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ABSTRACT OF THE DISSERTATION 

 

Computational Studies of Pantetheine-Containing Ligands (PCLs) and Advancements of the 
Polarizable Gaussian Multipole (pGM) Model 

 
by 

Shiji Zhao 

Doctor of Philosophy in Mathematical, Computational and Systems Biology 

University of California, Irvine, 2022 

Professor Ray Luo, Chair 

 

 

Pantetheine-containing ligands (PCLs) play key roles in the biosynthesis of 

polyketides, a large family of natural products with various bioactivities. A major hurdle that 

remains is our poor understanding of the protein-substrate interactions of ketoreductase 

(KR), a key component of polyketide synthases (PKSs). Since the poly-β-ketone 

intermediates are highly reactive and cannot be isolated, the first project of this dissertation 

employed molecular dynamics (MD) simulations to interpret the transient KR-substrate 

interactions. Several key factors guiding KR-substrate interactions were identified, which 

will help further engineering of PKSs and directing biosynthesis of novel polyketides. 

The reliability of MD simulations depends on the quality of the employed force field, 

which comprises a mathematical formula and a set of parameters to represent the potential 

energy of molecular systems. The parameter sets for simulating amino acids, nucleic acids, 

sugars, and lipids are already available. However, lack of scalable parameter sets for PCLs 

has hampered the computational studies of various biomolecules containing PCLs. 

Therefore, in the second project of this dissertation, the first Pantetheine Force Field (PFF) 



 

xvii 
 

library containing parameter sets for various PCLs compatible with additive force fields was 

developed and validated. 

The extensively used additive force fields use fixed atom-centered partial charges to 

model atomic electrostatic interactions. However, additive force fields cannot accurately 

model atomic polarization effects, leading to unrealistic simulations in polarization-sensitive 

processes. The polarizable Gaussian Multipole (pGM) model with all atomic multipoles 

represented by Gaussian densities has been recently developed. In the third project of this 

dissertation, an electrostatic parameterization scheme for the pGM model was developed, 

and the accuracy and transferability of the pGM model were assessed. Encouragingly, the 

pGM model was shown to be accurate and transferable, which has the potential to serve as 

the template for developing the next-generation polarizable force field for modeling various 

biological systems. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 The Molecular Basis of Type II PKS Ketoreduction Regiospecificity Remains 

Unexplained 

Polyketides have long been recognized as an important class of natural products for 

medicinal applications. The total sales of polyketide-related pharmaceuticals exceed $15 

billion a year.1 In the past decade, over 5000 papers were devoted to polyketide research, 

with the continuing increasing rate of publications. Such an impact on healthcare, in 

conjunction with the growing academic interest, underscores the significance of polyketide 

research. At the center of polyketide biosynthesis are polyketide synthases (PKSs), the multi-

domain enzyme complexes that produce a huge variety of possible products via the 

controlled variation of building blocks, chain lengths, and modification reactions such as 

reduction and cyclization. PKSs are categorized into three types based on their architectures: 

type I, type II, and type III,2 among which the type II PKS, also called iterative PKS, is 

important yet relatively less well-understood.3-4 Examples of type II polyketide therapeutics 

include but not limited to: (1) antibiotics, such as tetracyclines,5 tetracenomycin6 and 

actinorhodin7; (2) anticancer drugs, such as resistomycin,8 doxorubicin9 and mithramycin10; 

(3) anti-fungal drugs, such as pradimicin11; and (4) anti-HIV drugs, such as rubromycin12 and 

griseorhodin13. Despite their extensive medicinal applications, type II polyketides are 

typically difficult to obtain via organic synthesis.14-16 In contrast, by transforming the PKS 

gene into a host system followed by industrial fermentation, kilogram quantities of 
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polyketides are routinely biosynthesized.17 As a result, there is a great interest in developing 

biosynthetic systems for the production of type II polyketides. 

The first focus of this dissertation is the ketoreduction chemical process in polyketide 

synthesis. Reducing iterative type II polyketide biosynthesis proceeds through 4 common 

steps: (1) chain elongation, catalyzed by ketosynthase/chain length factor; (2) regiospecific 

reduction, catalyzed by ketoreductase (KR); (3) aromatization/cyclization, catalyzed by 

aromatase/cyclase; and (4) system-specific chemical modification, carried out by a variety 

of other enzymes.18 During the entire process, the growing poly-β-ketone intermediates is 

covalently attached to the acyl-carrier protein (ACP) through the phosphopantetheine-

serine linker.19 Despite the well-known big picture of polyketides synthesis, there is still a 

knowledge gap in correlating the PKS structures with enzyme regiospecificity. Although the 

ketoreduction of type II polyketides by KR is identical to the that of fatty acid ketoreduction, 

their regiospecificity are drastically different: fatty acid KR reduces every carbonyl group, 

while type II polyketide KR specifically reduces the C9-carbonyl group.20 In addition, 

different chain length specificities for polyketide KRs were observed, including rigid 

substrate specificity of actinorhodin KR (ActKR) and doxorubicin KR (DoxKR), and 

promiscuous specificity for hedamycin KR (HedKR).21-24 Since the growing poly-β-ketone 

intermediates are highly reactive and cannot be isolated,25 isoxazole-based poly-β-ketone 

mimics26 and computational approaches such as molecular dynamics (MD) simulations with 

time resolution of picosecond range have been employed to capture the transient protein-

substrate interactions of KR. Previous sequencing, co-crystallization and MD studies 

suggested a “chain length filter” region formed by two histidine residues exists in specific 

KRs such as ActKR and DoxKR, while the residues at corresponding sites become tyrosine 
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and glycine in promiscuous HedKR.27 This dissertation aims to dive deeper into the 

molecular basis interpretation of KR-substrate recognition and interactions. Outcomes will 

identify factors important for polyketide ketoreduction, which can significantly help 

rationally engineer type II PKS with chemical modification and provide the basis for 

production of “unnatural” type II polyketides with engineered ketoreduction patterns. 

 

1.2 PCLs are Important but Lacks Sufficient Study Due to the Absence of PFF 

Library 

Pantetheine is the cysteamine amide analog of pantothenic acid (vitamin B5), which 

is ubiquitous in nature in various forms of pantetheine-containing ligands (PCLs), including 

coenzyme A (CoA)28-31 and phosphopantetheine (Ppant).32-35 CoA is a PCL that exist in all 

organisms with genome sequenced to date, and around 4% of known enzymes use either 

CoA or CoA thioester as a substrate.36 In all living organisms, CoA synthesis from 

pantothenate requires the following five steps37-38: (1) Pantothenate phosphorylation by 

pantothenate kinase to phosphopantothenate; (2) Cysteine addition catalyzed by 

phosphopantothenoylcysteine synthetase to phospho-N-pantothenoylcysteine (PPC); (3) 

PPC decarboxylation to Ppant catalyzed by phosphopantothenoylcysteine decarboxylase; 

(4) Ppant adenylation to dephospho-CoA by phosphopantetheine adenylyl transferase; (5) 

Dephospho-CoA phosphorylation to form CoA by dephosphocoenzyme A kinase. CoA is 

important in all living organisms as it plays two majors roles in metabolism28-31: (1) energy 

production, by participating two key steps of citric acid cycle in the form of acetyl-CoA and 

succinyl-CoA; and (2) fatty acid synthesis, by acting as acyl group carrier that assists in 

transferring fatty acid from cytosol to mitochondria during fatty acid oxidation, and from 
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mitochondria to cytosol during fatty acid synthesis. Another PCL focused by this dissertation 

is Ppant, which functions as a prosthetic group in the form of phosphopantetheinyl-serine 

(Ppant-Ser) by covalently linking to carrier proteins (CPs), such as acyl carrier protein (ACP) 

for polyketide synthases (PKSs) or fatty acid synthases (FASs), and peptidyl carrier 

proteins (PCP) or aryl carrier proteins (ArCP) for nonribosomal peptide synthetases 

(NRPSs).32-35 The Ppant moiety is post-translationally transferred from CoA to a conserved 

serine residue on CPs by the action of phosphopantetheinyl transferase.34 By forming an 

energy-rich thioester linkage with polyketides, fatty acids or nonribosomal peptides 

intermediates in their biosynthetic pathways, Ppant-Ser fulfills the demand of providing 

flexibility and sufficient length (approximately 2 nm) that allows the covalently tethered 

intermediates to have access to spatially distinct enzyme active sites. 

The reliability of MD simulations depends on the quality of the employed force field, 

which comprises a mathematical formula and a set of parameters to represent the potential 

energy of molecular systems.39 Most current force fields are additive force fields that use 

fixed partial charges centered on atoms to model electrostatic interactions. Additive force 

field parameter sets supporting simulations with standard amino acids, nucleic acids, sugars, 

and lipids are already available.40-43 At the time of this writing, a search on Protein Data Bank 

(PDB) database revealed about 1800 PDB entries containing CoA, CoA thioesters, Ppant or 

Ppant thioesters, the majority of which contain CoA (689 entries) and acetyl-CoA (250 

entries).44-45 However, a search on PubMed for keywords “molecular dynamics” together 

with “coenzyme A” or “pantetheine” revealed only 182 and 14 publications respectively. The 

lack of works for MD studies on PCLs is directly linked to the lack of force field parameter 

sets for PCLs. In order to increase the computational accessibility to molecular interactions 
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related with PCLs, this dissertation developed a scalable additive PCL force field parameter 

set and was hosted in Pantetheine Force Field (PFF) library (http://rayluolab.org/pff-

library/). Outcomes from this work can have a significant impact in facilitating researchers 

to conduct MD simulations of systems containing PCLs. 

 

1.3 High Quality Polarizable Force Fields are Required to Accurately Model 

Polarization Effects 

MD simulations of macromolecules on atomic level have been applied in a wide range 

of biological systems.46 Additive force fields, also known as nonpolarizable force fields, 

typically use fixed atom-centered partial charges to model electrostatics. Numerous 

attempts have been made to modify classical additive force fields to more reliable polarizable 

force fields reproducing the way a molecule responds to changing environments, such as by 

incorporating lone pairs or other extra points, point multipoles and polarizabilities,39 

attempting to include explicit nonadditive polarization effects, i.e. the redistribution of the 

electron density due to an electric field exerted by other molecules.47 

The widely adopted additive force fields cannot accurately model polarization effects. 

One reason is that additive force fields include the polarization response to the environment 

only in an averaged, mean-field manner. For example, the gas-phase water dimer interaction 

energy is overestimated by more than 30% in the polarizable TIP5P model.48 Similarly, for 

large biomolecular systems, there are concerns that such models cannot correctly account 

for situations where the same nonpolarizable moiety is exposed to different electrostatic 

solvents.49 Another limitation of nonpolarizable models is their use of partial atomic charges 

in the electrostatic models, which often lack sufficient mathematical flexibility to describe 
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the electrostatic potential (ESP) around molecules. Previous researches showed that the 

least-squares fitting of atom-centered partial charges resulted in relative root-mean-square 

errors of 3%–10% over a set of grid points outside the surface of representative polar small 

molecules.50 While these errors were reduced by 2–3 orders of magnitude via the use of 

higher atomic multipoles.48 

A great deal of effort has been directed to developing polarizable models, including 

the fluctuating charge models,51-52 the Drude oscillator model,53-56 and models incorporating 

induced dipoles.57-58 The use of induced point dipoles is a classical approach with a long 

history.59 The original induced dipole model of Applequist places the induced point dipoles 

on atom centers.60 However, this model suffers from the so-called “polarization 

catastrophe”: the interaction between two induced dipoles diverges at a finite distance. 

Thole proposed a solution by applying damping functions to the induced dipole–induced 

dipole interactions.61 However, a drawback to Thole’s model is that it does not describe how 

the induced dipoles and permanent charges interact. The polarizable Gaussian Multipole 

(pGM) model has been recently proposed, where all charges and multipoles are represented 

by Gaussian densities,49 which naturally leads to more consistent physics, better accuracy, 

higher transferability, and easier coarse graining. In addition, because distributed dipole 

densities instead of point dipoles are induced at atomic centers are used, the pGM model can 

naturally avoid polarization catastrophe. This dissertation aims to develop an electrostatic 

parameterization scheme for the pGM model and assess the accuracy and transferability of 

the pGM model. These works will greatly contribute to the development of general-purpose 

polarizable force fields. 
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1.4 Overview of this Dissertation 

In the subsequent five chapters of this dissertation, three projects will be introduced 

in detail. 

Chapter 2: Computational Studies of Molecular Basis of Polyketide Ketoreductase (KR)-

Substrate Interactions 

• Revealed the roles of phosphorylation, pantetheine and polyketide length in KR-

polyketide interactions. 

• Identified key factors causing different chain length specificity of ActKR and HedKR. 

Chapter 3: Developments of Pantetheine Force Field (PFF) Library for Modeling Pantetheine-

Containing Ligands (PCLs) 

• Parameterized PCLs with a “plug-and-play” strategy using appropriately sized PCL 

fragments. 

• Validated the PFF library by performing MD simulations on representative systems 

containing PCLs. 

Chapter 4-6: Advancements of Polarizable Gaussian Multipole (pGM) Models for Accurate 

Modeling of Polarization Effects 

• Implemented the PyRESP program for flexible electrostatic parameterizations for the 

pGM models. 

• Validated the pGM models in terms of the accuracy of modeling many-body 

interactions and transferability. 
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CHAPTER 2 

Molecular Basis for Polyketide Ketoreductase–Substrate Interactions 

 

2.1. Introduction 

Polyketides form a large family of natural products with a diverse array of chemical 

structure and bioactivity.1 Many polyketides have important pharmaceutical properties and 

can be used as anticancer, antibiotic, and antihypercholesterol drugs.2-4 In nature, 

polyketides are biosynthesized by multi-enzyme complexes called polyketide synthases 

(PKSs) in plants, fungi and bacteria. Because of its medical importance, there has been a 

vigorous effort to engineer PKSs to produce new polyketides with therapeutic potential.1 

PKSs are genetically, structurally, and enzymatically homologous to fatty acid synthases 

(FASs),5 and are categorized into three types based on their architectures: type I, type II, and 

type III.6 This study focuses on reducing type II PKSs found mostly in bacteria, whose 

products are aromatic polyketides such as actinorhodin.2 Reducing type II polyketide 

biosynthesis proceeds through 4 common steps: (1) chain elongation, catalyzed by 

ketosynthase/chain length factor (KS/CLF); (2) regiospecific reduction, catalyzed by 

ketoreductase (KR); (3) aromatization/cyclization, catalyzed by aromatase/cyclase 

(ARO/CYC); and (4) system-specific chemical modification, carried out by a variety of other 

enzymes.7 During the entire process, the growing polyketide chain is covalently attached to 

the acyl carrier protein (ACP) at the conserved active site serine using the 

phosphopantetheine linker.8 In total, polyketide production can involve more than 20 

enzyme-catalyzed reactions to produce one major product. It is the controlled selection by 
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PKS of starter units, chain length, reduction and cyclization patterns that result in the huge 

diversity of polyketides observed in nature. 

Many polyketide engineering attempts have tried to take advantage of the discrete 

nature of each step to mix and match proteins from different systems to produce novel 

products. Understanding the molecular factors controlling selection is needed to successfully 

engineer PKS that synthesize “unnatural” natural products that can be developed into new 

therapeutics. Despite past research into type II PKS synthesis, how KS/CLF, ACP, and KR 

choreograph their respective reactions while maintaining precise chain length, regio-, and 

stereo-specificity remains a mystery. Such a lack of knowledge has greatly hampered type II 

polyketide engineering efforts.1 Therefore, there is a need to understand the molecular basis 

for the chain length and regiospecificity observed in type II PKSs. This chapter focuses on 

elucidating the binding mechanism of the poly-β-ketone intermediate with the KR, which 

catalyzes the first carbonyl to hydroxyl reduction of a single carbon group to a hydroxyl 

group.9  In addition, KR is also hypothesized to be able to catalyze first ring cyclization. 

However, it is highly selective in reducing polyketide with certain chain lengths.10-11 

Therefore, the study of the polyketide intermediates selection mechanism by KR is essential 

to understand how PKS controls its product outcome. 

In this study, chain length specificity distinct actinorhodin KR (ActKR) and hedamycin 

KR (HedKR) were used as model KRs (Figure 2.1). Actinorhodin is a pigmented antibiotic 

produced by a type II PKS from Streptomyces coelicolor,7, 9 and hedamycin is a pluramycin-

type antitumor antibiotic produced by Streptomyces griseoruber.12-13 The actinorhodin PKS 

is the model system of type II PKS, and the first type II KR structure reported was ActKR co-
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crystallized with the cofactor NADPH.9 ActKR specifically reduce the C9 carbonyl group of a 

16-carbon poly-β-ketone intermediate.14 In contrast, HedKR is able to reduce tetra-, octa-, 

undeca-, and dodeca-ketides.15-16 ActKR and HedKR has high sequence homology (61% 

sequence identity), and both KRs specifically reduce the C9 carbonyl group.17 It remains a 

mystery how HedKR may have higher promiscuity in terms of chain length control than that 

of ActKR. Based on sequence alignment (Figure S2.1), in and around the KR active site, H153 

and H201 are conserved among many type II KRs but not HedKR, which has Tyrosine and 

Glycine at these two positions. This difference led us to hypothesize that these residues could 

be responsible for controlling what length of poly-β-ketone intermediates could successfully 

enter the active site. To test our hypothesis, we created H153Y/H201G double mutant ActKR 

with the expectation that DM-ActKR will have similar promiscuity as HedKR. (Manuscript in 

preparation) 

 

 

Figure 2.1. Synthesis pathways of reducing type II PKSs, using hedamycin and actinorhodin 

as examples. A. The synthesis pathway of actinorhodin, in which C9 reduction of the 16-

carbon poly-β-ketone intermediate is catalyzed by ActKR. B. The synthesis pathway of 

hedamycin, in which C9 reduction of the 24-carbon poly-β-ketone intermediate is catalyzed 
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by HedKR. Abbreviations: ACP, acyl carrier protein; CLF, chain length factor; CoA, coenzyme 

A; KR, ketoreductase; KS, ketosynthase; PKS, polyketide synthase. 

 

A persisting problem of type II PKS research is that the polyketide intermediates of 

type II PKS are highly reactive, which are apt to have spontaneous aldol cyclization, resulting 

in great difficulty to isolate the intermediates and use them experimentally for X-ray 

crystallography studies or enzymological analysis.18 To fully understand the binding 

mechanism of the KR with its polyketide intermediates, a series of stable isoxazole-based 

polyketide mimics were synthesized.19 These mimics substituted some of the polyketide 

carbonyl groups with sulfur and isoxazole to achieve stability (Figure 2.2A). After extensive 

crystallization effort of both wild type and double mutant ActKRs with the mimic probes, we 

were able to crystallize and solve the co-crystal structures of the double mutant (DM-ActKR) 

bound with tetraketide-pantetheine and octaketide-phosphopantetheine mimics, which 

were used as templates for computational studies in this chapter. 

The positions of the polyketide substrates binding raise an interesting question. In 

the structure of DM-ActKR bound with octaketide-phosphopantetheine mimic, the 

phosphate group binds closely to previously proposed positively-charged arginine patch 

(defined as the front-patch), which is formed by a cluster of arginine residues (R38, R65, 

R93) that interact with the phosphate moiety of the phosphopantetheinyl group of the 

incoming polyketide intermediate (Figure 2.2B).9 However, in the structure bound with the 

tetraketide-pantetheine mimic, the pantetheine is close to another cluster of positive and 

amidic residues (Q149, R220, N260), which was defined as the back-patch (Figure 2.2C). It 
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would be of great interest to analyze if polyketide intermediates with different chain lengths 

and with or without phosphorylation would bind in different position, and if different KR 

conformation causes any change in the binding motif. 

 

 

Figure 2.2. Previously solved co-crystals of DM-ActKR bound with isoxazole-based linear 

poly-β-ketone mimics revealed two potential substrate-binding residue patches (Monomers 

shown). A. Pantetheinylated (PT) tetraketide (8 carbons) and phosphopantetheinylated 

(PPT) octaketide (16 carbons) mimics synthesized to probe PKS active sites. Sulfur and 

isoxazole substitutions to replace the native carbonyls are displayed in red and blue 

respectively. B. DM-ActKR-octaketide-PPT co-crystal structure indicated the mimic’s 

phosphate bound to a “front patch”: R38, R65, R93. C. DM-ActKR-tetraketide-PT co-crystal 
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structure showed interactions between PT and a “back patch”: Q149, R220, N260. Mimics 

are displayed in cyan; patch residues are displayed in blue. 

 

In this chapter, we applied molecular dynamics (MD) simulations to investigate the 

polyketide binding mechanism from two perspectives. First, the effect of polyketide length 

or substrate phosphorylation on the binding orientation of polyketide intermediates (front-

patch or back-patch). Second, the effect of double mutation on ActKR on polyketide binding. 

To evaluate if isoxazole-based mimics are comparable with the actual polyketide 

intermediates, MD simulations were conducted using both the actual polyketide 

intermediates and the polyketide mimics. The results from MD simulations help us 

understand how KR recognizes polyketide intermediates with different chain length, which 

will help further engineering of type II PKS and directed biosynthesis of new polyketides. 

 

2.2 Methods 

2.2.1. Molecular Docking 

Molecular docking analysis was conducted using three DM-ActKR crystal structures 

as the docking templates: the previously solved DM-ActKR co-crystal structure bound with 

the octaketide-phosphopantetheine mimic, the DM-ActKR co-crystal structure bound with 

the tetraketide-pantetheine mimic, and the apo structure of DM-ActKR mutated in silico.  

Modeller20 was used to generate the apo structure of DM-ActKR mutant in silico from a 

previously solved apo structure of WT-ActKR (PDB ID: 1X7H).9 The models were prepared 
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by selecting the monomer subunits that contain the substrate mimic in each tetramer 

structure and manually deleting the mimic coordinates. In order to enhance the 

exhaustiveness and specificity of the docking analysis by limiting the amount of degrees of 

freedom on conformation space, a fragment containing the phosphate group and part of the 

pantetheine (Figure S2.2) was designed as the docking ligand. AutoDock Vina21 was used 

with the default scoring function. The dimensions of the search box were 25.04 × 25.74 × 

30.82 Å, centered to include the entire model in each run to avoid biasing binding position. 

Search exhaustiveness was set to 10,000 to sufficiently sample ligand binding modes. The 

first 200 binding modes with the highest scores were visually assessed using UCSF 

Chimera.22 

 

2.2.2. MD Preparations 

To prepare each KR-ligand complex for MD simulation, two previously solved DM-

ActKR co-crystal structures (Manuscript in preparation) were used as templates to place 

ligands into the binding pocket by alignment. All ketoreductases models were prepared as 

tetramers to match their native multimeric state. To parameterize small molecules including 

the 4 co-enzyme NADPHs associated with each KR monomer and each ligand, the AM1-BCC 

charging method, derived from the antechamber program, was used,23-24 and the parmchk2 

program was used to prepare the missing parameters. Topology and coordinate files for the 

KR-ligand complexes were prepared using the tleap module. Following parametrization, the 

KR-ligand complexes were solvated in an octahedral box of TIP3P water molecules with 
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thickness extending 10 Å from the protein surface25 and complexes were neutralized by 

adding sodium ions. 

 

2.2.3. MD Simulations 

All MD simulations were performed using the pmemd.cuda program from the Amber 

18 software suite.26-27 A 10 Å cutoff was used for nonbonded interactions and short-range 

electrostatic corrections. Long-range electrostatic interactions were handled by the particle 

mesh Ewald (PME) method.28-29 The hydrogen atom bond lengths were fixed with the SHAKE 

algorithm.30-31 Minimization was performed in two steps to relieve any possible atomic 

overlaps. The first step involved relaxing only water molecules, while the second step 

minimized the whole system. Langevin dynamics with a 1 ps-1 collision frequency were used 

to gradually increase system temperature from 0 to 300 K over 200 ps.32 Prior to production 

stage simulations, the system was equilibrated for 100 ns under constant pressure and 

temperature (NPT) to adjust the system density. Finally, 100 ns production simulations 

without any restraint were performed under constant volume and temperature (NVT) 

conditions. Each simulation was repeated three times with a different random seed, starting 

from identical minimized structures. A 2fs integration time step was utilized with structural 

snapshots extracted every 1 ns.  

 

2.2.4. MD Analysis 
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All simulation trajectories were visualized using the software VMD.33 The Stability 

Score (𝑆𝑆) was developed to determine how stable a receptor-ligand interaction is during a 

simulation. The native atom pairs are defined as the heavy atom pairs that are within the 

distance of 7 Å in the initial frame. In any subsequent frame, the stability score is the fraction 

of the amount of these pairs that remain within 7Å of each other, with 1 indicating that the 

ligand position closely matches the initial frame, and 0 indicating ligand exit from its original 

binding site. Thus, 𝑆𝑆 of the first frame is always 1 for each trajectory, and SS is less than or 

equal to 1 for subsequent frames. RMSD and Stability Score 𝑆𝑆 of each simulation trajectories 

were calculated using the cpptraj module in AmberTools18.34  

MMPBSA calculations35-39 were conducted on the last 100 ns of each MD trajectory 

(frame interval is 1 ns) using the MMPBSA.py module in AmberTools18. The ionic strength 

was set at 0.100 M to reflect the sodium ions originally present in the simulations. Because 

KR active sites are highly charged, the internal dielectric constant was set to 4, which is 

suitable for charged receptor-ligand systems.40 Due to time and computational resource 

limitations, the normal-mode-based entropy corrections to these values were not calculated 

as they do not improve agreement with measured affinities. 

All statistical analyses were conducted by using R statistical packages. 

 

2.3. Results and Discussion 

2.3.1 Fragment Docking Identified Front- and Back- Patches as Two Major Binding 

Motifs 
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Three DM-ActKR crystal structures were used as docking templates for molecular 

docking analysis: a previously solved DM-ActKR co-crystal structure bound with the 

octaketide-phosphopantetheine mimic, a DM-ActKR co-crystal structure bound with the 

tetraketide-pantetheine mimic, and an apo structure of DM-ActKR mutated in silico from WT-

ActKR (PDB ID: 1X7H). In particular, the monomer subunit that contain the substrate mimic 

in each tetrameric cocrystal structure was used. Three major conformations are present in 

the three DM-ActKR structures used as templates: closed, half-closed, and open 

conformations, corresponding to octaketide mimic-bound, tetraketide mimic-bound, and 

apo structures, respectively (Figure 2.3A). This trend in conformational variation between 

different ligands could be explained by the fact that a larger ligand can form more protein-

ligand interactions and create a stronger ligand-enzyme interaction, leading to more closed 

conformation. 

In order to enhance the exhaustiveness and specificity of the docking analysis by 

limiting the amount of degrees of freedom on conformation space, a fragment that contains 

the entire phosphate group and a part of pantetheine were used as the docking ligand 

(Figure S2.2). All three conformations were docked with the fragment for 10,000 

independent rounds, and the first 200 binding modes with the highest scores were analyzed. 

The docking results reveal two major binding motifs in all three conformations, which are 

consistent with the previously identified front-patch and back-patch (Figure 2.3B and 2.3C). 

There are a few other sites detected from the docking result, but they are either buried under 

the tetrameric interface, or the frequency is too low to be considered significant. In the open 

conformation, all binding poses are located at the back-patch, indicating that the open 

conformation provides a highly exposed binding pocket that the probe can bind to instead of 
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the front-patch. In the analysis of the half-closed conformation docking simulation, 3.3% of 

the poses were at the front-patch and 96.0% were at the back-patch. This trend is repeated 

in the closed conformation docking analysis, with 1.0% front-patch poses and 98.0% back-

patch poses. In total, 98.0% of high-scoring binding poses appear at the back-patch 

regardless of conformation. This reveals the trend that binding pockets in the closed and 

half-closed forms tend to accept more ligands in front-patch binding poses (Figure 2.3B), 

which can be explained by a narrower back-patch binding site in combination with a wider 

front-patch binding site in the closed conformation binding pocket. 

 

 

Figure 2.3. DM-ActKR monomer conformation comparison and two major binding motif 

clusters generated from docking analysis on octaketide-bound DM-ActKR monomer (closed 

conformation). A. Visualization of aligned monomers among the structures originally 

containing: octaketide-bound (gold), tetraketide-bound (cyan), and no ligand (pink). The 

NADPH present in all three structures is displayed; ligands deleted for clarity. B. The front-

patch binding motif. C. The back-patch binding motif. The protein and NADPH surface are 

displayed in gold. 



