̄τn , ȳτn , and

z̄τn converge to x̄†, ȳ†, and z̄† uniformly on compact intervals in [−1,∞), [0,∞),

and [0,∞), respectively, as n → ∞. Letting ĝ(r, s) = ĥ(s), then part (ii) and the
last line of Lemma 5.8 imply that {(q̂τn1 , q̂τn2 )}∞n=1 is uniformly bounded and hence
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relatively compact in R2
+. Therefore, by taking a further subsequence if necessary, we

can assume that q̂τn1 , q̂τn2 , and p̂τn = q̂τn2 + 1 converge to nonnegative real numbers

q̄†1, q̄
†
2 and p̄† = q̄†2 + 1, respectively, as n→ ∞.
By (5.12), Lemma 6.4, and the above convergence results, it follows that x̄† is

periodic with period p̄†, q̄†2 ≥ q̄†1 + 1, z̄†(t) = x̄†(t) for all t ∈ [0, q̄†1], x̄
†(t) ≥ 0 for

all t ≥ −1, x̄†(t) = 0 for all t ∈ [q̄†1, q̄
†
2], x̄

† is nondecreasing on [−1, 0], and x̄† is

nonincreasing on [0, q̄†1]. Lemma 6.9 implies x̄† is nontrivial, so there exist t1 ∈ [−1, 0)

and t2 ∈ (0, q̄†1] such that

x̄†(t) = 0, t ∈ [−1, t1],

x̄†(t) > 0, t ∈ (t1, t2),(6.31)

x̄†(t) = 0, t ∈ [t2, q̄
†
2].

Note that by the periodicity of x̄†, t2 − t1 is the length of the intervals on which x̄† is
positive.

We first show that t2−t1 > 1. Suppose for a proof by contradiction that t2−t1 ≤ 1.
By (6.21), (6.22), and the fact that ȳτn is nonnegative, we have, for all t ∈ [t1+1, t2+1],

z̄τn(t) = x̄τn(t1 + 1)− ȳτn(t1 + 1) + z̄τn(t)− z̄τn(t1 + 1)

≤ x̄τn(t1 + 1) +

∫ t

t1+1

ĥ(τnx̄
τn(s− 1))ds.

Using bounded convergence, we can pass to the limit as n→ ∞ to obtain

z̄†(t) ≤ −α(t− t1 − 1), t ∈ [t1 + 1, t2 + 1].

Here we have used that x̄†(t1+1) = 0 and that for each s ∈ (t1+1, t2+1), ĥ(τnx̄
τn(s−

1)) → −α as n → ∞. The former follows from (6.31), our assumption t2 ≤ t1 + 1,

and the fact that t1 + 1 ≤ q̄†1 + 1 ≤ q̄†2. The latter follows because x̄† is positive on

(t1, t2). Since z̄†(t) = x̄†(t) ≥ 0 for all t ∈ [0, q̄†1], it follows that q̄†1 ≤ t1 + 1 and so

[t1 + 1, t2 + 1] ⊂ [q̄†1, q̄
†
1 + 1]. Then for each t ∈ (t1 + 1, t2 + 1), for all n sufficiently

large, t ∈ (q̂τn1 , q̂τn1 + 1) and ẑτn(t) = τnz̄
τn(t) ≤ −L, and so by (6.4), x̂τn(t) = −L.

Thus,

(6.32) lim
n→∞ τnx̄

τn(t) = lim
n→∞ x̂τn(t) = −L, t ∈ (t1 + 1, t2 + 1).

Now, from (6.21) and the fact that x̂τn(s) ≥ −L for all s ≥ −1, we have, for t ∈
[t1 + 2, t2 + 2],

x̄τn(t) = x̄τn(t1 + 2) + z̄τn(t)− z̄τn(t1 + 2) + ȳτn(t)− ȳτn(t1 + 2)

≥ −τ−1
n L+

∫ t

t1+2

ĥ(τnx̄
τn(s− 1))ds,

where we have used the fact that ȳτn is nondecreasing. Using bounded convergence
and (6.32), we can pass to the limit as n→ ∞ to obtain

x̄†(t) ≥ β(t− t1 − 2), t ∈ [t1 + 2, t2 + 2].

Then x̄†(t) > 0 for all t ∈ (t1 + 2, t2 + 2] and since x̄† is continuous, it follows that
x̄† is positive on an interval of length greater than t2 − t1, which contradicts (6.31).
With the contradiction thus obtained, we must have t2 − t1 > 1.
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Proceeding, it follows from (6.3) and (6.22) that

z̄τn(t) = x̄τn(t2) +

∫ t

t2

ĥ(τnx̄
τn(s− 1))ds, t ∈ [t2, t2 + 1].

Using bounded convergence and the fact that x̄† is positive on (t2−1, t2), we can pass
to the limit as n→ ∞ to obtain

z̄†(t) = −α(t− t2), t ∈ [t2, t2 + 1].

Thus, given t ∈ (t2, t2+1], then for all n sufficiently large, ẑτn(t) = τnz̄
τn(t) ≤ −L and

so q̂τn1 < t. Consequently, q̄†1 ≤ t2. Combining this with the fact that t2 ≤ q̄†1 yields

t2 = q̄†1. Hence, for each t ∈ (q̂τn1 , q̂τn1 + 1], using (6.4), we have for all n sufficiently
large, x̂τn(t) = −L, and so

(6.33) lim
n→∞ τnx̄

τn(t) = lim
n→∞ x̂τn(t) = −L, t ∈ (q̄†1, q̄

†
1 + 1).

By (6.21) and (6.22), we have, for t ∈ [q̄†1 + 1, q̄†1 + 2],

x̄τn(t) = x̄τn(q̄†1 + 1) + z̄τn(t)− z̄τn(q̄†1 + 1) + ȳτn(t)− ȳτn(q̄†1 + 1)(6.34)

≥ x̄τn(q̄†1 + 1) +

∫ t

q̄†1+1

ĥ(τnx̄
τn(s− 1))ds,

where we have used the fact that ȳτn is nondecreasing. Using bounded convergence
and (6.33), we can pass to the limit as n→ ∞ to obtain

(6.35) x̄†(t) ≥ β(t− q̄†1 − 1), t ∈ [q̄†1 + 1, q̄†1 + 2].

Then for each t ∈ (q̄†1 + 1, q̄†1 + 2], for all n sufficiently large we have x̄τn(t) > 0 and

so q̂τn2 < t. It follows that q̄†2 ≤ q̄†1 + 1. Combining this with the fact that q̄†2 ≥ q̄†1 + 1

yields q̄†2 = q̄†1+1 and p̄† = q̄†1+2. By (6.35), x̄† is positive on (q̄†2, p̄
†] = (q̄†1+1, q̄†1+2],

so for each closed interval I contained in (q̄†1 + 1, q̄†1 + 2], x̄τn is positive on I for all n
sufficiently large and so ȳτn is constant on I for such n. Since this holds for all closed
intervals I in (q̄†1 +1, q̄†1 +2], ȳ† being continuous must be constant on [q̄†1 +1, q̄†1 +2].
Then taking the limit as n → ∞ in (6.34) yields (6.35), but with equality instead
of the inequality. Periodicity implies that x̄†(t) = β(t + 1) for all t ∈ [−1, 0] and so
t1 = −1. By (6.3) and (6.22), we have

x̄τn(t) = x̄τn(0) +

∫ t

0

ĥ(τnx̄
τn(s− 1))ds, t ∈ [0, q̄†1].

Then by bounded convergence, we can pass to the limit as n→ ∞ to obtain

(6.36) x̄†(t) = β − αt, t ∈ [0, q̄†1],

where we have used (6.31) with t1 = −1 and t2 = q̄†1. Furthermore, since q̄†1 is the

first time x̄† hits zero after time t = 0, we have q̄†1 = α−1β. This completes the proof

that x̄† = x̄, q̄†1 = q̄, q̄†2 = q̄ + 1, and p̄† = p̄.
We now show that ȳ† = ȳ and z̄† = z̄. From (6.31) and (6.33), it follows

that limn→∞ ĥ(τnx̄
τn(t)) = h̄(x̄(t)) at all t ∈ (−1, q̄ + 1) \ {q̄}. Since x̄ is peri-

odic with period p̄, we can repeat this argument countably many times to obtain that
limn→∞ ĥ(τnx̄

τn(t)) = h̄(x̄(t)) for all but countably many t in [−1,∞). Then, using
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bounded convergence, we can pass to the limit as n→ ∞ in (6.22), with x̄τn and z̄τn

in place of x̄∗ and z̄∗, respectively, to obtain

z̄†(t) = x̄(0) +

∫ t

0

h̄(x̄(s− 1))ds, t ≥ 0,

and so z̄† = z̄. Last, since z̄τn → z̄ uniformly on compact intervals in [0,∞),

ȳ†(t) = lim
n→∞ ȳτn(t) = lim

n→∞ sup
0≤s≤t

(z̄τn(s) + τ−1
n L)− = sup

0≤s≤t
(z̄(s))−,

and so ȳ† = ȳ.
We have shown that the sequence {(x̄τn , ȳτn , z̄τn , q̂τn1 , q̂τn2 , p̂τn)}∞n=1 is relatively

compact in C[−1,∞) × C[0,∞) × C[0,∞) × R+ × R+ × R+ and that every convergent
subsequence converges to (x̄, ȳ, z̄, q̄, q̄+1, q̄+2). By a standard real analysis argument,
the entire sequence must also converge to (x̄, ȳ, z̄, q̄, q̄ + 1, q̄ + 2) as n → ∞, which
completes the proof of the theorem.

The following corollary is a consequence of the preceding convergence result. A
proof can be given using a straightforward argument by contradiction and so we omit
it.

Corollary 6.12. For each t > 0 and ε > 0, there exists τ t,ε ≥ τ0 such that
whenever τ > τ t,ε and x̂∗ is a SOPSn of the DDERn with delay τ and q̂0 = −1, and
x̄∗, ȳ∗, and z̄∗ are defined as in (6.21)–(6.23), then ‖x̄∗ − x̄‖[−1,t] < ε, ‖ȳ∗ − ȳ‖[0,t] <
ε, ‖z̄∗ − z̄‖[0,t] < ε, |q̂1 − q̄| < ε, |q̂2 − q̄ − 1| < ε, and |p̂− q̄ − 2| < ε.

The next corollary is an immediate consequence of the above corollary and Lem-
ma 5.5.

Corollary 6.13. For each τ > τ0, let x
τ be a SOPS with delay τ and period

pτ . Then τ−1pτ → α−1β + 2 as τ → ∞.
In the following lemma we prove that for τ sufficiently large, any SOPSn will hit

the lower boundary. We provide bounds on both the time it takes to reach the lower
boundary from the zero level as well as the time it takes to reach the zero level after
leaving the lower boundary.

Lemma 6.14. There exists τ (4) ≥ τ0 such that whenever τ > τ (4) and x̂∗ is a
SOPSn of DDERn with delay τ and q̂0 = −1, there exists �̂1 ∈ (q̂1, q̂1 + 1) such that

0 > x̂∗(t) > −L for all t ∈ (q̂1, �̂1),(6.37)

x̂∗(t) = −L for all t ∈ [�̂1, q̂1 + 1],(6.38)

and

ẑ∗(t) > −L for all t ∈ (q̂1, �̂1),(6.39)

ẑ∗(t) < −L for all t ∈ (�̂1, q̂1 + 1].(6.40)

Furthermore, 0 < �̂1 − q̂1 <
2L
ατ ≤ 1 and 0 < q̂2 − q̂1 − 1 < ( 2

α + 1
β )

L
τ . Moreover, x̂∗(·)

is continuously differentiable on [0, �̂1) and (�̂1, p̂].
Remark 6.1. By Corollary 6.12 and by possibly taking τ (4) ≥ τ0 larger, we can

further assume that whenever τ > τ (4) and x∗ is a SOPSn of the DDERn with delay
τ and q̂0 = −1, then

(i) 0 < δ < q̂1 < �̂1 < q̄ + δ < q̄ + 1− δ < q̂2 + δ < q̂1 + 2; and
(ii) x̂∗(t) > d for all t ∈ [−1 + δ, q̄ − δ].

Here δ > 0 and d > 0 are defined as in the proof of Lemma 6.14 below. The inequalities
(i) and (ii) will be used in the proof of Lemma 6.24.
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Proof. Define positive constants δ = 1
2 (q̄ ∧ 1) and d = 1

2 min(x̄(−1+ δ), x̄(q̄− δ)).

By Corollary 6.12 and (6.27), there exists τ (4) ≥ τ0 such that whenever τ > τ (4) and
x̂∗ is a SOPSn of the DDERn with delay τ and q̂0 = −1, then

(i) −1 + δ < q̂1 − 1 < q̂1 − 1 + δ < q̄ − δ < q̂2 < q̂1 + 2;
(ii) x̂∗(t) > τd for all t ∈ [q̂1 − 1, q̂1 − 1 + δ];

(iii) ĥ(s) < −α/2 for all s ≥ τd; and

(iv) 2L
ατ < δ and L

βτ < δ.

Combining (i)–(iii) yields ĥ(x̂∗(t−1)) < −α/2 for all t ∈ [q̂1, q̂1+δ]. Then (6.22), (iv),
and the fact that ẑ∗(q̂1) = 0 imply that ẑ∗(q̂1+ 2L

ατ ) < −L. Since ẑ∗ is continuous and

decreasing on [q̂1, q̂1+1), there exists �̂1 ∈ (q̂1, q̂1+
2L
ατ ) such that 0 > ẑ∗(t) > −L for all

t ∈ (q̂1, �̂1) and ẑ
∗(t) < −L for all t ∈ (�̂1, q̂1+1], so (6.39) and (6.40) hold. Equations

(6.37) and (6.38) then follow from (6.4). Now consider q̂2 − q̂1 − 1. If q̂2 ≤ �̂1 + 1,

then q̂2 − q̂1 − 1 ≤ �̂1 − q̂1 <
2L
ατ . On the other hand, suppose q̂2 > �̂1 + 1. By (i) and

(6.38), we have x̂∗(t) > −L and ĥ(x̂∗(t− 1)) = ĥ(−L) = β for all t ∈ [�̂1 + 1, q̂1 + 2].

It then follows from Lemma 5.6 that x̂∗(�̂1 + 1 + L
βτ ) ≥ 0 and so q̂2 − �̂1 − 1 ≤ L

βτ .

Combining this with �̂1 − q̂1 <
2L
ατ yields q2 − q1 − 1 < ( 2

α + 1
β )

L
τ .

The fact that x̂∗(·) is continuous differentiable on [0, �̂1), (�̂1, q̂1+1), and (q̂1+1, p̂]
is due to Lemma 5.6, (5.12), (6.37), and (6.38). Now x̂∗(·) is constant and equal to −L
in a left neighborhood of q̂1+1 and so is left differentiable with the left derivative equal
to zero there. On the other hand, x̂∗(·) is strictly above −L in a right neighborhood
of q̂1 + 1 (not including q̂1 + 1) and so is right differentiable with the right derivative

equal to ĥ(x̂∗(q̂1)) = ĥ(0) = 0 as well. Therefore x̂∗(·) is continuously differentiable on

(�̂1, p̂].

6.3. Solutions of the DDER near a SOPS. In this section we consider solu-
tions of the DDER whose initial conditions are in a small neighborhood of the initial
condition of a SOPS. Throughout this section we fix τ > τ (4), where τ (4) is as in
Lemma 6.14, and let x∗ denote a SOPS of the DDER with delay τ and q0 = −τ . We
let z∗ and y∗ be defined as in (2.3) and (2.1) with f(ϕ) = h(ϕ(−τ)) and x∗, y∗, and
z∗ in place of x, y, and z, respectively. In the following lemma, we state properties
of x∗ and z∗ that are a consequence of (3.2), Lemmas 6.4, 6.14, and the one-to-one
correspondence between SOPS and SOPSn.

Lemma 6.15. There exists �1 ∈ (q1, q1 + τ) such that
(i) x∗(t) > 0 for all t ∈ [0, �1), x

∗(t) = 0 for all t ∈ [�1, q1 + τ ], and x∗(t) > 0
for all t ∈ (q1 + τ, p];

(ii) x∗(·) is continuously differentiable on [0, �1) and (�1, p];
(iii) x∗(·) is decreasing on (0, �1) and increasing on (q1 + τ, p);
(iv) x∗(t) ≤ L+ τG for all t ≥ −τ ;
(v) z∗(t) > 0 for all t ∈ [0, �1) and z

∗(t) < 0 for all t ∈ (�1, q1 + τ ].
Furthermore,

(6.41) 0 < �1 − q1 < 2α−1L and 0 < q2 − q1 − τ < (2α−1 + β−1)L.