 

23 
 

 

2.3.2 Pantetheine or Phosphopantetheine Moiety is Necessary for Ligand Binding 

Twenty-four DM-ActKR-ligand complexes were prepared for MD simulations through 

structure alignment using the two DM-ActKR co-crystal structures solved previously as 

templates (Table 2.1), among which DM-ActKR-(m-oct-pp) (ligand binds to front-patch) and 

DM-ActKR-(m-tet-p) (ligand binds to back-patch) are experimental structures. Framewise 

Stability Score (𝑆𝑆) was developed as a measure to evaluate the binding stability of each KR-

ligand pair, with 𝑆𝑆 close to 0 indicating weak binding, and 𝑆𝑆 close to 1 indicating strong 

binding. Each system was simulated in triplicate using identical minimized structures. 200 

ns MD simulation were performed on each minimized structure, with RMSD and Stability 

Score 𝑆𝑆 plots showing that all trajectories had reached equilibrium by 100 ns (Data not 

shown). Surprisingly, all ligands without a pantetheine or phosphopantetheine moiety (m-

tet, tet, m-oct, oct) exited the DM-ActKR binding pocket within 200 ns, regardless of initial 

binding position. These results strongly indicate that pantetheine or phosphopantetheine 

are essential for KR-ligand binding for any polyketide or polyketide mimic and might explain 

why none of our previous attempts to co-crystalize KRs with mimics lacking these moieties 

have ligand electron density. Thus, for further simulations, only ligands with pantetheine or 

phosphopantetheine moiety were prepared. 

 

Table 2.1. MD Simulation Round 1, including 24 DM-ActKR-ligand complexes prepared 

through structure alignment using DM-ActKR-(m-oct-pp) and DM-ActKR-(m-tet-p) co-

crystal structures as templates. 
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Aligned to DM-ActKR front-patcha, b Aligned to DM-ActKR back-patcha, b 

m-tet m-tet-p m-tet-pp m-tet m-tet-pc m-tet-pp 

tet tet-p tet-pp tet tet-p tet-pp 

m-oct m-oct-p m-oct-ppc m-oct m-oct-p m-oct-pp 

oct oct-p oct-pp oct oct-p oct-pp 

a Each DM-ActKR-ligand pair were simulated in triplicate. 

b Ligand nomenclatures explained. Prefix: “m” means isoxazole mimic, without “m” means 

natural structure; Body: “tet” means tetraketide, “oct” means octaketide; Suffix: “p” means 

(unphosphorylated) pantetheine, “pp” means phosphopantetheine, and without suffix 

means the ligand only has polyketide moiety. 

c DM-ActKR-(m-oct-pp) (ligand binds to front-patch) and DM-ActKR-(m-tet-p) (ligand binds 

to back-patch) are experimental structures. 

 

2.3.3 Polyketide Length Determines Ligand Binding Position 

As discussed above, all ligands without pantetheine or phosphopantetheine do not 

remain bound in the DM-ActKR binding pocket. Therefore, there are only 16 DM-ActKR-

ligand complexes left to be considered from Table 2.1. Because two potential binding sites 

(front-patch and back-patch) have been revealed by previous experimental structures, we 

investigated what key factor(s) determines the ligand binding site, i.e., given a specific 

polyketide ligand, which binding site the ligand would go to. 



 

25 
 

The two previously solved co-crystal structures have shown that the two mimics bind 

to the binding pocket of DM-ActKR at different sites. The phosphopantetheine moiety of m-

oct-pp binds to the front-patch, while the pantetheine moiety of m-tet-p binds to the back-

patch. There are two major differences between the m-oct-pp and m-tet-p mimics: 

polyketide length (16 and 8 carbons) and pantetheine phosphorylation (phosphorylated and 

not phosphorylated). It is reasonable to assume that one of the two factors determine the 

ligand binding position. The Stability Score 𝑆𝑆  of the last 100 ns of each trajectory were 

extracted and compared pairwise, grouped by ligand identity. Three of four octaketide 

ligands (m-oct-p, oct-pp, oct-p) showed higher average 𝑆𝑆 towards front-patch, while three 

of four tetraketide ligands (m-tet-p, tet-pp, tet-p) showed higher average 𝑆𝑆 towards back-

patch (Figure 2.4). This indicates that polyketide length is a consistent and significant factor 

determining ligand binding site. Conversely, pantetheine phosphorylation is not significantly 

correlated with a specific ligand binding site. Surface visualization of the DM-ActKR binding 

pocket shows that the front-patch (R38, R65, R93) and the back-patch (Q149, R220, N260) 

form two opposite entrances of a long channel, in which the active site catalytic residues 

(N114, S144, Y157, K161) are located at the center (Figure S2.3). Shorter polyketide 

substrates, such as a tetraketide, may enter the active site more easily through the back-

patch compared to longer substrates. 
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Figure 2.4. Stability Score 𝑆𝑆  analysis of 8 ligands bound to front-patch and back-patch 

binding positions of DM-ActKR. Among all 4 octaketide ligands, 3 of them (m-oct-p, oct-pp, 

oct-p) showed a significantly higher 𝑆𝑆 at front-patch. While among all 4 tetraketide ligands, 

3 of them (m-tet-p, tet-pp, tet-p) show significantly higher 𝑆𝑆  at back-patch. Significance 

levels: ***, p <= 0.001; ****, p <= 0.0001. 

 

2.3.4 ActKR H153Y/H201G Double Mutation Increases Ligand Binding Affinity 
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Histidines 153 and 201 near the ActKR active site were identified as potentially 

enforcing a minimum chain length based on conservation with other KRs and substitutions 

at those positions in the apparently more promiscuous HedKR (Figure S2.1).15, 41 Thus, a 

H153Y/H201G DM-ActKR was generated to test the hypothesis that DM-ActKR will show 

higher binding affinity towards polyketides with lengths that differ from ActKR’s canonical 

16 carbon substrate. Eight new KR-ligand complexes were prepared through structural 

alignment, including 4 WT-ActKR-ligand complexes as negative control and 4 WT-HedKR-

ligand complexes as positive control (Table 2.2).   The structure of WT-ActKR was prepared 

by mutating Y153 and G201 of the DM-ActKR cocrystal structure to Histidine, and the WT-

HedKR structure was obtained from the Protein Data Bank (PDB ID: 3SJU). All octaketide 

ligands were aligned to the front-patch, and all tetraketide ligands to the back-patch, in line 

with the front/back-patch docking results. 

 

Table 2.2. MD Simulation Round 2, including 4 WT-ActKR-ligand complexes and 4 WT-

HedKR-ligand complexes prepared through structure alignment, using DM-ActKR-(m-

oct-pp) and DM-ActKR-(m-tet-p) co-crystal structures as templates. 

Aligned to WT-ActKR front-patcha, b Aligned to WT-ActKR back-patcha, b 

oct-pp oct-p tet-pp tet-p 

Aligned to WT-HedKR front-patcha, b Aligned to WT-HedKR back-patcha, b 

oct-pp oct-p tet-pp tet-p 

a Each DM-ActKR-ligand pair were simulated in triplicate.  

b Ligand nomenclatures are the same as Table 2.1. 
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RMSD plots as well as 𝑆𝑆  plots show that all trajectories had reached equilibrium 

after 100 ns (Data not shown). Therefore, the 𝑆𝑆 of the last 100 ns of each trajectory were 

extracted for t-test analysis, grouped by KR type (Figure 2.5A). For each ligand, the DM-

ActKR-ligand complexes showed significantly higher average 𝑆𝑆  than the corresponding 

WT-ActKR-ligand complexes, and the average DM-ActKR-ligand complex 𝑆𝑆’s are closer to 

the corresponding average WT-HedKR-ligand complex 𝑆𝑆 ’s than the average WT-ActKR-

ligand complex 𝑆𝑆’s. 

Furthermore, MMPBSA analysis was performed to complement the Stability Score 

analysis.35-39 Among the three trajectories simulated for each KR-ligand complex, the total 

binding free energy, Δ𝐺𝑡𝑜𝑡𝑎𝑙 , non-electrostatic binding free energy, Δ𝐺𝑣𝑑𝑤, and electrostatic 

binding free energy, Δ𝐺𝑒𝑙𝑒, from the last 100 ns of the trajectory with the highest average 𝑆𝑆, 

were used for MMPBSA t-test analysis, grouped by KR type. Non-electrostatic binding free 

energy Δ𝐺𝑣𝑑𝑤  reflects packing/hydrophobic effects of the system and is the sum of the 

VDWAALS (van der Waals energy change upon binding) and ENPOLAR terms (nonpolar 

solvation free energy change upon binding). Electrostatic binding free energy Δ𝐺𝑒𝑙𝑒 reflects 

the electrostatic effects within the system and is the sum of the EEL (electrostatic energy 

change upon binding) and EPB terms (electrostatic solvation free energy change upon 

binding). The total binding free energy Δ𝐺𝑡𝑜𝑡𝑎𝑙 results show that the ActKR double mutation 

significantly reduces the binding free energy for octaketide ligands (oct-pp, oct-p), 

performing more similarly to WT-HedKR than WT-ActKR (Figure 2.5). However, two 

interesting results were observed for the tetraketide ligands (tet-pp, tet-p). 
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First, while the binding energy of both ligands is close for the DM-ActKR, the tet-pp 

ligand has decreased binding energy with WT-ActKR compared to the tet-p ligand and is 

similar to the DM-ActKR binding energy. This shows that the presence of phosphate group 

on tetraketide counteract the positive effect on the binding affinity caused by the double 

mutation on WT-ActKR. A possible explanation is the “hanging-chain effect” on linear ligand 

binding that occurs when both ends of the ligand are tightly constrained by the binding 

pocket (Figure S2.4). This leaves the linear moiety without many interactions with nearby 

residues, leading to weaker binding affinity compared with those ligands with only one end 

constrained. The second interesting point is that the total binding free energy of WT-HedKR 

is not significantly lower than that of WT-ActKR as expected, indicating that HedKR is not 

necessarily more promiscuous than ActKR. In fact, whether WT-ActKR can reduce short 

polyketide intermediates is still a debatable question, because it was observed that the same 

products were generated from the minimal hedamycin PKS (HedKS/CLF and HedACP) when 

combined with WT-ActKR or HedKR.17 

The non-electrostatic binding free energy Δ𝐺𝑣𝑑𝑤  results show nearly identical 

patterns as the total binding free energy, indicating that packing/hydrophobic effects are the 

main contributing factors to KR-substrates binding (Figure 2.4C).  On the other hand, the 

electrostatic binding free energy Δ𝐺𝑒𝑙𝑒  results show random patterns compared with the 

total binding free energy results (Figure S2.5). Framewise Pearson correlation tests show 

that for all 12 KR-ligand pairs, the total binding free energy Δ𝐺𝑡𝑜𝑡𝑎𝑙 has higher correlation 

with non-electrostatic binding free energy Δ𝐺𝑣𝑑𝑤 , rather than electrostatic binding free 

energy Δ𝐺𝑒𝑙𝑒 (Data not shown). 
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Figure 2.5. Stability Score 𝑆𝑆 and MMPBSA comparison of DM-ActKR, WT-ActKR and WT-

HedKR bound with tetraketides and octaketides grouped by ligands. A. For each ligand, the 

average Stability Score 𝑆𝑆 of DM-ActKR is significantly increased compared with WT-ActKR 

and is closer to that of WT-HedKR. B. The total binding free energy 𝛥𝐺𝑡𝑜𝑡𝑎𝑙 results. The total 

binding free energy of DM-ActKR is shifted towards that of WT-HedKR for octaketides, but 

not tetraketides. C. Non-electrostatic binding free energy 𝛥𝐺𝑣𝑑𝑤 shows similar pattern as B. 

Significance levels: ns, p > 0.05; *, p <= 0.05; **, p <= 0.01; ***, p <= 0.001; ****, p <= 0.0001. 

 

2.3.5 Phosphate Group Contributes to Ligand Binding through van der Waals 

Interactions 

Ligand positioning in the DM-ActKR-(m-oct-pp) and DM-ActKR-(m-tet-p) co-crystal 

structures provide grounds for the phosphate-front/back patch interaction contributing 

significantly to the initial ACP-phosphopantetheine-polyketide and KR docking phase. A 

comparison of the Stability Score 𝑆𝑆  of ligands with pantetheine moiety or 

phosphopantetheine moiety grouped by polyketide type shows that the presence of the 

phosphate group significantly increases KR-ligand binding stability in each KR-ligand system 

(Figure 2.6A and Figure 2.6B). In addition, the total binding free energy, Δ𝐺𝑡𝑜𝑡𝑎𝑙 , from the 

trajectory with the highest average 𝑆𝑆 was analyzed for each KR-ligand system (Figure 2.6C 

and Figure 2.6D). This analysis shows that for each ketoreductase system used, ligands with 

a phosphopantetheine moiety tend to have lower binding free energies than those with a 

pantetheine moiety, regardless of ligand length. The only exception is the DM-ActKR-

tetraketide, where tet-pp binding free energy is higher than tet-p which might be due to the 
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“hanging-chain effect” as mentioned earlier (Figure S2.4). The non-electrostatic binding free 

energy, Δ𝐺𝑣𝑑𝑤 , results exhibit nearly identical patterns as the total binding free energy, 

Δ𝐺𝑡𝑜𝑡𝑎𝑙  (Figure 2.6E and Figure 2.6F). It is worth noting that phosphorylated ligand 

electrostatic binding free energy Δ𝐺𝑒𝑙𝑒  to WT-ActKR is consistently higher than 

unphosphorylated ligand, while ligand electrostatic binding free energy Δ𝐺𝑒𝑙𝑒 to DM-ActKR 

and WT-HedKR follows the opposite trend (Figure 2.6G and Figure 2.6H). This indicates 

that the “chain length filter” mutation from Histidine to Tyrosine/Glycine swapped ActKR’s 

electrostatic affinity for negatively charged phosphorylated ligands. Nonetheless, the high 

correlation coefficient between the total binding free energy Δ𝐺𝑡𝑜𝑡𝑎𝑙 and non-electrostatic 

binding free energy Δ𝐺𝑣𝑑𝑤 still suggests that the effect of van der Waals interactions of the 

phosphate group with the front/back-patch is greater than that of electrostatic interactions 

(Data not shown). 
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Figure 2.6. Stability Score 𝑆𝑆 and MMPBSA comparison of DM-ActKR, WT-ActKR and WT-

HedKR bound with tetraketides and octaketides grouped by KR. All systems in A. and B. 

showed identical pattern that ligand with phospho-pantetheine moiety has significantly 

higher 𝑆𝑆 than those with pantetheine moiety, regardless of being octaketide or tetraketide. 

C. Total binding free energy 𝛥𝐺𝑡𝑜𝑡𝑎𝑙  of tetraketides binding. D. Total binding free energy 

𝛥𝐺𝑡𝑜𝑡𝑎𝑙  of octaketides binding. E. Non-electrostatic binding free energy 𝛥𝐺𝑣𝑑𝑤  of 

tetraketides binding. F. Non-electrostatic binding free energy 𝛥𝐺𝑣𝑑𝑤 of octaketides binding. 

G. Electrostatic binding free energy 𝛥𝐺𝑒𝑙𝑒  of tetraketides binding. H. Electrostatic binding 

free energy 𝛥𝐺𝑒𝑙𝑒  of octaketides binding. Significance levels: ns, p > 0.05; *, p <= 0.05; **, p 

<= 0.01; ***, p <= 0.001; ****, p <= 0.0001. 

 

Therefore, packing/hydrophobic effect are the main contributing factors to KR-

substrate binding, as shown in MMPBSA results where Δ𝐺𝑣𝑑𝑤 and Δ𝐺𝑡𝑜𝑡𝑎𝑙 consistently show 

virtually identical patterns for each KR-ligand pair (Figure 2.5, 2.6, S2.6). This implies that 

although the electrostatic interactions between negatively charged phosphopantetheine and 

positively charged patches play certain role in stabilizing KR-substrate interactions, van der 

Waals interaction and hydrophobic effects between the uncharged polyketide moiety and 

binding pockets are still the dominant contributors to KR-ligands binding specificity. 

 

2.4. Discussions 

2.4.1. Sequence Analysis of ActKR and HedKR 
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The antibiotic actinorhodin is synthesized by a type II PKS, which generates 16 carbon 

intermediate (octaketide) that is reduced by ActKR at the C9 carbonyl group. ActKR has been 

shown to be highly specific in reducing octaketides over other ketide lengths, with much-

reduced activity for a hexaketide (12 carbons).14 In contrast, HedKR, involved in hedamycin 

synthesis, is much more promiscuous, reducing tetra-, octa-, nona-, undeca- and dodeca-

ketides (8, 16, 18, 22, 24 carbons). It remains unknown what leads to the observed difference 

in substrate specificity between ActKR and HedKR. Our previous studies identified 4 

important aspects guiding ActKR substrate specificity15: (1) An Arg-rich surface patch 

responsible for ACP and phospho-pantetheine binding, (2) “gate” residues controlling 

substrate access to the active site, (3) “steering” residues that guide the pantetheine-bound 

polyketide towards the active site, and (4) cyclizing residues responsible for first ring 

cyclization. However, sequence alignment shows that some of the identified residues are 

conserved between ActKR and HedKR. For instance, V151 and V154, which belong to the 

“steering” residues group, and Y202, which may stabilize the flexible α6-α7 helices via π-π 

interactions with W206, are all conserved, (Figure S2.1) indicating those residues are not 

the reasons why these two proteins have different substrate specificity. A close inspection of 

the sequence alignment results revealed that H153 is proximal to V151 and V154, and H201 

is proximal to Y202, which are not conserved between these two proteins. Thus, the 

H153Y/H201G DM-ActKR was generated with the hope that the double mutation will 

increase the promiscuity of ActKR so that it can accept polyketides of lengths other than 16 

carbon. 

DM-ActKR was co-crystalized with pantetheinylated tetraketide and 

phosphopantetheinylated octaketide isoxazole mimics. Well-defined electron density of 
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both mimics can be observed inside the DM-ActKR active site pocket. As expected, DM-ActKR 

can accept both long (16 carbon) and short (8 carbon) polyketides. We have previously 

proposed that flexible and less conserved α6-α7 helices are important for substrate 

recognition,15 the double mutant may have removed the hydrogen bonding interactions at 

the substrate pocket entrance that could trap shorter polyketides outside the active site. 

 

2.4.2. Structures of ACP-polyketide-KR Complexes are Still Needed 

The acyl carrier protein (ACP) is a critical component in both fatty acid and polyketide 

biosynthesis. Throughout synthesis, the growing product chains are bound as thiol esters at 

the distal thiol of the ACP’s phosphopantetheine moiety and are thus transported to required 

protein for each synthetic step.42 We note that we performed all the MD simulations in the 

absence of ACP which would be present in vivo. Previous studies have postulated that the 

positively charged front-patch that promotes complementary interactions with both helix II 

of the ACP and the phosphopantetheine.43-45 The co-crystal structure of DM-ActKR-(m-tet-p) 

first identified the back-patch, which is also positively charged. However, it is noticeable that 

ketoreductases for type II PKSs tend to exist in the form of tetramer; therefore, only the 

front-patches are exposed to the outer surface, while the back-patches are buried inside the 

interface between attaching monomers, which may not have enough space for ACP binding 

(Figure S2.6). Thus, the back-patch may only function as ligand binding patch in 

experimental conditions where the ligands are not attached to ACPs. Therefore, the 

structures of ACP-polyketide-KR complexes are still urgently needed to reveal the natural 

mechanism of KR-polyketide binding in detail. 
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2.5. Conclusions 

The regiospecific reduction of a single carbonyl group to a hydroxyl group catalyzed 

by ketoreductase (KR) is an essential step of reducing-type polyketide synthesis.41 Several 

important ketoreductase structures from reducing type II PKS  have been solved, including 

actinorhodin (ActKR)9 and hedamycin (HedKR).15 However, the mechanism 

of ketoreductase-substrate interaction is still not well-known due to the fact that the poly-β-

ketone intermediates which ketoreductases act on are highly reactive and prone to 

spontaneous cyclization, making them challenging to isolate. The primary solutions to 

overcome inherent reactivity to study ketoreductase-substrate interaction include substrate 

mimics and computer simulation. 

Using these two approaches, we made five important observations on KR-substrate 

binding on co-crystal structures. First, docking results show that the previously proposed 

back-patch and front-patch residues are two major sites for substrate binding in ActKR, 

regardless of conformation. Second, polyketide length is the key determinant for which of 

the two sites a substrate will bind to in a KR. Third, H153 and H201 of ActKR are key gating 

residues for substrate chain length specificity, and the mutation of these two residues 

towards corresponding residues in HedKR increased the binding affinity of ActKR towards 

polyketide substrates with different chain lengths. Fourth, pantetheine or 

phosphopantetheine are essential for substrate binding, and the binding affinity of most 

ligands with KR increased significantly in the presence of phosphate group on the ligand. 
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Finally, packing/hydrophobic effects are the main contributing factors to KR-substrates 

binding stability. 

Understanding the detailed molecular basis for KR-substrate binding is crucial for 

rationally engineering type II PKS systems. The molecular features identified in this chapter 

will serve as protein engineering targets for rational control of KR specificity to produce new 

polyketides with pharmaceutical potential. 

 

2.6. Supporting Information 
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Figure S2.1. Sequence alignment among various type II PKS KRs. Sequences included 

actinorhodin, hedamycin, oxytetracycline, urdamycin, nogalamycin, granaticin, frenolicin, 

and griseucin KRs. Key: Red stars, front-patch residues; Cyan stars, back-patch residues; 
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Purple diamonds, catalytic residues; Green arrows, proposed chain length filter residues 

(double mutation targets on WT-ActKR). 

 

 

3-hydroxy-2,2-dimethyl-4-(methylamino)-4-oxobutyl dihydrogen phosphate 

Figure S2.2. The phosphopantetheine fragment used in molecular docking. 
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Figure S2.3. Front view of DM-ActKR displaying the relative positions of front patch, back 

patch and catalytic residues. The front-patch (R38, R65, R93) and the back-patch (Q149, 

R220, N260) form two opposite entrances of a long channel, in which the catalytic residues 

(N114, S144, Y157, K161) of active site are located at the center. Patch residues are displayed 

in blue and active site residues are displayed in yellow. 
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Figure S2.4. Hanging chain effect comparison between DM-ActKR-tet-pp binding and DM-

ActKR-tet-p binding. Hanging chain effect is shown in DM-ActKR-tet-pp binding (left) but not 

in DM-ActKR-tet-p binding (right) Both figures show the average structure of the last 100ns 

of the simulation trajectories. In A., both ends of the ligand are constrained, and DM-ActKR 

is in open form.  In B., the pantetheine end of the ligand is not constrained, and DM-ActKR is 

in closed form. 
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Figure S2.5. Electrostatic binding free energy comparison of DM-ActKR, WT-ActKR and WT-

HedKR bound with octaketides and tetraketides grouped by ligands. Each box plot shows the 

electrostatic energy Δ𝐺𝑒𝑙𝑒 results. Significance levels: ns, p > 0.05; ***, p <= 0.001; ****, p <= 

0.0001. 
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Figure S2.6. The position of the front patch and back patch in a native ActKR tetramer. Only 

the front patches (left) are exposed to the outer surface, while the back patches (right) are 

buried inside the interface between monomers, potentially occluding ACP binding. Front and 

back patches are displayed in blue. 
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CHAPTER 3 

Development of a Pantetheine Force Field Library for Molecular 

Modeling 

 

3.1. Introduction 

Pantetheine is the cysteamine amide analog of pantothenic acid (vitamin B5), which 

is ubiquitous in nature in various forms of pantetheine-containing ligands (PCLs). Playing a 

central role in energy metabolism, coenzyme A (CoA) is arguably one of the most important 

universal PCLs.  It is present in all known organisms with genomes sequenced to date, and 

roughly 4% of known enzymes use either CoA or CoA thioesters as substrates.1 Coenzyme A 

is important as it plays two major roles in metabolism:2-5 (1) energy production, by 

participating in two key steps of the citric acid cycle in the form of acetyl-CoA and succinyl-

CoA; and (2) fatty acid synthesis, by acting as an acyl group carrier that assists in transferring 

fatty acid from cytosol to mitochondria during fatty acid oxidation, and from mitochondria 

to cytosol during fatty acid synthesis. Coenzyme A synthesis from pantothenate requires the 

following five steps6-7: (1) Pantothenate phosphorylation to phsphopantothenate by 

pantothenate kinase; (2) Cysteinylation to phospho-N-pantothenoylcysteine (PPC) by 

phosphopantothenoylcysteine synthetase; (3) PPC decarboxylation to phosphopantetheine 

(Ppant) by phosphopantothenoylcysteine decarboxylase; (4) Ppant adenylation to 

dephospho-CoA by phosphopantetheine adenylyltransferase (PPAT); (5) Dephospho-CoA 

phosphorylation to form CoA by dephosphocoenzyme A kinase.  

Another important PCL is phosphopantetheine (Ppant), which usually functions as a 

prosthetic group by covalently linked to carrier proteins (CPs), such as acyl carrier 
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protein (ACP) for fatty acid synthases (FASs) or polyketide synthases (PKSs), and peptidyl 

carrier proteins or aryl carrier proteins for nonribosomal peptide synthetases (NRPSs).8-11 

The Ppant moiety is post-translationally transferred from CoA to a conserved serine residue 

on CPs by the action of phosphopantetheinyl transferase.10 By forming an energy-rich 

thioester linkage with fatty acids, polyketides, or nonribosomal peptides intermediates in 

their biosynthetic pathways, Ppant fulfills the demand of providing flexibility and relatively 

sufficient length (approximately 2 nm) that allows the covalently tethered intermediates to 

navigate and access spatially distinct and structurally diverse enzyme active sites. 

Both CoA and Ppant play central roles in carrier protein-based biosynthesis of fatty 

acids, polyketides and nonribosomal peptides, ultimately providing a wide array of complex, 

bioactive natural products including valuable pharmaceuticals and precious commodity 

chemicals. For fatty acid synthesis, the simplest model system available is the type II FAS in 

E. coli. In this system, ACP interacts with more than 10 different catalytic partners, catalyzing 

the formation of long fatty acid chains from malonyl-CoA with high efficiency and fidelity.12 

For polyketide synthesis, besides similar mechanism for polyketide chain elongation with 

the participation of ACP and malonyl-CoA, nature has co-opted the assembly line strategy to 

produce macrocyclic polyketide natural products by utilizing additional tailoring domains 

for increased chemical diversity and biological function.13 Similarly, NRPSs utilize the carrier 

protein machinery with elongation by amino acids instead of acyl groups.14 Recent efforts 

have been made to engineer these systems to expand their product diversity as well as to 

optimize systems for expression in heterologous hosts.15-16 A major hurdle that remains is 

our poor understanding of the transient substrate-protein interactions between the CPs with 

their Ppant bound intermediates, as well as protein-protein interactions between CPs and 



 

50 
 

their catalytic partner domains. Molecular dynamics (MD) and other computational 

techniques can be used to provide models of these transient interactions that are difficult to 

capture experimentally, thus providing an additional tool to increase yields and expand 

product diversity for the biosynthesis of “unnatural” natural products.17-21 

The reliability of MD simulations depends on the availability and quality of molecular 

mechanics force fields, including both the functional form and parameter sets. Current 

Amber force fields provides parameter sets support modeling standard amino acids, nucleic 

acids, sugars, lipids, and other relatively common moieties.22-26 At present, no scalable force 

field parameter set exist for PCLs. Performing MD simulations on systems containing PCLs 

require extra parameterization works each time, thus reducing the computational 

accessibility to potentially critical information on protein-protein and protein-substrate 

interactions. In addition, non-standard residues, such as a phosphopantetheinyl-serine 

(Ppant-Ser) covalently embedded in a protein, require more efforts in parameterization. 

Furthermore, the size of CoA, Ppant and Ppant-Ser “apo” ligands and their corresponding 

thioesters are at least 80, 43 and 52 atoms, respectively, making their parameterization 

processes computationally expensive and time consuming. At the time of this writing, a 

search on Protein Data Bank (PDB) database returns about 1700 entries containing CoA, CoA 

thioesters, Ppant or Ppant thioesters, the majority of which contain CoA (603 entries) and 

acetyl-CoA (222 entries).27-28 However, a search on PubMed for keywords “molecular 

dynamics” with “coenzyme A” or “pantetheine” reveals only 141 or 9 publications 

respectively. The limited literature for MD studies of PCLs is directly linked to the lack of 

pantetheine force field (PFF) parameters. The availability of a PFF library would allow 
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researchers to model these enzymes for engineering efforts and provide medicinal chemists 

better models for drug design efforts.   

Here we report a PFF library built specifically to model and simulate systems 

containing PCLs compatible with standard Amber force fields,22 including 12 standalone CoA 

or CoA-thioesters, 9 standalone Ppant or Ppant-thioesters, and 9 covalently linked Ppant-Ser 

or Ppant-Ser-thioesters with compatible nomenclatures with Protein Data Bank. The atomic 

partial charge parameters were calculated by one of three charging algorithms, including 

Gasteiger,29 AM1-BCC30-31 and restrained electrostatic potential (RESP) matching similar 

techniques employed in current Amber force fields.32-33  Inspired by the development of 

LIPID11 force field,34 a “plug-and-play” parameterization scheme utilizing modular splitting 

was employed to simplify the computational complexity of using the RESP algorithm, 

resulting in a fragmentation strategy that allows for systematic charging of large molecules 

sharing common substructural motifs. The remaining parameters such as those for bond 

terms, angle terms, dihedral angle terms were adopted from either ff14SB23 or gaff2.35 This 

library is expected to have a significant impact on researchers who wish to conduct MD 

simulations of any system that requires PCLs as either substrates or cofactors. 

 

3.2. Methods 

3.2.1. Structural Preparation 

Structural files of PCLs in the CIF (Crystallographic Information File) format 

containing observed and idealized structures (calculated by software such as OpenEye’s 

Omega based on the known covalent geometry) were obtained from the RCSB Protein Data 
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Bank.28, 36 The original hydrogens on each PCL structural file were removed and the 

Amber/Reduce program was used to add hydrogens matching its physiological protonation 

state.37 A “plug-and-play” fragmentation scheme was employed for the computationally 

expensive RESP charging method, which splits CoA, Ppant and Ppant-Ser into a pool of 8 

fragments: (1) methylphosphate, (2) adenosine, (3) dimethyldiphosphate, (4) pantoic acid, 

(5) beta-alanine, (6) cysteamine, (7) serine dipeptide and (8) dimethylphosphate. Fragments 

1-6 were obtained from the structural file of CoA (PDB ID: COA); Fragments 7 and 8 were 

obtained from the structural file of phosphoserine (PDB ID: SEP); Extending fragment for 

each selected PCL was obtained from corresponding structural file directly. Fragments were 

capped with acetyl, methylamide, methyl, and/or hydroxyl groups using the Build Structure 

feature of UCSF Chimera.38 

 

3.2.2. PFF Parameterization 

The RESP ESP charge Derive (R.E.D.)III.5 tools were used for RESP charge fitting for 

each “plug and play” fragment.39 Gaussian 09 was used to optimize the geometry of each 

fragment at B3LYP/6-31G* level of theory, and to derive molecular electrostatic potential 

(MEP) at HF/6-31G* level of theory.40 Extra care was taken during the optimization of the 

serine dipeptide fragment (fragment 7), where 𝜙 and 𝜓 angles were constrained at −60.70° 

and −31.32° respectively. A four-step RESP fitting strategy was employed to derive final 

RESP partial charges, including: (1) charge fitting for each fragment independently; (2) 

pairwise charge fitting for each pair of connecting fragments, with intermolecular charge 

constraints applied on corresponding caps whose net charge was constrained to 0; (3) 
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fragment merging by averaging the two different charges of each atom derived at step (2); 

and (4) charge scaling to ensure integer total charges of intact molecules with the following 

equation: 

𝐶𝑖,𝑠𝑐𝑎𝑙𝑒𝑑 = 𝐶𝑖 ×
𝐶𝑡𝑜𝑡

∑ 𝐶𝑖
𝑁
1

 

where 𝐶𝑖 is the partial charge of the ith atom of the molecule before normalization, and 𝐶𝑡𝑜𝑡 

is the total integer charge of the molecule. To reduce the charging error, Rigid-Body 

Reorientation Algorithm (RBRA) embedded in R.E.D.-III.5 were applied in step (1).39 

Amber/Antechamber program was used to conduct the Gasteiger and AM1-BCC charge 

fitting procedures.41 

Non-charge parameters include those for bond, angle, dihedral angle and van der 

Waals terms. For covalent Ppant-Ser PCLs, these parameters were first derived from ff14SB 

force fields where possible.23 Missing parameters were adopted from gaff2.35 For standalone 

CoA and Ppant PCLs, non-charge parameters were derived from gaff2 force field directly. The 

parameterization process was handled by parmchk2 program to obtain parameter 

modification (frcmod) files. Finally, the Amber/tleap program was used to generate OFF 

library (lib) files.42 

 

3.2.3. Structural and Normal Mode Analysis of Fragments 

Fragment geometries were sequentially minimized using increasing levels of theories 

in the order of B3LYP/6-311+G(2d,p), MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ using 

Gaussian 09, after which the QM normal mode frequencies were obtained.40 Scaling factors 
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of 0.967, 0.959 and 0.953 were applied to B3LYP/6-311+G(2d,p), MP2/aug-cc-pVDZ and 

MP2/aug-cc-pVTZ calculated normal mode frequencies, respectively, as suggested by 

precomputed scaling factors of Computational Chemistry Comparison and Benchmark 

DataBase (CCCBDB).43 For molecular mechanical minimization with PFF and OL3 force 

fields, the Amber/pmemd program was used.42, 44 PFF normal mode analysis was then 

performed using the nmode function of the Nucleic Acid Builder (NAB) language.45 

Structural alignment and RMSD calculation between QM minimized structures and 

PFF or OL3 minimized structures were conducted using the match command of UCSF 

Chimera.38 

 

3.2.4. MD Preparation 

Three PCL containing systems selected for validation purposes including 

phosphopantetheine adenylyltransferase-phosphopantetheine (PPAT-Ppant, PDB ID: 

1OD6),46 3-hydroxy-3-methylglutaryl synthase/acyl carrier protein complex (HGMS/ACP-

Ppant-Ser, PDB ID: 5KP7),47 and diaminobutyrate acetyltransferase-Coenzyme A (EctA-CoA, 

PDB ID: 6SK1).48 Missing residues in PPAT and HGMS/ACP were added using modeller.49 

Topology and coordinate files were prepared using the Amber/tleap program, with standard 

residues parameterized by the ff14SB force field, and PCLs parameterized by the PFF 

library.23, 42 Following parametrization, each system was solvated in an octahedral box of 

TIP3P water molecules with thickness extending 10 Å from the protein surface.50 Complexes 

were neutralized by adding counterions with opposite charges (sodium or chloride), and 
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extra sodium-chloride ion pairs were added to match reported experimental salt 

concentrations. 

 

3.2.5. MD Simulations 

The Amber/pmemd.cuda program was used for all MD simulations.42, 44 A 10 Å cutoff 

was set for nonbonded interactions and short-range electrostatic corrections. The SHAKE 

algorithm was used to constrain the hydrogen atom bond lengths,51-52 and the particle mesh 

Ewald (PME) method was use used to handle long-range electrostatic interactions.53-54 

Energy minimization was performed to relieve any possible atomic spatial conflicts in two 

stages. The first stage was used to relax only water molecules and ions, while the second 

stage was used to relax the whole system. Langevin dynamics with a 1 ps-1 collision 

frequency were used to gradually increase system temperature from 0 K to reported 

experimental temperatures over 200 ps.55 The systems were first equilibrated for 100 ns 

under constant pressure and temperature (NPT) to adjust the system density, then 100 ns 

production simulations were performed under constant volume and temperature (NVT) 

conditions. Both equilibration and production phases employed 2 fs integration time step, 

and 200 ps interval for simulation snapshot extraction. Each simulation was repeated in 

triplicates with different random seeds, starting from identical minimized structures. 

 

3.2.6. MD Analysis 
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MD simulation results were analyzed using 3 metrics: comparisons of RMSD between 

simulated and experimental conformations, comparisons of simulated and experimental B-

factors, and our previously developed binding stability scoring.56 All metrics of each 

simulation were calculated using the Amber/cpptraj program, employing commands rmsd, 

atomicfluct, and nativecontacts respectively.57 Simulated B-factor calculations only included 

snapshots of the last 10 ns. Both experimental and simulated B-factors were standardized 

using the following equation: 

𝐵𝑖,𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝐵𝑖 − 𝜇

𝜎
 

where 𝜇  and 𝜎  are the mean value and standard deviations of all B-factors. The stability 

score (𝑆𝑆) was developed to determine the binding stability of receptor–ligand pair during 

simulation.56 The native atom pairs are defined as the heavy atom pairs that are within the 

distance of 7 Å in the crystal structure, and the stability score is calculated using the following 

equation: 

𝑆𝑆 =
1

𝑓𝑒𝑛𝑑 − 𝑓𝑠𝑡𝑎𝑟𝑡 + 1
∑ 𝑆𝑆𝑖

𝑓𝑒𝑛𝑑

𝑓𝑠𝑡𝑎𝑟𝑡

 

where the stability score of the ith frame 𝑆𝑆𝑖  is the fraction of the amount of these pairs that 

remain within 7 Å of each other. 𝑓𝑠𝑡𝑎𝑟𝑡  and 𝑓𝑒𝑛𝑑  are the start and end frame numbers, 

respectively. In this chapter, 𝑓𝑠𝑡𝑎𝑟𝑡 were set as 101 and 𝑓𝑒𝑛𝑑  were set as 200 to include the 

trajectory snapshots of the last 100 ns. Gaussian Kernel Density Estimation (KDE) plots for 

RMSD and scatterplots for standardized B-factors were generated by Matplotlib package of 

Python. B-factor visualizations were generated using the Render by Attribute feature of UCSF 
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Chimera.38 Statistical analyses of stability scores were conducted by using the R statistical 

package. 

 

3.3. Results and Discussion 

3.3.1. PFF Library Design 

The current pantetheine force field (PFF) library includes parameters for 30 PCLs 

available in Protein Data Bank. (Table 3.1) Besides “apo” CoA, Ppant and Ppant-Ser, the PFF 

library contains thioesters of CoA, Ppant and Ppant-Ser with extending units from saturated 

fatty acids, whose lengths range from 3 carbons to 16 carbons, or the intermediates of fatty 

acid synthesis, including acetyl-, malonyl-, acetoacetyl-CoA, acetyl-Ppant and acetyl-Ppant-

Ser. All PCLs included in the CoA Library and the Ppant Library are standalone ligands, and 

all PCLs included in the Phosphopantetheinyl-Serine (Ppant-Ser) Library are non-standard 

residues covalently linked to proteins. The URL link to the individual page of each PCL is also 

shown in Table 3.1. 

 

Table 3.1. Pantetheine-Containing Ligands included in the Pantetheine Force Field Library 

PCL Name 
PDB 

ID 
Description 

Entries in 

PDB 
URL Links 

Coenzyme A (CoA) Library 
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CoA COA “apo” coenzyme A 529 
http://rayluolab.org/pff-

files-for-coenzyme-a/ 

Acetyl-CoA ACO 2 Carbon Acyl-CoA 218 
http://rayluolab.org/pff-

files-for-acetyl-coa/ 

Propionyl-CoA 1VU 3 Carbon Acyl-CoA 11 
http://rayluolab.org/pff-

files-for-propionyl-coa/ 

Butyryl-CoA BCO 4 Carbon Acyl-CoA 8 
http://rayluolab.org/pff-

files-for-butyryl-coa/ 

Hexanoyl-CoA HXC 6 Carbon Acyl-CoA 10 
http://rayluolab.org/pff-

files-for-hexanoyl-coa/ 

Octanoyl-CoA CO8 8 Carbon Acyl-CoA 14 
http://rayluolab.org/pff-

files-for-octanoyl-coa/ 

Decanoyl-CoA MFK 10 Carbon Acyl-CoA 5 
http://rayluolab.org/pff-

files-for-decanoyl-coa/ 

Dodecanoyl-

CoA 
DCC 12 Carbon Acyl-CoA 7 

http://rayluolab.org/pff-

files-for-dodecanoyl-

coa/ 

Tetradecanoyl-

CoA 
MYA 14 Carbon Acyl-CoA 89 

http://rayluolab.org/pff-

files-for-tetradecanoyl-

coa/ 
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Hexadecanoyl-

CoA 
PKZ 16 Carbon Acyl-CoA 2 

http://rayluolab.org/pff-

files-for-hexadecanoyl-

coa/ 

Malonyl-CoA MLC 
CoA derivative of 

malonic acid 
12 

http://rayluolab.org/pff-

files-for-malonyl-coa/ 

Acetoacetyl-

CoA 
CAA 

Precursor of HMG-

CoA in mevalonate 

pathway 

30 

http://rayluolab.org/pff-

files-for-acetoacetyl-

coa/ 

Phosphopantetheine (Ppant) Library 

Ppant PNS 
“apo” 

phosphopantetheine 
11 

http://rayluolab.org/pff-

files-for-

phosphopantetheine/ 

Acetyl-Ppant 6VG 2 Carbon Acyl-Ppant 0 
http://rayluolab.org/pff-

files-for-acetyl-ppant/ 

Butyryl-Ppant PSR 4 Carbon Acyl-Ppant 0 
http://rayluolab.org/pff-

files-for-butyryl-ppant/ 

Hexanoyl-

Ppant 
SXH 6 Carbon Acyl-Ppant 0 

http://rayluolab.org/pff-

files-for-hexanoyl-

ppant/ 
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Octanoyl-Ppant SXO 8 Carbon Acyl-Ppant 0 
http://rayluolab.org/pff-

files-for-octanoyl-ppant/ 

Decanoyl-

Ppant 
PM8 10 Carbon Acyl-Ppant 0 

http://rayluolab.org/pff-

files-for-decanoyl-

ppant/ 

Dodecanoyl-

Ppant 
8Q1 12 Carbon Acyl-Ppant 7 

http://rayluolab.org/pff-

files-for-dodecanoyl-

ppant/ 

Tetradecanoyl-

Ppant 
ZMP 14 Carbon Acyl-Ppant 25 

http://rayluolab.org/pff-

files-for-tetradecanoyl-

ppant/ 

Hexadecanoyl-

Ppant 
G9S 16 Carbon Acyl-Ppant 0 

http://rayluolab.org/pff-

files-for-hexadecanoyl-

ppant/ 

Phosphopantetheinyl-Serine (Ppant-Ser) Library 

Ppant PNS 

“apo” 

phosphopantetheinyl-

serine 

48 

http://rayluolab.org/pff-

files-for-

phosphopantetheinyl-

serine/ 
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Acetyl-Ppant 6VG 2 Carbon Acyl-Ppant 1 

http://rayluolab.org/pff-

files-for-acetyl-ppant-

ser/ 

Butyryl-Ppant PSR 4 Carbon Acyl-Ppant 2 

http://rayluolab.org/pff-

files-for-butyryl-ppant-

ser/ 

Hexanoyl-

Ppant 
SXH 6 Carbon Acyl-Ppant 2 

http://rayluolab.org/pff-

files-for-hexanoyl-ppant-

ser/ 

Octanoyl-Ppant SXO 8 Carbon Acyl-Ppant 2 

http://rayluolab.org/pff-

files-for-octanoyl-ppant-

ser/ 

Decanoyl-

Ppant 
PM8 10 Carbon Acyl-Ppant 5 

http://rayluolab.org/pff-

files-for-decanoyl-ppant-

ser/ 

Dodecanoyl-

Ppant 
8Q1 12 Carbon Acyl-Ppant 9 

http://rayluolab.org/pff-

files-for-dodecanoyl-

ppant-ser/ 
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Tetradecanoyl-

Ppant 
ZMP 14 Carbon Acyl-Ppant 39 

http://rayluolab.org/pff-

files-for-tetradecanoyl-

ppant-ser/ 

Hexadecanoyl-

Ppant 
G9S 16 Carbon Acyl-Ppant 1 

http://rayluolab.org/pff-

files-for-hexadecanoyl-

ppant-ser/ 

 

The functional form of a typical force field includes terms responsible for bond 

stretching, angle bending, dihedral angle torsion, van der Waals, and electrostatic 

interactions. For example, the additive Amber force field functional form for the total 

potential energy (𝐸𝑡𝑜𝑡𝑎𝑙) is: 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝑘𝑏(𝑟 − 𝑟0)2

𝑏𝑜𝑛𝑑𝑠

+ ∑ 𝑘𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

+ ∑ 𝑉𝑛(1 + cos(𝑛𝜙 − 𝛾))

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

+ ∑ ∑ (
𝐴𝑖𝑗

𝑅𝑖𝑗
12 −

𝐵𝑖𝑗

𝑅𝑖𝑗
6 +

𝑞𝑖𝑞𝑗

𝜀𝑅𝑖𝑗
)

𝑁

𝑗=𝑖+1

𝑁−1

𝑖=1

 

In this equation, 𝜀 is the dielectric constant, which has a default value 1 in Amber and thus 

can be omitted. A parameter set including the following parameters has to be provided to 

perform tasks such as minimization and molecular dynamics simulations: 

• Bond Parameters: 𝑘𝑏 , 𝑟0 

• Angle Parameters: 𝑘𝜃 , 𝜃0 

• Torsional Angle Parameters: 𝑉𝑛, 𝛾 
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• Van der Waals Parameters: 𝐴𝑖𝑗 , 𝐵𝑖𝑗 

• Charge Parameters: 𝑞𝑖 , 𝑞𝑗 

For Ppant-Ser PCLs, both covalent parameters (bond, angle, and torsional angle) and 

noncovalent van der Waals parameters were first derived from ff14SB where possible to 

ensure compatibility with parameters for standard amino acid residues,23 missing 

parameters were then obtained from the gaff2 force field, which were designed for general 

organic molecules.35 For standalone CoA and Ppant PCLs, these parameters were directly 

derived from the gaff2 force field. Charge parameters have to be treated separately, since 

individual partial charge has to be assigned to each atom for widely used point-charge 

electrostatic models. In the PFF library, three common charging algorithms were applied, 

including Gasteiger,29 AM1-BCC30-31 and RESP.32-33   

The RESP charges depend on molecular geometries provided as input. However, 

large, flexible molecules tend to form intramolecular interactions such as hydrogen bonds 

during the geometry optimization step, introducing a bias in fitted charges. Moreover, the 

CPU time of geometry optimization is positively correlated with molecular sizes. Therefore, 

a “plug-and-play” fragmentation approach was employed serving as a consistent charging 

scheme for the PFF library development, which splits common substructures of PCLs: CoA, 

Ppant and Ppant-Ser, into a fragment pool including 8 components: (1) methylphosphate, 

(2) adenosine, (3) dimethyldiphosphate, (4) pantoic acid, (5) beta-alanine, (6) cysteamine, 

(7) serine dipeptide and (8) dimethylphosphate, as shown in Figure 3.1. Fragments were 

capped with acetyl, methylamide, methyl, and/or hydroxyl groups mimicking the natural 

chemical environments of the fragments, and these caps were constrained to 0 net charge 
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and removed during the fragment merging process. This approach was deemed necessary 

due primarily to the flexibility and relatively large size of the pantetheine moiety itself. 

Indeed, it is common for primed CoA and Ppant-Ser thioesters to achieve sizes greater than 

200 atoms.58 During the geometry optimization step, extra care was taken for the serine 

dipeptide fragment (fragment 7), where 𝜙 and 𝜓 angles were constrained at −60.70° and 

−31.32° respectively, according to the analysis of 𝜙 and 𝜓 angle distributions of 320 Ppant-

Ser conformations from Protein Data Bank. (Figure S3.1) In contrast, Gasteiger charges and 

AM1-BCC charges were obtained with the whole molecule strategy, i.e., the structural files of 

the intact molecule of each PCL were used as inputs, because of the much higher efficiency 

of the two charging algorithms than that of the RESP charging method. 

 

 

Figure 3.1. “Plug-and-play” fragmentation strategy of PFF library development. Coenzyme 

A (CoA) PCLs, phosphopantetheine (Ppant) PCLs and phosphopantetheinyl-serine (Ppant-

Ser) PCLs can be fragmented into a fragment pool consisting of 8 components: (1) 

methylphosphate, (2) adenosine, (3) dimethyldiphosphate, (4) pantoic acid, (5) beta-

alanine, (6) cysteamine, (7) serine dipeptide and (8) dimethylphosphate. CoA PCLs can be 
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reconstructed with fragments 1, 2, 3, 4, 5 and 6; Ppant PCLs can be reconstructed with 

fragments 1, 4, 5 and 6; Ppant-Ser PCLs can be reconstructed with fragments 4, 5, 6, 7 and 8. 

Various extending units that form thioester bonds with CoA, Ppant or Ppant-Ser are labeled 

with “R” in red. Acetyl, methylamide, methyl, and hydroxyl caps that were constrained to 0 

net charge and removed during the fragment merging process are depicted in blue. 

 

A caveat during the PFF library development is inconsistent atomic nomenclature of 

common substructures between different PCLs on PDB. For example, the amine nitrogen 

atom of adenine of coenzyme A (PDB ID: COA), malonyl CoA (PDB ID: MLC) and propionyl 

CoA (PDB ID: 1VU) are named as N6A, N6, and N4, respectively. The nomenclature 

inconsistency prevents parameter transferability that is necessary for our fragmentation 

strategy. To address this problem, an atom renaming program called PyRenamer written in 

Python that enables converting atom names to corresponding atom names of reference 

molecule was developed. The source code of PyRenamer can be obtained by contacting the 

authors. 

 

3.3.2. Structural Comparisons of QM and PFF Optimized Fragments  

To validate PFF parameters, fragments were sequentially minimized with increasing 

level of QM theories in the order of B3LYP/6-311+G(2d,p), MP2/aug-cc-pVDZ and MP2/aug-

cc-pVTZ as benchmark. An acetyl cysteamine fragment was also tested as a representative 

thioester extending unit. Due to the increasing computational time complexity for larger 

fragments, the highest level of theory used for fragment 2 (adenosine) was B3LYP/6-
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311+G(2d,p). For fragments 3 (dimethyldiphosphate), 4 (pantoic acid), 5 (beta-alanine) and 

acetyl cysteamine fragment, the highest level of theory used was MP2/aug-cc-pVDZ. 

MP2/aug-cc-pVTZ were only applied to smaller fragments including fragments 1 

(methylphosphate), 6 (cysteamine), and 8 (dimethylphosphate). The RMSD between QM and 

PFF optimized fragments ranged from 0.095 Å to 0.465 Å when RESP charges were used 

(denoted as PFF/RESP below). (Table 3.2, Figure S3.2) In particular, since the structure of 

fragment 2 (adenosine) matches the adenosine (entry name: AN) available in the OL3 force 

field, the QM- and OL3-optimized fragments were also compared.59 The RMSD comparison 

shows that PFF/RESP (0.327 Å) has higher accuracy than OL3 (0.550 Å) for adenosine. 

(Figure S3.3) Additionally, PFF with Gasteiger (PFF/Gasteiger) and AM1-BCC (PFF/AM1-

BCC) charges were also validated similarly. The RMSD between QM and PFF/Gasteiger 

optimized fragments ranged from 0.102 Å to 0.519 Å, and for PFF/AM1-BCC optimized 

fragments, the RMSD ranged from 0.097 Å to 0.509 Å. (Table S3.1) Overall, PFF parameters 

with all three charging methods perform similarly in reproducing QM-optimized structures 

for the tested fragments. 

 

Table 3.2. RMSD Between QM and PFF/RESP Optimized Fragments 

Fragment No. Fragment Name Highest Level of Theory RMSD 

1 methylphosphate MP2/aug-cc-pVTZ 0.095 

2 adenosine B3LYP/6-311+G(2d,p) 0.327 
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3 dimethyldiphosphate MP2/aug-cc-pVDZ 0.465 

4 pantoic acid MP2/aug-cc-pVDZ 0.281 

5 beta-alanine MP2/aug-cc-pVDZ 0.386 

6 cysteamine MP2/aug-cc-pVTZ 0.098 

8 dimethylphosphate MP2/aug-cc-pVTZ 0.113 

- acetyl-cysteamine MP2/aug-cc-pVDZ 0.401 

Average   0.271 

 

3.3.3. Normal Mode Analysis of QM and PFF Optimized Fragments 

In order to gain further insights of the quality of PFF parameters, the QM normal 

mode frequencies of each fragment were obtained with the same level of theories described 

above. Due to the fact that ab initio calculated harmonic vibrational frequencies are typically 

larger than the experimental vibrational frequencies,60 scaling factors were applied to QM 

calculated normal mode frequencies. Normal modes plots agreed well between QM 

calculations and PFF calculations, except for modes in the high frequency (above 2000 cm-1) 

region. (Figure 3.2 and Figure S3.4-S3.5). For example, the frequencies observed in the 

450-1100 cm-1 range include C-O and O-P bond-stretching, O-P-O twisting, O-P-O wagging, 

and O-P-O scissoring. S-C bond stretching was observed at 645 and 749 cm-1, O-C-S scissoring 

observed at 439 cm-1, and the characteristic intense carbonyl stretch for thioesters at 1720 
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cm-1 at the MP2/aug-cc-pVDZ level of theory. The PFF frequencies were in good agreement 

with QM frequencies for both cases. 
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Figure 3.2. Comparison of normal mode frequencies of fragments calculated with PFF/RESP 

and B3LYP/6-311+G(2d,p), MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ levels of theories. 

Scaling factors of 0.967, 0.959 and 0.953 were applied to B3LYP/6-311+G(2d,p), MP2/aug-

cc-pVDZ and MP2/aug-cc-pVTZ calculated normal mode frequencies, respectively. 

 

3.3.4. Partial Charge Comparisons Between Three Charge Fitting Methods  

Since the accuracy of PFF parameters for individual fragments has been validated, a 

four-step RESP fitting strategy was employed to derive final RESP partial charges as stated 

in section 3.2. Figure 3.3 shows the atom names and partial charges derived by RESP 

(fragmentation strategy), Gasteiger (whole molecule strategy) and AM1-BCC methods 

(whole molecule strategy), including their deviations from the unconstrained fragmental 

partial charges (the “differences” column) for standalone phosphopantetheine (PDB ID: 

PNS). 

It can be observed that the greatest deviations are from charges derived by Gasteiger 

method, where 17 atoms having differences above 0.15, including O27, P24, O23, O24, O25, 

C29, O33, H33, C34, O35, N36, H36, C39, O40, N41, H4, S44. This is due to the fact that 

Gasteiger charges are not derived to reproduce electrostatic potentials (ESP) as the other 

two methods do.29 In contrast, ESP based AM1-BCC30-31 and RESP32-33 charging methods 

produced only 7 or 1 atomic partial charges with differences above 0.15, respectively. It is 

reasonable to set 0.15 partial charge deviation as the “red line”, as indicated by LIPID11 force 

field development involving similar fragmentation approach.34 Therefore, it is expected that 
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AM1-BCC and RESP charges perform better than Gasteiger charges in subsequent validation 

tests. 

 

 

Figure 3.3. Comparison of RESP charges, Gasteiger charges, AM1-BCC charges with 

unconstrained fragmental partial charges for standalone phosphopantetheine. The 

“differences” column associated with each charging method shows the differences with 
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unconstrained partial charges of corresponding atoms (the “No Constraints” column). Color 

schemes were applied to “differences” columns, where blue indicates negative differences 

and red indicates positive differences. The bottom row shows the sum of corresponding 

columns. 

 

3.3.5. Parameter Validations in MD Simulations 

Three representative systems containing PCLs with available experimental 

structures were used for validation purposes: phosphopantetheine adenylyltransferase-

phosphopantetheine (PPAT-Ppant, PDB ID: 1OD6),46 3-hydroxy-3-methylglutaryl 

synthase/acyl carrier protein complex (HGMS/ACP-Ppant-Ser, PDB ID: 5KP7),47 and 

diaminobutyrate acetyltransferase-Coenzyme A (EctA-CoA, PDB ID: 6SK1).48 It is notable 

that (1) Ppant is the substrate of PPAT in PPAT-Ppant; (2) Ppant-Ser is covalently linked to 

ACP as a prosthetic group in HGMS/ACP-Ppant-Ser; (3) CoA is the cofactor of EctA in EctA-

CoA. Since covalent bonds are typically stronger than non-covalent interactions, and 

cofactors typically remain bound with proteins, it is reasonable to expect that their binding 

strengths increase in the order of PPAT-Ppant, EctA-CoA and HGMS/ACP-Ppant-Ser.61 Each 

system was simulated under reported experimental temperatures and salt concentrations. 

RMSD of simulation trajectories to the crystal structure is considered as an important 

validation metric of the quality of a force field, since it is reasonable to assume that protein 

crystal structures are typically close to the structures at the physiological condition.62 

Therefore, the RMSD’s relative to crystal structures were computed for heavy atoms of both 

PCLs and protein residues in contact with PCLs (Data not shown), and the probability density 
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functions estimated were also analyzed via the Gaussian kernel density estimation (KDE), as 

shown in Figure 3.4. For contact residues, the parameter sets of all three charging methods 

show similar RMSD distribution patterns, as illustrated in the left panel of Figure 3.4. For 

Ppant-Ser and CoA PCLs, PFF/AM1-BCC- parameter set gave significantly lower RMSD than 

the other two charging methods. (Figure 3.4D, F) However, for Ppant PCL, PFF/AM1-BCC 

and PFF/RESP parameter sets lead to higher RMSD than PFF/Gasteiger parameter set, and 

the highest RMSD value observed reaches 7 Å. (Figure 3.4B) Nevertheless, the PFF/AM1-

BCC parameter set is the best in capturing the expected trend that PPAT-Ppant, EctA-CoA, 

and HGMS/ACP-Ppant-Ser are in the increasing order of binding strengths. 
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Figure 3.4. Gaussian kernel density estimates (KDEs) of computed RMSD values of heavy 

atoms of contact residues (left panel) and PCLs (right panel) relative to the experimental 

structures. The diamond markers indicate the mean RMSD values. 
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Figure 3.5. Correlation analysis of standardized simulated and experimental B-factors of the 

contact residues (upper panel) and the PCLs (lower panel) for the PPAT-Ppant system. The 

residue names of contact residues or atom names of Ppant are annotated. R is the Pearson 

correlation coefficient. 