Proof. Parts (i)–(iv) and (6.41) follow from Lemmas 6.4, 6.14, and 5.5 and the
periodicity of x∗. Part (v) of the lemma is due to (6.39), (6.40), and the fact that
z∗(t) = ẑ∗(τ−1t) + L for every t ≥ 0.

To obtain estimates for solutions of the DDER, we have the following lemma
on the continuity of solutions in their initial condition. Recall that Kh < ∞ is the
Lipschitz constant for h.
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Lemma 6.16. Given solutions x and x† of the DDER, define z as in (2.3) and
define z† as in (2.3) but with x† and z† in place of x and z, respectively. Then for all
t ≥ 0,

(6.42) ‖x− x†‖[−τ,t] ≤ 2 exp(2Kht)‖x0 − x†0‖[−τ,0]

and

(6.43) ‖z − z†‖[0,t] ≤ (1 +Khτ) exp(2Kht)‖x0 − x†0‖[−τ,0].

Proof. Fix t ≥ 0. By (2.3) and (3.12), we obtain the following two bounds:

‖z − z†‖[0,t] ≤ ‖x0 − x†0‖[−τ,0] +Kh

∫ t

0

‖x− x†‖[−τ,s]ds,(6.44)

‖z − z†‖[0,t] ≤ (1 +Khτ)‖x0 − x†0‖[−τ,0] +Kh

∫ t

0

‖x− x†‖[0,s]ds.(6.45)

Applying the Lipschitz continuity of the Skorokhod map (see Proposition A.1) to the
left-hand side of (6.44) and then extending the norm on the left to the interval [−τ, t],
we obtain, for all t ≥ 0,

‖x− x†‖[−τ,t] ≤ 2‖x0 − x†0‖[−τ,0] + 2Kh

∫ t

0

‖x− x†‖[−τ,s]ds.

The bound (6.42) then follows from Gronwall’s inequality. Next, applying the Lip-
schitz continuity of the Skorokhod map to the integrand in (6.45), we have, for all
t ≥ 0,

‖z − z†‖[0,t] ≤ (1 +Khτ)‖x0 − x†0‖[−τ,0] + 2Kh

∫ t

0

‖z − z†‖[0,s]ds.

As above, the bound (6.43) follows from Gronwall’s inequality.
In the following lemma, we establish some properties for solutions of the DDER

whose initial conditions are in a small neighborhood of x∗0.
Lemma 6.17. For each 0 < η0 <

1
2 min(τ, q1, �1 − q1, q1 + τ − �1, q2 − q1 − τ)

there exists ε0 ∈ (0, η0) such that whenever x is a solution of the DDER satisfying
‖x0 − x∗0‖[−τ,0] < ε0, then there exist qx1 ∈ (q1 − η0, q1 + η0), �

x
1 ∈ (�1 − η0, �1 + η0),

and qx2 ∈ (q2 − η0, q2 + η0) such that
(i) x(t) > 0 for all t ∈ [−τ,−τ + η0], x(t) > L for all t ∈ [−τ + η0, q

x
1 ),

0 < x(t) < L for all t ∈ (qx1 , �
x
1), x(t) = 0 for all t ∈ [�x1 , q

x
1 + τ ], 0 < x(t) < L for all

t ∈ (qx1 + τ, qx2 ), and x(t) > L for all t ∈ (qx2 , p+ η0].
(ii) x(·) is continuously differentiable on [0, �x1) and (�x1 , p+ η0];
(iii) x(·) is decreasing on (η0, �

x
1) and increasing on (qx1 + τ, qx2 + τ).

Proof. Fix η0 > 0 as in the statement of the lemma. By (5.12), part (i) of
Lemma 6.15, (6.42), and the continuity of x, there exists ε0 > 0 such that whenever x
is a solution of the DDER with ‖x0 − x∗0‖[−τ,0] < ε0, then x(t) > 0 for all t ∈ [−τ,−τ+
η0], x(t) > L for all t ∈ [−τ + η0, q1 − η0], 0 < x(t) < L for all t ∈ [q1 + η0, �1 − η0],
0 ≤ x(t) < L for all t ∈ [�1−η0, q1+τ+η0], 0 < x(t) < L for all t ∈ [q1+τ+η0, q2−η0],
and x(t) > L for all t ∈ [q2 + η0, p + η0]. Then (2.5), with f(ϕ) = h(ϕ(−τ)), and
the negative feedback condition on h imply that x is decreasing on [η0, �1 − η0] and
increasing on [q1+ τ +η0, q2+ τ −η0]. Consequently, there exist qx1 ∈ (q1−η0, q1+η0)
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and qx2 ∈ (q2−η0, q2+η0) such that x(t) > L for all t ∈ [−τ+η0, qx1 ), 0 ≤ x(t) < L for
all t ∈ (qx1 , q

x
2 ), and x(t) > L for all t ∈ (qx2 , p+ η0]. To prove part (i) of the lemma,

it remains to show that there exists �x1 ∈ (�1 − η0, �1 + η0) such that x(t) > 0 for all
t ∈ (qx1 , �

x
1), x(t) = 0 for all t ∈ [�x1 , q

x
1 + τ ] and x(t) > 0 for all t ∈ (qx1 + τ, qx2 ).

Define z ∈ C[0,∞) as in (2.3). By part (v) of Lemma 6.15, (6.43), and the continuity
of z, we can choose ε0 > 0 possibly smaller so that z is positive on [0, �1 − η0] and
negative on [�1 + η0, q1 + τ − η0]. Furthermore, the negative feedback condition on h
and the previous paragraph imply that z is decreasing on (η0, q

x
1 + τ) and increasing

on (qx1 +τ, q
x
2 +τ). Hence, there must exist �x1 ∈ (�1−η0, �1+η0) such that z is positive

on [0, �x1) and negative on (�x1 , q
x
1 + τ ]. By (2.1), we see that y(t) = 0 for all t ∈ [0, �x1 ],

y(t) = −z(t) for all t ∈ [�x1 , q
x
1 + τ ], and y(t) = −z(qx1 + τ) for all t ∈ [qx1 + τ, qx2 + τ ].

Substituting into (2.2), we obtain that x(t) > 0 for all t ∈ [0, �x1), x(t) = 0 for all
t ∈ [�x1 , q

x
1 + τ ], and x(t) > 0 for all t ∈ (qx1 + τ, qx2 ). The fact that x(·) is continuous

differentiable on [0, �x1), (�
x
1 , q

x
1 + τ), and (qx1 + τ, p] follows from part (i) of the lemma

and Lemma 2.2. Now x(·) is identically zero in a left neighborhood of qx1 + τ and so
is left differentiable there with the left derivative equal to zero. On the other hand,
x(·) is strictly positive in a right neighborhood of qx1 + τ (not including qx1 + τ) and so
is right differentiable with the right derivative equal to h(x(qx1 )) = h(L) = 0 as well.
Therefore x(·) is continuously differentiable on (�x1 , p]. Part (iii) of the lemma follows
from part (i) of the lemma, (2.5), and the negative feedback condition on h.

Fix an η0 > 0 and associated ε0 > 0 as in Lemma 6.17. Given a solution x of the
DDER with initial condition satisfying ‖x0 − x∗0‖[−τ,0] < ε0, define

(6.46) ε1 = ε1(x) = ε0 − ‖x0 − x∗0‖[−τ,0] > 0

and

(6.47) η1 = η1(x) = η0 −max{|qx1 − q1|, |�x1 − �1|, |qx2 − q2|} > 0.

As a consequence,

(qx1 − η1, q
x
1 + η1) ⊂ (q1 − η0, q1 + η0),

(�x1 − η1, �
x
1 + η1) ⊂ (�1 − η0, �1 + η0),

(qx2 − η1, q
x
2 + η1) ⊂ (q2 − η0, q2 + η0).

Suppose x† is solution of the DDER with initial condition satisfying ‖x†0 − x0‖[−τ,0] <
ε1. Then by (6.46), we have

(6.48) ‖x† − x∗‖[−τ,0] ≤ ‖x† − x‖[−τ,0] + ‖x− x∗‖[−τ,0] < ε0,

and so Lemma 6.17 holds with x†, qx
†

1 , �x
†

1 , and qx
†

2 in place of x, qx1 , �
x
1 , and qx2 ,

respectively. The following lemma ensures that qx1 , �
x
1 , and q

x
2 are continuous in x0 and

is a consequence of the continuity of solutions in their initial conditions, as described
in Lemma 6.16, the definitions of ε1 and η1, and Lemma 6.17.

Lemma 6.18. Given a solution x of the DDER with initial condition satisfying
‖x0 − x∗0‖[−τ,0] < ε0, define ε1 > 0 and η1 > 0 as in (6.46) and (6.47). Then for each

η ∈ (0, η1), there exists ε ∈ (0, ε1) such that whenever x† is a solution of the DDER

with initial condition satisfying ‖x†0 − x0‖[−τ,0] < ε, properties (i)–(iii) of Lemma 6.17

hold with x†, qx
†

1 , �x
†

1 , and qx
†

2 in place of x, qx1 , �
x
1 , and q

x
2 , respectively. Furthermore,

qx
†

1 ∈ (qx1 − η, qx1 + η), �x
†

1 ∈ (�x1 − η, �x1 + η), and qx
†

2 ∈ (qx2 − η, qx2 + η).
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Proof. The fact that there exists ε > 0 such that qx
†

1 ∈ (qx1 − η, qx1 + η), �x
†

1 ∈
(�x1 − η, �x1 + η), and qx

†
2 ∈ (qx2 − η, qx2 + η) hold uses the continuity of solutions to

the DDER in their initial condition, which is stated in Lemma 6.16. The argument
is similar to the argument that qx1 ∈ (q1 − η0, q1 + η0), �

x
1 ∈ (�1 − η0, �1 + η0), and

qx2 ∈ (q2 − η0, q2 + η0) found in the proof of Lemma 6.17, so we omit it here.

6.4. Variational equation. In this section we introduce the notion of a vari-
ational equation (VE) along a solution of the DDER. Here we restrict ourselves to
the case that f satisfies the assumptions of Theorem 3.8 and that the solution of the
DDER has an initial condition in a small neighborhood of the initial condition of a
SOPS. A general definition and properties of a solution of the VE along a solution
of the DDER for f as in (1.1) are presented in Appendix B. The treatment in the
appendix is more general than what we need for the proof of stability and uniqueness
of SOPS, but we include it for independent interest.

Throughout this section we assume that f is of the form (3.9) and satisfies As-
sumptions 3.3 and 3.4. We fix τ > τ (4), where τ (4) ≥ τ0 is as in Lemma 6.14 and
such that the properties in Remark 6.1 hold. Let x∗ denote a SOPS with delay τ and
q0 = −τ so that Lemmas 6.15–6.18 hold. Fix an η0 > 0 and associated ε0 > 0 as
in Lemma 6.17 and let x be a solution to the DDER with initial condition satisfying
‖x0 − x∗0‖[−τ,0] < ε0. We briefly summarize important definitions and properties from
Appendix B for solutions of the VE along x. The following definition is a version of
Definition B.2 specific to our current setting. Recall that D[−τ,∞) denotes the set of
functions from [−τ,∞) to R with finite left and right limits at each t > −τ and a
finite right limit at −τ .

Definition 6.19. Given a solution x of the DDER satisfying ‖x0 − x∗0‖[−τ,0] <
ε0, a function v ∈ D[−τ,∞) is a solution of the VE along x if v(t) ≥ 0 at all t ≥ −τ
such that x(t) = 0 and v satisfies

(6.49) v(t) = ∂wΦ(z)(t), t ≥ 0,

where Φ denotes the Skorokhod map given by (A.1) and (A.2), z ∈ C[0,∞) is defined
via (2.3), w ∈ C[0,∞) is defined by

(6.50) w(t) = v(0) +

∫ t

0

h′(x(s− τ))v(s − τ)ds, t ≥ 0,

and the directional derivative of Φ at z in the direction w is denoted by ∂wΦ(z), is
well defined as an element of D[0,∞) by Proposition A.5 and is given by

(6.51) ∂wΦ(z)(t) = w(t) +R(−z,−w)(t),

where

(6.52) R(−z,−w)(t) =

⎧⎪⎨⎪⎩
sups∈S−z(t)(−w(s)) if sup0≤s≤t(−z(s)) > 0,

sups∈S−z(t)(−w(s)) ∨ 0 if sup0≤s≤t(−z(s)) = 0,

0 if sup0≤s≤t(−z(s)) < 0,

and

(6.53) S−z(t) =
{
s ∈ [0, t] : −z(s) = sup

0≤u≤t
(−z(u)) ∨ 0

}
.

See Figure 7 for an example of a solution of the VE along a solution of the DDER.
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Fig. 7. An example of a solution of the VE (on the top) along a solution of the DDER (on the

bottom). Here h(x(t− τ)) =
αC2

0

(C0+x(t−τ))2
− γ, where α > γ > 0 and C0 > 0 as in Example 4.2.

A solution v of the VE along x and with initial condition v0 ∈ C[−τ,0] can be
thought of as the direction that x is perturbed in when its initial condition x0 is
perturbed in the direction v0. In general, the element v0 is constrained by the fact that
the initial condition of a solution of the DDER cannot be perturbed in the negative
direction when it is at the lower boundary. However, here we have ‖x0 − x∗0‖[−τ,0] <
ε0, so by part (i) of Lemma 6.17, the initial condition x0(·) is strictly positive on
[−τ, 0]. Thus, we can take v0 to be any element of C[−τ,0]. Fix such a v0 ∈ C[−τ,0].
Then for all ε > 0 sufficiently small so that xε0 = x0 + εv0 ∈ C+

[−τ,0], let x
ε denote the

unique solution of the DDER with initial condition xε0 and define vε ∈ C[−τ,∞) by

(6.54) vε =
xε − x

ε
.

Let z be as in (2.3) and let zε be as in (2.3), but with xε and zε in place of x and z,
respectively. Define wε ∈ C[0,∞) by

(6.55) wε =
zε − z

ε
.

The following proposition is a version of Theorem B.3 specific to this section. Recall
that a family {uε : 0 ≤ ε ≤ ε∗} in C[−τ,∞) converges to u ∈ D[−τ,∞) uniformly on
compact intervals of continuity in [−τ,∞) as ε ↓ 0 provided that for each compact
interval I in [−τ,∞) such that u is continuous on I, uε converges to u uniformly on
I as ε ↓ 0.

Proposition 6.20. Suppose x is a solution of the DDER with initial condition
satisfying ‖x0 − x∗0‖[−τ,0] < ε0 and ψ is an element of C[−τ,0]. Then there exists a

unique solution v of the VE along x with v0 = ψ. Furthermore, if vε and wε are
defined as in (6.54) and (6.55), respectively, then vε converges to v pointwise and
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uniformly on compact intervals of continuity in [−τ,∞) as ε ↓ 0 and wε converges to
w uniformly on compact intervals in [0,∞) as ε ↓ 0.

In the following lemma we further describe solutions of the VE. The characteri-
zations in (6.56) and (6.57) will be used later in this section to obtain bounds and to
prove linearity properties for solutions of the VE.

Lemma 6.21. Given a solution x of the DDER with initial condition satisfying
‖x0 − x∗0‖[−τ,0] < ε0, suppose v is a solution of the VE along x. Then v satisfies

(6.56) v(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v(0) +
∫ t
0
h′(x(s − τ))v(s − τ)ds, t ∈ [0, �x1),(

v(0) +
∫ 
x1
0
h′(x(s− τ))v(s − τ)ds

)+

, t = �x1 ,

0, t ∈ (�x1 , q
x
1 + τ ],∫ t

qx1+τ
h′(x(s− τ))v(s − τ)ds, t ∈ (qx1 + τ, p+ η0].