 

The second quantitative validation of PFF parameter set is the comparison of 

experimental and simulated B-factor, or temperature factor, reflecting the mobility or 

flexibility of various parts of the molecule caused by thermal motion. High B-factors indicate 

greater uncertainty about the actual atom position. Figure 3.5 displays the scatterplots of 

standardized B-factors simulated from three charging methods compared with experimental 

B-factors of the ligands and contact residues of PPAT-Ppant system. PFF/AM1-BCC set 
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resulted in highest correlation coefficients for both Ppant and contact residues, and next 

comes PFF/RESP and PFF/Gasteiger sets. The visualization of standardized experimental B-

factor and simulated B-factors of PPAT-Ppant system illustrating the average structures of 

the last 10 ns are shown in Figure 3.6. PFF/AM1-BCC and PFF/RESP simulations yield 

similar agreement in Ppant conformations with respect to experimental structures, (Figure 

3.6C, D) although all three charging methods resulted in similar B-factor patterns for Ppant 

with the two ends of the linear structure having higher flexibility than the middle region. The 

corresponding scatterplots and structural visualizations of HGMS/ACP-Ppant-Ser and EctA-

CoA systems are shown in Figures S3.6-S3.9. Highest correlation coefficients with 

experimental B-factors are always observed in PFF/AM1-BCC simulations. However, the 

simulated B-factors of CoA with all three charging methods failed to capture the trend that 

the phosphate group has higher flexibility than the rest of the molecules. (Figures S3.8, 

S3.9) A closer look into the X-ray structures of EctA-CoA revealed the existence of the cation-

pi interaction between the adenine ring and Arg 99, which is difficult to be modeled in 

current non-polarizable Amber force field63 but is actively investigated in on-going Amber 

polarizable force field developments.64-69 
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Figure 3.6. Visual comparison of standardized simulated and experimental B-factors for the 

PPAT-Ppant system. Ppant is depicted as ball-and-stick; contact residues are depicted as 

wire. Colors (Red color indicates high B-factors, and blue color indicates low B-factors) and 

thickness of protein backbone also indicate B-factor values. A. Experimental structure. B. 

The average structure of the last 10 ns trajectory with Gasteiger charges. C. The average 

structure of the last 10 ns trajectory with AM1-BCC charges. D. The average structure of the 

last 10 ns trajectory with RESP charges.  
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Figure 3.7. T-test of binding stability scores of the last 50 ns trajectories of A. PPAT-Ppant, 

B. HGMS/ACP-Ppant-Ser, and C. EctA-CoA. Significance levels: ***, p <= 0.001; ****, p <= 

0.0001. 

 

The last quantitative validation for MD simulations is our previously defined binding 

stability scoring, which reflects the binding stability between two molecules (ligands and 

proteins for example) by counting the native atomic contacts between the two molecules in 

each trajectory snapshots.56 Higher stability score indicates stronger binding. The last 50 ns 

of each trajectory was used for t-test analysis for stability scores. (Data not shown) 

Consistent with previous expectations, the stability scores in PFF/AM1-BCC simulations are 

the highest among the three for HGMS/ACP-Ppant-Ser and EctA-CoA, while the lowest for 

PPAT-Ppant, reflecting the nature of their expected binding strengths. (Figure 3.7) 
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3.3.6. Pantetheine Force Field (PFF) Library Website Interface 

A website hosting the pantetheine force field library (http://rayluolab.org/pff-

library/) has been developed. Published on the website are three libraries of force fields for 

CoA PCLs, Ppant PCLs, and Ppant-Ser PCLs. For each PCL, an OFF library (lib) file with all 

structures and charges, and one or two parameter modification (frcmod) file with all missing 

non-charge parameters for each charging method are present. OFF library files contain the 

same atom names and coordinates as present in the Protein Data Bank for compatibility. 

Only one frcmod file is provided for CoA or Ppant PCL, since they are derived from only gaff2 

force field; while two frcmod files are present for Ppant-Ser PCL, due to the fact that non-

charge parameters of Ppant-Ser PCLs are first derived from the ff14SB force field, then from 

the gaff2 force field. Users of PFF files for Ppant-Ser PCLs are expected to load gaff2 frcmod 

files first, then ff14SB frcmod files to overwrite overlapping parameters. In addition, 

tutorials are present on the website to provide detailed protocols and input files on how to 

model and setup simulations containing PCLs. These structures can be used for 

minimizations, MD simulations, or as part of docking studies. 

 

3.4. Conclusions 

In this chapter, we present the first Amber-compatible force field library for various 

pantetheine containing ligands. The PFF library was parameterized using Gasteiger, AM1-

BCC, or RESP charging method in combination with gaff2 parameters. Among three 

commonly used charging schemes, PFF/AM1-BCC parameter set shows better MD 

simulation performance than PFF/Gasteiger and PFF/RESP parameter sets, as indicated by 



 

79 
 

MD validations. Furthermore, a “plug-and-play” fragmentation strategy was designed to 

enable systematic charge fitting for large molecules sharing common substructures. 

However, the parameter sets with the RESP charges derived from the fragmentation strategy 

does not perform better than that with the AM1-BCC charging method that can be applied to 

whole molecules in terms of MD simulations. In fact, the “plug-and-play” strategy applied in 

this study generating a fragment pool with extremely small fragments ranging from 9 atoms 

(methylphosphate) to 32 atoms (adenosine) has the following disadvantages: First, the 

increased amount of manual work overshadows the benefits of cheaper computational 

expenses during parametrization. Second, many charging errors were introduced due to the 

existence of too many merging interfaces between adjacent fragments. Therefore, a natural 

improvement of the “plug-and-play” strategy is to employ larger fragments. In subsequent 

version of the PFF library, larger fragments will be explored to reduce errors in the RESP 

charging method. 

This chapter paves the foundation for easy setup of MD simulations of biological 

systems containing PCLs in silico, and it is hoped to be applied in applications such as protein 

engineering for the production of novel compounds, or drug discovery for targeting certain 

PCL-containing proteins that play critical roles in diseases. 

 

3.5. Supporting Information 
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Figure S3.1. Φ/Ψ values of covalently bound phosphopantetheinyl-serine (Ppant-Ser) from 

the protein data bank (PDB ID: PNS) for a total of 320 data points (240 from NMR structures, 

70 from X-ray crystal structures, and 10 from cryo-EM structures). The representative Φ/Ψ 

angles selected that is closest to the average values are −60.70° and −31.32° for Φ and Ψ 

angles, respectively. 
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Figure S3.2. Comparison of QM and MM minimized structures of “plug and play” fragments. 

The carbons in QM minimized structures are depicted in brown, and those in PFF minimized 
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structures are depicted in cyan. MM minimization was conducted with the RESP-charged 

PFF. The highest level of QM theory used for each fragment and the respective RMSD values 

can be found in Table S3.1. 

 

 

Figure S3.3. Comparison of adenosine structures minimized with PFF parameter sets, OL3 

parameter sets, and B3LYP/6-311+G(2d,p) level of theory. The left figure shows the 

structural alignment of PFF minimized structure (cyan) and B3LYP minimized structure 

(brown), and the RMSD value is 0.327 Angstrom; The right figure shows the structural 

alignment of OL3 minimized structure (pink) and B3LYP minimized structure (brown), and 

the RMSD value is 0.550 Angstrom. 

 

Table S3.1. RMSD (Angstrom) between QM and PFF/Gasteiger or PFF/AM1-BCC optimized 

“plug and play” fragments 
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Fragment 

No. 
Fragment Name 

Highest Level of 

Theory 

PFF/Gastei

ger 

PFF/AM1-

BCC 

1 methylphosphate MP2/aug-cc-pVTZ 0.102 0.097 

2 adenosine B3LYP/6-311+G(2d,p) 0.176 0.302 

3 dimethyldiphosphate MP2/aug-cc-pVDZ 0.385 0.509 

4 pantoic acid MP2/aug-cc-pVDZ 0.519 0.265 

5 beta-alanine MP2/aug-cc-pVDZ 0.42 0.389 

6 cysteamine MP2/aug-cc-pVTZ 0.138 0.107 

7 dimethylphosphate MP2/aug-cc-pVTZ 0.119 0.108 

- acetyl-cysteamine MP2/aug-cc-pVDZ 0.247 0.366 

Average   0.263 0.268 
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Figure S3.4. Comparison of normal mode frequencies of fragments calculated with 

PFF/Gasteiger and B3LYP/6-311+G(2d,p), MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ levels 
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of theory. Scaling factors of 0.967, 0.959 and 0.953 were applied to B3LYP/6-311+G(2d,p), 

MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ calculated normal mode frequencies, respectively. 
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Figure S3.5. Comparison of normal mode frequencies of fragments calculated with 

PFF/AM1-BCC and B3LYP/6-311+G(2d,p), MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ levels 

of theory. Scaling factors of 0.967, 0.959 and 0.953 were applied to B3LYP/6-311+G(2d,p), 

MP2/aug-cc-pVDZ and MP2/aug-cc-pVTZ calculated normal mode frequencies, respectively. 

 

 

Figure S3.6. Correlation analysis of standardized simulated and experimental B-factors of 

contact residues (upper panel) and PCLs (lower panel) in the HGMS/ACP-Ppant-Ser system. 

The residue names of contact residues from HGMS (in black) and ACP (in gray) or atom 

names of Ppant-Ser are annotated. R is the Pearson correlation coefficient. 
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Figure S3.7. Visual comparison of standardized simulated and experimental B-factors of the 

HGMS/ACP-Ppant-Ser system. Ppant-Ser is depicted as ball-and-stick; contact residues are 

depicted as wire. Colors (Red color indicates high B-factors, and blue color indicates low B-

factors) and thickness of protein backbone also indicate B-factor values. A. Experimental 

structure. B. The average structure of the last 10 ns trajectory with Gasteiger charges. C. The 

average structure of the last 10 ns trajectory with AM1-BCC charges. D. The average 

structure of the last 10 ns trajectory with RESP charges.  
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Figure S3.8. Correlation analysis of standardized simulated and experimental B-factors of 

contact residues (upper panel) and PCLs (lower panel) in the EctA-CoA system. The residue 

names of contact residues from EctA or atom names of CoA are annotated. R is the Pearson 

correlation coefficient. 
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Figure S3.9. Visual comparison of standardized simulated and experimental B-factors of the 

EctA-CoA system. CoA is depicted as ball-and-stick; contact residues are depicted as wire. 

Colors (Red color indicates high B-factors, and blue color indicates low B-factors) and 

thickness of protein backbone also indicate B-factor values. A. Experimental structure. B. 

The average structure of the last 10 ns trajectory with Gasteiger charges. C. The average 

structure of the last 10 ns trajectory with AM1-BCC charges. D. The average structure of the 

last 10 ns trajectory with RESP charges.  
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Cheatham III, T. E., Assessing the current state of amber force field modifications for DNA. Journal of 
chemical theory and computation 2016, 12 (8), 4114-4127. 
25. Kirschner, K. N.; Yongye, A. B.; Tschampel, S. M.; González‐Outeiriño, J.; Daniels, C. R.; Foley, 

B. L.; Woods, R. J., GLYCAM06: a generalizable biomolecular force field. Carbohydrates. Journal of 
computational chemistry 2008, 29 (4), 622-655. 
26. Dickson, C. J.; Madej, B. D.; Skjevik, Å. A.; Betz, R. M.; Teigen, K.; Gould, I. R.; Walker, R. C., 
Lipid14: the amber lipid force field. Journal of chemical theory and computation 2014, 10 (2), 865-
879. 
27. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; 
Bourne, P. E., The protein data bank. Nucleic acids research 2000, 28 (1), 235-242. 
28. Burley, S. K.; Berman, H. M.; Bhikadiya, C.; Bi, C.; Chen, L.; Di Costanzo, L.; Christie, C.; 
Dalenberg, K.; Duarte, J. M.; Dutta, S., RCSB Protein Data Bank: biological macromolecular structures 
enabling research and education in fundamental biology, biomedicine, biotechnology and energy. 
Nucleic acids research 2019, 47 (D1), D464-D474. 
29. Gasteiger, J.; Marsili, M., Iterative partial equalization of orbital electronegativity—a rapid 
access to atomic charges. Tetrahedron 1980, 36 (22), 3219-3228. 
30. Jakalian, A.; Bush, B. L.; Jack, D. B.; Bayly, C. I., Fast, efficient generation of high-quality atomic 
charges. AM1-BCC model: I. Method. Journal of computational chemistry 2000, 21 (2), 132-146. 
31. Jakalian, A.; Jack, D. B.; Bayly, C. I., Fast, efficient generation of high-quality atomic charges. 
AM1-BCC model: II. Parameterization and validation. Journal of computational chemistry 2002, 23 
(16), 1623-41. 
32. Bayly, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A., A well-behaved electrostatic potential based 
method using charge restraints for deriving atomic charges: the RESP model. The Journal of Physical 
Chemistry 1993, 97 (40), 10269-10280. 
33. Cieplak, P.; Cornell, W. D.; Bayly, C.; Kollman, P. A., Application of the multimolecule and 
multiconformational RESP methodology to biopolymers: Charge derivation for DNA, RNA, and 
proteins. Journal of computational chemistry 1995, 16 (11), 1357-1377. 
34. Skjevik, Å. A.; Madej, B. D.; Walker, R. C.; Teigen, K., LIPID11: a modular framework for lipid 
simulations using amber. The Journal of Physical Chemistry B 2012, 116 (36), 11124-11136. 
35. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A., Development and testing of a 
general amber force field. Journal of computational chemistry 2004, 25 (9), 1157-1174. 
36. Hawkins, P. C.; Skillman, A. G.; Warren, G. L.; Ellingson, B. A.; Stahl, M. T., Conformer generation 
with OMEGA: algorithm and validation using high quality structures from the Protein Databank and 
Cambridge Structural Database. Journal of chemical information and modeling 2010, 50 (4), 572-584. 
37. Word, J. M.; Lovell, S. C.; Richardson, J. S.; Richardson, D. C., Asparagine and glutamine: using 
hydrogen atom contacts in the choice of side-chain amide orientation. Journal of molecular biology 
1999, 285 (4), 1735-1747. 



 

92 
 

38. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, 
T. E., UCSF Chimera—a visualization system for exploratory research and analysis. Journal of 
computational chemistry 2004, 25 (13), 1605-1612. 
39. Dupradeau, F.-Y.; Pigache, A.; Zaffran, T.; Savineau, C.; Lelong, R.; Grivel, N.; Lelong, D.; 
Rosanski, W.; Cieplak, P., The REd. Tools: Advances in RESP and ESP charge derivation and force field 
library building. Physical Chemistry Chemical Physics 2010, 12 (28), 7821-7839. 
40. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, 
V.; Mennucci, B.; Petersson, G., Gaussian 09; Gaussian, Inc. Wallingford, CT 2009, 32, 5648-5652. 
41. Wang, J.; Wang, W.; Kollman, P. A.; Case, D. A., Automatic atom type and bond type perception 
in molecular mechanical calculations. Journal of molecular graphics and modelling 2006, 25 (2), 247-
260. 
42. Case, D. A.; Cheatham, T. E., 3rd; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M., Jr.; Onufriev, A.; 
Simmerling, C.; Wang, B.; Woods, R. J., The Amber biomolecular simulation programs. Journal of 
computational chemistry 2005, 26 (16), 1668-88. 
43. NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard 
Reference Database Number 101, Release 20, August 2020. Editor: Russell D. Johnson III. 
http://cccbdb.nist.gov/. 
44. Le Grand, S.; Götz, A. W.; Walker, R. C., SPFP: Speed without compromise—A mixed precision 
model for GPU accelerated molecular dynamics simulations. Computer Physics Communications 
2013, 184 (2), 374-380. 
45. Macke, T. J.; Case, D. A., Modeling Unusual Nucleic Acid Structures. In Molecular Modeling of 
Nucleic Acids, American Chemical Society: 1997; Vol. 682, pp 379-393. 
46. Takahashi, H.; Inagaki, E.; Fujimoto, Y.; Kuroishi, C.; Nodake, Y.; Nakamura, Y.; Arisaka, F.; 
Yutani, K.; Kuramitsu, S.; Yokoyama, S., Structure and implications for the thermal stability of 
phosphopantetheine adenylyltransferase from Thermus thermophilus. Acta Crystallographica 
Section D: Biological Crystallography 2004, 60 (1), 97-104. 
47. Maloney, F. P.; Gerwick, L.; Gerwick, W. H.; Sherman, D. H.; Smith, J. L., Anatomy of the β-
branching enzyme of polyketide biosynthesis and its interaction with an acyl-ACP substrate. 
Proceedings of the National Academy of Sciences 2016, 113 (37), 10316-10321. 
48. Richter, A. A.; Kobus, S.; Czech, L.; Hoeppner, A.; Zarzycki, J.; Erb, T. J.; Lauterbach, L.; 
Dickschat, J. S.; Bremer, E.; Smits, S. H., The architecture of the diaminobutyrate acetyltransferase 
active site provides mechanistic insight into the biosynthesis of the chemical chaperone ectoine. 
Journal of Biological Chemistry 2020, 295 (9), 2822-2838. 
49. Eswar, N.; Webb, B.; Marti‐Renom, M. A.; Madhusudhan, M.; Eramian, D.; Shen, M. y.; Pieper, 

U.; Sali, A., Comparative protein structure modeling using Modeller. Current protocols in 
bioinformatics 2006, 15 (1), 5.6. 1-5.6. 30. 
50. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L., Comparison of 
simple potential functions for simulating liquid water. The Journal of chemical physics 1983, 79 (2), 
926-935. 
51. Miyamoto, S.; Kollman, P. A., Settle: An analytical version of the SHAKE and RATTLE algorithm 
for rigid water models. Journal of computational chemistry 1992, 13 (8), 952-962. 
52. Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H. J., Numerical integration of the cartesian equations 
of motion of a system with constraints: molecular dynamics of n-alkanes. Journal of computational 
physics 1977, 23 (3), 327-341. 
53. Darden, T.; York, D.; Pedersen, L., Particle mesh Ewald: An N⋅ log (N) method for Ewald sums 
in large systems. The Journal of chemical physics 1993, 98 (12), 10089-10092. 
54. Crowley, M.; Darden, T.; Cheatham, T.; Deerfield, D., Adventures in improving the scaling and 
accuracy of a parallel molecular dynamics program. The Journal of Supercomputing 1997, 11 (3), 255-
278. 

http://cccbdb.nist.gov/


 

93 
 

55. Loncharich, R. J.; Brooks, B. R.; Pastor, R. W., Langevin dynamics of peptides: The frictional 
dependence of isomerization rates of N ‐ acetylalanyl ‐N ′ ‐methylamide. Biopolymers: Original 

Research on Biomolecules 1992, 32 (5), 523-535. 
56. Zhao, S.; Ni, F.; Qiu, T.; Wolff, J. T.; Tsai, S.-C.; Luo, R., Molecular Basis for Polyketide 
Ketoreductase–Substrate Interactions. International Journal of Molecular Sciences 2020, 21 (20), 
7562. 
57. Roe, D. R.; Cheatham III, T. E., PTRAJ and CPPTRAJ: software for processing and analysis of 
molecular dynamics trajectory data. Journal of chemical theory and computation 2013, 9 (7), 3084-
3095. 
58. Ray, L.; Valentic, T. R.; Miyazawa, T.; Withall, D. M.; Song, L.; Milligan, J. C.; Osada, H.; 
Takahashi, S.; Tsai, S.-C.; Challis, G. L., A crotonyl-CoA reductase-carboxylase independent pathway 
for assembly of unusual alkylmalonyl-CoA polyketide synthase extender units. Nature 
communications 2016, 7 (1), 1-12. 
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CHAPTER 4 

PyRESP: A Program for Electrostatic Parameterizations of Additive and 

Induced Dipole Polarizable Force Fields  

 

4.1. Introduction 

Developing accurate force fields remains to be a great challenge for molecular 

modeling. One of the key components of force field development is the accurate modeling of 

atomic electrostatic interactions. The extensively used additive force fields apply fixed atom-

centered partial charges to model electrostatic interactions, such as AMBER ff14SB,1 ff19SB,2 

CHARMM,3 and OPLS,4 to name a few. One disadvantage of the additive force fields is that 

they are unable to model the atomic polarization effects, i.e., the redistribution of the atomic 

electron density due to the electric field produced by nearby atoms.5 The importance of 

modeling polarization effects is well known. For example, during the protein folding process, 

amino acids forming hydrophobic core must move from the hydrated environment to the 

more hydrophobic interior, experiencing considerably different dielectric environments.6-7 

Additive force fields are also considered to be unable to capture the important cation-𝜋 

interactions between aromatic rings and charged amino acids, leading to unrealistic 

receptor-ligand interaction simulations.8-9 Therefore, a great deal of effort has been directed 

to developing polarizable models, including the fluctuating charge models,10-11 the Drude 

oscillator models,12-16 and models incorporating induced dipoles17-18 or continuum 

dielectric.19-20 

The induced point dipole model is the most studied approach with a long history since 

1970s.21-22 To date, it has been incorporated into several polarizable force fields, including 
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AMOEBA,23-24 AMBER ff02,17 ff02pol.rl,18 and ff12pol.25-28 The original induced dipole model 

developed by Applequist et al. places the induced point dipole on each atom center, where 

the magnitude and direction of the induced dipole moment is determined by the isotropic 

polarizability of each atom and the electric field on this atom exerted by other atoms.29 The 

induced dipole of atom 𝑖, subject to external electric field 𝑬𝑖 , is 

𝝁𝑖 = 𝛼𝑖 [𝑬𝑖 − ∑ 𝑻𝑖𝑗𝝁𝑗

𝒏

𝑗≠𝑖

] (4.1) 

where 𝛼𝑖 is the isotropic polarizability of atom 𝑖, and 𝑻𝑖𝑗 is the dipole field tensor with the 

matrix form 

𝑻𝑖𝑗 =
1

𝑟𝑖𝑗
3

𝑰 −
3

𝑟𝑖𝑗
5

[

𝑥2 𝑥𝑦 𝑥𝑧

𝑥𝑦 𝑦2 𝑦𝑧

𝑥𝑧 𝑦𝑧 𝑧2

] (4.2) 

where 𝑰 is the identity matrix, and 𝑥, 𝑦 and 𝑧 are the Cartesian components along the vector 

between atoms 𝑖  and 𝑗  at distance 𝑟𝑖𝑗 . However, this model suffers from the so-called 

“polarization catastrophe” problem: the molecular polarizability diverges due to the 

cooperative interaction between induced dipoles at short distances.5, 29 One solution to this 

problem is to apply distance-dependent damping functions for interactions on short 

distances. Thole proposed several schemes by modeling the interaction using smeared 

charge distributions 𝜌(𝑢) instead of point charges, where 𝑢 = 𝑟𝑖𝑗/(𝛼𝑖𝛼𝑗)1/6 is the effective 

distance, in which 𝛼𝑖  and 𝛼𝑗  are atomic polarizabilities of atoms 𝑖  and 𝑗 , and 𝑟𝑖𝑗  is the 

distance between them.30-31 This will modify the dipole field tensor 𝑻𝑖𝑗 in such a way that it 
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does not behave as 𝑟−3 at short distances. Among the proposed schemes, linear scheme (eq. 

4.3) and exponential scheme (eq. 4.4) are shown to be the most effective: 

𝜌(𝑢) = {
3

𝜋

(𝑎 − 𝑢)

𝑎4
              𝑢 < 𝑎

0                         𝑢 ≥ 𝑎

(4.3) 

and 

𝜌(𝑢) =
𝑎3

8𝜋
exp(−𝑎𝑢) (4.4) 

where 𝑎 is the damping factor that controls the decay of the smeared charge distribution. 

Another Thole’s scheme (eq. 4.5) was adopted in the AMOEBA force field and implemented 

in Tinker program,23-24, 32 which has the following form 

𝜌(𝑢) =
3𝑎

4𝜋
exp(−𝑎𝑢3) (4.5) 

The recently developed Thole scheme-based polarizable force field ff12pol have been shown 

to significantly reduce the root-mean-square errors of interaction energies with those 

calculated at the MP2/aug-cc-pVTZ level of theory, compared with additive force fields.26 

About a decade ago, Elking et al. proposed a polarizable multipole model with 

Gaussian charge densities, which was later named as polarizable Gaussian Multipole (pGM) 

model.33 The 𝑛th order Gaussian multipole at position 𝒓 generated by an atom located at 

coordinate 𝑹 represented by the pGM model is defined as 

𝜌(𝑛)(𝒓; 𝑹 ) = 𝜣(𝑛) ∙ ∇𝑅
(𝑛)

(
𝛽

√𝜋
)

3

 𝑒−𝛽2|𝒓−𝑹|2
(4.6) 
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where 𝜣(𝑛) is the 𝑛th rank momentum tensor, ∇𝑅
(𝑛)

 is the 𝑛th rank gradient operator, and 𝛽 

is a Gaussian exponent controlling the “radius” of the distribution with the following form 

𝛽 = 𝑠 (
2𝛼

3√2𝜋
)

−
1
3

(4.7) 

where 𝛼 is the atomic polarizability, and 𝑠 is the screening factor. Although in the pGM model 

any order of multipoles can be modeled, only charges (0th order multipole, eq. 4.8) and 

dipoles (1st order multipole, eq. 4.9) are retained in the current pGM model design. 

𝜌(0)(𝒓; 𝑹) = 𝑞 (
𝛽

√𝜋
)

3

 𝑒−𝛽2|𝒓−𝑹|2
(4.8) 

𝜌(1)(𝒓; 𝑹) = 𝒑 ∙ ∇𝑅 (
𝛽

√𝜋
)

3

 𝑒−𝛽2|𝒓−𝑹|2
(4.9) 

where 𝑞 is the permanent charge and 𝒑 is the permanent dipole. Wei et al. recently proposed 

a local frame for the permanent dipoles formed by covalent basis vectors (CBVs), which are 

unit vectors along the direction of covalent bonds or virtual bonds.34-35 This design is based 

on the fact that atomic permanent moments mainly result from covalent bonding 

interactions. Replacing 𝒑 with 𝝁 in eq. 4.9 will give the pGM distribution of induced dipole, 

which has the same form as that of permanent dipole. A key advantage of the pGM model is 

that all short-range electrostatic interactions can be calculated analytically in a consistent 

manner, including the interactions of charge-charge, charge-dipole, charge-quadrupole, 

dipole-dipole, and so on. Consequently, it has been shown that the pGM model notably 

improves the prediction of molecular polarizability anisotropy compared with that of Thole 

models.36 
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Each of the four damping schemes discussed above requires parameterization of the 

atomic isotropic polarizabilities 𝛼 and damping factors 𝑎 (and 𝑠 for the pGM model), which 

has been done by fitting experimental or ab initio molecular polarizability tensors using a 

genetic algorithm as presented in our recent works.25, 36 In this chapter, we aim to take one 

step further toward the development of general and accurate polarizable force fields by 

developing a computer program for electrostatic parameterizations for the atomic charges 

and dipoles of various polarizable models. 