If v† ∈ D[−τ,∞) also satisfies (6.56) and v†(t) = v(t) at almost every t ∈ [−τ, 0], then
v†(t) = v(t) for all t ∈ [0, p+ η0]. Furthermore, if v is a solution of the VE along the
SOPS x∗, then v satisfies

(6.57) v(kp+ t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v(kp) +
∫ kp+t
kp h′(x∗(s− τ))v(s − τ)ds, t ∈ [0, �1),(

v(kp) +
∫ kp+
1
kp h′(x∗(s− τ))v(s − τ)ds

)+

, t = �1,

0, t ∈ (�1, q1 + τ ],∫ kp+t
kp+q1+τ

h′(x∗(s− τ))v(s − τ)ds, t ∈ (q1 + τ, p],

for each k = 0, 1, . . . . If v† ∈ D[−τ,∞) also satisfies (6.57) and v†(t) = v(t) at almost

every t ∈ [−τ, 0], then v†(t) = v(t) for all t ≥ 0.
Proof. Fix a solution x of the DDER as in the statement of the lemma and let v

be a solution of the VE along x. Then (6.56) follows from Lemma 6.17 and parts (i),
(ii), and (iv) of Lemma B.6, with ∂vsf(xs) = h′(x(s − τ))v(s − τ) by Example B.1.
Suppose that v† ∈ D[−τ,∞) satisfies (6.56) and v

†(t) = v(t) at almost every t ∈ [−τ, 0].
The continuity of h′ then implies that v†(t) = v(t) at each t ∈ [0, τ ∧ �x1). By iterating
this argument on intervals of length τ , we see that v† and v are equal on [0, �x1). The
fact that v†(�x1) = v(�x1) follows because v

† and v are equal and continuous on [0, �x1).

Then, since v† = v on [qx1 , q
x
1 + τ ], we can again iterate on intervals of length τ to

obtain that v† and v are equal on the interval (qx1 + τ, p+η0]. The proof of the second
part of the lemma follows from iterating the verification of (6.56) (with η0 = 0) on
intervals of length p.

The following lemma is an immediate consequence of the above lemma and the
linearity of integration with respect to the integral.

Lemma 6.22. Given a solution x of the DDER with initial condition satisfying
‖x0 − x∗0‖[−τ,0] < ε0, suppose v and v† are solutions of the VE along x. For a, b ∈ R,

let v‡ denote the unique solution to the VE along x with initial condition v‡0 = av0+bv
†
0.

Then

(6.58) v‡(t) = av(t) + bv†(t) for all t ∈ [−τ, p+ η0] \ {�x1}.
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For the following lemma, let ẋ∗ ∈ D[−τ,∞) be the periodic function, with period
p, defined for t ≥ 0 by

(6.59) ẋ∗(t) =

{
h(x∗(t− τ)) if x∗(t) > 0,

0 if x∗(t) = 0.

Then ẋ∗ is equal to the derivative of x∗ at almost every t ∈ [−τ,∞) that x∗ is
differentiable and (2.7) holds with x∗ and ẋ∗ in place of x and ẋ, respectively.

Lemma 6.23. The function ẋ∗ is a solution of the VE along x∗.
Proof. By Proposition 6.20, there exists a unique solution of the VE along x∗

with initial condition ẋ∗0. In light of the last line in Lemma 6.21, it suffices to show
that ẋ∗ satisfies (6.57) for all t ≥ 0. Due to (6.59), the fact that x∗ is positive
and continuously differentiable on [0, �1), and the fundamental theorem of calculus, it
follows that ẋ∗ satisfies (6.57) on [0, �1). By (6.59), ẋ∗(�1) = 0. On the other hand,
by the fundamental theorem of calculus, the negative feedback condition on h, and
the fact that x∗(�1 − τ) > L, we have(

ẋ∗(0) +
∫ 
1

0

h′(x∗(s− τ))ẋ∗(s− τ)ds

)+

= (h(x∗(�1 − τ)))+ = 0,

so ẋ∗ satisfies (6.57) at t = �1. By (6.59), ẋ∗ is zero on (�1, q1+τ ], so ẋ
∗ satisfies (6.57)

there. The fact that ẋ∗ satisfies (6.57) on (q1 + τ, p] follows from the fundamental
theorem of calculus and the fact that x∗(·) is continuously differentiable on (�1, p].
Therefore ẋ∗ satisfies (6.57) on [0, p]. By iterating the above argument on intervals of
length p, we obtain that ẋ∗ satisfies (6.57) for all t ≥ 0, completing the proof.

Lemma 6.24. There exists a positive constant M < ∞, which depends only on
h and L, such that whenever v is a solution of the VE along x∗, the following bound
holds:

(6.60) ‖v‖[−τ,p] ≤M‖v‖[−τ,0].

Proof. Recall that q̄ = α−1β and the definition of x̄ given in (6.27). Define
positive constants δ = 1

2 (q̄ ∧ 1) and d = 1
2 min(x̄(−1 + δ), x̄(q̄ − δ)). By Remark 6.1

and Lemma 5.5,
(i) 0 < τδ < q1 < �1 < τ(q̄ + δ) < τ(q̄ + 1− δ) < q2 + τδ < q1 + 2τ ; and
(ii) x∗(t) > L+ τd for all t ∈ [τ(−1 + δ), τ(q̄ − δ)].

Let v be a solution of the VE along x∗. We first bound v(t) for t ∈ [−τ, τδ]. By
(6.57) and the periodicity of x∗, we have, for t ∈ [0, τδ],

|v(t)| ≤ |v(0)|+
∫ τδ

0

|h′(x∗(s− τ))v(s − τ)|ds

≤ ‖v‖[−τ,0]

(
1 +

∫ q2∨(
1+τ)

q2

|h′(x∗(s))|ds +
∫ q2+τδ

(
1+τ)∧(q2+τδ)

|h′(x∗(s))|ds
)
.

If �1 + τ < q2 + τδ, then according to (i), we have �1 + τ < q2 + τδ < q1 + 2τ , so
x∗(t− τ) = 0 for all t ∈ [�1 + τ, q2 + τδ]. In this case, Lemma 2.3 and h(0) = β imply
that x∗(t) = x∗(�1 + τ) + β(t− �1 − τ) for all t ∈ [�1 + τ, q2 + τδ]. By Lemma 3.6, the
fact that q1 + τ < q2, (6.41), and the L1-integrability of h′ (see Assumption 3.4), it
follows that in either case (�1 + τ < q2 + τδ or �1 + τ ≥ q2 + τδ) the following bound
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holds:

‖v‖[−τ,τδ]

(6.61)

≤ ‖v‖[−τ,0]

(
1 +Kh(�1 + τ − q2)

+ +

∫ (q2+τδ−
1−τ)+

0

|h′(x∗(�1 + τ) + βs)|ds
)

≤ ‖v‖[−τ,0]
(
1 +

2LKh

α
+

1

β
‖h′‖L1(R+)

)
.

Proceeding, we consider the interval [τδ, �1]. By (6.57), the fact (gleaned from (i)
and (ii)) that x∗(t) > L+ τd for all t ∈ [−τ + τδ, �1 − τ ] ⊂ [τ(−1 + δ), τ(q̄ − δ)], and
because m = sups∈R+

|sh′(s)| is finite (see Assumption 3.4), we have, for t ∈ [τδ, �1],

|v(t)| ≤ |v(τδ)| +
∫ t

τδ

|h′(x∗(s− τ))x∗(s− τ)|
|x∗(s− τ)| |v(s− τ)|ds

≤ |v(τδ)| + m

L+ τd

[∫ (t−τ)∧τδ

−τ+τδ
|v(s)|ds +

∫ t−τ

(t−τ)∨τδ
|v(s)|ds

]

≤ ‖v‖[−τ+τδ,τδ]
(
1 +

τm

L+ τd

)
+

m

L+ τd

∫ t

τδ

|v(s)|ds.

An application of Gronwall’s inequality on the interval [τδ, �1] yields, for t ∈ [τδ, �1],

|v(t)| ≤
(
1 +

m

d

)
exp

(
m(�1 − τδ)

τd

)
‖v‖[−τ,τδ].

Taking the supremum over t ∈ [−τ, �1] and using the facts that �1− τδ ≤ τ q̄ = τα−1β
by (i) and v is identically zero on (�1, q1 + τ ] by (6.57), we have

‖v‖[−τ,q1+τ ] ≤
(
1 +

m

d

)
exp

(
mβ

dα

)
‖v‖[−τ,τδ].(6.62)

Continuing, we bound v(t) for t ∈ [q1+ τ, q1+2τ ]. By (6.57) and (6.41), we have,
for t ∈ [q1 + τ, �1 + τ ],

|v(t)| ≤
∫ t

q1+τ

|h′(x(s− τ))v(s − τ)|ds ≤ 2LKh

α
‖v‖[q1,
1].

Since v(t − τ) = 0 for all t ∈ (�1 + τ, q1 + 2τ ], (6.57) implies that v is constant on
[�1 + τ, q1 + 2τ ]. Thus, taking supremums over t ∈ [−τ, q1 + 2τ ], we have

(6.63) ‖v‖[−τ,q1+2τ ] ≤ ‖v‖[−τ,q1+τ ]∨
(
2LKh

α
‖v‖[q1,
1]

)
≤

(
2LKh

α
∨ 1

)
‖v‖[−τ,q1+τ ].

Next, we bound v(t) for t ∈ [q1 + 2τ, (�1 + 2τ) ∧ p]. By (6.57), (3.12), (6.41), and
(6.63), we have, for t ∈ [q1 + 2τ, (�1 + 2τ) ∧ p],

|v(t)| ≤ |v(q1 + 2τ)|+
∫ (
1+2τ)∧p

q1+2τ

|h′(x∗(s− τ))v(s − τ)|ds

≤ |v(q1 + 2τ)|+ 2LKh

α
‖v‖[q1+τ,
1+τ ].
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Taking the supremum over t ∈ [−τ, (�1 + 2τ) ∧ p] yields

(6.64) ‖v‖[−τ,(
1+2τ)∧p] ≤
(
1 +

2LKh

α

)
‖v‖[−τ,q1+2τ ].

Last, in the case that �1 + 2τ < p, because q2 < q1 + 2τ by (i), and p = q2 + τ ,
it follows that x∗(t − τ) = 0 for all t ∈ [�1 + τ, p − τ ] and p < �1 + 3τ . Thus, by
Lemmas 2.3 and 6.15, x∗(t) = x∗(�1 + τ) + β(t − �1 − τ) for all t ∈ [�1 + τ, p − τ ].
Substituting into (6.57) and using the L1-integrability of h′ (see Assumption 3.4), we
have, for t ∈ [�1 + 2τ, p],

|v(t)| ≤ |v(�1 + 2τ)|+ ‖v‖[
1+τ,q2]
∫ t


1+2τ

|h′(x∗(�1 + τ) + β(s− �1 − τ))|ds

≤ |v(�1 + 2τ)|+ 1

β
‖h′‖L1(R+)‖v‖[
1+τ,q2].

Taking the supremum over t ∈ [�1 + 2τ, p] and using (6.61)–(6.64), we obtain

‖v‖[−τ,p] ≤
(
1 +

1

β
‖h′‖L1(R+)

)
‖v‖[−τ,(
1+2τ)∧p] ≤M‖v‖[−τ,0],

where

M =

(
1 +

1

β
‖h‖L1(R+)

)(
1 +

2LKh

α

)(
2LKh

α
∨ 1

)
×

(
1 +

m

d

)
exp

(
mβ

dα

)(
1 +

2LKh

α
+

1

β
‖h′‖L1(R+)

)
.

Lemma 6.25. Let x be a solution of the DDER satisfying ‖x− x∗‖[−τ,0] < ε0.

For each δ > 0, there exists ε > 0 such that whenever x† is a solution of the DDER
such that ‖x†0 − x0‖[−τ,0] < ε, and ψ ∈ C[−τ,0] satisfies ‖ψ‖[−τ,0] ≤ 1, then

(6.65) ‖vx − vx
†‖[p−τ−η0,p+η0] < δ,

where vx and vx
†
denote the unique solutions of the VE along x and x†, respectively,

with vx0 = vx
†

0 = ψ.

Proof. Fix δ > 0. Define ε1 = ε1(x) > 0 and η1 = η1(x) > 0 as in (6.46) and
(6.47). For a solution x† of the DDER and t ≥ 0, define

(6.66) dh,x(x
†, t) = sup

s∈[−τ,t]
|h′(x(s)) − h′(x†(s))|.

Then dh,x(x
†, ·) is a nondecreasing function and by (6.42) and the continuity of h′,

for fixed t ≥ −τ , we have dh,x(x
†, t) → 0 as x†0 → x0 in C+

[−τ,0]. Choose η ∈ (0, η1)

such that

(6.67) η <
δ

12Kh exp(3Kh(p+ η0))
.

Given η, we can choose ε ∈ (0, ε1) such that the conclusion of Lemma 6.18 holds and

(6.68) dh,x(x
†, q2 + η0) <

δ

4(q2 − q1 + 2η0)(1 +Kh(�1 + η0)) exp(4Kh(p+ η0))

holds whenever ‖x†0 − x0‖[−τ,0] < ε.
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Let x† be a solution of the DDER such that ‖x†0 − x0‖[−τ,0] < ε. Define z as in

(2.3) and define z† as in (2.3), but with x† and z† in place of x and z, respectively.

Suppose ψ ∈ C[−τ,0] satisfies ‖ψ‖[−τ,0] ≤ 1 and let vx and vx
†
denote the unique

solutions of the VE along x and x†, respectively, with vx0 = vx
†

0 = ψ. Define wx as

in (6.50), but with vx and wx in place of v and w, respectively, and define wx
†
as in

(6.50), but with x†, vx
†
, and wx

†
in place of x, v, and w, respectively. By (B.11),

with v = vx, v† ≡ 0 and with v = vx
†
, v† ≡ 0, we have, for t ≥ 0,

(6.69) ‖vx‖[−τ,t] ≤ 2 exp(2Kht) and ‖vx
†
‖[−τ,t] ≤ 2 exp(2Kht),

respectively, where we have used the fact that ‖ψ‖[−τ,0] ≤ 1. Last, define the points

qx1 , q
x†
1 ∈ (q1 − η, q1 + η), �x1 , �

x†
1 ∈ (�1 − η, �1 + η), and qx2 , q

x†
2 ∈ (q2 − η, q2 + η) as in

Lemmas 6.17 and 6.18.
Here we assume that qx1 ≤ qx

†
1 . The proof for the case that qx1 ≥ qx

†
1 is similar and

is omitted. First consider the interval [0, �x1 ∧ �x†
1 ]. By (6.56), (6.66), (6.69), (3.12),

and the fact that vx0 = vx
†

0 = ψ, we have, for t ∈ [0, �x1 ∧ �x†
1 ],

|vx(t)− vx
†
(t)| ≤

∫ t−τ

−τ
|h′(x(s)) − h′(x†(s))||vx(s)|ds

+

∫ t−τ

0

|h′(x†(s))||vx(s)− vx
†
(s)|ds

≤ dh,x(x
†, t)2t exp(2Kht) +Kh

∫ t

0

|vx(s)− vx
†
(s)|ds.

An application of Gronwall’s inequality yields

(6.70) |vx(t)− vx
†
(t)| ≤ dh,x(x

†, t)2t exp(3Kht), t ∈ [0, �x1 ∧ �x
†

1 ].

Next, it follows from (6.56) that either vx or vx
†
is zero on the interval (�x1∧�x

†
1 , �

x
1∨�x

†
1 ].

Therefore, by (6.69), for t ∈ (�x1 ∧ �x†
1 , �

x
1 ∨ �x†

1 ],

(6.71) |vx(t)− vx
†
(t)| = |vx(t)| ∨ |vx†

(t)| ≤ 2 exp(2Kh(�1 + η0)).

By (6.56) and the fact that qx1 ≤ qx
†

1 , we have vx and vx
†
are both zero on (�x1 ∨

�x
†

1 , q
x
1 + τ ] and vx

†
is zero on the interval [qx1 + τ, qx

†
1 + τ ]. Thus, by (6.69), for

t ∈ [qx1 + τ, qx
†

1 + τ ],

(6.72) |vx(t)− vx
†
(t)| = |vx(t)| ≤ 2 exp(2Kh(q1 + η0 + τ)).