For additive models, the atomic point partial charges are traditionally derived by 

performing least-square fitting of the charges to reproduce the quantum mechanically (QM) 

determined electrostatic potential (ESP) at a large number of grid points lying outside the 

van der Waals distance of the molecule. Assuming a molecule with 𝑛  atoms is being 

parameterized, and there are 𝑚 ESP points lying outside the van der Waals distance of the 

molecule, then the least-square fitting aims to minimize the objective function 

𝛾 = ∑(𝑉𝑗
𝑄𝑀 − 𝑉𝑗)

2
𝑚

𝑗=1

(4.10) 

where 𝑉𝑗
𝑄𝑀 is the ESP value evaluated through QM calculations at point 𝑗, and 𝑉𝑗 is the ESP 

value calculated from the fitting results. This method was initially used by Momany,37 further 

refined by Cox et al.38 A ESP point sampling scheme that uses points on molecular surfaces 

constructed using gradually increasing van der Waals radii for the atoms was proposed by 

Singh et al.39-40 The CHELP algorithm initially employed a Lagrange multiplier method to 

perform constrained least-square fitting, in which the Lagrange multiplier (𝜆) is multiplied 

by the constraining function (𝑔) and added to the objective function 𝛾 to be minimized. In 
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the context of charge fitting, the Lagrange multiplier method is most used to enforce the total 

charge constraints, i.e., the charge of all atoms of a molecule should sum to the total 

molecular charge. Alternatively, it can also be used to specify the total charge of molecule 

fragments. For example, during amino acid parameterizations, the N-acetyl (ACE) and N-

methylamide (NME) groups are commonly used to cap amino acid dipeptides to mimic the 

chemical environment within a protein. Both capping fragments need to be constrained to 

have neutral charge to ensure correct total charge of the amino acid fragments.41-42 

In general, the ESP-based charge derivation methods perform very well in 

reproducing QM determined molecular multipole moments, and optimally reproduce 

intermolecular interaction energy. However, all methods discussed above suffer from the 

problem that the atomic charges are sensitive to molecular conformations, leading to a lack 

of transferability of the charges between identical molecules with different conformations, 

as well as between common functional groups in related molecules. Another problem of this 

approach is the poor determination of charges on buried atoms that are far from ESP points, 

which can fluctuate wildly to reach the optimal fitting to the ESP. Both problems have been 

addressed by the restrained electrostatic potential (RESP) method developed by Bayly et al., 

which employs restraints by adding a penalty function 𝜒 to the objective function during the 

fitting process.43-44 Two types of penalty functions were proposed. The first is a simple 

harmonic function 

𝜒 = 𝑎 ∑ 𝑞𝑖
2

𝑛

𝑖=1

(4.11) 
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where 𝑎 is the scale factor determining the restraining strength. The second penalty function 

is a hyperbolic function with the form 

𝜒 = 𝑎 ∑ (√𝑞𝑖
2 + 𝑏2 − 𝑏)

𝑛

𝑖=1

(4.12) 

where 𝑎 is again the scale factor that defines the restraining strength, and 𝑏 determines the 

“tightness” of the hyperbola around its minimum. 𝑏 has been recommended to be set to 0.1 

by the original RESP work to make the restraint appropriately tight.43 To this end, assuming 

there are 𝑤  different Lagrange constraints imposed on the charges in a molecule, the 

objective function to be minimized becomes: 

𝑧 = 𝛾 + 𝜆1𝑔1 + 𝜆2𝑔2 + ⋯ + 𝜆𝑤𝑔𝑤 + 𝜒 (4.13) 

To date, the computer program RESP has been applied in charge derivations of a 

variety of additive force fields,41-42 and is still being used actively for charge calculations for 

small organic molecules.8, 45-46 Following the idea of charge parameterization by reproducing 

ESPs, Cieplak et al. extended the RESP method for induced dipole electrostatic models, 

assuming that ESPs around molecules are determined by both permanent charges and 

atomic induced dipoles. According to this method, atomic charges are iteratively fitted to the 

effective ESP, which is the differences between the QM derived ESPs and the ESPs generated 

by induced dipoles. Iterations stop when the induced molecular dipole moment converges 

within certain accuracy level.5, 17 A program named i_RESP has been developed to facilitate 

this iterative charge fitting procedure. 

In this chapter, we further extended the RESP method for parameterizations of 

electrostatic models with induced point dipoles and permanent point dipoles. A Python 
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program named PyRESP was designed and implemented based on its ancestor RESP 

program, providing the parameterization ability for three electrostatic models: (1) the 

additive RESP model; (2) the polarizable model with induced point dipoles only, named as 

RESP-ind model; and (3) the polarizable model with both induced point dipoles and 

permanent point dipoles, named as RESP-perm model. In the next section we present the 

theory behind the parametrization strategies of the three models, as well as several other 

features provided by PyRESP. We have tested all three models using several representative 

molecules, and the parameterization results will be evaluated and discussed. 

 

4.2. Theory 

In earlier works the objective function 𝑧 shown in eq. 4.13 has been minimized using 

iterative gradient descent approaches, as were done by Momany et al. and Singh et al.37, 39 

Similarly, the i_RESP program developed by Cieplak et al. parameterizes the induced dipole 

polarizable model iteratively by fitting charges to the differences between the QM derived 

ESPs and the ESPs generated by induced dipoles.5, 17 In both cases, an initial guess on the 

atomic charges before the iteration process is required. On the other hand, iterative 

algorithms suffer from the problem that the convergence of iteration is sensitive to the 

specified accuracy level. In rare cases, the objective function might jump back and forth near 

the minimum, leading to a non-convergence problem. Therefore, PyRESP takes a direct 

approach by solving the system of equation in matrix form with the partial derivative of the 

objective function 𝑧  against each parameter (permanent charges or dipoles) and each 

Lagrange multiplier 𝜆 set to be equal zero, as were done in CHELP, CHELPG, and the original 
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RESP works.43, 47-49 The advantage of the direct approach is that it gives the exact least-

squares solution, so that the initial guess on the atomic charges and accuracy level are no 

longer needed. Another advantage of the direct approach is that the matrix form 

representations allow us to present each of the following electrostatic models in a consistent 

and elegant way. 

 

4.2.1. RESP 

The original RESP method performs charge fitting for additive electrostatic terms 

with the assumption that ESPs only come from permanent point charges.43 For each ESP 

point 𝑗, the following equation need be solved 

∑
𝑞𝑖

𝑟𝑖𝑗

𝑛

𝑖=1

= 𝑉𝑗
𝑄𝑀 (4.14) 

In matrix form 

𝑿𝒒 = 𝑽 (4.15) 

where 𝑿 is 𝑚 by 𝑛 matrix for charge-ESP interactions between each ESP point 𝑗 and atom 𝑖, 

𝒒 is 𝑛-dimensional vector for the partial charge of each atom, 𝑽 is 𝑚-dimensional vector for 

QM ESP. Typically, there will be many ESP points sampled so that 𝑿 becomes a rectangular 

matrix (tall and thin). Consequently, eq. 4.15 is unlikely to have an exact solution. Therefore, 

we aim to find the least-squares solution by solving the following equation, the proof of 

which can be found in most linear algebra textbooks. 

𝑿𝑇𝑿𝒒 = 𝑿𝑇𝑽 (4.16) 
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where 𝑿𝑇𝑿 is a square matrix and is usually positive definite and invertible. The constraints 

on the charges could also be expressed in the following matrix form 

𝑲𝒒 = 𝑳 (4.17) 

where 𝑲 is a 𝑤 by 𝑛 matrix with only 1 and 0 as elements indicating the presence or absence 

of each charge in each constraint, 𝑳 is 𝑤-dimensional vector for the total charge in each 

constraint. The constrained least-squares fitting has the following matrix form, whose 

solution gives constrained RESP fitting results. 

[𝑿𝑇𝑿 𝑲𝑇

𝑲 𝟎
] [

𝒒
𝝀

] = [𝑿𝑇𝑽 
𝑳

] (4.18) 

where 𝝀 is 𝑤-dimensional vectors of all Lagrange multipliers. Finally, the penalty function 𝜒 

could be applied to restrain fitted charges by adding its partial derivative only to the diagonal 

terms of the matrix in eq. 4.18, and the reasoning can be found in the original RESP work.43 

 

4.2.2. RESP-ind (RESP with Induced Point Dipole) 

Following Applequist et al,29 eq. 4.1 maybe rearranged into 

𝛼𝑖
−1𝝁𝑖 + ∑ 𝑻𝑖𝑗𝝁𝑗

𝒏

𝑗≠𝑖

= 𝑬𝑖 (4.19) 

which could be written in the following matrix form 

𝑨𝝁 = 𝑬 (4.20) 
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where 𝑨 is a 3𝑛 by 3𝑛 matrix containing the information of polarizability and dipole field 

tensors, 𝝁  is a 3𝑛-dimensional vector of the induced dipole of each atom, and 𝑬 is a 3𝑛-

dimensional vector of the electric field at atom 𝑖. 

The implicit assumption is that 𝑬𝑖  is produced by permanent charges of all atoms 

other than 𝑖, and there are no additional applied external electric fields. Thus, we have 

𝑬𝑖 = ∑
𝑞𝑗

𝑟𝑖𝑗
3

𝒓𝑗𝑖

𝑛

𝑗≠𝑖

(4.21) 

In matrix form 

𝑬 = 𝑪𝒒 (4.22) 

where 𝑪 is a 3𝑛 by 𝑛 matrix of the charge-electric field coefficient between each atom pair. 

Combining eq. 4.20 and eq. 4.22 gives 

𝝁 = 𝑨−1𝑪𝒒 (4.23) 

In contrast to the RESP model where the permanent charges are the only sources for 

ESPs, the RESP-ind model assumes that ESP comes from both permanent point charges and 

induced point dipoles. Therefore, for each ESP point 𝑗, we have the following equation 

∑
𝑞𝑖

𝑟𝑖𝑗

𝑛

𝑖=1

+ ∑
𝝁𝑖 ∙ 𝒓𝑖𝑗

𝑟𝑖𝑗
3

𝑛

𝑖=1

= 𝑉𝑗
𝑄𝑀 (4.24) 

In matrix form 

𝑿𝒒 + 𝒀𝝁 = 𝑽 (4.25) 
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where 𝒀 is a 𝑚 by 3𝑛 matrix for the dipole-ESP interactions between each ESP point and 

atom pair. Substitute eq. 4.23 into eq. 4.25 gives 

(𝑿 + 𝒀𝑨−1𝑪)𝒒 = 𝑽 (4.26) 

Same as we did for the RESP model, solving the following equation gives the least-

squares solution 

(𝑿 + 𝒀𝑨−1𝑪)𝑇(𝑿 + 𝒀𝑨−1𝑪)𝒒 = (𝑿 + 𝒀𝑨−1𝑪)𝑇𝑽 (4.27) 

and solving the following equation gives the constrained least-squares solution 

[(𝑿 + 𝒀𝑨−1𝑪)𝑇(𝑿 + 𝒀𝑨−1𝑪) 𝑲𝑇

𝑲 𝟎
] [

𝒒
𝝀

] = [(𝑿 + 𝒀𝑨−1𝑪)𝑇𝑽 
𝑳

] (4.28) 

Finally, the partial derivative of the penalty function 𝜒 can be applied to eq. 4.28 to restrain 

atomic charges. 

 

4.2.3. RESP-perm (RESP with Induced and Permanent Point Dipole) 

RESP-perm is the electrostatic model with highest degree of freedom implemented in 

PyRESP. It has one additional component compared to the RESP-ind model, the permanent 

point dipoles 𝒑𝑖  of each atom 𝑖, which is a 3-dimensional vector. Now the electric field at 

atom 𝑖 is produced by both permanent charges and permanent dipoles of all atoms other 

than 𝑖. Thus, we have 

𝑬𝑖 = ∑ (
𝑞𝑗

𝑟𝑖𝑗
3

𝒓𝑗𝑖 + 𝑻𝑖𝑗𝒑𝑗)

𝑛

𝑗≠𝑖

(4.29) 

In matrix form 
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𝑬 = 𝑪𝒒 + 𝑫𝒑 (4.30) 

where 𝑫 is a 3𝑛 by 3𝑛 matrix of the dipole-electric field coefficients between each atom pair, 

and 𝒑 is a 3𝑛-dimensional vector for the permanent dipole of each atom in global frame. 

Therefore, the induced dipole vector 𝝁 becomes 

𝝁 = 𝑨−𝟏(𝑪𝒒 + 𝑫𝒑) (4.31) 

Now, ESPs come from three sources: permanent point charges, permanent point 

dipoles, and induced point dipoles. That is 

∑
𝑞𝑖

𝑟𝑖𝑗

𝑛

𝑖=1

+ ∑
(𝝁𝑖 + 𝒑𝑖) ∙ 𝒓𝑖𝑗

𝑟𝑖𝑗
3

𝑛

𝑖=1

= 𝑉𝑗
𝑄𝑀 (4.32) 

In matrix form 

𝑿𝒒 + 𝒀(𝝁 + 𝒑) = 𝑽 (4.33) 

Eq. 4.31 can be plugged into eq. 4.33 and rearranged to 

(𝑿 + 𝒀𝑨−1𝑪)𝒒 + 𝒀(𝑨−1𝑫 + 𝑰)𝒑 = 𝑽 (4.34) 

The RESP-perm model is designed to be compatible with the pGM model of Wei et 

al.,34 where the permanent dipoles are defined in the local frame formed by covalent basis 

vectors (CBVs). Assume that the molecule to be fitted has 𝑧 CBVs, i.e., 𝑧/2 covalent bonds 

since covalent bonds are bi-directional, then the permanent dipoles in global frame 𝒑 can be 

conveniently expressed in the local frame using a 3𝑛 by 𝑧 dimensional conversion matrix 𝑭, 

with CBVs as its elements. The conversion has the simple matrix form 

𝒑 = 𝑭𝒑𝑙𝑜𝑐 (4.35) 



 

107 
 

where 𝒑𝑙𝑜𝑐  is a 𝑧-dimensional vector for permanent dipoles in local frame. Therefore, the 

RESP-perm model in fact performs least-square fitting on 𝒑𝑙𝑜𝑐 rather than 𝒑, and eq. 4.34 

should be expressed as 

(𝑿 + 𝒀𝑨−1𝑪)𝒒 + 𝒀(𝑨−1𝑫 + 𝑰)𝑭𝒑𝑙𝑜𝑐 = 𝑽 (4.36) 

One advantage of using matrix 𝑭 is that the local frame can be easily extended to 

include non-covalent basis vectors. In the current PyRESP implementation, the “virtual” 

bonds of 1-3 interacting atom pairs are also enabled; all we need to do is to increase the 

number of columns of 𝑭 to contain both covalent basis vectors and 1-3 interaction basis 

vectors, and the number of rows of 𝑭 will not change, since the number of atoms stays the 

same. The RESP-perm model considering both 1-2 and 1-3 interacting atom pairs in the local 

frame is named as RESP-perm-v, where v stands for “virtual”. 

In order to perform least-squares fitting on both 𝒒 and 𝒑𝑙𝑜𝑐 directly, we construct a 

new vector 𝑸, which is (𝑛 + 𝑧)-dimensional vector [
𝒒

𝒑𝑙𝑜𝑐], and a new matrix 𝑴, which is 𝑚 

by (𝑛 + 𝑧) matrix [(𝑿 + 𝒀𝑨−1𝑪) 𝒀(𝑨−1𝑫 + 𝑰)𝑭]. Then we have 

𝑴𝑸 = 𝑽 (4.37) 

The least-squares solution of 𝑸 can be found by solving 

𝑴𝑇𝑴𝑸 = 𝑴𝑇𝑽 (4.38) 

and the constrained least-squares fitting has the matrix form 

[𝑴𝑇𝑴 𝑲𝑇

𝑲 𝟎
] [

𝑸
𝝀

] = [𝑴𝑇𝑽 
𝑳

] (4.39) 
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The current PyRESP implementation uses two separate restraining strength for 

permanent charges and permanent dipoles, which can be set to different values according to 

users’ preferences. 

 

4.2.4. Intra- and Inter-Molecular Equivalence 

A reliable force field would require atoms sharing equivalent chemical environments 

to have identical permanent charges and dipoles. Taking a methyl group as an example, all 

three hydrogens must have the same charge, and all permanent dipoles pointing from methyl 

carbon towards hydrogens (and those in reverse directions) must have the same 

magnitudes, otherwise rotating the methyl to the three degenerate rotamers would give rise 

to different energies. Intra-molecular equivalencing are applied for this symmetry purpose. 

One strategy examined by previous studies is by averaging the charges of equivalent atom 

after the fitting, which were set free to change during the fitting process. However, this so 

called a posteriori strategy was found to have an unsatisfying negative impact on the fitting 

quality and on the final molecular dipole moments.43 Thus, the PyRESP program employs the 

improved approach proposed by the original RESP work that performs equivalencing during 

the fitting process.  Depending on the specific electrostatic model selected, the preliminary 

matrices in eq. 4.18, 4.28 or 4.39 are generated as if there were no equivalent fitting centers. 

Then, the rows and columns of corresponding equivalent fitting centers were added up to 

form a single row and column, giving rise to smaller linear equation systems to be solved as 

usual. 
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In comparison, inter-molecular equivalencing are often used for fitting one set of 

parameters for multiple conformations of the same molecule to further reduce the 

conformation-dependent problem, in addition to applying restraints. Alternatively, it can 

also be used for fitting the same chemical groups in different molecules. Both intra- and inter-

molecular charge equivalencing have already been implemented in the original RESP 

program.43 In PyRESP, the equivalencing algorithm is extended so that both intra- and inter-

molecular equivalencing are enabled for permanent charges and dipoles in consistent 

manner. 

 

4.2.5. Polarization Catastrophe Avoidance 

A well-known problem of the point dipole model discussed so far is that it may lead 

to infinite molecular polarizability by the cooperative interaction between two induced 

dipoles, known as “polarization catastrophe”.5, 29 One way to avoid this problem is to turn off 

the polarization interactions between 1-2 and 1-3 interacting atoms pairs, as were done in 

the AMBER ff02 and ff02pol.rl force fields.17-18 This can be easily achieved by setting 

corresponding elements in the charge-electric field coefficient matrix 𝑪  and the dipole-

electric field coefficient matrix 𝑫 to zero. Alternatively, one can apply distance-dependent 

damping functions on interacting atom pairs, such as those developed by Thole,30-31 and the 

pGM scheme developed by Elking et al.,33 which will lead to the damped dipole field tensor 

𝑻𝑖𝑗 =
𝑓𝑒

𝑟𝑖𝑗
3

𝑰 −
3𝑓𝑡

𝑟𝑖𝑗
5

[

𝑥2 𝑥𝑦 𝑥𝑧

𝑥𝑦 𝑦2 𝑦𝑧

𝑥𝑧 𝑦𝑧 𝑧2

] (4.40) 
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with screening functions 𝑓𝑒 and 𝑓𝑡 . Consequently, the charge-electric field coefficient matrix 

𝑪 and the dipole-electric field coefficient matrix 𝑫 will also contain elements damped by 𝑓𝑒 

and 𝑓𝑡 correspondingly. It is easy to see that for the original undamped Applequist model, 𝑓𝑒 

and 𝑓𝑡 are constants 

𝑓𝑒 = 1.0; 𝑓𝑡 = 1.0 (4.41) 

For the linear model, we have 

𝑣 = 𝑢/𝑎 

𝑓𝑒 = {4𝑣3 − 3𝑣4    𝑣 < 1
1.0                  𝑣 ≥ 1

(4.42) 

𝑓𝑡 = {𝑣4                   𝑣 < 1
1.0                  𝑣 ≥ 1

 

For the exponential model, we have 

𝑣 = 𝑎𝑢 

𝑓𝑒 = 1 − (
𝑣2

2
+ 𝑣 + 1) exp(−𝑣) (4.43) 

𝑓𝑡 = 1 − (
𝑣3

6
+

𝑣2

2
+ 𝑣 + 1) exp(−𝑣) 

For the Tinker-exponential model, we have 

𝑣 = 𝑎𝑢3 

𝑓𝑒 = 1 − exp(−𝑣) (4.44) 

𝑓𝑡 = 1 − (𝑣 + 1) exp(−𝑣) 
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For the pGM model, we have 

𝑆𝑖𝑗 =
𝛽𝑖𝛽𝑗𝑟𝑖𝑗

√2(𝛽𝑖
2 + 𝛽𝑗

2)

 

𝑓𝑒 = erf(𝑆𝑖𝑗) −
2

√𝜋
𝑆𝑖𝑗 exp(−𝑆𝑖𝑗

2) (4.45) 

𝑓𝑡 = erf(𝑆𝑖𝑗) −
2

√𝜋
𝑆𝑖𝑗 exp(−𝑆𝑖𝑗

2) (1 +
2

3
𝑆𝑖𝑗

2) 

𝑓0 = erf(𝑆𝑖𝑗) 

Note that for the pGM model, the charge-ESP interaction matrix 𝑿 and the dipole-ESP 

interaction matrix 𝒀 should be scaled by 𝑓0 and 𝑓𝑒, respectively, in addition to modifying the 

dipole field tensor 𝑻𝑖𝑗 . 

In the current PyRESP release, both polarization catastrophe avoidance strategies 

have been implemented, including turning off 1-2 and 1-3 interactions, and the four damping 

schemes (linear, exponential, Tinker-exponential, and pGM schemes). 

 

4.3. Computational Details 

4.3.1. Quantum Mechanical Calculations 

Several molecules were selected as candidates for testing the PyRESP program, 

including water, methanol (alcohol), ethane (aliphatic), benzene (aromatic), N-methyl 

acetamide (peptide backbone), dimethyl phosphate (nucleic acid backbone), adenine 

(nucleobase), alanine dipeptide (hydrophobic amino acid), serine dipeptide (polar amino 
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acid), arginine dipeptide (positively charged amino acid), aspartic acid dipeptide (negatively 

charged amino acid). For the seven non-amino acid molecules, single-conformation fittings 

were performed. For the four amino acid molecules, both single-conformation and double-

conformation fittings were performed, with the mainchain torsion angles in (𝜙 = 300°, 𝜓 =

300°) and (𝜙 = 240°, 𝜓 = 120°), approximating -helix and antiparallel -sheet secondary 

structure conformations. The geometries of all molecules were optimized at B3LYP/6-

311++G(d, p) level of theory, with dihedral angle constraints applied to corresponding amino 

acid molecules only. 

QM ESP values were calculated at MP2/aug-cc-pVTZ level of theory for a set of points 

fixed in space in the solvent-accessible region around each molecule. The points were 

generated using the method developed by Singh et al. on molecular surfaces (with a density 

of 6 points/Å2) at each of 1.4, 1.6, 1.8 and 2.0 times the van der Waals radii.39-40 For small 

molecules such as water, approximately 1800 points were generated, while for large 

molecules such as arginine dipeptide , more than 9000 points were generated. All quantum 

mechanical calculations were performed using the Gaussian 09 software.50 

 

4.3.2. Parameterizations 

A two-stage parameterization procedure has been adopted as the standard approach 

for RESP parameterization.43 We extended this procedure for all electrostatic models: RESP, 

RESP-ind, and RESP-perm (and RESP-perm-v for water molecule), where the hyperbolic 

function in eq. 4.12 was applied in all parametrizations. In the first stage, all fitting centers 

(permanent charges for all models, and permanent dipoles for RESP-perm and RESP-perm-
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v) were set free to change, and a weak restraining strength 0.0005 (𝑎  in eq. 4.12) was 

applied to all fitting centers. In the second stage, intra-molecular equivalencing was enforced 

on all fitting centers that share identical chemical environment with others, such as methyl 

and methylene hydrogens; A stronger restraining strength 0.001 was applied to those fitting 

centers, and all other fitting centers were set frozen to keep the values obtained from the 

first stage. The restraints were only applied to non-hydrogen heavy atoms. To get better 

fitting results, the only Lagrange constraint enforced during parameterization is the total 

charge constraint, without applying additional intra-molecular charge constraints. Inter-

molecular equivalencing was enforced in both the first and the second stages for double-

conformation fittings of amino acid molecules. 

Previous studies have shown that in the polarizable models with Thole-like damping 

schemes, it is important to include all atomic pair interactions to have anisotropic molecular 

response.36, 51 Therefore, for parameterizations of the RESP-ind, RESP-perm and RESP-perm-

v models, both 1-2 and 1-3 polarization interactions were included, and the pGM damping 

scheme were applied to all models to avoid polarization catastrophe.33-34 The isotropic 

atomic polarizabilities derived in the previous work were employed for models considering 

polarization effects.36 

The performance of each electrostatic model was evaluated based on the relative root 

mean square (RRMS) error,38, 43, 49 given by 

𝑅𝑅𝑀𝑆 = √
∑ (𝑉𝑗

𝑄𝑀 − 𝑉𝑗)
2

𝑚
𝑗=1

∑ 𝑉𝑗
𝑄𝑀2𝑚

𝑗=1

(4.46) 
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The molecular dipole moments and quadrupole moments along the principal axes 

calculated with each electrostatic model were compared with those calculated using ab initio 

methods as an additional metric in evaluating parameterization results. The Pearson 

correlation analysis was performed using the Python package Scipy. The scatterplots for QM 

ESPs and ESPs calculated by electrostatic models are plotted using the Python package 

Matplotlib. 

 

4.4. Results 

4.4.1. Water 

The first molecule we tested is the water molecule. Table 4.1 shows the 

parameterization results, RRMS and moments of the water molecule fitted with the RESP, 

RESP-ind, RESP-perm and RESP-perm-v electrostatic models, respectively. All models fit 

permanent point charges on oxygen and hydrogen atoms. In addition, the RESP-perm and 

RESP perm-v models also fit local frame permanent point dipole moments defined on CBVs, 

i.e., unit vectors along the direction of 1-2 interacting atom pairs (covalent bonds) or 1-3 

interacting atom pairs (virtual bonds). For the RESP-perm model, a water molecule has two 

types of permanent dipoles: 𝒑𝑂𝐻
𝑙𝑜𝑐 and 𝒑𝐻𝑂

𝑙𝑜𝑐; while the RESP-perm-v model has one additional 

type of permanent dipole: 𝒑𝐻𝐻
𝑙𝑜𝑐 , corresponding to the virtual CBV between the two hydrogen 

atoms. The permanent dipoles 𝒑𝑂𝐻
𝑙𝑜𝑐 and 𝒑𝐻𝐻

𝑙𝑜𝑐  have negative values, which means they point 

to the opposite direction of corresponding CBVs. That is, 𝒑𝑂𝐻
𝑙𝑜𝑐 points from the oxygen atom 

against the direction of the hydrogen atom, rather than the default CBV direction which 

points from oxygen towards hydrogen. Similarly, 𝒑𝐻𝐻
𝑙𝑜𝑐  points from the hydrogen atom 
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against the direction of the neighbor hydrogen atom, rather than the default CBV direction 

towards the neighbor hydrogen. Figure 4.1 gives a better illustration of the 

parameterization results of local frame permanent dipole moments of water molecule. It can 

be observed that the RESP-perm and RESP-perm-v models produce higher magnitudes of 

permanent charges than the RESP and RESP-ind models. That is, they assign values to the 

charge centers in a more aggressive way to reproduce QM ESPs. All models assign negative 

charges to the oxygen atom, and positive charges to the hydrogen atom, and both the RESP-

perm and RESP-perm-v models assign large but negative value to permanent dipole 

moments 𝒑𝑂𝐻
𝑙𝑜𝑐 . This agrees with the fact that oxygen has higher electronegativity than 

hydrogen. 

The RESP-perm model produces the lowest RRMS, with its RRMS only 19% of that of 

the RESP model, a factor of more than 5 folds reduction. The RESP-perm and RESP-perm-v 

models also produce molecular dipole moments and quadrupole moments with better 

agreement to the QM moments. The scatterplots of QM ESPs versus calculated ESPs for water 

are shown in Figure 4.2. The Pearson correlation coefficients of the RESP-perm and RESP-

perm-v models are the highest among all models, and the RESP-ind model comes next. We 

can therefore conclude that electrostatic models with induced dipoles and permanent 

dipoles perform better than the RESP model in terms of all metrics analyzed. 

The current RESP-perm-v model enables the virtual bonds between 1-3 interacting 

atom pairs. In theory, we can also enable virtual bonds between 1-4, 1-5 and atom pairs with 

even longer distances using a consistent method, giving rise to higher-level RESP-perm-v 

models. However, as can be seen from Table 4.1 and Figure 4.2, the virtual bonds in the 
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RESP-perm-v model does not improve the fitting quality for the water molecule. In fact, 

adding too many virtual bonds may lead to the overfitting problem, and is expected to 

significantly increase the computational time for both parameterization and MD simulation 

processes. For these reasons, parametrization with the RESP-perm-v model will only be 

performed for the water molecule for illustration purpose, and other molecules will only be 

parameterized with the RESP, RESP-ind and RESP-perm models. 

 

Table 4.1. Parameterization Results, RRMS and Molecular Dipole/Quadrupole Moments of 

Water Fitted with Four Electrostatic Models 

 RESP RESP-ind RESP-perm 
RESP-

perm-v 
QM 

Charges/a.u. 

H 0.3401 0.5182 0.7576 0.7441  

O -0.6802 -1.0365 -1.5151 -1.4882  

Permanent Dipole Moments/a.u. 