Consider the interval (qx
†

1 + τ, p+ η0]. By (6.56) and (6.69), we have, for t ∈ (qx
†

1 +
τ, p+ η0],

|vx(t)− vx
†
(t)| ≤ |vx(qx†

1 + τ)|+
∫ t−τ

qx
†

1

|h′(x(s)) − h′(x†(s))||vx(s)|ds(6.73)

+

∫ t−τ

qx
†

1

|h′(x†(s))||vx(s)− vx
†
(s)|ds.
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Since vx(qx1 + τ) = 0 and qx
†

1 ∈ (qx1 − η, qx1 + η) ⊂ (q1 − η0, q1 + η0), the first term on
the right-hand side of the inequality (6.73) satisfies

|vx(qx†
1 + τ)| ≤ Kh

∫ qx
†

1

qx1

|vx(s)|ds ≤ 2ηKh exp(2Kh(q1 + η0)).(6.74)

For the second term on the right-hand side of the inequality (6.73), we have, for

t ∈ [qx
†

1 + τ, p+ η0],∫ t−τ

qx
†

1

|h′(x(s)) − h′(x†(s))||vx(s)|ds(6.75)

≤ 2(q2 − q1 + 2η0)dh,x(x
†, q2 + η0) exp(2Kh(q2 + η0)),

where we have used (6.66), (6.69), and the facts that p = q2 + τ , |p− qx
†

1 − τ + η0| ≤
|q2 − q1 + 2η0|. For the last term on the right-hand side of the inequality (6.73), we

have, for t ∈ [qx
†

1 + τ, p+ η0],∫ t−τ

qx
†

1

|h′(x†(s))||vx(s)− vx
†
(s)|ds(6.76)

≤ Kh

∫ 
x1∧
x
†

1

qx
†

1

|vx(s)− vx
†
(s)|ds+Kh

∫ 
x1∨
x
†

1


x1∧
x
†

1

|vx(s)− vx
†
(s)|ds

+Kh

∫ qx
†

1 +τ

qx1+τ

|vx(s)|ds+Kh

∫ t

qx
†

1 +τ

|vx(s)− vx
†
(s)|ds

≤ 2Kh(�1 − q1 + 2η0)dh,x(x
†, �1 + η0)(�1 + η0) exp(3Kh(�1 + η0))

+ 4ηKh exp(2Kh(q1 + η0 + τ)) +Kh

∫ t

qx
†

1 +τ

|vx(s)− vx
†
(s)|ds,

where we have used (6.70)–(6.72). Combining (6.73)–(6.76) yields, for t ∈ [qx
†

1 +τ, p+
η0],

|vx(t)− vx
†
(t)| ≤ 6ηKh exp(2Kh(q1 + τ + η0))

+ 2(q2 − q1 + 2η0)dh,x(x
†, q2 + η0) exp(2Kh(q2 + η0))

+ 2Kh(�1 − q1 + 2η0)(�1 + η0)dh,x(x
†, �1 + η0) exp(3Kh(�1 + η0))

+Kh

∫ t

qx
†

1 +τ

|vx(s)− vx
†
(s)|ds.

Applying Gronwall’s inequality and substituting from (6.67)–(6.68) results in the de-
sired bound:

|vx(t)− vx
†
(t)| < δ, t ∈ [qx

†
1 + τ, p+ η0].

The lemma then follows from the fact that [p− τ − η0, p+ η0] ⊂ [qx
†

1 + τ, p+ η0].

6.5. Semiflow and Poincaré-type map. In this section we define a semiflow
and a variant of a Poincaré map that will be used in the next section to prove the
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exponential stability of a SOPS. Throughout this section we fix τ ≥ τ (4), where

τ (4) ≥ τ0 is as in Lemma 6.14 and the properties in Remark 6.1 hold.
Define the semiflow Σ : R+ × C+

[−τ,0] → C+
[−τ,0] by

(6.77) Σ(t, ϕ) = xt,

where x denotes the unique solution of the DDER with x0 = ϕ. Since the DDER
is autonomous and solutions to the DDER are unique, we have, for s, t ∈ R+ and
ϕ ∈ C+

[−τ,0],

(6.78) Σ(t,Σ(s, ϕ)) = Σ(t, xs) = xs+t = Σ(s+ t, ϕ).

Lemma 6.26. The semiflow Σ : R+ × C+
[−τ,0] → C+

[−τ,0] is continuous.

Proof. The lemma follows from (6.42) and because solutions of the DDER are
continuous.

Let x∗ denote a SOPS with delay τ and q0 = −τ . Fix an η0 > 0 and associated
ε0 ∈ (0, η0) as in Lemma 6.17. Define the neighborhood U of (p, x∗0) in the Banach
space R× C[−τ,0] (with norm ‖(t, ϕ)‖ = |t| ∨ ‖ϕ‖[−τ,0]) by

(6.79) U =
{
(t, ϕ) ∈ R× C[−τ,0] : ‖(t, ϕ)− (p, x∗0)‖ < ε0

}
.

Note that Lemma 6.17 implies U ⊂ R+ × C+
[−τ,0] and, moreover, if (t, ϕ) ∈ U , then

ϕ(s) > 0 for all s ∈ [−τ, 0] and xt(s) = Σ(t, ϕ)(s) > 0 for all s ∈ [−τ, 0]. Hence, by
(2.6), ẋt ∈ C[−τ,0], where ẋ ∈ D[−τ,∞) is defined as in (2.6). For the following lemma,
recall that given vector spaces X and Y , L(X,Y ) denotes the vector space of bounded
linear operators from X into Y .

Lemma 6.27. The semiflow Σ is continuously Fréchet differentiable on U and
for each (t, ϕ) ∈ U , the derivative DΣ(t, ϕ) ∈ L(R× C[−τ,0], C[−τ,0]) is given by

(6.80) DΣ(t, ϕ)(s, ψ) = sẋt + vt for all (s, ψ) ∈ R× C[−τ,0],

where x denotes the unique solution of the DDER with x0 = ϕ, ẋ is defined as in
(2.6), and v denotes the unique solution of the VE along x with v0 = ψ.

Proof. For each (t, ϕ) ∈ U , define the operator F (t, ϕ) : R× C[−τ,0] → C[−τ,0] by

(6.81) F (t, ϕ)(s, ψ) = sẋt + vt, (s, ψ) ∈ R× C[−τ,0].

It suffices to show (see, e.g., Theorem 1.3 in [9]) that (i) the function (t, ϕ) → F (t, ϕ) is
continuous as a mapping from U into L(R×C[−τ,0], C[−τ,0]) and (ii) for each (t, ϕ) ∈ U
and (s, ψ) ∈ R× C[−τ,0],

F (t, ϕ)(s, ψ) = lim
ε↓0

ε−1{Σ(t+ εs, ϕ+ εψ)− Σ(t, ϕ)},

where the limit is taken in C[−τ,0].
We first show that (i) holds. Fix (t, ϕ) ∈ U and let x be the unique solution of

the DDER with x0 = ϕ. The linearity of F (t, ϕ) follows from Lemma 6.22 and the
fact that t− τ > p− η0 − τ > �1 + η0 > �x1 . This, along with (3.10) and (B.11) (with
v† ≡ 0), establishes that F (t, ϕ) is a bounded linear operator. We now show that
(t, ϕ) → F (t, ϕ) is continuous. Let δ > 0. By Lemma 6.25, we can choose ε† > 0
such that if x† is another solution of the DDER satisfying ‖x− x†‖[−τ,0] < ε† and
ψ ∈ C[−τ,0] satisfies ‖ψ‖[−τ,0] ≤ 1, then

(6.82) ‖vx − vx
†‖[p−τ−η0,p+η0] < δ/3,
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where vx and vx
†
denote the unique solutions of the VE along x and x†, respectively,

with vx0 = vx
†

0 = ψ. By choosing a possibly smaller ε† > 0, we can assume that

(6.83) ε† <
δ

3Kh[H + 2 exp(2Kh(q2 + η0))]
.

Suppose (t†, ϕ†) ∈ U satisfies ‖(t, ϕ)− (t†, ϕ†)‖ < ε† and (s, ψ) ∈ R× C[−τ,0] satisfies
‖(s, ψ)‖ = 1. Let x† denote the unique solution of the DDER with x†0 = ϕ†. Define
ẋ as in (2.6) and define ẋ† as in (2.6), but with ẋ† and x† in place of ẋ and x,
respectively. By (6.81),

‖F (t, ϕ)(s, ψ)− F (t†, ϕ†)(s, ψ)‖[−τ,0] ≤ ‖ẋt − ẋ†
t†‖[−τ,0] + ‖vxt − vx

†
t† ‖[−τ,0].(6.84)

Consider the first term on the right-hand side of (6.84). Using (2.6), with f(xt) =
h(x(t− τ)), (3.12), (3.10), (6.42), and (6.83), we have

‖ẋt − ẋ†
t†‖[−τ,0] ≤ sup

u∈[−τ,0]
|h(x(t− τ + u))− h(x†(t† − τ + u))|(6.85)

≤ Kh

[
‖xt−τ − xt†−τ‖[−τ,0] + ‖xt†−τ − x†

t†−τ‖[−τ,0]
]

≤ Kh

[
H |t− t†|+ 2 exp(2Kh(t

† − τ))‖ϕ − ϕ†‖[−τ,0]
]

≤ δ/3.

Now consider the second term on the right-hand side of (6.84). By (6.82), (6.56),

(3.12), (B.11) (with v = vx
†
, v† = 0, and Kf = Kh), and (6.83), we have

‖vxt − vx
†
t† ‖[−τ,0] ≤ ‖vxt − vx

†
t ‖[−τ,0] + ‖vx†

t − vx
†
t† ‖[−τ,0](6.86)

≤ δ/3 + sup
u∈[−τ,0]

∫ t†+u

t+u

|h′(x†(s− τ))vx
†
(s− τ)|ds

≤ δ/3 + 2Kh exp(2Kh(q2 + η0))|t− t†|
≤ 2δ/3.

Combining (6.84)–(6.86) and recalling that (s, ψ) was only subject to the constraint
‖(s, ψ)‖ = 1, we see that ‖F (t, ϕ)− F (t†, ϕ†)‖ < δ, so F is continuous at (t, ϕ). Since
(t, ϕ) ∈ U was arbitrary, (t, ϕ) → F (t, ϕ) is continuous on U and so (i) holds.

We now show that (ii) holds. Fix (t, ϕ) ∈ U and (s, ψ) ∈ R×C[−τ,0]. Let x be the
unique solution of the DDER with x0 = ϕ and let v be the unique solution of the VE
along x with v0 = ψ. Clearly, (t + εs, ϕ + εψ) ∈ U for ε sufficiently small. For such
ε > 0, let xε denote the unique solution of the DDER with xε0 = ϕ + εψ and define
vε = ε−1(xε − x) ∈ C[−τ,∞). Then, by the triangle inequality,

∥∥ε−1 {Σ(t+ εs, ϕ+ εψ)− Σ(t, ϕ)} − F (t, ϕ)(s, ψ)
∥∥
[−τ,0](6.87)

≤ ε−1
∥∥xεt+εs − xεt − εsẋt

∥∥
[−τ,0] + ‖vεt − vt‖[−τ,0] .
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For the first term on the right-hand side of the above inequality, we have

∥∥xεt+εs − xεt − εsẋt
∥∥
[−τ,0] = sup

u∈[−τ,0]

∣∣∣∣∫ εs

0

(h(xε(t+ u− τ + r)) − h(x(t+ u− τ)))dr

∣∣∣∣
≤ Kh sup

u∈[−τ,0]

∫ εs

0

|xε(t+ u− τ + r) − xε(t+ u− τ)|dr

+Kh sup
u∈[−τ,0]

∫ εs

0

|xε(t+ u− τ)− x(t+ u− τ)|dr

≤ KhH

∫ εs

0

rdr

+Khεs sup
u∈[−τ,0]

|xε(t+ u− τ)− x(t+ u− τ)|

≤ 1

2
KhHε

2s2 + 2Kh‖ψ‖[−τ,0]ε2s exp(2Kht).

The first equality follows from (2.6) and the fact that x and xε are positive in the
|εs| neighborhood of [t− τ, t]. The first and second inequalities follow from (3.12) and
(3.10), respectively. The final inequality follows from (6.42), but with xε in place of x†.
Therefore, the first term on the right-hand side of the inequality in (6.87) converges to
zero as ε ↓ 0. For the second term on the right-hand side of the inequality in (6.87), we
first note that by (6.56) and the inclusion [t−τ, t] ⊂ [p−τ−η0, p+η0] ⊂ [qx1 +τ, p+η0],
v is continuous on [t − τ, t]. Thus, by Proposition 6.20, ‖vεt − vt‖[−τ,0] converges to
zero as ε ↓ 0. Since the convergence holds for each (t, ϕ) ∈ U and (s, ψ) ∈ R×C[−τ,0],
(ii) holds and the proof is complete.

Define the function Z : R+ × C+
[−τ,0] → R by

(6.88) Z(t, ϕ) = z(t),

where z is defined as in (2.3) with x being the unique solution of the DDER such that
x0 = ϕ. Let V be the neighborhood of (�1, x

∗
0) in R× C[−τ,0] given by

V =
{
(t, ϕ) ∈ R× C[−τ,0] : ‖(t, ϕ)− (�1, x

∗
0)‖ < ε0

}
.

Note that by Lemma 6.17 and because ε0 ∈ (0, η0), V ⊂ R+×C+
[−τ,0]. In the following

lemma we prove that Z is continuously Fréchet differentiable on V . This combined
with the implicit function theorem will allow us to define a continuously Fréchet
differentiable function Δ that maps ϕ in a small neighborhood of x∗0 to the first time
that the associated solution of the DDER hits the lower boundary (see Lemma 6.29).

Lemma 6.28. The function Z is continuously Fréchet differentiable on V and for
each (t, ϕ) ∈ V, the derivative DZ(t, ϕ) ∈ L(R× C[−τ,0],R) is given by

(6.89) DZ(t, ϕ)(s, ψ) = sż(t) + w(t) for all (s, ψ) ∈ R× C[−τ,0].

Here ż ∈ C[0,∞) is defined by ż(t) = h(x(t − τ)) for all t ≥ 0 with x being the unique

solution of the DDER with x0 = ϕ, and if v is the unique solution of the VE along x
with v0 = ψ, then w is defined by (6.50).

Proof. For each (t, ϕ) ∈ V , define the operator G(t, ϕ) : R× C[−τ,0] → R by

(6.90) G(t, ϕ)(s, ψ) = sż(t) + w(t), (s, ψ) ∈ R× C[−τ,0].
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As in the proof of Lemma 6.27, it suffices to show that (i) the function (t, ϕ) → G(t, ϕ)
is a continuous function from V into L(R×C[−τ,0],R) and (ii) for each (t, ϕ) ∈ V and
(s, ψ) ∈ R× C[−τ,0],

G(t, ϕ)(s, ψ) = lim
ε↓0

ε−1{Z(t+ εs, ϕ+ εψ)− Z(t, ϕ)}.

We first show that (i) holds. Fix (t, ϕ) ∈ V , let x denote the unique solution
of the DDER with x0 = ϕ and define z as in (2.3). The linearity of G(t, ϕ) follows
from (6.50), Lemma 6.22, and the fact that �1 + ε0 − τ < �x1 . Using Lemma 3.5,
(6.50), (6.42), and (B.11), it is simple to check that G(t, ϕ) is indeed a bounded linear
operator. Now fix δ > 0. By (6.42) and the continuity of h′, we can choose ε† > 0

such that if x† is another solution of the DDER satisfying ‖x0 − x†0‖[−τ,0] < ε†, then
given t† ∈ [0, t+ ε†),

(6.91) sup
u∈[−τ,t†−τ ]

|h′(x(u))− h′(x†(u))| < δ

8 exp(3Kh(�1 + η0))(�1 + η0)
.

By choosing a possibly smaller ε† > 0, we can ensure that ε† satisfies

(6.92) ε† ≤ δ

4Kh(H + 2 exp(3Kh(�1 + η0))
.

Suppose (t†, ϕ†) ∈ V satisfies ‖(t, ϕ)− (t†, ϕ†)‖ < ε† and let x† denote the unique

solution of the DDER with x†0 = ϕ†. Define z† as in (2.3), but with x† and z† in place
of x and z, respectively. Consider (s, ψ) ∈ R × C[−τ,0] such that ‖(s, ψ)‖ = 1. Let

vx and vx
†
be the unique solutions of the VE along x and x†, respectively, and both

with initial condition ψ. Define wx as in (6.50), but with vx and wx in place of v and

w, respectively, and define wx
†
as in (6.50), but with vx

†
and wx

†
in place of v and

w, respectively. Note that by (6.50) and (6.56), we have

(6.93) vx(t) = wx(t), 0 ≤ t < �x1 .