H-Oa   0.0753 0.0773  

O-Ha   -0.2761b -0.2577  

H-Ha    -0.0121  

RRMS 
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 0.2051 0.1244 0.0391 0.0404  

Dipole Moments/Debye 

𝜇c 1.9141 1.9417 1.8668 1.8660 1.8470 

Quadrupole Moments/Debye Angstroms 

𝑄𝑥𝑥
d 1.0444 1.5151 1.8549 1.8803 1.8389 

𝑄𝑦𝑦
 d -0.1858 -0.3198 -0.2467 -0.2841 -0.2418 

𝑄𝑧𝑧
 d -0.8586 -1.1953 -1.6082 -1.5962 -1.5971 

a Each permanent dipole moment 𝒑𝐴𝐵
𝑙𝑜𝑐 is named in the format A-B, corresponding to the CBV 

points from atom A to atom B. b Negative value indicates pointing the reverse direction of 

CBV. c Dipole moment relative to center of mass. d Quadrupole moments along the principal 

axes. 
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Figure 4.1. Schematic representation of local frame permanent dipole moments of water 

molecule fitted with RESP-perm (left) and RESP-perm-v (right) electrostatic models. The 

lengths of permanent dipole moments are shown in scale of their magnitudes. Refer to the 

text for detailed descriptions. 
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Figure 4.2. Correlation analysis of QM ESPs and ESPs calculated with various electrostatic 

models for water molecule, which was fitted with 1874 ESP data points. The dashed line 

corresponds to perfect correlation. 𝑅 is the Pearson correlation coefficient. 

 

4.4.2. Methanol, Ethane, and Benzene 

We next extend our studies to the molecules methanol (CH3OH), ethane (CH3CH3) and 

benzene (C6H6) to see how the parameterization results for these molecules differ from those 

for water. Methanol has lower symmetry than water, so it is of interest to see how 

electrostatic models parameterize this molecule. As shown in Table 4.2, all models assigned 

large negative charges to the highly electronegative oxygen atom and produced low RRMS 

and high correlation coefficients (Figure 4.3). In terms of molecular dipole and quadrupole 

moments, the RESP-perm model yields the best agreement with QM calculations among all 

three models. The results of methanol show the importance of induced and permanent 

dipoles for modeling polar molecules. 

 

Table 4.2. Parameterization Results, RRMS and Molecular Dipole/Quadrupole Moments of 

Methanol Fitted with Three Electrostatic Modelsa 

 RESP RESP-ind RESP-perm QM 

Charges/a.u. 

C 0.1609 0.1008 -0.0763  
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H (methyl) 0.0194 0.0770 0.1105  

O -0.6002 -0.8841 -1.0075  

H (hydroxyl) 0.3812 0.5524 0.7524  

Permanent Dipole Moments/a.u. 

C-H (methyl)   -0.0141  

H (methyl)-C   -0.0068  

C-O   0.0158  

O-C   0.1071  

O-H (hydroxyl)   -0.2268  

H (hydroxyl)-O   0.0973  

RRMS 

 0.2519 0.1298 0.0801  

Dipole Moments/Debye 

𝜇 1.9558 1.7563 1.6786 1.6873 

Quadrupole Moments/Debye Angstroms 

𝑄𝑥𝑥  2.2197 2.5574 2.6684 2.6984 

𝑄𝑦𝑦  -0.7640 -0.7275 -0.6935 -0.8281 
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𝑄𝑧𝑧  -1.4557 -1.8299 -1.9749 -1.8703 

a See Table 4.1 for notation. 

 

In the case of ethane, all models assign positive charges to hydrogen, and negative 

charges to carbon, as shown in Table 4.3. Among the three models, the RESP-ind model 

assigns charges with the highest magnitudes, and the RESP model assigns charges with the 

lowest magnitudes. Ethane is a non-polar molecule, as reflected by the molecular dipole 

moments calculated by all three models as well as QM calculations. However, the RESP-perm 

model significantly outperforms the RESP and the RESP-ind models in terms of all other 

metrics, including RRMS, quadrupole moments, and correlation coefficients, making it the 

only model that gives reasonable performance. As shown in Figure 4.3, the ESPs around the 

ethane molecule is very close to 0 a.u., with the range between -0.005 a.u. to 0.006 a.u., 

compared with that of polar molecules such as water (-0.045 a.u. to 0.04 a.u.) and methanol 

(-0.05 a.u. to 0.04 a.u.). The non-polar nature of ethane makes it particularly difficult to 

parameterize, so that models with high degree of freedom like RESP-perm perform 

significantly better than those with low degree of freedom. 

 

Table 4.3. Parameterization Results, RRMS and Molecular Dipole/Quadrupole Moments of 

Ethane Fitted with Three Electrostatic Modelsa 

 RESP RESP-ind RESP-perm QM 
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Charges/a.u. 

C -0.0254 -0.2148 -0.0723  

H 0.0085 0.0716 0.0241  

Permanent Dipole Moments/a.u. 

C-H   -0.0201  

C-C   0.0645  

H-C   -0.0787  

RRMS 

 0.9939 0.8808 0.3490  

Dipole Moments/Debye 

𝜇 0.0000 0.0000 0.0000 0.0000 

Quadrupole Moments/Debye Angstroms 

𝑄𝑥𝑥  0.0403 0.0457 -0.5761 -0.5050 

𝑄𝑦𝑦  -0.0201 -0.0229 0.2881 0.2525 

𝑄𝑧𝑧  -0.0201 -0.0229 0.2880 0.2524 

a See Table 4.1 for notation. 
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Table 4.4 shows the parameterization results, RRMS and moments of benzene. 

Similar to the ethane molecule, benzene is also a non-polar molecule, and the molecular 

dipole moment was successfully predicted by all three models. The RESP-ind model again fit 

charges most aggressively by assigning charges with highest magnitudes, and the RESP 

model fit charges most conservatively by assigning charges with lowest magnitudes. 

However, unlike the case of ethane, none of the models perform significantly better in terms 

of other metrics. The RESP model yields the lowest RRMS, but it is only 14% lower than the 

highest RRMS (given by the RESP-ind model). All models underestimate the molecular 

quadrupole moments, although those given by the RESP-ind model have better agreement 

with QM results than those of the other two models. As shown in Figure 4.3, the RESP-perm 

model has the highest correlation coefficient but is still lower than those for polar molecules 

such as water and methanol. Modeling aromatics such as benzene is therefore also a difficult 

task, possibly due to the existence of 𝜋 orbital that are located outside of the 2-dimensional 

plane of the aromatics ring. 

 

Table 4.4. Parameterization Results, RRMS and Molecular Dipole/Quadrupole Moments of 

Benzene Fitted with Three Electrostatic Modelsa 

 RESP RESP-ind RESP-perm QM 

Charges/a.u. 

C -0.1123 -0.2464 -0.2227  
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H 0.1123 0.2464 0.2227  

Permanent Dipole Moments/a.u. 

C-H   0.0670  

H-C   0.0074  

C-C   -0.0290  

RRMS 

 0.2203 0.2570 0.2432  

Dipole Moments/Debye 

𝜇 0.0000 0.0000 0.0000 0.0000 

Quadrupole Moments/Debye Angstroms 

𝑄𝑥𝑥  2.2657 2.3738 2.3203 2.6637 

𝑄𝑦𝑦  2.2655 2.3732 2.3199 2.6627 

𝑄𝑧𝑧  -4.5312 -4.7470 -4.6403 -5.3264 

a See Table 4.1 for notation. 
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Figure 4.3. Correlation analysis of QM ESPs and ESPs calculated with various electrostatic 

models for methanol (upper panel), ethane (middle panel), and benzene (lower panel) 

molecules. Methanol, ethane, and benzene molecules were fitted with 2654, 2951 and 4130 

ESP data points, respectively. The dashed lines correspond to perfect correlation. 𝑅 is the 

Pearson correlation coefficient. 

 

4.4.3. NMA, DMP and Adenine 
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We next turn to N-methyl acetamide (NMA), dimethyl phosphate (DMP), and adenine base. 

These molecules are chosen as they are common model compounds for peptides and nucleic 

acids. Table 4.5 and Table 4.6 show the charges, RRMS and moments of NMA and DMP, 

respectively, and the permanent dipole moments fitted with the RESP-perm model are 

shown in Table S4.1 and Table S4.2. All models produce charge sets with consistent signs 

for NMA. Interestingly, there is significant variation in the atomic charges of DMP fitted by 

the three models. For example, the charges for the central phosphorus (P) range from -

0.4188 a.u. to 1.1047 a.u. Low RRMS and high correlation coefficients (Figure 4.4 and Figure 

4.5) are yielded by all models. However, for both NMA and DMP molecules, the molecular 

dipole and quadrupole moments produced by the RESP-ind and RESP-perm models agree 

worse to the QM results than those of the RESP model, indicating the potential overfitting 

problem for the RESP-ind and RESP-perm models. 

 

Table 4.5. Charges, RRMS and Molecular Dipole/Quadrupole Moments of N-methyl 

Acetamide (NMA) Fitted with Three Electrostatic Modelsa 

 RESP RESP-ind RESP-perm QM 

Charges/a.u. 

C1 -0.4202 -0.3524 -0.4778  

H1 0.1113 0.1422 0.1347  

C 0.6515 1.1283 1.0510  
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O -0.5297 -0.9953 -0.8081  

N -0.4249 -1.1062 -0.5250  

H 0.2848 0.6127 0.2715  

C2 -0.3419 -0.1267 -0.1219  

H2 0.1488 0.1377 0.0687  

RRMS 

 0.1029 0.0812 0.0786  

Dipole Moments/Debye 

𝜇 3.8335 3.6657 3.6502 3.8004 

Quadrupole Moments/Debye Angstroms 

𝑄𝑥𝑥  3.6515 3.1427 3.4849 3.6815 

𝑄𝑦𝑦  -0.7200 -0.3841 -0.6802 -0.7850 

𝑄𝑧𝑧  -2.9315 -2.7586 -2.8047 -2.8965 

a See Table 4.1 for notation. 

 

Table 4.6. Parameterization Results, RRMS and Molecular Dipole/Quadrupole Moments of 

Dimethyl Phosphate (DMP) Fitted with Three Electrostatic Modelsa 
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 RESP RESP-ind RESP-perm QM 

Charges/a.u. 

P 1.1047 0.5525 -0.4188  

O1 (O=) -0.7411 -0.6776 -0.3424  

O2 (-O-) -0.4399 -0.4920 -0.1201  

C 0.0553 0.0987 -0.2107  

H 0.0244 0.0982 0.1276  

RRMS 

 0.0196 0.0161 0.0117  

Dipole Moments/Debye 

𝜇 2.4333 2.4494 2.4635 2.5559 

Quadrupole Moments/Debye Angstroms 

𝑄𝑥𝑥  9.2617 7.5526 8.3254 9.0420 

𝑄𝑦𝑦  -3.5225 -2.8853 -3.4178 -3.6665 

𝑄𝑧𝑧  -5.7392 -4.6673 -4.9076 -5.3755 

a See Table 4.1 for notation. 
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The charges, RRMS and moments of the nucleic acid base adenine are shown in Table 

4.7, and the permanent dipole moments fitted with the RESP-perm model are shown in 

Table S4.3. Among the three electrostatic models, RESP-ind assigns charges with the highest 

magnitude to most atoms, but results in the worst RRMS, molecular dipole moment 

agreement, and correlation coefficient. On the other hand, the RESP-perm model yields the 

lowest RRMS, dipole and quadrupole moments with best agreements, and highest 

correlation coefficient (Figure 4.4). Therefore, permanent dipole moments are necessary 

components for modeling the adenine molecule. 

 

Table 4.7. Charges, RRMS and Molecular Dipole/Quadrupole Moments of Adenine Fitted 

with Three Electrostatic Modelsa 

 RESP RESP-ind RESP-perm QM 

Charges/a.u. 

N1b -0.7086 -2.0082 -0.0586  

C2b 0.4549 1.6084 -0.1038  

H2b 0.0770 0.3283 0.0701  

N3b -0.7256 -2.5767 -0.1907  

C4b 0.6413 2.4364 0.1796  

C5b 0.0209 0.0431 0.1477  
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C6b 0.6856 2.2390 0.4396  

N6b -0.9046 -2.2041 -1.4981  

HN6b 0.4054 0.7019 0.5695  

N7b -0.5608 -1.7370 -0.0397  

C8b 0.2693 1.2954 -0.0643  

H8b 0.1199 0.4007 -0.1734  

N9b -0.5699 -1.9989 -0.3756  

HN9b 0.3898 0.7698 0.5283  

RRMS 

 0.1263 0.1661 0.1043  

Dipole Moments/Debye 

𝜇 2.5562 2.5856 2.4726 2.4994 

Quadrupole Moments/Debye Angstroms 

𝑄𝑥𝑥  12.3287 12.0435 12.5849 12.7410 

𝑄𝑦𝑦  -5.7358 -6.0081 -5.6209 -6.0143 

𝑄𝑧𝑧  -6.5930 -6.0354 -6.9640 -6.7266 

a See Table 4.1 for notation. b The atom names are from the adenine obtained from Protein 

Data Bank (ligand ID: ADE). 
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Figure 4.4. Correlation analysis of QM ESPs and ESPs calculated with various electrostatic 

models for N-methyl acetamide (NMA, upper panel), dimethyl phosphate (DMP, middle 

panel) and adenine (lower panel) molecules. NMA, DMP, and adenine molecules were fitted 

with 4159, 4847 and 5155 ESP data points, respectively. The dashed lines correspond to 

perfect correlation. 𝑅 is the Pearson correlation coefficient. 
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4.4.4. Amino Acid Dipeptides 

PyRESP was designed as the next generation parameterization tool for polarizable 

force field development, with the aim to replace its ancestor RESP program.43-44 Amino acids 

are key molecules for force field development for biomacromolecules, so we next tested the 

program on several amino acid dipeptides, all capped with N-acetyl (ACE) group at the N-

terminal, and N-methylamide (NME) group at the C-terminal. Selected amino acids include 

alanine (hydrophobic amino acid), serine (polar amino acid), arginine (positively charged 

amino acid) and aspartic acid (negatively charged amino acid). Two conformations, 

approximating -helix ( 𝜙 = 300°, 𝜓 = 300° ) and antiparallel -sheets ( 𝜙 = 240°, 𝜓 =

120°), were used for both single-conformation and double-conformation fittings. Double-

conformation fittings were performed with inter-molecular equivalencing applied. For 

single-conformation fittings, we would like to examine both the differences and 

consistencies of the parameterizations between the two conformations, and we are 

interested in which electrostatic model can give the best performance in parameterizing 

each amino acid. For double-conformation fittings, it can be expected that they will show 

higher RRMS and lower correlation coefficients compared to single-conformation fittings, 

since the double-conformation fitting needs to accommodate contributions from both 

conformations to reduce conformational dependence. 

Table 4.8-4.11 show the RRMS and moments of alanine dipeptide, serine dipeptide, 

arginine dipeptide, and aspartic acid dipeptide, respectively, fitted with both single-

conformation and double-conformation fittings. We first focus on the results for single-

conformation fittings. For uncharged amino acids alanine and serine, the lowest RRMS is 
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produced by the RESP-perm model for the -helix conformation, and by the RESP-ind model 

for the -sheet conformation. While for charged amino acids arginine and aspartic acid, the 

RRMS consistently decreases in the order of RESP, RESP-ind and RESP-perm models for both 

-helix and -sheet conformations. In addition, most -helix conformation fittings give lower 

RRMS than that of -sheet conformation, which might be explained by the fact that amino 

acids in the -helix conformation have higher polarity (larger dipole moment) than in the -

sheet conformation. Similar trend was observed in Figure 4.5 and Figure S4.1-4.3, where 

the correlation coefficients for the -helix conformation are mostly higher than that of the -

sheet conformation. The correlation coefficients of single-conformation fittings consistently 

increase in the order of RESP, RESP-ind and RESP-perm models for all amino acids in both 

conformations. The molecular dipole and quadrupole moments show interesting patterns. 

The RESP-ind model consistently yields the best agreement with QM moments for amino 

acids in the -helix conformation. On the other hand, the RESP model yields the worst 

agreement for the -helix conformation but yields the best agreement for the -sheet 

conformation. 

Next, we compare the results of double-conformation fittings with those of single-

conformation fittings. Surprisingly, in contrast to the expectation that double-conformation 

fittings will always produce higher RRMS and lower correlation coefficients compared to 

single-conformation fittings, the double-conformation fittings of the RESP-perm model 

consistently give lower RRMS and higher correlation coefficients than those of single-

conformation fittings for all amino acids in both conformations, so is the RESP model for 

amino acids in the -helix conformation. Next, the molecular dipole and quadrupole 
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moments of double- and single- conformation fittings are compared. Interestingly, most 

double-conformation fittings result in better agreement with the QM calculated moments 

than those of single-conformation fittings for the -helix conformation but result in worse 

agreements for the -sheet conformation. In particular, the RESP-perm model is the only 

model that improve the molecular moment qualities for all amino acids in both -helix and 

-sheet conformations. 

 

Table 4.8. RRMS and Molecular Dipole/Quadrupole Moments of Alanine Dipeptide (Single- 

and Double- Conformation) Fitted with Three Electrostatic Modelsa 

  Single-Conformation Fitting 
Double-Conformation 

Fitting 
 

Conformati

on 
 RESP 

RESP-

ind 

RESP-

perm 
RESP 

RESP-

ind 

RESP-

perm 
QM 

RRMS 

-helix  0.0929 0.0551 0.0552 0.0854 0.0602 0.0432  

-sheet  0.1210 0.0852 0.0870 0.1431 0.0939 0.0732  

Dipole Moments/Debye 

-helix 𝜇 7.2117 6.9530 6.8602 7.1200 6.9617 6.9060 7.0313 

-sheet 𝜇 0.7805 0.6641 0.6809 0.7759 0.6016 0.6166 0.6963 
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Quadrupole Moments/Debye Angstroms 

-helix 

𝑄𝑥𝑥  8.5529 7.5041 7.4211 8.3689 7.8608 7.9172 8.1763 

𝑄𝑦𝑦  -0.8103 0.1479 0.7630 -0.3067 -0.2380 0.1786 0.1868 

𝑄𝑧𝑧  -7.7425 -7.6519 -8.1841 -8.0622 -7.6229 -8.0958 -8.3630 

-sheet 

𝑄𝑥𝑥  
14.690

2 

14.149

1 

14.104

6 

13.820

0 

14.068

7 

14.070

5 
14.9055 

𝑄𝑦𝑦  3.9444 3.4097 3.1843 3.7454 3.4612 3.5775 3.4394 

𝑄𝑧𝑧  

-

18.634

6 

-

17.558

8 

-

17.288

9 

-

17.565

4 

-

17.529

9 

-

17.648

1 

-

18.3449 

a See Table 4.1 for notation. 
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Figure 4.5. Correlation analysis of QM ESPs and ESPs calculated with various electrostatic 

models for alanine dipeptide using single- and double-conformation fittings. 1st row: -helix 

conformation fitted with single-conformation; 2nd row: -helix conformation fitted with 

double-conformation; 3rd row: -sheet conformation fitted with single-conformation; 4th 
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row: -sheet conformation fitted with double-conformation. The -helix conformation was 

fitted with 6292 ESP data points, and the -sheet conformation was fitted with 6460 ESP 

data points. The dashed lines correspond to perfect correlation. 𝑅 is the Pearson correlation 

coefficient. 

 

Table 4.9. RRMS and Molecular Dipole/Quadrupole Moments of Serine Dipeptide (Single- 

and Double- Conformation) Fitted with Three Electrostatic Modelsa 

  Single-Conformation Fitting 
Double-Conformation 

Fitting 
 

Conformatio

n 
 RESP 

RESP-

ind 

RESP-

perm 
RESP 

RESP-

ind 

RESP-

perm 
QM 

RRMS 

-helix  0.1092 0.0583 0.0544 0.1015 0.0638 0.0456  

-sheet  0.1169 0.0719 0.0768 0.1283 0.0800 0.0627  

Dipole Moments/Debye 

-helix 𝜇 7.2984 7.0225 6.8966 7.1918 7.0907 6.9997 7.0311 

-sheet 𝜇 1.6728 1.7070 1.6607 1.6197 1.6176 1.6159 1.6838 

Quadrupole Moments/Debye Angstroms 
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-helix 

𝑄𝑥𝑥  4.9007 4.6936 5.0199 4.8222 4.4699 4.6349 4.5426 

𝑄𝑦𝑦  3.1930 3.3143 3.2288 3.3371 3.6943 3.6715 3.9228 

𝑄𝑧𝑧  -8.0937 -8.0079 -8.2487 -8.1593 -8.1642 -8.3065 
-

8.4653 

-sheet 

𝑄𝑥𝑥  14.1477 
13.217

8 

13.012

6 

13.085

2 

13.192

1 

13.367

5 

14.096

2 

𝑄𝑦𝑦  6.7942 6.8604 6.8887 6.8816 6.7819 6.7311 6.5504 

𝑄𝑧𝑧  
-

20.9419 

-

20.078

2 

-

19.901

4 

-

19.966

8 

-

19.974

0 

-

20.098

6 

-

20.646

6 

a See Table 4.1 for notation. 

 

Table 4.10. RRMS and Molecular Dipole/Quadrupole Moments of Arginine Dipeptide 

(Single- and Double- Conformation) Fitted with Three Electrostatic Modelsa 

  
Single-Conformation 

Fitting 

Double-Conformation 

Fitting 
 

Conformatio

n 
 RESP 

RESP-

ind 

RESP-

perm 
RESP 

RESP-

ind 

RESP-

perm 
QM 

RRMS 



 

139 
 

-helix  0.0236 0.0163 0.0133 0.0256 0.0176 0.0129  

-sheet  0.0185 0.0164 0.0148 0.0226 0.0177 0.0128  

Dipole Moments/Debye 

-helix 𝜇 
24.606

0 

24.641

6 

24.540

7 

24.551

2 

24.535

4 

24.455

5 

24.466

6 

-sheet 𝜇 
17.078

2 

17.299

6 

17.283

3 

17.246

3 

17.413

7 

17.407

7 

17.090

5 

Quadrupole Moments/Debye Angstroms 

-helix 

𝑄𝑥𝑥  
70.921

9 

71.303

1 

71.907

0 

70.412

0 

71.307

4 

71.389

6 

71.370

8 

𝑄𝑦𝑦  

-

26.189

8 

-

25.837

5 

-

26.033

2 

-

25.417

6 

-

25.535

2 

-

25.584

4 

-

25.805

7 

𝑄𝑧𝑧  

-

44.732

1 

-

45.465

6 

-

45.873

8 

-

44.994

4 

-

45.772

2 

-

45.805

2 

-

45.565

1 

-sheet 𝑄𝑥𝑥  
79.104

3 

79.210

0 

79.333

5 

79.449

8 

79.145

0 

79.526

8 

79.458

6 
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𝑄𝑦𝑦  

-

27.559

6 

-

28.361

7 

-

28.353

8 

-

28.800

8 

-

28.789

1 

-

28.512

7 

-

27.941

8 

𝑄𝑧𝑧  

-

51.544

7 

-

50.848

4 

-

50.979

7 

-

50.649

0 

-

50.355

9 

-

51.014

2 

-

51.516

8 

a See Table 4.1 for notation. 

 

Table 4.11. RRMS and Molecular Dipole/Quadrupole Moments of Aspartic Acid Dipeptide 

(Single- and Double- Conformation) Fitted with Three Electrostatic Modelsa 

  
Single-Conformation 

Fitting 

Double-Conformation 

Fitting 
 

Conformatio

n 
 RESP 

RESP-

ind 

RESP-

perm 
RESP 

RESP-

ind 

RESP-

perm 
QM 

RRMS 

-helix  0.0238 0.0159 0.0126 0.0232 0.0164 0.0118  

-sheet  0.0253 0.0156 0.0134 0.0259 0.0162 0.0125  

Dipole Moments/Debye 
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-helix 𝜇 
10.175

4 
9.8314 9.8469 

10.013

2 
9.7958 9.8477 9.9939 

-sheet 𝜇 9.3896 9.2885 9.2847 9.5458 9.3331 9.2629 9.4228 

Quadrupole Moments/Debye Angstroms 

-helix 

𝑄𝑥𝑥  
21.534

6 

22.126

8 

22.442

3 

21.897

1 

22.049

9 

22.457

7 

22.669

7 

𝑄𝑦𝑦  
16.997

5 

16.186

0 

15.743

9 

15.928

9 

16.269

8 

16.047

5 

16.344

9 

𝑄𝑧𝑧  

-

38.532

1 

-

38.312

8 

-

38.186

2 

-

37.826

0 

-

38.319

7 

-

38.505

3 

-

39.014

5 

-sheet 

𝑄𝑥𝑥  
27.835

2 

26.980

9 

26.942

1 

27.859

7 

26.989

9 

27.086

7 

27.843

3 

𝑄𝑦𝑦  -4.5477 -3.2223 -3.2344 -4.3845 -3.0961 -3.2715 
-

3.5950 

𝑄𝑧𝑧  

-

23.287

4 

-

23.758

7 

-

23.707

7 

-

23.475

2 

-

23.893

8 

-

23.815

2 

-

24.248

3 

a See Table 4.1 for notation. 
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4.5. Discussion and Conclusions 

We have developed and implemented the PyRESP program for flexible force field 

parameterizations with four electrostatic models: RESP, RESP-ind, RESP-perm and RESP-

perm-v. The RESP model is a Python implementation of the original RESP program in the 

Fortran language.43-44 Compared with previous ESP-based charge derivation methods,37-39, 

47-48 the RESP model reduces the overall magnitude of the charges using a simple hyperbolic 

restraining function, which improves the transferability of fitted charges and reduces the 

conformational dependency problem. The RESP-ind, RESP-perm and RESP-perm-v models 

were designed and implemented in a consistent manner as the RESP model, with the 

additional modeling of atomic induced dipole moments, atomic permanent dipole moments 

and atomic permanent virtual dipole moments, respectively. The Lagrange constraints as 

well as the intra- and inter- molecular equivalencing schemes developed in the original RESP 

work were also implemented for the latter three models in PyRESP. 

A variety of molecules were tested with various electrostatic models implemented in 

PyRESP. All molecules were parameterized using the standard two-stage approach proposed 

by the original RESP work.43 The 1-2 and 1-3 interactions were included for all polarizable 

models, and the pGM damping function was applied to all electrostatic interactions both to 

avoid the polarization catastrophe and to achieve adequate anisotropic molecular 

response.33-34, 36 It can be observed that for each molecule, most charges fitted with the RESP-

ind model have higher magnitude than those of the RESP model. This is due to the 

polarization effect among atoms. Taking the water molecule as an example, the electric field 

at the position of the oxygen atom caused by the positively charged hydrogen atom points 
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outside the molecule along the symmetric axis, which generates an induced dipole in the 

same direction. The dipole generates positive ESP at the outward direction of oxygen atom, 

which cancels out certain amounts of ESP caused by the negatively charged oxygen atom. To 

compensate this effect, a negative charge with higher magnitude was fitted to the oxygen 

atom. On the other hand, the magnitudes of charges fitted by the RESP-perm model does not 

show consistent trend when compared to those of the RESP-ind model. The charges with the 

RESP-perm model have higher magnitudes than those of the RESP-ind model for the water 

molecule, but the opposite is true for ethane and benzene molecules. The magnitude of 

charges with the RESP-perm model is directly affected by the directions of induced dipole 

moments and permanent dipole moments. If they point to the same direction, the charge 

magnitude will increase to compensate the combined effects of induced and permanent 

dipole moments. If they point to opposite directions, the cancel-off effect of polarization 

becomes weaker, leading to lower magnitude of charges. 

Among the molecules tested in this chapter, the parameterizations of ethane molecule 

resulted in the highest RRMS and lowest correlation coefficients. This is not only because of 

its non-polar nature, but also because of the fact that it contains only weak electronegative 

elements carbon and hydrogen. Figure 4.3 shows that the ESPs around ethane molecule is 

very close to 0 a.u., with the range between -0.005 a.u. to 0.006 a.u. The low magnitude of 

ESP makes the parametrization process sensitive to noise, so that models with high degree 

of freedom like RESP-perm are needed to give reasonable fitting. Another molecule that none 

of the model gave satisfactory performances is benzene, also a non-polar molecule. The 

difficulty for parameterizing benzene likely comes from the existence of 𝜋  orbital lying 

outside the ring plane, which cannot be modeled adequately even with the induced and 
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permanent dipole moments, since they are both located on the 2-dimensional plane. This is 

an inherent limitation of the current model, which may be improved by adding additional 

fitting centers outside the aromatic ring, or by fitting permanent quadrupole moments in 

addition to permanent charges and dipoles. Therefore, modeling aromatic molecules 

remains a challenge even for polarizable force field developments. 

The RESP-perm model has higher degree of freedom than the RESP and RESP-ind 

models, due to the addition of permanent dipole moments; addition of virtual bonds 

increases the degree of freedom for the RESP-perm-v model even further. For most 

molecules tested here, the parameterizations with the RESP-perm/RESP-perm-v models 

resulted in lower RRMS, higher correlation coefficients, and molecular moments agree better 

with QM calculations. However, the quadrupole moments of methanol, NMA and DMP 

molecules fitted by the RESP-perm model clearly agree worse with QM results than those 

fitted by the RESP model. This raises the concern of overfitting problem when the model 

degree of freedom is so high that noise start to diminish fitting accuracy, leading to 

deteriorated overall fitting quality. Among the metrics used here to evaluate models, the 

RRMS and correlation coefficients are highly correlated with the objective function to be 

minimized in eq. 4.13, so that low RRMS and high correlation coefficients are not reliable 

enough to eliminate the concerns of overfitting. Therefore, while performing molecule 

parameterizations using electrostatic models with high degree of freedom, it is critical to 

inspect the final molecular dipole and quadrupole moments to determine if the overfitting 

occurred. 
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We tested several amino acid dipeptide molecules using both single- and double- 

conformation fittings. The -helix ( 𝜙 = 300°, 𝜓 = 300° ) and antiparallel -sheet ( 𝜙 =

240°, 𝜓 = 120°) conformations were selected since they are two of the most frequently 

found conformations for amino acids in proteins, and they represent considerably different 

electrostatic properties (e.g., notably different dipole moments). For single-conformation 

fittings, the RESP-ind model consistently yields the best agreement with QM moments for 

amino acids in the -helix conformation, while the RESP model yields the best agreement for 

the -sheet conformation. The RESP-perm model that has the highest degree of freedom 

shows the lowest RRMS and highest correlation coefficients but does not outperform other 

models in terms of reproducing QM molecular moments. Double-conformation fittings were 

expected to have poorer performances than those of single-conformation fittings. 

Surprisingly, double-conformation fittings with the RESP-perm model consistently shows 

better overall performances than the single-conformation fittings for amino acids in both 

conformations, as illustrated by the lower RRMS, higher correlation coefficients, and 

moments agree better with QM results. This shows that the double-conformation fittings are 

necessary for amino acids fitted with the RESP-perm model. For future polarizable force field 

parameterizations, more conformations are expected to be included to further reduce 

conformational dependence of the parameters. 

In conclusion, the PyRESP program developed here is a flexible, efficient, and user-

friendly tool that is recommended for parameterizations of various additive and polarizable 

force fields. PyRESP has been released as an open-source software within AmberTools 2022 

under the GNU General Public License, available for download from http://ambermd.org/.52 

Documentation and tutorials will also be made available on the Amber website. 
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Alternatively, the standalone version of PyRESP with the latest updates is available through 

https://github.com/ShijiZ/PyRESP. 

 

4.6. Supporting Information 

Table S4.1. Permanent Dipole Moments (a.u.) of N-methyl Acetamide (NMA) Fitted with the 

RESP-perm Electrostatic Modela 

C1-H1 H1-C1 C1-C C-C1 C-O 

0.0175 -0.0534b -0.1356 0.0323 -0.0335 

O-C C-N N-C N-H H-N 

0.1508 0.0031 -0.1423 0.0084 -0.2141 

N-C2 C2-N C2-H2 H2-C2  

0.1094 -0.0525 0.0331 -0.0490  

a Each permanent dipole moment is named in the format A-B, corresponding to the CBV 

points from atom A to atom B. b Negative value indicates pointing the reverse direction of 

CBV. 

 

Table S4.2. Permanent Dipole Moments (a.u.) of Dimethyl Phosphate (DMP) Fitted with the 

RESP-perm Electrostatic Modela 
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P-O1 O1-P P-O2 O2-P O2-C 

-0.0392 0.2779 0.0592 0.1353 0.2213 

C-O2 C-H H-C   

-0.0896 0.0399 0.0196   

a See Table S4.1 for notation. 

 

Table S4.3. Permanent Dipole Moments (a.u.) of Adenine Fitted with the RESP-perm 

Electrostatic Modela 

N1-C2 C2-N1 C2-H2 H2-C2 C2-N3 

0.5299 -0.0137 0.1008 -0.0403 -0.0547 

N3-C2 N3-C4 C4-N3 C4-C5 C5-C4 

0.3527 0.5373 -0.0655 0.1054 0.0567 

C4-N9 N9-C4 C5-C6 C6-C5 C5-N7 

-0.0044 0.0373 0.0339 0.1488 -0.1087 

N7-C5 C6-N1 N1-C6 C6-N6 N6-C6 

0.4430 0.0089 0.5776 -0.2238 -0.0288 

N6-HN6 HN6-N6 N7-C8 C8-N7 C8-H8 
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0.0112 -0.1024 0.3586 -0.1499 0.4969 

H8-C8 C8-N9 N9-C8 N9-HN9 HN9-N9 

-0.2386 -0.0241 0.0349 -0.0692 -0.0229 

a See Table S4.1 for notation. 
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Figure S4.1. Correlation analysis of QM ESPs and ESPs calculated with various electrostatic 

models for serine dipeptide using single- and double-conformation fittings. 1st row: -helix 

conformation fitted with single-conformation; 2nd row: -helix conformation fitted with 

double-conformation; 3rd row: -sheet conformation fitted with single-conformation; 4th 
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row: -sheet conformation fitted with double-conformation. The -helix conformation was 

fitted with 6542 ESP data points, and the -sheet conformation was fitted with 6709 ESP 

data points. The dashed lines correspond to perfect correlation. 𝑅 is the Pearson correlation 

coefficient. 
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Figure S4.2. Correlation analysis of QM ESPs and ESPs calculated with various electrostatic 

models for arginine dipeptide using single- and double-conformation fittings. 1st row: -

helix conformation fitted with single-conformation; 2nd row: -helix conformation fitted 

with double-conformation; 3rd row: -sheet conformation fitted with single-conformation; 
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4th row: -sheet conformation fitted with double-conformation. The -helix conformation 

was fitted with 9165 ESP data points, and the -sheet conformation was fitted with 9323 ESP 

data points. The dashed lines correspond to perfect correlation. 𝑅 is the Pearson correlation 

coefficient. 
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Figure S4.3. Correlation analysis of QM ESPs and ESPs calculated with various electrostatic 

models for aspartic acid dipeptide using single- and double-conformation fittings. 1st row: 

-helix conformation fitted with single-conformation; 2nd row: -helix conformation fitted 

with double-conformation; 3rd row: -sheet conformation fitted with single-conformation; 
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4th row: -sheet conformation fitted with double-conformation. The -helix conformation 

was fitted with 7077 ESP data points, and the -sheet conformation was fitted with 7047 ESP 

data points. The dashed lines correspond to perfect correlation. 𝑅 is the Pearson correlation 

coefficient. 
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CHAPTER 5 

Accurate Reproduction of Quantum Mechanical Many-Body Interactions 

in Peptide Mainchain Hydrogen Bonding Oligomers by the Polarizable 

Gaussian Multipole Model 

 

5.1. Introduction 

Development of molecular mechanical force fields has been at the forefront of 

molecular modeling research due to the critical roles that force fields play in applications 

such as molecular dynamics (MD) simulations, Monte Carlo (MC) simulations, and protein 

structure prediction.1-4 Force fields that have the ability to provide accurate energy 

calculations, and are highly transferable to a wide range of molecular systems have become 

highly desirable. With GPU-accelerated and specialized high-performance computational 

platforms,5-6 it becomes increasingly feasible to conduct simulations at time scales of 

biological relevance. The extensively used point-charge additive force fields, such as Amber 

ff19SB,7 CHARMM,8 and OPLS,9 share similar functional forms. In the additive Amber force 

fields, the following general functional form is used to calculate the potential energies of 

molecular systems 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐸𝑏𝑜𝑛𝑑 + 𝐸𝑎𝑛𝑔𝑙𝑒 + 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 + 𝐸𝑒𝑙𝑒 + 𝐸𝑣𝑑𝑊 (5.1) 

The first three terms are short-range bonded terms, including the bond stretching 

terms 𝐸𝑏𝑜𝑛𝑑 , the angle bending terms 𝐸𝑎𝑛𝑔𝑙𝑒 , and the dihedral angle torsion terms 𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 , 

with the following formulas 

𝐸𝑏𝑜𝑛𝑑 = ∑ 𝑘𝑏(𝑟 − 𝑟0)2

𝑏𝑜𝑛𝑑𝑠

(5.2) 
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𝐸𝑎𝑛𝑔𝑙𝑒 = ∑ 𝑘𝜃(𝜃 − 𝜃0)2

𝑎𝑛𝑔𝑙𝑒𝑠

(5.3) 

𝐸𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙 = ∑ 𝑉𝑛(1 + cos(𝑛𝜙 − 𝛾))

𝑑𝑖ℎ𝑒𝑑𝑟𝑎𝑙𝑠

(5.4) 

The last two terms are non-bonded terms between any two atoms 𝑖  and 𝑗 . The 

electrostatic term 𝐸𝑒𝑙𝑒 , usually modeled by the interactions between fixed atom-centered 

partial charges (Coulomb’s law), is a long-range term; whereas the van der Waals term 𝐸𝑣𝑑𝑊, 

modeled by the 6-12 Lennard-Jones potential, is nominally also a long-range term, although 

it decays rather quickly with increasing distance. 𝐸𝑒𝑙𝑒  and 𝐸𝑣𝑑𝑊 are formulated as 

𝐸𝑣𝑑𝑊 = ∑ (
𝐴𝑖𝑗

𝑅𝑖𝑗
12 −

𝐵𝑖𝑗

𝑅𝑖𝑗
6 )

𝑖<𝑗

(5.5) 

𝐸𝑒𝑙𝑒 = ∑
𝑞𝑖𝑞𝑗

𝜀𝑅𝑖𝑗
𝑖<𝑗

(5.6) 

both of which are pairwise and additive. Therefore, in this framework, the interaction 

between any two atoms is not affected by the presence or absence of other non-bonded 

atoms.  

While additive force fields will continue to play important roles, polarizable force 

fields are expected to extend our ability to study biomolecular systems more adequately, due 

to their ability to model the atomic polarization effects, which are the redistribution of 

atomic electron density due to the electric field produced by nearby atoms.10 Polarization 

effects are important in biological processes such as ligand-receptor interactions,11-14 the 

interactions of ions with nucleic acids,15-16 the dielectric environmental changes during 
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protein folding,17-18 and enzymatic mechanisms.19 If more than two atoms are involved, 

polarization effects lead to non-additivity, since when polarized by a third atom, any two 

atoms interact differently from the situation where the third atom is absent. Lacking proper 

representation of the polarization effects is considered a major shortcoming of the additive 

force fields. For over five decades, many attempts have been directed to properly 

incorporating polarization effects into polarizable force fields. A variety of methods have 

been explored, including the induced dipole models,20-28 the fluctuating charge models,29-30 

the Drude oscillator models31-32, and the continuum dielectric models.33-34 

The induced point dipole model is one of the most studied approaches with a long 

history since the 1970s.35-36 In this approach, the induced dipole of atom 𝑖  subject to the 

external electric field 𝑬𝑖 , is 

𝝁𝑖 = 𝛼𝑖 [𝑬𝑖 − ∑ 𝑻𝑖𝑗𝝁𝑗

𝒏

𝑗≠𝑖

] (5.7) 

where 𝛼𝑖 is the isotropic polarizability of atom 𝑖, and 𝑻𝑖𝑗 is the dipole field tensor with the 

matrix form 

𝑻𝑖𝑗 =
𝑓𝑒

𝑟𝑖𝑗
3

𝑰 −
3𝑓𝑡

𝑟𝑖𝑗
5

[

𝑥2 𝑥𝑦 𝑥𝑧

𝑥𝑦 𝑦2 𝑦𝑧

𝑥𝑧 𝑦𝑧 𝑧2

] (5.8) 

where 𝑰 is the identity matrix; 𝑥 , 𝑦  and 𝑧  are the Cartesian components along the vector 

between atoms 𝑖 and 𝑗 at distance 𝑟𝑖𝑗 ; 𝑓𝑒  and 𝑓𝑡  are distance-dependent damping functions 

that modify 𝑻𝑖𝑗  to avoid the so-called “polarization catastrophe” problem, i.e. the 

phenomenon that induced dipole diverges due to the cooperative induction between 
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induced dipoles at short distances.10, 37 Several damping schemes have been proposed by 

Thole using a smeared charge distributions 𝜌(𝑢), where 𝑢 = 𝑟𝑖𝑗/(𝛼𝑖𝛼𝑗)1/6  is the effective 

distance.38-39 Thole’s damping schemes have been incorporated into several important 

polarizable force fields. For example, in the ff12pol force field,22-25 the linear damping 

scheme is adopted 

𝜌(𝑢) = {
3

𝜋

(𝑎 − 𝑢)

𝑎4
              𝑢 < 𝑎

0                         𝑢 ≥ 𝑎

(5.9) 

and the damping functions 𝑓𝑒 and 𝑓𝑡 have the form 

𝑣 = 𝑢/𝑎 

𝑓𝑒 = {4𝑣3 − 3𝑣4    𝑣 < 1
1.0                  𝑣 ≥ 1

(5.10) 

𝑓𝑡 = {𝑣4                   𝑣 < 1
1.0                  𝑣 ≥ 1

 

In the Amoeba polarizable force field,26-28 an exponential damping scheme is used 

𝜌(𝑢) =
3𝑎

4𝜋
exp(−𝑎𝑢3) (5.11) 

and the damping functions 𝑓𝑒 and 𝑓𝑡 become 

𝑣 = 𝑎𝑢3 

𝑓𝑒 = 1 − exp(−𝑣) (5.12) 

𝑓𝑡 = 1 − (𝑣 + 1) exp(−𝑣) 
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However, since Thole’s schemes only screen the interactions between induced 

dipoles, leaving the polarization due to fixed charges and permanent multipoles unaffected, 

one caveat is the possibility of producing large atomic induced dipoles when other highly 

charged species are nearby. About a decade ago, Elking et al. developed a scheme that models 

atomic electric multipoles using Gaussian electron densities,40-42 which was originally 

proposed by Wheatley,43-44 and this model was later named as the polarizable Gaussian 

Multipole (pGM) model.45-47 The pGM model can overcome the potential problem of Thole’s 

scheme by screening all short-range electrostatic interactions in a consistent manner, 

including the interactions of charge-charge, charge-dipole, charge-quadrupole, dipole-

dipole, and so on, eliminating a potential source of singularity in the electrostatic term 𝐸𝑒𝑙𝑒 . 

Consequently, it has been shown that the pGM model notably improves the prediction of 

molecular polarizability anisotropy compared with that of Thole models.45 In the pGM 

model, the 𝑛th order Gaussian multipole at distance 𝑟 with atom 𝑖 is defined as 

𝜌(𝑛)(𝑟) = 𝜣(𝑛) ∙ ∇(𝑛) (
𝛽𝑖

√𝜋
)

3

exp(−𝛽𝑖
2𝑟2)  (5.13) 

where 𝜣(𝑛) is the 𝑛th rank momentum tensor, ∇(𝑛) is the 𝑛th rank gradient operator, and 𝛽𝑖 

is the Gaussian exponent controlling the “radius” of the distribution with the following 

formula 

𝛽𝑖 = 𝑠 (
2𝛼𝑖

3√2𝜋
)

−
1
3

(5.14) 
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where 𝛼𝑖 is the atomic polarizability, and 𝑠 is a constant screening factor. Although any order 

of multipoles can be modeled by the pGM model, only charges (0th order multipole, eq 5.15) 

and dipoles (1st order multipole, eq 5.16) are considered in the current pGM model design 

𝜌(0)(𝑟) = 𝑞𝑖 (
𝛽𝑖

√𝜋
)

3

exp(−𝛽𝑖
2𝑟2) (5.15) 

𝜌(1)(𝑟) = 𝒑𝑖 ∙ ∇ (
𝛽𝑖

√𝜋
)

3

exp(−𝛽𝑖
2𝑟2) (5.16) 

where 𝑞𝑖 is the permanent charge and 𝒑𝑖 is the permanent dipole of atom 𝑖. Replacing 𝒑𝑖 in 

eq 5.16 with 𝝁𝑖  in eq 5.7 will give the pGM distribution of the induced dipole, which has the 

same form as that of the permanent dipole. For the pGM model, we have the following 

formula of damping functions 𝑓𝑒 and 𝑓𝑡 

𝑆𝑖𝑗 =
𝛽𝑖𝛽𝑗𝑟𝑖𝑗

√2(𝛽𝑖
2 + 𝛽𝑗

2)

 

𝑓𝑒 = erf(𝑆𝑖𝑗) −
2

√𝜋
𝑆𝑖𝑗 exp(−𝑆𝑖𝑗

2) (5.17) 

𝑓𝑡 = erf(𝑆𝑖𝑗) −
2

√𝜋
𝑆𝑖𝑗 exp(−𝑆𝑖𝑗

2) (1 +
2

3
𝑆𝑖𝑗

2) 

where erf(𝑆𝑖𝑗) is the error function of 𝑆𝑖𝑗 . 

In a series of recent works, the functional form and parameterization schemes for the 

pGM model have been designed and implemented. First, a set of isotropic atomic 

polarizabilities and radii for the pGM model were obtained by fitting to molecular 

polarizability tensors of 1405 molecules or dimers calculated at the B3LYP/aug-cc-
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pVTZ//B3LYP/aug-cc-pVTZ level of theory using an optimization method based on the 

genetic algorithm (GA).45 Second, a local frame for the pGM permanent dipoles formed by 

covalent basis vectors (CBVs), which are unit vectors along the direction of covalent bonds 

or virtual bonds, has been proposed based on the fact that atomic permanent moments 

mainly result from covalent bonding interactions.46 Third, the analytical formula of the 

electrostatic term of the pGM models have been derived,46 which is the sum of a permanent 

electrostatic term 𝐸𝑒𝑙𝑒−𝑝𝑒𝑟𝑚 and an induced electrostatic term 𝐸𝑒𝑙𝑒−𝑖𝑛𝑑  

𝐸𝑒𝑙𝑒 = 𝐸𝑒𝑙𝑒−𝑝𝑒𝑟𝑚 + 𝐸𝑒𝑙𝑒−𝑖𝑛𝑑 (5.18) 

with the following formula 

𝐸𝑒𝑙𝑒−𝑝𝑒𝑟𝑚 = ∑(𝑞𝑖 + 𝒑𝑖 ∙ 𝛻𝑖)(𝑞𝑗 + 𝒑𝑗 ∙ 𝛻𝑗)
erf(𝑆𝑖𝑗)

𝑟𝑖𝑗
𝑖<𝑗

(5.19) 

𝐸𝑒𝑙𝑒−𝑖𝑛𝑑 = ∑ 𝝁𝑖(𝑞𝑗 + 𝒑𝑗 ∙ 𝛻𝑗)𝛻𝑖

erf(𝑆𝑖𝑗)

𝑟𝑖𝑗
𝑖<𝑗

(5.20) 

Therefore, in the functional form of the pGM models, the electrostatic term in eq 5.6 

is replaced by eq 5.18-5.20, and the rest of terms remain unchanged (eq 5.2-5.5). In 

addition, the pGM electrostatic term has been interfaced with the particle mesh Ewald (PME) 

method for molecular simulations under the periodic boundary conditions.46, 48-51 Fourth, 

the pGM internal stress tensor expression for constant pressure MD simulations of both the 

flexible and rigid body molecular system has been derived.47 Finally, the PyRESP program 

enabling parameterizations for the pGM models with and without atomic permanent dipoles 

by reproducing quantum mechanical (QM) electrostatic potential (ESP) around molecules 

has been implemented.52 All of the components mentioned above, including the pGM 
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polarizabilities and radii, the sander program enabling MD simulations for the pGM models, 

and the PyRESP parametrization program, are available in the AmberTools22 program suite 

that can be downloaded from http://ambermd.org/.53 

In this chapter, we assessed the ability of the pGM models to reproduce QM many-

body interaction energies in peptide oligomers, specifically the influences of neighboring 

peptides upon a pair of interacting peptide monomers. For polarizable force fields, the many-

body interaction energies can be decomposed into non-additive and additive contributions. 

The detailed definitions of the many-body interaction energy as well as its non-additive and 

additive contributions will be presented in section 5.2. Glycine dipeptide oligomers 

arranged in three mainchain hydrogen bonding conformations were used as the model 

peptide systems, because glycine has the minimalist side chain so that we can focus on 

mainchain hydrogen bonding interactions. Two types of pGM models were considered, 

including pGM-perm, in which the atomic dipoles are represented by a combination of both 

induced and permanent dipoles, and pGM-ind, in which the atomic dipoles are represented 

by the induced dipoles only. We compared the performances of the pGM-perm and pGM-ind 

models with several other widely used force fields in terms of reproducing QM interaction 

energies and many-body interaction energies, including four Amber force fields: ff12pol,22-

25 ff19SB,7 ff15ipq54 and ff03,55 as well as the 2013 version of the Amoeba protein force field 

(Amoeba13).28 Among the seven force fields tested, pGM-perm, pGM-ind, Amoeba13 and 

ff12pol are polarizable force fields, while ff19SB, ff15ipq and ff03 are classical point-charge 

additive force fields. The results show that the pGM models perform significantly better than 

all other force fields in terms of reproducing QM interaction energies, many-body interaction 

energies, and the non-additive and additive contributions to the many-body interactions. In 
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addition, we tested the robustness of the pGM models against parameterization errors by 

employing alternative atomic polarizabilities, including the pGM polarizabilities scaled by a 

factor of 0.9,45 the Amoeba polarizabilities,26 and the ff12pol polarizabilities.22 The results 

show that the pGM models are highly robust and perform well even with those “wrong” 

polarizabilities. 

 

5.2. Theory 

In this chapter, each oligomer is arranged in a general form of m glycine dipeptides 

interacting with n glycine dipeptides, named Glym:Glyn, where m and n are ranged from 1 to 

3. Each “Gly” in this chapter represents a glycine dipeptide (ACE-GLY-NME) capped with an 

N-acetyl (ACE) group at the N-terminal, and an N-methylamide (NME) group at the C-

terminal. For example, Figure 5.1A shows the Gly2:Gly2 oligomer. 

The interaction energy IE(Glym: Glyn)  between Glym and Glyn of the Glym:Glyn 

oligomer can be calculated by the following equation 

IE(Glym: Glyn)  = E(Glym: Glyn) − E(Glym) − E(Glyn) (5.21) 

where E(Glym: Glyn) is the potential energy of the entire Glym:Glyn oligomer, and E(Glym), 

E(Glyn) are the potential energies of isolated Glym and Glyn, respectively. 

More importantly, we intend to study the many-body effects in the Glym:Glyn 

oligomer, specifically, the influence of the neighboring glycine dipeptides Glym-1 and Glyn-1 

upon the interaction between the two middle glycine dipeptides Gly:Gly in the Glym:Glyn 
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oligomer. Here we define the many-body interaction energy ME(Glym: Glyn)  as the 

difference between IE(Glym: Glyn) and IE(Gly: Gly). That is 

ME(Glym: Glyn) = IE(Glym: Glyn) − IE(Gly: Gly) (5.22) 

Taking the Gly2:Gly2 oligomer in Figure 5.1A as an example, the difference between 

IE(Gly2: Gly2) and IE(Gly: Gly) of the two middle peptides (displayed in brown) is the many-

body interaction energy ME(Gly2: Gly2)  caused by the presence of the two neighboring 

peptides (displayed in cyan). 

The many-body interaction energy ME(Glym: Glyn) can be decomposed into the non-

additive contribution MENA(Glym: Glyn) and additive contribution MEA(Glym: Glyn). Before 

showing their formulas, we first need to define the interaction energies of the two middle 

peptides IEmid(Glym: Glyn) in the presence of the neighboring peptides Glym-1 and Glyn-1 

IEmid(Glym: Glyn) = IE(Glym: Glyn) − IE(Glym: XGlyn−1)

−IE(Glym−1X: Glyn) + IE(Glym−1X: XGlyn−1) (5.23)
 

where X indicates the absence of either one of the two middle peptides. IE(Glym: XGlyn−1) is 

the interaction energy between Glym and the neighboring peptides Glyn-1; IE(Glym−1X: Glyn) 

is the interaction energy between the neighboring peptides Glym-1 and Glyn; and 

IE(Glym−1X: XGlyn−1) is the interaction energy between the neighboring peptides Glym-1 and 

Glyn-1 on both sides. Then we have the formulas of MENA(Glym: Glyn) and MEA(Glym: Glyn), 

the proof of which can be found in the Appendix A 

MENA(Glym: Glyn) = IEmid(Glym: Glyn) − IE(Gly: Gly) (5.24) 

MEA(Glym: Glyn) = ME(Glym: Glyn) − MENA(Glym: Glyn) (5.25) 
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For the Gly2:Gly2 oligomer example, Figure 5.1B shows the oligomer Gly2:XGly with 

the interaction energy IE(Gly2: XGly); Figure 5.1C shows the oligomer GlyX:Gly2 with the 

interaction energy IE(GlyX: Gly2); and Figure 5.1D shows the oligomer GlyX:XGly with the 

interaction energy IE(GlyX: XGly). The interaction energy of the two middle peptides in the 

presence of the neighboring peptides is IEmid(Gly2: Gly2) = IE(Gly2: Gly2) −

IE(Gly2: XGly) − IE(GlyX: Gly2) + IE(GlyX: XGly) . The non-additive and additive 

contributions to the many-body interaction energy ME(Gly2: Gly2) are MENA(Gly2: Gly2) =

IEmid(Gly2: Gly2) − IE(Gly: Gly)  and MEA(Gly2: Gly2) = ME(Gly2: Gly2) − MENA(Gly2: Gly2) , 

respectively. 

For additive force fields, MENA(Glym: Glyn)  is guaranteed to be zero, so that 

ME(Glym: Glyn)  is equivalent to MEA(Glym: Glyn) ; while for polarizable force fields, 

MENA(Glym: Glyn) is non-zero, so that ME(Glym: Glyn) has both additive and non-additive 

contributions. 

 



 

169 
 

 

Figure 5.1. Glycine dipeptide oligomers (in the parallel -sheet conformation) used to 

calculate the interaction energy, many-body interaction energy, and the non-additive and 

additive contributions to the many-body interaction of the Gly2:Gly2 oligomer. For each 

oligomer, the interaction energies between glycine dipeptides above and below the dashed 

line are calculated using eq 5.21. A. Gly2:Gly2, B. Gly2:XGly, C. GlyX:Gly2, D. GlyX:XGly. Refer 

to section 5.2 for detailed descriptions. 

 

5.3. Computational Details 

5.3.1. Geometry Preparations 

The formamide dimer and three glycine dipeptide dimers were used to select density 

functional theory (DFT) methods for subsequent QM energy calculations. The formamide 

dimer was first arranged into hydrogen bonding conformation, and the geometry was 
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optimized at the B3LYP/6-311++G(d, p) level of theory. A total of fifteen glycine dipeptide 

oligomers were constructed. First, three glycine dipeptide dimers were configured and 

arranged into -helix, anti-parallel -sheet and parallel -sheet hydrogen bonding 

conformations observed in proteins. Then, the geometries were optimized at the B3LYP/6-

311++G(d, p) level of theory with the mainchain torsion angles fixed at (, ) = (-57°, -47°), 

(-140°, 135°) and (-119°, 113°), corresponding to the -helix, anti-parallel -sheet, and 

parallel -sheet conformations, respectively. Higher-order oligomers were constructed from 

these three optimized dimers by rigid-body translations and rotations. For example, to 

produce a Gly3:Gly3 dipeptide hexamer (in the conformation of an interacting pair of trimers) 

while maintaining the central dimer in the optimized conformation, both dipeptides of the 

Gly:Gly dimer are rotated and moved towards both sides along the hydrogen-bond direction. 

The structures of formamide dimer and glycine dipeptide oligomers are presented in 

Figures S5.1-5.6. 

 

5.3.2. Quantum Mechanical Calculations 

Three DFT methods were tested to calculate the QM interaction energies of the 

formamide dimer and the glycine dipeptide dimers, including B97X-D,56 M062X,57 and 

B3LYP,58-59 all with the aug-cc-pVTZ basis set. The basis set superposition errors (BSSEs) 

were corrected through the counterpoise corrections.60 To select the most suitable DFT 

method for our systems, the CCSD(T)/CBS interaction energies IECCSD(T)/CBS were calculated 

as the reference energies using Helgaker’s extrapolation method.61-62 First, the HF and MP2 

interaction energies were calculated with aug-cc-pVTZ (aTZ) and aug-cc-pVQZ (aQZ) basis 
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sets, and the correlation (CORR) energies IECORR were defined as the difference between the 

MP2 and HF energies IECORR = IEMP2 − IEHF. Next, IEHF/CBS and IECORR/CBS were calculated 

using the following equations 

IEHF/CBS =
IEHF/aTZ × exp(−1.63 × 4) − IEHF/aQZ × exp(−1.63 × 3)

exp(−1.63 × 4) − exp(−1.63 × 3)
(5.26) 

IECORR/CBS =
IECORR/aTZ × 33 − IECORR/aQZ × 43

33 − 43
(5.27) 

and IEMP2/CBS can be calculated as 

IEMP2/CBS = IEHF/CBS + IECORR/CBS (5.28) 

Note that the average of IEMP2/CBS with and without counterpoise corrections was 

used as the final IEMP2/CBS . Finally, IECCSD(T)/CBS  were calculated by adding a CCSD(T) 

correction calculated at a small basis set to the averaged IEMP2/CBS 

IECCSD(T)/CBS = IEMP2/CBS + (IECCSD(T) − IEMP2)small basis set (5.29) 

For formamide dimers, aug-cc-pVTZ was used as the small basis set; for glycine dipeptide 

dimers, cc-pVDZ was used as the small basis set. 