Similarly, (6.93) holds with vx
†
, wx

†
, and �x

†
1 in place of vx, wx, and �x1 , respectively.

Applying the triangle inequality in (6.90), we have

|G(t, ϕ)(s, ψ) −G(t†, ϕ†)(s, ψ)| ≤ |ż(t)− ż†(t†)|+ |wx(t)− wx
†
(t†)|.(6.94)

Using (2.3), (3.10), (3.12), (6.42), and (6.92), we can bound the first term on the
right-hand side of (6.94) by

|ż(t)− ż†(t†)| ≤ Kh

[
|x(t− τ)− x(t† − τ)| + |x(t† − τ) − x†(t† − τ)|

]
≤ δ/4.(6.95)

By (6.50), (3.12), (6.93), and (B.11), the second term on the right-hand side of (6.94)
satisfies

|wx(t)− wx
†
(t†)| ≤ |wx(t)− wx(t†)|+ |wx(t†)− wx

†
(t†)|

≤ 2Kh exp(2Kh(�1 − τ + η0))|t− t†|

+

∫ t†

0

|h′(x(s− τ)) − h′(x†(s− τ))||vx(s− τ)|ds

+

∫ t†

0

|h′(x†(s− τ))||vx(s− τ)− vx
†
(s− τ)|ds

≤ 3δ

4 exp(Kh(�1 + η0))
+Kh

∫ t†

0

|wx(s)− wx
†
(s)|ds.
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An application of Gronwall’s inequality to the above inequality yields

(6.96) |wx(t)− wx
†
(t)| ≤ 3δ/4.

Combining (6.94)–(6.96), we obtain |G(t, ϕ)(s, ψ)−G(t†, ϕ†)(s, ψ)| ≤ δ. Since (s, ψ) ∈
R× C[−τ,0] was only subject to the constraint ‖(s, ψ)‖ = 1, G is continuous at (t, ϕ).
Noting that our choice of (t, ϕ) ∈ V was arbitrary, we have G is continuous on V , and
so (i) holds.

We now show that (ii) holds. Fix (t, ϕ) ∈ V and (s, ψ) ∈ R×C[−τ,0]. Let x be the
unique solution of the DDER with x0 = ϕ, z be defined as in (2.3), v be the unique
solution of the VE along x, and w be defined as in (6.50). For ε > 0 sufficiently small
such that (t + εs, ϕ + εψ) ∈ V , let xε denote the unique solution of the DDER with
initial condition ϕ+ εψ, define zε as in (2.3), but with xε and zε in place of x and z,
respectively, and define wε = ε−1(zε − z) ∈ C[−τ,0]. By the triangle inequality,∣∣ε−1 (Z(t+ εs, ϕ+ εψ)− Z(t, ϕ))− sż(t)− w(t)

∣∣(6.97)

≤ ε−1|zε(t+ εs)− zε(t)− εsż(t)|+ |wε(t)− w(t)|.

For the first term on the right-hand side of the inequality in (6.97), we have

|zε(t+ εs)− zε(t)− εsż(t)| ≤ Kh

∫ εs

0

|xε(t+ u− τ) − xε(t− τ)|du

+Khεs|xε(t− τ) − x(t− τ)|

≤ KhH

∫ εs

0

udu+Khεs‖xε − x‖[−τ,
1+η0]

≤ 1

2
KhHε

2s2 + 2Kh‖ψ‖[−τ,0]ε2s exp(2Kh(�1 + η0)).

The first inequality follows from (3.12) and the triangle inequality. The second in-
equality follows from (3.10). The last inequality follows from (6.42) with xε in place
of x†. Thus, the first term on the right-hand side of the inequality in (6.97) converges
to zero as ε ↓ 0. By Proposition 6.20, the second term on the right-hand side of the
inequality in (6.97) converges to zero as ε ↓ 0. Since the limit holds for each (t, ϕ) ∈ V
and (s, ψ) ∈ R× C[−τ,0], (ii) holds and the proof is complete.

Lemma 6.29. There is a neighborhood T × W of (0, x∗0) in (−ε0, ε0) × C[−τ,0]
and a continuously Fréchet differentiable function Δ : W → T such that Δ(x∗0) = 0,
(�1 +Δ(ϕ), ϕ) ∈ V for all ϕ ∈ W and for all (t, ϕ) ∈ T ×W, Z(�1 + t, ϕ) = 0 if and
only if t = Δ(ϕ). Furthermore, Δ(ϕ) = �x1 − �1, where �

x
1 is as in Lemma 6.17 with

x the unique solution of the DDER satisfying x0 = ϕ, and the derivative of Δ at x∗0,
DΔ(x∗0) ∈ L(C[−τ,0],R), is given by

(6.98) DΔ(x∗0)ψ = − w(�1)

ż∗(�1)
for all ψ ∈ C[−τ,0],

where w is given by (6.50) with x replaced by x∗ and v is the solution of the VE along
x∗ with v0 = ψ.

Proof. Note that Z is continuously Fréchet differentiable on V and Z(�1, x
∗
0) = 0.

Additionally, due to the fact that �1 − τ ∈ (−τ, q1), we have h(x∗(�1 − τ)) < 0 and
so s → DZ(�1, x

∗
0)(s, 0) = sż∗(�1) = sh(x∗(�1 − τ)) is an isomorphism on R. It then

follows from the implicit function theorem on Banach spaces (see, e.g., Theorem 2.3
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in [9]) that there exists a neighborhood T × W of (0, x∗0) in (−ε0, ε0) × C[−τ,0] and
a continuously Fréchet differentiable function Δ
 : W → R such that Δ
(x∗0) = �1,
(Δ
(ϕ), ϕ) ∈ V for all ϕ ∈ W , and for all (t, ϕ) ∈ T ×W , Z(�1 + t, ϕ) = 0 if and only
if �1 + t = Δ
(ϕ). Moreover, the derivative of Δ
 at x∗0 is given by

DΔ
(x∗0)ψ = −[D1Z(�1, x
∗
0)]

−1D2Z(�1, x
∗
0)ψ = − w(�1)

ż∗(�1)
for all ψ ∈ C[−τ,0].

where DiZ denotes the derivative of Z with respect to its ith argument. Define
Δ : W → R by Δ(ϕ) = Δ
(ϕ) − �1 for each ϕ ∈ W . Then Δ is continuously Fréchet
differentiable on W , Δ(x∗0) = 0 and (�1 +Δ(ϕ), ϕ) ∈ V . Thus, by the definition of V ,
|Δ(ϕ)| < ε0 ≤ η0. Given ϕ ∈ W , let x denote the unique solution of the DDER with
x0 = ϕ, define z ∈ C[−τ,∞) as in (2.3), and let �x1 be as in Lemma 6.17. Then �x1 is the
unique point in (�1−η0, �1+η0) such that z(�x1) = 0. Since �1+Δ(ϕ) ∈ (�1−η0, �1+η0)
and z(�1 +Δ(ϕ)) = Z(�1 +Δ(ϕ), ϕ) = 0, we must have that �1 +Δ(ϕ) = �x1 .

We can now define our variant of a Poincaré map for x∗, Γ : W → C+
[−τ,0], as

follows:

(6.99) Γ(ϕ) = Σ(p+Δ(ϕ), ϕ), ϕ ∈ W .

Theorem 6.30. The function Γ is continuously Fréchet differentiable, x∗0 is a
fixed point of Γ, and for all ψ ∈ C[−τ,0], the derivative of Γ in the direction ψ and
evaluated at x∗0 is given by

(6.100) DΓ(x∗0)ψ = − w(�1)

ż∗(�1)
ẋ∗p + vp.

Here v denotes the unique solution of the VE along x∗ with v0 = ψ and w is defined
as in (6.50), but with x∗ in place of x.

Proof. The fact that Γ is continuously Fréchet differentiable on U is due to the
facts that Σ is continuously Fréchet differentiable on U , Δ is continuously Fréchet
differentiable on W , and (p+Δ(ϕ), ϕ) ∈ U for all ϕ ∈ W . Since Δ(x∗0) = 0, the chain
rule implies that

(6.101) DΓ(x∗0)ψ = D1Σ(p, x
∗
0)DΔ(x∗0)ψ +D2Σ(p, x

∗
0)ψ.

By (6.98), we have DΔ(x∗0)ψ = −w(�1)/ż∗(�1). Then by (6.80), with x∗0 in place of
ϕ and DΔ(x∗0)ψ in place of s, we have

D1Σ(p, x
∗
0)DΔ(x∗0)ψ = − w(�1)

ż∗(�1)
ẋ∗p,

where ż∗ is defined by ż∗(t) = h(x∗(t− τ)) for all t ≥ 0 and w is defined as in (6.50),
but with x∗ in place of x, and also

D2Σ(p, x
∗
0)ψ = vp,

where v denotes the unique solution of the VE along x∗ with v0 = ψ.

6.6. Proof of stability. In this section we prove that if the delay τ is sufficiently
large, then any SOPS is exponentially stable. In section 6.7, we prove that such a
SOPS is unique, which will complete the proof of Theorem 3.8. Let τ (4) ≥ τ0 be such
that Lemma 6.14 and the properties in Remark 6.1 hold. Recall the positive constants
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α, β, m, H , Kh, andM introduced in Assumptions 3.3 and 3.4, and Lemmas 3.5, 3.6,
and 6.24.

Lemma 6.31. For each θ > 0, there exists τθ ≥ τ0 such that whenever τ > τθ, x
∗

is a SOPS of the DDER with delay τ and q0 = −τ and Γ is the associated Poincaré
type map defined in (6.99), then ‖DΓ(x∗0)‖ ≤ θ.

Proof. Fix θ > 0. By (6.27), Corollary 6.12, Lemma 6.14, Remark 6.1, and
Lemma 5.5, there exist constants d > 0 and τθ ≥ τ (4) such that if τ > τ0 and x∗ is
a SOPS of the DDER with delay τ , then (i) q2 < q1 + 2τ ; (ii) x∗(t) ≥ L + τd for all
t ∈ [q1 − τ, �1 − τ ]; and (iii) h(s) ≤ −α/2 for all s ≥ L + τd. By choosing a possibly
larger τθ we can ensure that

(6.102) τθ ≥
4Kh(1 +Kh)L

3Mm(2MH + α)(2β + α)

θα4βd
.

Fix τ > τθ and a SOPS x∗ with delay τ and q0 = −τ . Suppose ψ ∈ C[−τ,0] satisfies
‖ψ‖[−τ,0] = 1. Let ξ ∈ D[−τ,∞) denote the unique solution of the VE along x∗ with

ξ0 = − w(�1)

ż∗(�1)
ẋ∗0 + ψ ∈ C[−τ,0],

where if v is the unique solution to the VE along x∗ with v0 = ψ, then w is defined as
in (6.50), but with x∗ in place of x. Note that by Lemma 6.24, ‖v‖[0,
1] ≤ ‖v‖[−τ,p] ≤
M‖ψ‖[−τ,0]. Since w and v are equal on [0, �1) and w is continuous, we have ‖w‖[0,
1] ≤
M‖ψ‖[−τ,0] as well. This along with (ii), (iii) above, the fact that ż∗(t) = h(x∗(t −
τ)) for all t ≥ 0, and (3.10) together imply that ‖ξ0‖[−τ,0] ≤ 2α−1MH + 1. From

Lemmas 6.22 (with a = 1, b = −w(�1)/ż∗(�1) and v† = ẋ∗) and 6.23, we obtain

(6.103) ξ(t) = − w(�1)

ż∗(�1)
ẋ∗(t) + v(t), t ∈ [−τ, p] \ {�1}.

Note that �1 �∈ [p− τ, p], so by (6.100),

ξp = − w(�1)

ż∗(�1)
ẋ∗0 + vp = DΓ(x∗0)ψ.

Since ẋ∗(t) = ż∗(t) and v(t) = w(t) for all t ∈ [0, �1), and ż
∗ and w are continuous,

we have

lim
t↑
1

ξ(t) = lim
t↑
1

{
− w(�1)

ż∗(�1)
ż∗(t) + w(t)

}
= 0.(6.104)

By (6.57) and (6.104), we have, for q1 ≤ s < �1,

|ξ(s)| = lim
t↑
1

|ξ(t)− ξ(s)| ≤
∫ 
1

s

|h′(x∗(u− τ))ξ(u − τ)|du(6.105)

≤ ‖ξ‖[−τ,
1]
∫ 
1

s

|h′(x∗(u − τ))x∗(u− τ)|
|x∗(u − τ)| du

≤ M |�1 − q1|m
L+ τd

‖ξ0‖[−τ,0].

The final inequality above follows from Lemma 6.24, Assumption 3.4, and the fact
that x∗(u) ≥ L+ τd for all u ∈ [q1 − τ, �1 − τ ].
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By (6.57) and (6.104), ξ is continuous at �1 and equal to zero on [�1, q1 + 1], so

(6.106) ‖ξ‖[q1,q1+τ ] ≤
M |�1 − q1|m
L+ τd

‖ξ0‖[−τ,0].

By (6.57) and (3.12), for t ∈ [q1 + τ, �1 + τ ], |ξ(t)| ≤ Kh|�1 − q1|‖ξ‖[q1,q1+τ ]. For
t ∈ [�1 + τ, q1 + 2τ ], ξ(t− τ) = 0, so ξ is constant on [�1 + τ, q1 + 2τ ] and thus

(6.107) ‖ξ‖[q1+τ,q1+2τ ] ≤ Kh|�1 − q1|‖ξ‖[q1,q1+τ ].

By (i) above, q2 < q1 + 2τ . Then by (6.57), for t ∈ [q1 + 2τ, p] = [q1 + 2τ, q2 + τ ],

|ξ(t)| ≤ |ξ(q1 + 2τ)|+
∫ p

q1+2τ

|h′(x∗(s− τ))ξ(s − τ)|ds

≤ (1 +Kh)|q2 − q1 − τ |‖ξ‖[q1+τ,q1+2τ ].

Then by (6.102), (6.106), (6.107), and (6.41),

(6.108) ‖DΓ(x∗0)ψ‖ = ‖ξp‖[−τ,0] ≤ θ.

Since (6.108) holds for all ψ ∈ C[−τ,0] satisfying ‖ψ‖[−τ,0] = 1, the conclusion of the
lemma follows.

We now establish that for τ sufficiently large, any SOPS to the DDER is expo-
nentially stable. The statement and proof of Theorem 6.32 below are similar to the
statement and proof of Theorem 1.1 in [40], which establishes the exponential stability
of periodic solutions to an unconstrained state dependent delay differential equation.
We include the proof here for completeness.

Theorem 6.32. Fix θ ∈ (0, 1) and τ > τθ. Suppose x∗ is a SOPS of the DDER
with delay τ and q0 = −τ . Then there exist constants ε > 0 and Kρ > 0 such that
given any

(6.109) 0 < γ <
| log θ|
p

,

there exists Kγ > 0 such that if ϕ ∈ C+
[−τ,0] satisfies ‖ϕ− x∗σ‖[−τ,0] ≤ ε for some

σ ∈ [0, p), then there exists ρ ∈ (−p, p) satisfying

(6.110) |ρ| ≤ Kρ‖ϕ− x∗σ‖[−τ,0]

and such that

(6.111) ‖xt − x∗t+σ+ρ+p‖[−τ,0] ≤ Kγe
−γt‖ϕ− x∗σ‖[−τ,0] for all t ≥ 0,

where x is the unique solution of the DDER with delay τ and x0 = ϕ.
Remark 6.2. Note that since σ is nonnegative and |ρ| < p, it follows that t+ σ+

ρ+ p ≥ 0 for all t ≥ 0 and so x∗t+σ+ρ+p in (6.111) is well defined for all t ≥ 0. When

σ + ρ ≥ 0, x∗t+σ+ρ is well defined for all t ≥ 0, so by the periodicity of x∗, we can
replace x∗t+σ+ρ+p with x∗t+σ+ρ.

Proof. Let x∗ be a SOPS of the DDER. First note that by (3.10) and the period-
icity of x∗,

(6.112) ‖x∗t − x∗s‖[−τ,0] ≤ H |t− s|, 0 ≤ s, t <∞.

Our proof proceeds by sequentially proving that the following statements hold:
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(i) Given any γ satisfying (6.109), there exist positive constants ε1(γ), K̃ρ(γ),
and K1(γ) such that if ϕ ∈ C+

[−τ,0] satisfies ‖ϕ− x∗0‖[−τ,0] ≤ ε1(γ), then there exists

ρ ∈ (−p, p) satisfying (6.110), with σ = 0 and K̃ρ(γ) in place of Kρ, and such that
(6.111) holds with σ = 0 and K1(γ) in place of Kγ .

(ii) There exist positive constants ε2 and Kρ such that given any γ satisfying
(6.109), there exists K5(γ) > 0 such that if ϕ ∈ C+

[−τ,0] satisfies ‖ϕ− x∗0‖[−τ,0] ≤ ε2,

then there exists ρ ∈ (−p, p) satisfying (6.110), with σ = 0 and Kρ in place of Kρ,
and such that (6.111) holds with σ = 0 and K5(γ) in place of Kγ .

(iii) The statement of the theorem.
Proof of (i). Since Γ is continuously Fréchet differentiable, it follows that

Γ(ϕ)− x∗0 = DΓ(x∗0)(ϕ− x∗0) + o(‖ϕ− x∗0‖[−τ,0])

as ‖ϕ− x∗0‖[−τ,0] → 0. Suppose γ > 0 satisfies (6.109). Then e−γp ∈ (θ, 1). By
Lemma 6.31, ‖DΓ(x∗0)‖ ≤ θ, so by taking a sufficiently small neighborhood W of x∗0
in C+

[−τ,0], we can ensure that

(6.113) ‖Γ(ϕ)− x∗0‖[−τ,0] ≤ e−γp‖ϕ− x∗0‖[−τ,0] for all ϕ ∈ W .

By Lemma 6.29, we can choose ε1(γ),K2(γ) > 0 such that

W(ε1(γ)) =
{
ϕ ∈ C+

[−τ,0] : ‖ϕ− x∗0‖[−τ,0] < ε1(γ)
}
⊆ W

and

(6.114) |Δ(ϕ)| ≤ K2(γ)‖ϕ− x∗0‖[−τ,0] for all ϕ ∈ W(ε1(γ)).

By choosing a possibly smaller ε1(γ) > 0 such that ε1(γ)K2(γ) < τ , (6.114) ensures
that

(6.115) |Δ(ϕ)| < τ for all ϕ ∈ W(ε1(γ)).

Given ϕ ∈ W(ε1(γ)), we can iterate (6.113) to obtain that Γk(ϕ) ∈ W (ε1(γ)) for each
k = 0, 1, . . . and

(6.116) ‖Γk(ϕ)− x∗0‖[−τ,0] ≤ e−γkp‖ϕ− x∗0‖[−τ,0].

Define t0 = 0 and Γ0(ϕ) = ϕ. For k = 1, 2, . . . , recursively define

Δ(ϕ, k) =

k−1∑
j=0

Δ
(
Γj(ϕ)

)
,(6.117)

tk = kp+Δ(ϕ, k),(6.118)

Let x denote the unique solution of the DDER with x0 = ϕ. We will use induction to
show that Γk(ϕ) = xtk for all k = 0, 1, . . . . By definition, Γ0(ϕ) = ϕ. Now suppose
that Γk(ϕ) = xtk for some k ∈ {0, 1, . . .}. Then using the semiflow property of Σ we
have

Γk+1(ϕ) = Γ
(
Γk(ϕ)

)
= Σ

(
p+Δ(Γk(ϕ)),Σ(tk, ϕ)

)
= Σ

(
tk + p+Δ(Γk(ϕ)), ϕ

)
= xtk+1

.
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Therefore, by the induction principle, Γk(ϕ) = xtk for each k = 0, 1, . . . . Note that
(6.115) implies tk < tk+1 for each k = 0, 1, . . . . Using (6.114) and (6.116), we have
for all k = 0, 1, . . . ,

(6.119)
∣∣Δ (

Γk(ϕ)
)∣∣ ≤ K2(γ)‖Γk(ϕ)− x∗0‖[−τ,0] ≤ K2(γ)e

−γkp‖ϕ− x∗0‖[−τ,0].

Define

(6.120) ρ = − lim
k→∞

Δ(ϕ, k),

where the existence of ρ as a finite limit follows from (6.117) and (6.119). By (6.117),
(6.119), and (6.120), we have for each k = 1, 2, . . . ,

|Δ(ϕ, k)| ≤
∞∑
j=0

|Δ(Γj(ϕ))| ≤ K̃ρ(γ)‖ϕ− x∗0‖[−τ,0],(6.121)

|ρ| ≤
∞∑
j=0

|Δ(Γj(ϕ))| ≤ K̃ρ(γ)‖ϕ− x∗0‖[−τ,0],(6.122)

and

(6.123) |ρ+Δ(ϕ, k)| ≤
∞∑
j=k

|Δ(Γj(ϕ))| ≤ K̃ρ(γ)e
−γkp‖ϕ− x∗0‖[−τ,0],

where

(6.124) K̃ρ(γ) = K2(γ)
∞∑
j=0

e−γjp =
K2(γ)

1− e−γp
.

By choosing ε1(γ) > 0 possibly smaller so that ε1(γ)K̃ρ(γ) < p, it follows from (6.122)
that ρ ∈ (−p, p).

Now let Ik = [tk, tk+1] for each k ∈ N0. By (6.118), (6.121), and the fact that

ε1(γ)K̃ρ(γ) < p, tk → ∞ as n → ∞, so
⋃∞
k=0 Ik covers [0,∞). From (6.117)–(6.119)

and (6.121), we have for ϕ ∈ W(ε1(γ)) and k = 0, 1, . . . ,

tk+1 − tk = p+Δ(Γk(ϕ)) ≤ p+ K̃ρ(γ)ε1(γ).(6.125)

By (6.42), for K3(γ) = 2 exp[2Kh(p+ K̃ρ(γ)ε1(γ))], we have, for all ϕ ∈ W(ε1(γ)),

(6.126) ‖xt − x∗t ‖[−τ,0] ≤ K3(γ)‖ϕ− x∗0‖[−τ,0], 0 ≤ t ≤ p+ K̃ρ(γ)ε1(γ).

It follows from (6.116), (6.125), (6.126), the relation Γk(ϕ) = xtk , and the semiflow
property of Σ that for t ∈ Ik

‖xt − x∗t−tk‖[−τ,0] = ‖Σ(t− tk, xtk)− Σ(t− tk, x
∗
0)‖[−τ,0]

≤ K3(γ)‖Γk(ϕ) − x∗0‖[−τ,0]
≤ K3(γ)e

−γkp‖ϕ− x∗0‖[−τ,0].

Also, by (6.112), (6.118), and (6.123), for all t ∈ Ik,

‖x∗t−tk − x∗t+p+ρ‖[−τ,0] = ‖x∗t−tk+(k+1)p − x∗t+p+ρ‖[−τ,0]
≤ H |ρ− kp+ tk|
≤ H |ρ+Δ(ϕ, k)|
≤ HK̃ρ(γ)e

−γkp‖ϕ− x∗0‖[−τ,0].
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Combining the previous two inequalities yields

(6.127) ‖xt − x∗t+p+ρ‖[−τ,0] ≤ K4(γ)e
−γkp‖ϕ− x∗0‖[−τ,0] for all t ∈ Ik,

where

(6.128) K4(γ) = K3(γ) +HK̃ρ(γ).

Furthermore, by (6.118) and (6.121), we have

(6.129) tk+1 − kp = p+Δ(ϕ, k + 1) ≤ p+ K̃ρ(γ)ε1(γ).

Therefore, by (6.127) and (6.129), for all t ∈ Ik,

‖xt − x∗t+p+ρ‖[−τ,0] ≤ K4(γ)e
−γkpeγ(tk+1−t)‖ϕ− x∗0‖[−τ,0](6.130)

≤ K1(γ)e
−γt‖ϕ− x∗0‖[−τ,0],

whereK1(γ) = K4(γ)e
γ(p+ ˜Kρ(γ)ε1(γ)). From (6.122) and (6.130), we see that (i) holds.

Proof of (ii). Fix γ̄ > 0 satisfying (6.109) and set

ε2 = ε1(γ̄), Kρ = K̃ρ(γ̄).

Now given ϕ ∈ C+
[−τ,0] satisfying ‖ϕ− x∗0‖[−τ,0] ≤ ε2, let x denote the unique solution

of the DDER with x0 = ϕ. By (i), there is a ρ ∈ (−p, p) satisfying

(6.131) |ρ| ≤ Kρ‖ϕ− x∗0‖[−τ,0]

and such that

(6.132) ‖xt − x∗t+p+ρ‖[−τ,0] ≤ K1(γ̄)e
−γ̄t‖ϕ− x∗0‖[−τ,0] for all t ≥ 0.

Suppose γ > 0 also satisfies (6.109). Then set

(6.133) T (γ) = max

{
0,

1

γ̄
log

(
K1(γ̄)ε2
ε1(γ)

)}
,

where ε1(γ) > 0 is as in (i). Due to (6.132), (6.133), and the fact that ‖ϕ− x∗0‖[−τ,0] ≤
ε2, we have, for all t ≥ T (γ),

(6.134) ‖xt − x∗t+p+ρ‖[−τ,0] ≤ K1(γ̄)e
−γ̄t‖ϕ− x∗0‖[−τ,0] ≤ ε1(γ).

Let nγ = min{k ∈ N : kp ≥ T (γ) + ε2Kρ} and define

(6.135) tγ = nγp− ρ.

By (6.131) and the definition of nγ , we have tγ ≥ nγp− ε2Kρ ≥ T (γ) and so (6.134)
holds for all t ≥ tγ . Then (6.134), (6.135), and the periodicity of x∗ imply that

(6.136) ‖xtγ − x∗0‖[−τ,0] = ‖xtγ − x∗tγ+p+ρ‖[−τ,0] ≤ ε1(γ).

Additionally, by (6.133) and the fact that ρ ∈ (−p, p), we have the following bound
on tγ :

(6.137) tγ ≤ T (γ) + ε2Kρ + p+ |ρ| ≤ T (γ) + ε2Kρ + 2p.



4522 DAVID LIPSHUTZ AND RUTH J. WILLIAMS

Define xγ ∈ C+
[−τ,∞) by x

γ(t) = x(tγ + t) for all t ≥ −τ , so that xγ is a solution

of the DDER with xγ0 = xtγ . By (6.136) and (i), there exists ρ̃ ∈ (−p, p) such that
for all t ≥ 0,

(6.138) ‖xγt − x∗t+p+ρ̃‖[−τ,0] ≤ K1(γ)e
−γt‖xγ0 − x∗0‖[−τ,0].

From the definition of xγ , (6.138), (6.135), the periodicity of x∗, and (6.132), it follows
that for t ≥ 0,

‖xt+tγ − x∗t+p+ρ̃‖[−τ,0] = ‖xγt − x∗t+p+ρ̃‖[−τ,0](6.139)

≤ K1(γ)e
−γt‖xtγ − x∗tγ+p+ρ‖[−τ,0]

≤ K1(γ)e
−γtK1(γ̄)e

−γ̄tγ‖ϕ− x∗0‖[−τ,0].

By (6.135), the periodicity of x∗, (6.132), (6.139), and the fact that ‖ϕ− x∗0‖[−τ,0] <
ε2, we have, for t ≥ 0,

‖x∗t − x∗t+p+ρ̃‖[−τ,0] = ‖x∗t+tγ+ρ − x∗t+p+ρ̃‖(6.140)

≤ ‖x∗t+tγ+p+ρ − xt+tγ‖[−τ,0]
+ ‖xt+tγ − x∗t+p+ρ̃‖[−τ,0]

≤ K1(γ̄)e
−γ̄t‖ϕ− x∗0‖[−τ,0]

+K1(γ)K1(γ̄)e
−γ̄tγe−γt‖ϕ− x∗0‖[−τ,0]

→ 0 as t→ ∞.

Thus, by periodicity, x∗(t) = x∗(t+ p+ ρ̃) for all t ≥ 0. Since p is the minimal period
of x∗, ρ̃ must be an integer multiple of p. Then |ρ̃| < p implies that ρ̃ = 0. Now by
(6.139), with ρ̃ = 0 and t− tγ in place of t, we have, for t ≥ tγ ,

‖xt − x∗t+p−tγ‖[−τ,0] ≤ K1(γ)K1(γ̄)e
−γ(t−tγ)−γ̄tγ‖ϕ− x∗0‖[−τ,0](6.141)

≤ K6(γ)e
−γt‖ϕ− x∗0‖[−τ,0],

where K6(γ) = K1(γ)K1(γ̄)e
tγ(γ−γ̄). For 0 ≤ t ≤ tγ , by (6.132) and (6.137), we have

‖xt − x∗t+p+ρ‖[−τ,0] ≤ K1(γ̄)e
γtγe−γt‖ϕ− x∗0‖[−τ,0](6.142)

≤ K1(γ̄) exp
(
γ
(
T (γ) + ε2Kρ + 2p

))
e−γt‖ϕ− x∗0‖[−τ,0]

≤ K7(γ)e
−γt‖ϕ− x∗0‖[−τ,0],

where K7(γ) = K1(γ̄) exp
(
γ
(
T (γ) + ε2Kρ + 2p

))
. Combining (6.141) and (6.142)

and letting K5(γ) = max(K6(γ),K7(γ)) we have, for t ≥ 0,

(6.143) ‖xt − x∗t+p+ρ‖[−τ,0] ≤ K5(γ)e
−γt‖ϕ− x∗0‖[−τ,0].

It follows from (6.131) and (6.143) that (ii) holds.
Proof of (iii). Suppose σ ∈ [0, p) and ϕ ∈ C+

[−τ,0]. Let x denote the unique solution

of the DDER with x0 = ϕ. By (6.42), with x∗(σ + ·) in place of x†(·), for σ ∈ [0, p)
and 0 ≤ t ≤ p,

‖xt − x∗t+σ‖[−τ,0] ≤ 2 exp(2Khp)‖ϕ− x∗σ‖[−τ,0].(6.144)
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Choose ε > 0 satisfying

(6.145) ε ≤ ε2
2 exp(2Khp)

.

Fix γ > 0 satisfying (6.109) and suppose ϕ ∈ C+
[−τ,0] is such that ‖ϕ− x∗σ‖[−τ,0] ≤ ε

for some σ ∈ [0, p). By (6.144), for 0 ≤ t ≤ p− σ,

‖xt − x∗t+σ‖[−τ,0] ≤ 2 exp(2Khp)e
γpe−γt‖ϕ− x∗σ‖[−τ,0].(6.146)

Now (6.144), (6.145), and the periodicity of x∗ imply that

(6.147) ‖xp−σ − x∗0‖[−τ,0] ≤ 2 exp(2Khp)‖ϕ− x∗σ‖[−τ,0] ≤ ε2.

Then by (ii) and (6.147), there exists K5(γ) > 0 and ρ ∈ (−p, p) such that for t ≥ 0,

‖xt+p−σ − x∗t+p+ρ‖[−τ,0] ≤ K5(γ)e
−γt‖xp−σ − x∗0‖[−τ,0](6.148)

≤ 2K5(γ) exp(2Khp)e
−γt‖ϕ− x∗σ‖[−τ,0]

and

(6.149) |ρ| ≤ Kρ‖xp−σ − x∗0‖[−τ,0] ≤ 2Kρ exp(2Khp)‖ϕ− x∗σ‖[−τ,0].

Set Kρ = 2Kρ exp(2Khp) so that (6.110) holds. By (6.148) and the periodicity of x∗,
for t ≥ p− σ,

‖xt − x∗t+p+σ+ρ‖[−τ,0] ≤ 2K5(γ) exp(2Khp)e
−γt‖ϕ− x∗σ‖[−τ,0].(6.150)

On the other hand, by (6.146), (6.112), and (6.149), we have, for 0 ≤ t ≤ p− σ,

‖xt − x∗t+p+σ+ρ‖[−τ,0] ≤ ‖xt − x∗t+σ‖[−τ,0] + ‖x∗t+p+σ − x∗t+p+σ+ρ‖[−τ,0](6.151)

≤ 2(1 +HKρ) exp(2Khp)e
γpe−γt‖ϕ− x∗σ‖[−τ,0].

Upon setting Kγ = 2 exp(2Khp)max(K5(γ), e
γp(1 + HKρ)), the combination of

(6.150) and (6.151) implies that (6.111) holds, which completes the proof.

6.7. Proof of uniqueness. In this section we show that if the delay τ is suf-
ficiently large, then any SOPS x∗ of the DDER with delay τ is unique up to time
translation, which will complete the proof of Theorem 3.8. The proof of uniqueness is
similar to the proof of Corollary 19 in [80] and to the proof of Part 1 of Theorem A in
[41]. The main tool which we use to prove the uniqueness of a SOPS is the fixed point
index. For an in-depth discussion of the fixed point index and its properties, see [54].
We briefly introduce a special case of the fixed point index used here and remark on
some of its relevant properties.

Suppose that K is a closed, bounded, convex, infinite-dimensional subset of a
Banach space and f : K → K is a continuous, compact function. For each relatively
open subset U of K, for which the set of fixed points of f in U , SU = {x ∈ U :
f(x) = x}, is compact (possibly empty), there is an integer ιK(f, U), called the fixed
point index of f on U . This index ιK(f, ·) is uniquely characterized by the fact that
it satisfies the following properties: additivity, homotopy, and normalization (see [54]
for details of these properties). Here we state the additivity property since it will be
used in the proof of uniqueness.
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• Additivity. If U1 and U2 are disjoint subsets of U , where U1, U2, and U are
relatively open subsets of K, and if SU is compact and satisfies SU ⊂ U1∪U2,
then ιK(f, Uj) is defined for j = 1, 2 and

ιK(f, U) = ιK(f, U1) + ιK(f, U2).

In addition, ιK(f, ·) has the following useful properties:
(i) The fixed point index ιK(f,K) is defined and equal to 1.
(ii) If x ∈ K is an ejective fixed point of f (see Definition 5.1), then there exists

a relatively open subset U of K such that x ∈ U , x is the only fixed point of f in U
and ιK(f, U) = 0 (see, e.g., Corollary 1.1 in [50]).

(iii) If x ∈ K is an attractive fixed point of f (see Definition 6.33 below), then
there exists a relatively open subset V of K such that x ∈ V , x is the only fixed point
of f in V and ιK(f, V ) = 1 (see, e.g., Theorem 3.5 in [54]).

Definition 6.33. Suppose x0 ∈ K is a fixed point of f . Then x0 is an attractive
fixed point if there exists a relatively open neighborhood U of x0 in K such that if V is
any relatively open neighborhood of x0 in K, there exists a positive integer n0 = n0(V )
such that fn(x) ∈ V for all n ≥ n0 and x ∈ U .

Theorem 6.34. Fix θ ∈ (0, 1) and let τθ ≥ τ0 be as in Lemma 6.31. For each
τ > τθ there exists a unique SOPS of the DDER with delay τ and q0 = −τ .

Proof. Define K̃ and Λ as in (5.18)–(5.20) and (5.26). Then K̃ is a closed, bounded,
convex, infinite-dimensional subset of the Banach space C[−τ,0], and Λ is continuous

and compact. Thus, by property (i) above, the fixed point index of Λ on K̃ is defined

and ι
˜K(Λ, K̃) = 1. Recall that ϕ̂ ≡ 0 is the unique constant fixed point of Λ. By

Lemma 5.12, ϕ ≡ 0 is an ejective fixed point of Λ, so property (ii) above implies that

there is a relatively open subset U of K̃ containing ϕ̂ ≡ 0 that does not contain any
other fixed points of Λ and such that ι

˜K(Λ,U) = 0. If ϕ̂ is a nonconstant fixed point
of Λ, it follows from Lemma 5.8 that the associated solution x̂∗ of the DDERn is a
SOPSn. Moreover, by Lemma 5.5 and Theorem 6.32, the corresponding SOPS x∗ is
exponentially stable. Conversely, if x∗ is an exponentially stable SOPS with q0 = −τ ,
then by Lemmas 5.5 and 6.15, the initial condition of the corresponding SOPSn, x̂∗0, is
in K̃ and is a nonconstant fixed point of Λ. Thus, there is a one-to-one correspondence
between nonconstant fixed points of Λ and exponentially stable SOPS with q0 = −τ .
Furthermore, it is straightforward to check that the exponential stability property of
x∗ implies that x̂∗0 is an attractive fixed point of Λ. Therefore, by property (iii) above,
for each nonconstant fixed point ϕ̂ �≡ 0 of Λ, there is a neighborhood Vϕ̂ of ϕ̂ that
does not contain any other fixed points of Λ and such that ι

˜K(Λ,Vϕ̂) = 1.

Let S = {ϕ̂ ∈ K̃ : Λ(ϕ̂) = ϕ̂} denote the set of fixed points of Λ in K̃. Since
Λ is continuous and compact, S is compact. From the above paragraph, each fixed
point of Λ is contained in a neighborhood that does not contain another fixed point
of Λ, so by compactness, S is a finite set. Then by the additivity property of the fixed
point index, and the fact that S ⊂ U ∪ (

⋃
ϕ̂∈S\{0} Vϕ̂) ⊂ K̃ and properties (ii) and

(iii) above, we have

1 = ι
˜K(Λ, K̃) = ι

˜K(Λ,U) +
∑

ϕ̂∈S\{0}
ι
˜K(Λ,Vϕ̂) = |S \ {0}|,

where |S \ {0}| denotes the cardinality of the set S \ {0}. Therefore S contains
exactly one point besides ϕ̂ ≡ 0 and so Λ has exactly one nonconstant fixed point.
By the one-to-one correspondence between nonconstant fixed points of Λ and SOPSn
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with q̂0 = −1, there is a unique SOPSn of the DDERn with q̂0 = −1 and hence by
Lemma 5.5, there is a unique SOPS of the DDER with q0 = −τ .

Proof of Theorem 3.8. Fix θ ∈ (0, 1) and set τ∗ = τθ, where τθ ≥ τ0 is as
in Lemma 6.31. Suppose τ > τ∗. By Theorem 6.34 there exists a unique SOPS
x∗ of the DDER with delay τ and q0 = −τ . Thus, if x† is another SOPS of the
DDER such that q†0 �= −τ , then the time translated function x̃† ∈ C+

[−τ,∞), defined by

x̃†(t) = x†(q†0 + τ + t) for all t ≥ −τ , satisfies x̃† = x∗, which proves that x∗ is unique
up to time translation. From Theorem 6.32, we see that x∗ is exponentially stable
and thus any time translation of x∗ is also exponentially stable, which completes the
proof.

Appendix A. One-dimensional Skorokhod problem. Solutions of the DDER
(1.1) can be thought of as solutions of the well-known (one-dimensional) Skorokhod
problem. This problem was first introduced by Skorokhod [62] to construct solutions
of one-dimensional stochastic differential equations with nonnegativity constraints.
The one-dimensional Skorokhod problem and its multidimensional generalization are
frequently used in the study of stochastic differential equations with state constraints
(see, e.g., [16, 17] and the references therein). Before defining the problem, we first
introduce the (one-dimensional) Skorokhod map and note a couple of its properties.

Define the (one-dimensional) Skorokhod map (Φ,Ψ) : C[0,∞) → C+
[0,∞) ×C+

[0,∞) by

Φ(z)(t) = z(t) + Ψ(z)(t), t ≥ 0,(A.1)

Ψ(z)(t) = sup
0≤s≤t

(z(s))−, t ≥ 0.(A.2)

The following are well-known properties of the Skorokhod map that follow from
(A.1) and (A.2). For more details, see [12, 77].

Proposition A.1. For z, z† ∈ C[0,∞) and t ≥ 0,

‖Φ(z)− Φ(z†)‖[0,t] ≤ 2‖z − z†‖[0,t],
‖Ψ(z)−Ψ(z†)‖[0,t] ≤ ‖z − z†‖[0,t].

It follows that the map (Φ,Ψ) : C[0,∞) → C+
[0,∞) × C+

[0,∞) is continuous. (Recall that

C[0,∞) is endowed with the topology of uniform convergence on compact time inter-
vals.)

Proposition A.2. For z ∈ C[0,∞),

Osc(Φ(z), [t1, t2]) ≤ Osc(z, [t1, t2]),

Osc(Ψ(z), [t1, t2]) ≤ Osc(z, [t1, t2]),

for each 0 ≤ t1 ≤ t2 <∞, where for any u ∈ C[0,∞),

Osc(u, [t1, t2]) = sup
t1≤s<t≤t2

|u(t)− u(s)|.

We now define the Skorokhod problem and give its solution in terms of the Sko-
rokhod map.

Definition A.3. Let z ∈ C[0,∞) satisfy z(0) ≥ 0. A pair (x, y) ∈ C+
[0,∞) × C+

[0,∞)

is a solution of the (one-dimensional) Skorokhod problem for z if the following hold:
(i) x(t) = z(t) + y(t) for each t ≥ 0,
(ii) y(0) = 0 and y(·) is nondecreasing, and

(iii)
∫ t
0 x(s)dy(s) = 0 for all t ≥ 0.
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Proposition A.4. Given z ∈ C[0,∞), suppose that z(0) ≥ 0. Then there exists a

unique solution (x, y) ∈ C+
[0,∞) × C+

[0,∞) of the Skorokhod problem for z, given by

(x, y) = (Φ,Ψ)(z).

Proof. See, e.g., section 8.2 of [12].
To define the VE along solutions of the DDER, we have employed the following

results on “directional derivatives” of the (one-dimensional) Skorokhod map, which
are described in [44, 45] and Chapter 9 of [76]. For z, w ∈ C[0,∞) and ε > 0, define
approximate derivatives ∂εwΦ(z), ∂

ε
wΨ(z) ∈ C[0,∞) by

∂εwΦ(z) =
Φ(z + εw)− Φ(z)

ε
= w + ∂εwΨ(z),(A.3)

∂εwΨ(z) =
Ψ(z + εw)−Ψ(z)

ε
.(A.4)

For z, w ∈ C[0,∞) and t ≥ 0, define

(A.5) R(z, w)(t) =

⎧⎪⎨⎪⎩
0 if sup0≤s≤t z(s) < 0,

sups∈Sz(t) w(s) ∨ 0 if sup0≤s≤t z(s) = 0,

sups∈Sz(t) w(s) if sup0≤s≤t z(s) > 0,

where

(A.6) Sz(t) =

{
s ∈ [0, t] : z(s) = sup

0≤u≤t
z(u) ∨ 0

}
.

Note that we have used a slightly different definition for Sz(t) than the one used
in [44, 45]. There the authors use S̃z(t) = {s ∈ [0, t] : z(s) = sup0≤u≤t z(u)} in
place of Sz(t). However, the functional R(z, w)(t) is defined to be zero at times
t where Sz(t) �= S̃z(t) and so it remains unchanged. Here we have modified the
definition to simplify subsequent proofs. Finally, for z, w ∈ C[0,∞), define the functions
∂wΦ(z) : [0,∞) → R and ∂wΨ(z) : [0,∞) → R, for t ≥ 0, by

∂wΦ(z)(t) = w(t) + ∂wΨ(z)(t),(A.7)

∂wΨ(z)(t) = R(−z,−w)(t).(A.8)

Now, given z, w and {wε : 0 < ε ≤ ε∗}, ε∗ > 0, in C[0,∞) such that wε → w
uniformly on compact intervals in [0,∞) as ε ↓ 0, we are interested in the pointwise
limits of ∂εwεΦ(z) and ∂εwεΨ(z) as ε ↓ 0. In [44], Mandelbaum and Massey considered
this problem under the restriction that z(0) = 0, wε = w for all ε > 0, and ∂wΦ(z)
has a finite number of discontinuities in any compact interval. In Theorem 9.5.3 of
[76, Chapter 9], Whitt extended their results by relaxing the condition that z(0) =
0 and that ∂wΦ(z) has a finite number of discontinuities in any compact interval.
Furthermore, that theorem allows wε to be ε dependent but requires that z is Lipschitz
continuous. More recently, in [45], Mandelbaum and Ramanan proved that ∂εwεΦ(z)
converges to ∂wΦ(z) pointwise and uniformly on compact sets of continuity points
of ∂wΦ(z) when wε is monotonically decreasing and converges pointwise to w. Our
specific case is not covered by any of the aforementioned papers, but it is a simple
extension of Theorem 1.1 in [45]. Indeed, we have the following proposition.

Proposition A.5. Let z, w and {wε : 0 < ε ≤ ε∗} be in C[0,∞) such that wε → w
uniformly on compact intervals in [0,∞) as ε ↓ 0. Then as ε ↓ 0,

∂εwεΦ(z) → ∂wΦ(z) and ∂εwεΨ(z) → ∂wΨ(z),
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where the convergence is pointwise and uniform on compact sets of continuity points
of ∂wΨ(z) and ∂wΦ(z), respectively. Furthermore, both ∂wΦ(z) and ∂wΨ(z) are in
D[0,∞).

Proof. By Theorem 1.1(i) in [45], we have ∂wΨ(z) ∈ D[0,∞) and ∂
ε
wΨ(z) converges

to ∂wΨ(z) pointwise and uniformly on compact sets of continuity points of ∂wΦ(z)
as ε ↓ 0. (Note that in [45], the authors use Dlim to denote the space of functions
on [0,∞) with finite left and right limits, which we denote by D[0,∞).) To prove
that ∂εwεΨ(z) also converges to ∂wΨ(z) pointwise and uniformly on compact sets
of continuity points of ∂wΦ(z), it suffices, by the triangle inequality, to show that
limε↓0‖∂εwεΨ(z)− ∂εwΨ(z)‖[0,t] = 0 for each t ≥ 0. To show this, we use the Lipschitz
continuity of Ψ and the uniform convergence of wε to w as follows: for each t ≥ 0, we
have

‖∂εwΨ(z)− ∂εwεΨ(z)‖[0,t] = ε−1‖Ψ(z + εw)−Ψ(z + εwε)‖[0,t]
≤ ‖wε − w‖[0,t] → 0 as ε ↓ 0.

Last, the fact that ∂εwεΦ(z) converges to ∂wΦ(z) pointwise and uniformly on compact
sets of continuity points of ∂wΦ(z) follows from the above convergence results and the
definition of ∂εwεΦ(z) given in (A.3), but with wε in place of w.

Proposition A.6. For z, w,w† ∈ C[0,∞), and t ≥ 0,

‖∂wΦ(z)− ∂w†Φ(z)‖[0,t] ≤ 2‖w − w†‖[0,t],
‖∂wΨ(z)− ∂w†Ψ(z)‖[0,t] ≤ ‖w − w†‖[0,t].

Proof. For z, w,w† ∈ C[0,∞), we have

‖R(z, w)−R(z, w†)‖[0,t] ≤ ‖ sup
s∈Sz(·)

w(s) − sup
s∈Sz(·)

w†(s)‖[0,t] ≤ ‖w − w†‖[0,t].

The proposition then follows from (A.7)–(A.8).

Appendix B. Variational equation. In this section, we introduce the notion
of a VE along a solution x of the DDER. As we will see, solutions of our VE differ
considerably from solutions to the VE in the unconstrained setting. In particular,
with the lower boundary constraint in the DDER, the VE is no longer linear and its
solutions can be discontinuous.

Recall that D[−τ,0] is the space of functions from the interval [−τ, 0] to R that

have finite left and right limits at all t ∈ (−τ, 0) and finite one-sided limits at the
endpoints of [−τ, 0]. Given ϕ ∈ C+

[−τ,0], define

(B.1) Dϕ = {ψ ∈ D[−τ,0] : 1{ϕ(s)=0}ψ(s) ≥ 0 for all s ∈ [−τ, 0]}.

Here 1{ϕ(s)=0} is the indicator that is one if ϕ(s) = 0 and zero otherwise. If we
consider ϕ as the initial condition of a solution to the DDER, then Dϕ denotes the
directions in D[−τ,0] that we allow ϕ to be perturbed. For ϕ ∈ C+

[−τ,0], let Cϕ = {ψ ∈
C[−τ,0] : ϕ+εψ ∈ C+

[−τ,0] for all sufficiently small ε > 0}. To ensure that the VE is well

defined, we assume that the function f : C+
[−τ,0] → R in (1.1) satisfies the following

regularity properties.
Assumption B.1. There exists Kf <∞ such that for all ϕ, ϕ† ∈ C+

[−τ,0],

(B.2) |f(ϕ)− f(ϕ†)| ≤ Kf‖ϕ− ϕ†‖[−τ,0].
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Assumption B.2. Given ϕ ∈ C+
[−τ,0], then for each ψ ∈ Dϕ there is a unique

derivative of f in the direction ψ, denoted ∂ψf(ϕ), that satisfies the following three
properties:

(i) Whenever {ψn}∞n=1 is a uniformly bounded sequence in C[−τ,0] that converges
pointwise to ψ ∈ Dϕ as n → ∞ and {εn}∞n=1 is a sequence of positive real numbers
such that εn ↓ 0 as n→ ∞ and ϕ+ εnψn ∈ C+

[−τ,0] for each n, we have

(B.3) ∂ψf(ϕ) = lim
n→∞

f(ϕ+ εnψn)− f(ϕ)

εn
.

(ii) If a, b ∈ R and ψ, ψ† ∈ Dϕ such that aψ + bψ† ∈ Dϕ, then

∂aψ+bψ†f(ϕ) = a∂ψf(ϕ) + b∂ψ†f(ϕ).

(iii) For all ψ, ψ† ∈ Dϕ

(B.4) |∂ψf(ϕ)− ∂ψ†f(ϕ)| ≤ Kf‖ψ − ψ†‖[−τ,0].

Lemma B.1. Let f : C+
[−τ,0] → R be given by

f(ϕ) =

∫
[−τ,0]

ζ(ϕ(s))dμ(s) for all ϕ ∈ C+
[−τ,0],

where ζ : R+ → R is a function that is Lipschitz continuous (with Lipschitz constant
Kζ) and continuously differentiable on R+, and μ is a finite measure on the interval
[−τ, 0]. Then f satisfies Assumptions B.1 and B.2 with Kf = Kζμ([−τ, 0]) and

(B.5) ∂ψf(ϕ) =

∫
[−τ,0]

ζ′(ϕ(s))ψ(s)dμ(s)

for all ψ ∈ Dϕ, where ζ′ : R+ → R denotes the first derivative of ζ.
Proof. The Lipschitz continuity of ζ implies Assumption B.1 holds with Kf =

Kζμ([−τ, 0]). We now prove that Assumption B.2 holds. Fix ϕ ∈ C+
[−τ,0], ψ ∈ Dϕ and

let {ψn}∞n=1 and {εn}∞n=1 be sequences as in part (i) of Assumption B.2. Since ζ is
continuously differentiable, we have, for each s ∈ [−τ, 0],

lim
n→∞

ζ(ϕ(s) + εnψn(s)) − ζ(ϕ(s))

εn
= ζ′(ϕ(s))ψ(s).

Then, due to the Lipschitz continuity of ζ, we can use bounded convergence to obtain
that (B.5) holds. Part (ii) of Assumption B.2 follows because the integral in (B.5) is
linear in ψ. Part (iii) is immediate from the Lipschitz continuity of ζ.

Example B.1. Let f : C+
[−τ,0] → R be given by

f(ϕ) = h(ϕ(−τ)) for all ϕ ∈ C+
[−τ,0],

where h : R+ → R is continuously differentiable with bounded derivative h′ : R+ → R.
Then Lemma B.1, with ζ = h and μ equal to the point mass at s = −τ , implies that
f satisfies Assumptions B.1 and B.2 with

∂ψf(ϕ) = h′(ϕ(−τ))ψ(−τ) for all ψ ∈ Dϕ, ϕ ∈ C+
[−τ,0].
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Throughout the remainder of this section, we assume that f satisfies Assump-
tions B.1 and B.2 and we fix a solution x of the DDER and define z as in (2.3).

Definition B.2. A function v ∈ D[−τ,∞) is a solution of the VE along x if
for each s ≥ 0, vs ∈ Dxs , the function s → ∂vsf(xs) is Lebesgue integrable on each
compact set in [0,∞), and v satisfies

(B.6) v(t) = ∂wΦ(z)(t), t ≥ 0,

where Φ denotes the Skorokhod map given by (A.1) and (A.2), w ∈ C[0,∞) is defined
by

(B.7) w(t) = v(0) +

∫ t

0

∂vsf(xs)ds, t ≥ 0,

and the directional derivative of Φ at z in the direction w is denoted by ∂wΦ(z) and
is well defined as an element of D[0,∞) by Proposition A.5.

Suppose ψ ∈ Cx0. Then there exists ε∗ > 0 such that x0 + εψ ∈ C+
[−τ,0] for all

ε ∈ (0, ε∗]. For each ε ∈ (0, ε∗] let xε denote the unique solution of the DDER with
xε0 = x0 + εψ and define vε ∈ C[−τ,∞) by

vε =
xε − x

ε
.(B.8)

Additionally, define zε ∈ C[0,∞) as in (2.3) but with x and z replaced with xε and zε,

respectively, and define wε ∈ C[0,∞) by

(B.9) wε(t) =
zε(t)− z(t)

ε
= ψ(0) +

∫ t

0

f(xs + εvεs)− f(xs)

ε
ds, t ≥ 0.

Recall that a family {uε : 0 < ε ≤ ε∗} in D[0,∞) converges to u ∈ D[0,∞) uniformly
on compact intervals of continuity (u.o.c.c.), as ε ↓ 0 if for each compact interval I
contained in [0,∞) on which u is continuous, uε converges to u uniformly on I as
ε ↓ 0. We have the following theorem on the existence and uniqueness of a solution
of the VE given an appropriate initial condition as well as the pointwise and u.o.c.c.
convergence of vε to v as ε ↓ 0.

Theorem B.3. Given ψ ∈ Cx0 , there exists a unique solution v of the VE along
x with v0 = ψ. Furthermore, as ε ↓ 0, vε → v pointwise as well as uniformly on
compact intervals of continuity of v in [−τ,∞), and wε → w uniformly on compact
intervals in [0,∞). Here w is defined by (B.7) and for each ε ∈ (0, ε∗], vε and wε are
defined by (B.8) and (B.9), respectively.

In preparation for proving Theorem B.3, we prove the following lemmas.
Lemma B.4. For each ε ∈ (0, ε∗],

(B.10) ‖vε‖[−τ,t] ≤ 2‖ψ‖[−τ,0] exp(2Kf t), t ≥ 0.

Proof. Fix t ≥ 0. By (B.9) and (B.2), for each ε ∈ (0, ε∗] and all s ∈ [0, t] we have

|wε(s)| ≤ ‖ψ‖[−τ,0] +Kf

∫ s

0

‖vε‖[−τ,r]dr.

By taking the supremum over s in the interval [0, t], using (2.4) and applying the
Lipschitz continuity of the Skorokhod map (see Proposition A.1), we have

‖vε‖[0,t] ≤ 2‖wε‖[0,t] ≤ 2‖ψ‖[−τ,0] + 2Kf

∫ t

0

‖vε‖[−τ,s]ds.
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We can extend the supremum norm on the left to the interval [−τ, t] and apply
Gronwall’s inequality to obtain (B.10).

Lemma B.5. Suppose v, v† are solutions of the VE along x. Then

(B.11) ‖v − v†‖[−τ,t] ≤ 2 exp(2Kf t)‖v − v†‖[−τ,0], t ≥ 0.

Proof. Suppose v and v† are solutions of the VE along x. Define w ∈ C[0,∞) as in

(B.7) and define w† ∈ C[0,∞) as in (B.7), but with v† in place of v. By definition,

v(t) = ∂wΦ(z)(t), v†(t) = ∂w†Φ(z)(t), t ≥ 0,

where z is defined as in (2.3). For t ≥ 0, by (B.7) and (B.4), we have for all s ∈ [0, t],

|w(s) − w†(s)| ≤ |v(0)− v†(0)|+Kf

∫ s

0

‖v − v†‖[−τ,u]du.

By taking the supremum over s ∈ [0, t] and applying Proposition A.6, we have

‖v − v†‖[0,t] ≤ 2‖v − v†‖[−τ,0] + 2Kf

∫ t

0

‖v − v†‖[−τ,u]du.

The supremum norm on the left can be extended to the interval [−τ, t], after which a
simple application of Gronwall’s inequality yields (B.11).

Proof of Theorem B.3. Uniqueness follows from (B.11). We now establish exis-
tence. Given ε ∈ (0, ε∗] and t ≥ 0, it follows from (B.9), (B.2), and Lemma B.4 that,
for all 0 ≤ t1 ≤ t2 ≤ t,

|wε(t2)− wε(t1)| ≤ 2Kf‖ψ‖[−τ,0] exp(2Kf t)|t2 − t1|.

Thus, {wε : 0 < ε ≤ ε∗} is uniformly bounded and uniformly Lipschitz continuous on
each interval [0, t] and therefore, by the Arzelà–Ascoli theorem, is relatively compact
in C[0,t]. Since t ≥ 0 was arbitrary, using a diagonal sequence argument, we have for
any sequence {εn}∞n=1 in (0, ε∗] with εn ↓ 0 as n → ∞, there exists a subsequence,
also denoted {εn}∞n=1, and w ∈ C[0,∞) such that wεn converges to w uniformly on
compact intervals in [0,∞) as n→ ∞. Applying Proposition A.5, we have

lim
n→∞ vεn = lim

n→∞
Φ(z + εnw

εn)− Φ(z)

εn
= ∂wΦ(z),

where the convergence is pointwise and u.o.c.c. in [0,∞). Define v ∈ D[−τ,∞) by
v(t) = ψ(t) for t ∈ [−τ, 0] and v(t) = ∂wΦ(z)(t) for t ≥ 0. Note that this is a proper
definition because ∂wΦ(z)(0) = ψ(0) since ψ ∈ Cx0. Then vεn → v pointwise and
u.o.c.c. on [−τ,∞) as n→ ∞.

For each s ≥ 0, xεns = xs + εnv
εn
s ∈ C+

[−τ,0] for all n. Suppose that xs(u) = 0

for some s ≥ 0 and some u ∈ [−τ, 0]. Then vεns (u) = ε−1
n xεns (u) ≥ 0 for all n and

taking limits as n → ∞, we must have vs(u) ≥ 0. Since this holds for all s ≥ 0 and
u ∈ [−τ, 0], it follows that vs ∈ Dxs for all s ≥ 0, and so by part (i) of Assumption B.2
and Lemma B.4,

(B.12) lim
n→∞

f(xs + εnv
εn
s )− f(xs)

εn
= ∂vsf(xs) for all s ≥ 0.
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By (B.2) and Lemma B.4, for each n we have, for all s ≥ 0,

(B.13)

∣∣∣∣f(xs + εnv
εn
s )− f(xs)

εn

∣∣∣∣ ≤ Kf‖vεn‖[−τ,s] ≤ 2Kf‖ψ‖[−τ,0] exp(2Kfs).

Since the function s → ∂vsf(xs) is the pointwise limit of a sequence of Borel mea-
surable functions, it is also Borel measurable. Furthermore, by (B.12) and (B.13), on
each compact set in [0,∞), the function is bounded and hence integrable. Then by
dominated convergence, implied by (B.13), we have w satisfies, for t ≥ 0,

w(t) = lim
n→∞wεn(t) = ψ(0) + lim

n→∞

∫ t

0

f(xs + εnv
εn
s )− f(xs)

εn
ds

= ψ(0) +

∫ t

0

∂vsf(xs)ds.

This establishes the existence of a unique solution v to the VE along x with v0 = ψ.
Furthermore, given a sequence {εn}∞n=1 in (0, ε∗] with εn ↓ 0 as n → ∞, there is a
subsequence along which vεn converges pointwise and u.o.c.c. on [0,∞) to v and along
which wεn converges uniformly on compact time intervals in [0,∞) to w, defined as in
(B.7). Since this is true for every sequence {εn}∞n=1 with εn ↓ 0 as n→ ∞, it follows
from a standard real analysis argument that the family {vε : 0 < ε ≤ ε∗} converges
to v pointwise and u.o.c.c. on [0,∞) as ε ↓ 0 and that the family {wε : 0 < ε ≤ ε∗}
converges to w uniformly on compact time intervals in [0,∞) as ε ↓ 0.

In the following lemma we further describe solutions of the VE along a solution
x of the DDER.

Lemma B.6. Suppose that x is a solution of the DDER and v is a solution of the
VE along x. Then for 0 ≤ t1 < t2 <∞,

(i) if x(t) > 0 for all t ∈ (t1, t2), then

v(t) = v(t1) +

∫ t

t1

∂vsf(xs)ds, t ∈ [t1, t2);

(ii) if x(t) > 0 for all t ∈ (t1, t2) and x(t2) = 0, then

v(t2) =

(
v(t1) +

∫ t2

t1

∂vsf(xs)ds

)+

;

(iii) if x(t) = 0 for all t ∈ [t1, t2] and f(xt) = 0 for all t ∈ [t1, t2], then

v(t) = v(t1) +

∫ t

t1

∂vsf(xs)ds+ sup
s∈[t1,t]

(
−v(t1)−

∫ s

t1

∂vuf(xu)du

)
∨ 0, t ∈ [t1, t2];

(iv) if x(t) = 0 for all t ∈ (t1, t2] and f(xt) < 0 for all t ∈ (t1, t2), then

v(t) = 0, t ∈ (t1, t2].

Proof. Define z and w as in (2.3) and (B.7), respectively. By (B.6), (A.7), and
(A.8), we have, for 0 ≤ t1 ≤ t,

v(t) = v(t1) +

∫ t

t1

∂vsf(xs)ds−R(−z,−w)(t1) +R(−z,−w)(t).(B.14)

Throughout this proof, given x ∈ C[0,∞), we let x(t) = sup0≤s≤t x(s) for all t ≥ 0.
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Proof of (i). By (2.2) and (2.1), we have −z(t) < −z(t) ∨ 0 for each t ∈ (t1, t2).
Fix such a t. If −z(t) < 0, then −z(t1) < 0 and (i) follows from (B.14) and (A.5). If
−z(t) ≥ 0, then −z(s) < −z(t) = −z(t1) for all s ∈ (t1, t] and so S−z(t) = S−z(t1).
Thus R(−z,−w)(t) = R(−z,−w)(t1) and (i) follows from (B.14).

Proof of (ii). By (2.2)–(2.1), we have −z(t) < −z(t) ∨ 0 for each t ∈ (t1, t2) and
also that −z(t2) = −z(t2) ∨ 0 = −z(t1) ∨ 0. Therefore (A.6) implies that S−z(t2) =
S−z(t1) ∪ {t2}. Then by (A.5), we have

R(−z,−w)(t2) =

⎧⎪⎨⎪⎩
(−w(t2)) ∨ 0 if −z(t1) < 0, −z(t2) = 0,

sups∈S−z(t1)(−w(s)) ∨ (−w(t2)) ∨ 0 if −z(t1) = −z(t2) = 0,

sups∈S−z(t1)(−w(s)) ∨ (−w(t2)) if −z(t1) = −z(t2) > 0,

= R(−z,−w)(t1) ∨ (−w(t2)).

By (B.6) and (A.3)–(A.6),

v(t2) = w(t2) +R(−z,−w)(t1) ∨ (−w(t2))

=

(
w(t1) +R(−z,−w)(t1) +

∫ t2

t1

∂vsf(xs)ds

)+

=

(
v(t1) +

∫ t2

t1

∂vsf(xs)ds

)+

.

Proof of (iii). By (2.2)–(2.1), we have −z(t) = −z(t) ≥ 0 for each t ∈ [t1, t2] and,
since f is zero there, z is constant there. Thus, for t ∈ [t1, t2], S−z(t) = S−z(t1)∪ [t1, t]
and by (B.14),

v(t) = v(t1) +

∫ t

t1

∂vsf(xs)ds+

(
sup

s∈[t1,t]

(−w(s)) −R(−z,−w)(t1)
)

∨ 0

= v(t1) +

∫ t

t1

∂vsf(xs)ds+ sup
s∈[t1,t]

(
−v(t1)−

∫ s

t1

∂vuf(xu)du

)
∨ 0.

Proof of (iv): By (2.2)–(2.1), for each t ∈ (t1, t2], we have −z(t) = −z(t) > 0 and
S−z(t) = {t}. Thus v(t) = w(t) + (−w(t)) = 0 for all such t.
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