Following the strategy that has been successfully used in Amber force field 

development in which the partial charges were fit to QM electrostatic potentials (ESPs), the 

QM ESPs were calculated at the MP2/aug-cc-pVTZ level of theory for a set of points in the 

solvent-accessible region around each glycine dipeptide molecule in the -helix, anti-parallel 

-sheet, and parallel -sheet conformations. The points were generated using the method 

developed by Singh et al. on molecular surfaces (with a density of 6 points/Å2) at each of 1.4, 
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1.6, 1.8 and 2.0 times the van der Waals radii.63-64 All QM calculations were performed using 

the Gaussian 16 software.65 

 

5.3.3. pGM Parameterizations 

To assess the robustness of the pGM models against errors in polarizability 

parameterization, four sets of atomic polarizabilities were employed to parameterize the 

pGM models, including the pGM polarizabilities,45 the pGM polarizabilities scaled by a factor 

of 0.9, the Amoeba polarizabilities,26 and the ff12pol polarizabilities,22 for a combined total 

of two pGM models and six variants. The recently developed PyRESP program was used to 

parameterize the point charges and permanent point dipoles of the glycine dipeptide 

molecule for the pGM-perm and pGM-ind models, and a two-stage parameterization 

procedure was adopted.52 In the first stage, all charges and permanent dipoles were set free 

to change, and a weak restraining strength 0.0005 was applied. In the second stage, intra-

molecular equivalencing was enforced on all charges and permanent dipoles that share 

identical chemical environment with others, such as those of methyl and methylene 

hydrogens. A stronger restraining strength 0.001 was applied, and all other fitting centers 

were set frozen to keep the values obtained from the first stage. In both stages, the restraints 

were only applied to non-hydrogen heavy atoms. Only the total charge constraint was 

enforced in the parameterization process, and no additional intra-molecular charge 

constraint was applied. Inter-molecular equivalencing was enforced in both the first and the 

second stages for the three conformations of glycine dipeptides. For the parameterizations 
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of both the pGM-perm and pGM-ind models, both 1-2 and 1-3 polarization interactions were 

included for reasons elucidated before.45, 66 

The parameters of bonded terms (bond stretching terms, angle bending terms, 

dihedral angle torsion terms) and the van der Waals terms for both the pGM-perm and pGM-

ind models were obtained from the ff12pol force field without any change.25  

 

5.3.4. Molecular Mechanics Calculations 

Seven force fields were explored for calculating the molecular mechanics energies of 

glycine dipeptide oligomers, including four polarizable force fields: pGM-perm, pGM-ind, 

ff12pol,22-25 and Amoeba13,28 and three additive force fields: ff19SB,7 ff15ipq54 and ff03.55 

The parameter and topology files for the Amber force fields (pGM-perm, pGM-ind, ff12pol, 

ff19SB, ff15ipq and ff03) were generated using the tleap program from the AmberTools22 

program suite.53 The coordinate files for the Amber force fields and the .xyz files for the 

Amoeba13 force field were generated from the geometries optimized by the Gaussian 16 

software.65 The single point energies of the Amber force fields were calculated by the sander 

program with extensions to accommodate the pGM models.46, 53 The dynamic program from 

the Tinker 8.6.1 software package was used to calculate the single point energies of the 

Amoeba13 force field.67 All nonbonded interactions were calculated in gas phase without 

distance cutoff. 

The performance of each force field in each energy calculation task was evaluated by 

the root-mean-squared-error (RMSE) and mean-absolute-error (MAE), given by 
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RMSE = √∑ (Ei
QM − Ei)

2
N
i=1

N
(5.30) 

MAE =
∑ |Ei

QM − Ei|
N
i=1

N
(5.31) 

where Ei
QM  is the energy given by QM calculations, and Ei  is the energy calculated by 

molecular mechanics force fields. 

 

5.4. Results and Discussion 

5.4.1. B97X-D without Counterpoise Correction Most Accurately Reproduces 

CCSD(T)/CBS Interaction Energies  

There have been numerous works documenting the performances of various DFT 

methods in their ability to model the dispersion effect. Among these DFT methods, B97X-

D56 and M062X57 exhibit great trade-offs between computation speed and accuracy.68 One 

observation is that the accuracy of DFT methods depends on the particular molecular 

systems being studied. To determine which one of these DFT methods is the most suitable to 

our systems, we compared the interaction energies of the formamide dimer and the glycine 

dipeptide dimers obtained from three DFT methods, including B97X-D,56 M062X,57 and 

B3LYP,58-59 with those calculated at the CCSD(T)/CBS level of theory, which have been 

considered as the “gold standard” of computational chemistry. Table 5.1 shows the 

interaction energies calculated with these DFT methods with and without counterpoise BSSE 

corrections. We can see that the interaction energies by B97X-D without counterpoise 
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correction are the closet to the CCSD(T)/CBS results (eq 5.29), with an RMSE of 0.17 

kcal/mol and an MAE of 0.12 kcal/mol. Not surprisingly, B3LYP interaction energies 

consistently exhibit the highest deviations with CCSD(T)/CBS results, since B3LYP lacks 

proper consideration of dispersion contributions. Without counterpoise corrections, the 

RMSEs of M062X and B3LYP are 0.32 and 3.37 kcal/mol, respectively and the MAEs are 0.30 

and 3.12 kcal/mol, respectively. With counterpoise corrections, the RMSEs of B97X-D, 

M062X and B3LYP are 0.31, 0.71 and 3.70 kcal/mol, respectively and the MAEs are 0.29, 0.67 

and 3.42 kcal/mol, respectively. Therefore, for the formamide dimer and the glycine 

dipeptide dimers, B97X-D without counterpoise BSSE correction best reproduces the 

CCSD(T)/CBS interaction energies. For this reason, B97X-D without counterpoise 

correction was chosen as the QM reference method to evaluate various molecular 

mechanical force fields in the following discussions. 

 

Table 5.1. The Quantum Mechanical Interaction Energies of the Formamide Dimer and the 

Glycine Dipeptide Dimers Calculated by the CCSD(T)/CBS and Density Functional Theory 

Methods (kcal/mol) 

 

a The formula for the CCSD(T)/CBS interaction energies is shown in eq 5.29. b noCP means 

no counterpoise BSSE corrections; CP means with counterpoise BSSE corrections. c R, a, 
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and  represent -helix, anti-parallel -sheet, and parallel -sheet conformations, 

respectively. d The values in parentheses are differences between the values calculated by 

DFT methods and corresponding values calculated by the CCSD(T)/CBS method. 

 

5.4.2. pGM Models Show the Best Performances in Interaction Energy Calculations 

Listed in Table 5.2 are the interaction energies calculated at the B97X-D/aug-cc-

pVTZ level of theory without counterpoise corrections, and seven molecular mechanical 

force fields. The interaction energies IE(Glym: Glyn) between Glym and Glyn of the Glym:Glyn 

oligomers were calculated following eq 5.21 without consideration of the deformation 

energies to avoid complications in energy calculations that may arise from structural 

changes. The interaction energies calculated by the B97X-D method exhibit an increasing 

trend in the order of Gly:Gly, Gly:Gly2, Gly:Gly3, Gly2:Gly2, Gly3:Gly3 for all three 

conformations. It is notable that IE(Gly3: Gly3) is 11.00 kcal/mol stronger than IE(Gly: Gly) 

in the -helix conformation. In comparison, for the anti-parallel -sheet and parallel -sheet 

conformations, IE(Gly3: Gly3) are only 3.50 and 4.11 kcal/mol stronger than IE(Gly: Gly) , 

respectively. The larger difference of the -helix conformation is attributable to the strong 

polarization effect caused by the alignments of the main chain peptide hydrogen bonds. 

Another observation is that although Gly:Gly3 and Gly2:Gly2 are both tetramers, Gly2:Gly2 

consistently show stronger interaction energies than Gly:Gly3 in all three conformations. 

This shows that the inner parts of peptide secondary structures are expected to have 

stronger mainchain hydrogen bonding than the outer parts. 
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The interaction energies calculated by the pGM-perm and pGM-ind models stand out 

as the closest to the DFT results, with RMSEs of 1.35 and 1.37 kcal/mol, respectively. The 

similarity between the performances of the pGM-perm and pGM-ind models indicates that, 

with the pGM damping schemes, the induced dipoles are sufficient for calculating the 

interaction energies of glycine dipeptides. The next best performance is given by the ff15ipq 

force field with an RMSE of 1.87 kcal/mol, which is an additive force field whose charges 

were fit to the ESP of peptides in the presence of explicit solvent water.54 The polarizable 

force field ff12pol, the additive force field ff19SB, and the polarizable force field Amoeba13 

are ranked forth to sixth, with RMSE of 2.28, 2.67, and 2.91 kcal/mol, respectively. The 

observation that Amoeba13 performs worse than ff12pol in this test set is somewhat 

surprising, given that Amoeba13 is such an elaborate force field that includes atomic 

permanent dipoles and quadrupoles, in addition to the polarizable induced dipoles.26, 28 In 

contrast, the ff12pol force field is a minimalist polarizable induced dipole force field with 

neither permanent dipoles nor quadrupoles.22-25  

Another interesting observation is that, compared with the B97X-D results, the 

pGM-perm and pGM-ind models systematically overestimate the interaction energies 

IE(Glym: Glyn). On average, pGM-perm and pGM-ind overestimate the interaction energies 

by 1.32 and 1.34 kcal/mol, respectively. Also interesting is the consistency of the deviations 

between the interaction energies of B97X-D and the pGM models across different 

conformations. Since the mainchain hydrogen bonds contribute to peptide secondary 

structure formations, the balance across different conformations can influence the peptide 

secondary structure preference and the capability of modeling relative strength of different 

hydrogen bonding systems and in peptide mainchain secondary structures. In this regard, 
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both pGM models show good balance and their differences in the interaction energies are 

about the same magnitude across the three conformations, with pGM-perm exhibiting 

slightly better consistency than pGM-ind. For example, the Gly:Gly interaction energies are 

overestimated by 1.48 to 1.88 kcal/mol by pGM-perm and overestimated by 1.36 to 1.92 

kcal/mol by pGM-ind. In contrast, all other force fields show non-uniform deviations across 

different conformations. Taking ff12pol as an example, the largest deviation of interaction 

energies among the three conformations consistently come from the oligomers in the -helix 

conformation. For Amoeba13, the deviations of -helix and parallel -sheet conformers are 

comparable, whereas the deviations of anti-parallel -sheet conformer is notably smaller. 

Since uniform deviations across different conformers naturally avoid introducing 

conformational bias, it is much more preferred than non-uniform deviations. Furthermore, 

when taking all Glym:Glyn oligomers into account, the deviations of interaction energies 

range between -0.96 and -1.88 kcal/mol for pGM-perm, and between -0.90 to -1.92 kcal/mol 

for pGM-ind, which are more consistent than other force fields. On the other hand, all other 

force fields (except ff15ipq) exhibit a tendency of growing deviations with increasing size of 

oligomers, suggesting that they underestimate the many-body interactions when there are 

multiple peptides in the oligomers. Therefore, it is encouraging that the pGM models 

outperform all other five force fields in terms of interaction energy calculations across 

oligomers with different conformations and with different sizes. 

 

Table 5.2. The Interaction Energies IE(Glym: Glyn) of Glycine Dipeptide Oligomers Glym:Glyn 

Calculated by B97X-D/aTZ and Molecular Mechanical Force Fields (kcal/mol)a 
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a The formula for the interaction energies IE(Glym: Glyn) is shown in eq 5.21. b R, a, and  

represent -helix, anti-parallel -sheet, and parallel -sheet conformations, respectively. c 

The maximum and minimum deviations with B97X-D/aTZ results. c The values in 

parentheses are differences between the values calculated by molecular mechanical force 

fields and corresponding values calculated by the B97X-D/aTZ method. 

 

5.4.3. pGM Models Most Accurately Reproduce QM Many-Body Interaction Energies 

Subtracting corresponding rows of the Gly:Gly dimers from other rows in Table 5.2 

gives Table 5.3, which lists the many-body interaction energies ME(Glym: Glyn) calculated 

by the seven force fields compared with those calculated by the B97X-D method. The many-

body interaction energies defined in eq 5.22 describe the overall (additive and non-additive) 

contributions from the neighboring glycine dipeptides (Glym-1 and Glyn-1, excluding the 
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Gly:Gly at the interface) to the dimerization energy at the interface of Glym: Glyn . As shown 

in the B97X-D results, the many-body interaction energies again increase in the order of 

Gly:Gly2, Gly:Gly3, Gly2:Gly2, Gly3:Gly3 for all the three conformations. Comparing oligomers 

in the anti-parallel and parallel -sheet conformations, we can see that the addition of outer 

peptides does not significantly increase the many-body interactions. Thus, the cross-strand 

effects in the -sheet conformations are mainly limited to those in close contact and diminish 

rather quickly with distance. For the -helix conformation, notably stronger many-body 

interaction is observed, because the hydrogen bonds are aligned in the same directions. An 

interesting observation is that the many-body interaction energy of tetramer Gly:Gly3 is only 

marginally stronger than that of trimer Gly:Gly2 by 1.16 kcal/mol, which is much smaller 

increase compared to the 4.21 kcal/mol increase of tetramer Gly2:Gly2. By adding one more 

peptide at each side, the many-body interaction energy of hexamer Gly3:Gly3 becomes 

stronger by 3.62 kcal/mol than that of tetramer Gly2:Gly2. Therefore, for the -helix 

conformation, in contrast to the marginal effect of adding peptides to one side of the 

interface, symmetric addition makes the interaction at the interface significantly stronger, 

so that much stronger many-body interaction is expected in the inner part of -helices. 

Therefore, the outer and inner parts of -helices could have considerably different 

stabilities. This effect could be significant in non-polar environments such as 

transmembrane proteins. 

Among the seven force fields tested, pGM-perm and pGM-ind again show the lowest 

RMSEs (0.40 and 0.38 kcal/mol, respectively) and the lowest MAEs (0.37 and 0.35 kcal/mol, 

respectively), making them the best force fields in terms of many-body interaction energy 
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calculations. It is encouraging that the RMSEs and MAEs of both pGM models are lower than 

the thermal fluctuation energy of 0.60 kcal/mol at 300K. Similar to the case of interaction 

energy calculations, both pGM models give similar performances in terms of many-body 

interaction energy calculations. This indicates a potential advantage of the ESP fitting 

strategy employed for pGM parameterizations. Both the interaction energies and many-body 

interaction energies between molecules are largely dependent on the electrostatic 

interactions, and the ESP surrounding molecules are one of the most important electrostatic 

properties. Since both the pGM-ind and pGM-perm models are able to reproduce QM ESPs 

with low errors,52 it is expected that both models can accurately reproduce QM interaction 

energies and many-body interaction energies, therefore giving similar performances. 

The next best performing force field is the Amoeba13 force field, which exhibits the 

largest improvement compared with interaction energy calculations in Table 5.2, with the 

RMSE reduced from 2.91 kcal/mol to 1.16 kcal/mol. The significant improvement of 

Amoeba13 shows that the short-range interactions are the main cause of the large errors 

observed in the interaction energies. The ff12pol force field is ranked the third best 

performing force field, with an RMSE of 1.62 kcal/mol. It is remarkable that all polarizable 

force fields perform better than all additive force fields. In fact, all additive force fields 

notably underestimate the many-body interactions by more than 2.00 kcal/mol. Among the 

additive force fields tested, ff15ipq once again shows the best performance, with an RMSE of 

2.04 kcal/mol. However, this RMSE is slightly higher than that of interaction energies (1.87 

kcal/mol) given by ff15ipq. 
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Another observation in Table 5.3 is that all force fields consistently underestimate 

the many-body interaction energies ME(Glym: Glyn)  when compared with the B97X-D 

results. For the pGM models, this is in sharp contrast to the systematic overestimations in 

the interaction energies  IE(Glym: Glyn) as shown in Table 5.2, indicating that the long-range 

terms are still under-represented in the pGM models. Moreover, this suggests that the 

overestimations of IE(Glym: Glyn) of the pGM models are primarily due to the short-range 

van der Waals terms. Because of this, we anticipate that the present van der Waals 

parameters, which were taken directly from ff12pol without optimization, need to be tuned 

to make the short-range terms less attractive. For Amoeba13 and ff12pol, however, since 

their IE(Glym: Glyn)  and ME(Glym: Glyn)  are systematically weaker than the B97X-D 

results and the errors in IE(Glym: Glyn) are larger than ME(Glym: Glyn), it appears that these 

two force fields could be improved by strengthening both their short-range and polarization 

terms. 

Similar to the case of interaction energies, the underestimations of the pGM models 

compared to B97X-D across different conformations and across different oligomers are 

consistent, which range between 0.17 and 0.61 kcal/mol for pGM-perm, and between 0.15 

to 0.59 kcal/mol for pGM-ind. In contrast, all other force fields once again show non-uniform 

deviations across different conformations, and the deviations increase with the size of 

oligomers. It is notable that the additive ff15ipq force field, which exhibit relatively 

consistent deviations in terms of interaction energies, also show gradually increasing 

deviations with the oligomer size in terms of many-body interaction energies. Based on 

above observations, we conclude that the polarization effects play critical roles in the many-
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body interactions, and the additive force fields are, in general, incapable of modeling them 

accurately. 

 

Table 5.3. The Many-Body Interaction Energies ME(Glym: Glyn)  of Glycine Dipeptide 

Oligomers Glym:Glyn Calculated by B97X-D/aTZ and Molecular Mechanical Force Fields 

(kcal/mol)a, b 

 

a The formula for the many-body interaction energies ME(Glym: Glyn) is shown in eq 5.22. b 

See Table 5.2 and text for notation. 

 

5.4.4. pGM Models Perform the Best in Reproducing QM Non-additive and Additive 

Contributions to the Many-Body Interactions 

The many-body interaction energies in Table 5.3 depends on the non-bonded terms 

in the functional form of each molecular mechanical force fields. For additive force fields such 
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as Amber ff19SB, ff15ipq and ff03, the many-body interactions only have contributions from 

the additive electrostatic and van der Waals terms. In polarizable force fields ff12pol and 

pGM-ind, the non-additive induced dipole polarization energy is also involved. The pGM-

perm model has additional energy contributions from atomic permanent dipoles, and the 

Amoeba13 force field also has contributions from atomic permanent quadrupoles, which are 

both additive terms. It is difficult to decipher which of these terms play more important role 

if we just look at the total many-body interaction energies shown in Table 5.3. Therefore, 

we decompose the many-body interaction energies into non-additive and additive 

contributions to gain insight into these force fields. For each Glym:Glyn oligomer, the formulas 

of the non-additive contributions MENA(Glym: Glyn)  and the additive contributions 

MEA(Glym: Glyn)  are given in eq 5.24 and eq 5.25, respectively. The proof of the 

decomposition is shown in the Appendix A. Note that the functional forms of additive force 

fields only have additive terms, so that the non-additive contribution MENA(Glym: Glyn) of 

any additive force field is guaranteed to be zero. For this reason, we will only compare the 

performances of polarizable force fields pGM-perm, pGM-ind, Amoeba13, and ff12pol in this 

section. 

The interaction energies of the two peptides at the interface, IEmid(Glym: Glyn), in the 

presence of the neighboring peptides Glym-1 and Glyn-1 defined in eq 5.23, calculated by the 

seven force fields and by B97X-D are shown in Table S5.1. For additive force fields, the 

values will be identical to those of IE(Gly: Gly) in absence of neighboring peptides Glym-1 and 

Glyn-1 as shown in Table 5.2, if listed. For polarizable force fields, a trend similar to that in 

Table 5.2 is observed. First, the pGM-perm and pGM-ind models outperform the other two 

polarizable force fields, with RMSEs of 1.39 and 1.43 kcal/mol, respectively. The RMSEs of 
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the Amoeba13 force field and the ff12pol force field are 2.54 and 1.69 kcal/mol, respectively. 

Second, compared with the B97X-D results, the pGM-perm and pGM-ind models 

systematically overestimate the interaction energies (by 1.37 and 1.41 kcal/mol, 

respectively), whereas both Amoeba13 and ff12pol underestimate (by 2.31 and 1.18 

kcal/mol, respectively). Third, the deviations between the interaction energies given by 

B97X-D and the pGM models across different conformations and different oligomers are 

highly consistent. For pGM-perm, the largest spread (0.41 kcal/mol) comes from Gly:Gly3 

between the anti-parallel -sheet (-1.25 kcal/mol) and parallel -sheet (-1.66 kcal/mol) 

conformers. For pGM-ind, the largest spread (0.56 kcal/mol) is between the -helix (-1.36 

kcal/mol) and parallel -sheet (-1.92 kcal/mol) conformers of Gly:Gly. Overall, the 

deviations range between -1.02 and -1.88 kcal/mol for pGM-perm, and between -1.15 to -

1.92 kcal/mol for pGM-ind, for all five oligomers and all three conformations. Whereas 

Amoeba13 and ff12pol show non-uniform deviations across different conformations, and 

these deviations tend to increase with the size of oligomers. 

As shown in the Appendix A, the many-body interaction energies ME(Glym: Glyn) can 

be decomposed to the non-additive contributions MENA(Glym: Glyn) defined in eq 5.24 and 

the additive contributions MEA(Glym: Glyn) defined in eq 5.25. Table 5.4 shows the non-

additive contributions MENA(Glym: Glyn) of B97X-D and the four polarizable force fields 

obtained by subtracting corresponding rows of the Gly:Gly dimers from other rows in Table 

S5.1, and Table 5.5 shows the additive contributions MEA(Glym: Glyn)  obtained by 

subtracting the corresponding non-additive contributions MENA(Glym: Glyn)  from the 

many-body interaction energies ME(Glym: Glyn)  in Table 5.3. For non-additive 
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contributions MENA(Glym: Glyn), pGM-ind produces the lowest RMSE (0.30 kcal/mol) among 

all four polarizable force fields, and pGM-perm is the second best, with an RMSE of 0.33 

kcal/mol. However, for additive contributions MEA(Glym: Glyn) , pGM-perm performs the 

best with an RMSE of 0.09 kcal/mol, and pGM-ind is the second best with an RMSE of 0.10 

kcal/mol. The significantly lower RMSEs of the additive contributions of the pGM models 

than other polarizable force fields show the robustness of the ESP fitting scheme of PyRESP 

since the additive contribution is mainly due to the interactions involving fixed point charges 

and permanent dipoles.52 For both non-additive and additive contributions, the ff12pol force 

field gives the worst performance, with RMSEs of 0.95 kcal/mol and 0.72 kcal/mol for the 

non-additive and additive contributions, respectively. Amoeba13 yields RMSEs of 0.59 

kcal/mol for both the non-additive and additive contributions, which are better than ff12pol 

in terms of both contributions, but still notably worse than the pGM models. 

Interestingly, compared with the B97X-D results, all four polarizable force fields 

underestimate both the non-additive and additive contributions to varying degrees. As 

measured by MAE, the non-additive contributions are underestimated by 0.30, 0.27, 0.54, 

and 0.85 kcal/mol by pGM-perm, pGM-ind, Amoeba13 and ff12pol, respectively, and the 

additive contributions are underestimated by 0.06, 0.08, 0.42, and 0.46 kcal/mol by pGM-

perm, pGM-ind, Amoeba13 and ff12pol, respectively. Therefore, MAEs show the same 

performance trend as RMSEs, where pGM-ind performs the best for calculating the non-

additive contributions, and pGM-perm performs the best for calculating the additive 

contributions. The consistent underestimations could potentially come from two sources: 

inadequate short-range damping and smaller-than-needed polarizabilities, both of which 

may be improved by further parameterizations. Encouragingly, the pGM models again 
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exhibit consistent deviations from the B97X-D results for both contributions across 

different conformations and different sized oligomers. For the pGM-perm model, the 

deviations range between 0.12 and 0.52 kcal/mol for the non-additive contributions, and 

between 0.01 to 0.22 kcal/mol for the additive contributions; For the pGM-ind model, the 

deviations range between 0.09 and 0.49 kcal/mol for the non-additive contributions, and 

between 0.02 to 0.25 kcal/mol for the additive contributions. In contrast, Amoeba13 and 

ff12pol show significant variances in the deviations from the B97X-D results for both non-

additive and additive contributions across different conformations. Overall, Table 5.4-5.5 

show that, compared with the other two polarizable force fields tested here, the pGM models 

(with or without permanent atomic dipoles) perform the best in terms of reproducing QM 

non-additive and additive contributions to the many-body interaction energies. 

 

Table 5.4. The Non-additive Contributions MENA(Glym: Glyn) to the Many-Body Interaction 

Energies of Glycine Dipeptide Oligomers Glym:Glyn Calculated by B97X-D/aTZ and 

Polarizable Force Fields (kcal/mol)a, b 
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a The formula for the non-additive contributions MENA(Glym: Glyn)  to the many-body 

interaction energies is shown in eq 5.24. b See Table 5.2 and text for notation. 

 

Table 5.5. The Additive Contributions MEA(Glym: Glyn)  to the Many-Body Interaction 

Energies of Glycine Dipeptide Oligomers Glym:Glyn Calculated by B97X-D/aTZ and 

Polarizable Force Fields (kcal/mol)a, b 
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a The formula for the additive contributions MEA(Glym: Glyn) to the many-body interaction 

energies is shown in eq 5.25. b See Table 5.2 and text for notation. 

 

5.4.5. pGM Models are Robust with Altered Atomic Polarizabilities 

Because of the inherent approximations to either experimental observations or QM 

calculations, all mechanical force fields are subject to errors that can come from both the 

functional forms and parameterization processes. In the development of Amber force fields, 

a consistent electrostatic parameterization approach is to fit the QM calculated ESPs of small 

molecules or fragments of large molecules to obtain atomic charges and multipoles. 

Technically, this approach is rather straightforward and allow development of consistent 

parameters across a wide variety of chemistry. In the cases of polarizable force fields, 

another advantage is that the errors in the initial fitting of polarizabilities can be partially 

compensated at the stage when charges and permanent multipoles are calculated, yielding a 

more robust force field. This feature is potentially advantageous because of the non-linear 

nature of the polarization energy. 

In our previous work, the pGM atomic polarizabilities and radii were obtained by 

fitting QM molecular polarizability tensors of 1405 molecules or dimers.45 In this chapter, 

we further evaluated the robustness of the pGM models by re-parameterizing the glycine 

dipeptide charges and permanent dipoles using the recently developed PyRESP program,52 

with the alternative polarizabilities including the pGM polarizabilities scaled by a factor of 

0.9, the Amoeba13 polarizabilities,26 and the Amber ff12pol polarizabilities.22 These 

alternative polarizability sets are either scaled or taken from different sources and have been 
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developed for different polarization schemes. Therefore, we expect that the energies related 

to polarization calculated with these three polarizability sets be less accurate than those 

produced by the pGM models with original pGM polarizabilities shown in Table 5.2-5.5. Our 

objective is to see whether these “wrong” polarizabilities would lead to intolerable errors in 

energy calculations. 

The interaction energies IE(Glym: Glyn)  as well as the many-body interaction 

energies ME(Glym: Glyn) of each Glym:Glyn oligomer of the pGM-perm and pGM-ind models 

calculated with the alternative polarizabilities are shown in Table 5.6 and Table S5.2, 

respectively. Interestingly, for both pGM models, the “wrong” polarizabilities produce 

interaction energies IE(Glym: Glyn) with lower RMSEs compared with those obtained by the 

“correct” pGM polarizabilities shown in Table 5.2. For the pGM-perm model, the overall 

RMSE of interaction energies decreased from 1.35 kcal/mol to 0.80, 0.82, and 0.62 kcal/mol 

for the scaled pGM, Amoeba13, and ff12pol polarizabilities, respectively. For the pGM-ind 

model, the overall RMSE of interaction energies decreased from 1.37 kcal/mol to 0.81, 0.97, 

and 0.57 kcal/mol for the scaled pGM, Amoeba13, and ff12pol polarizabilities, respectively. 

The higher RMSEs associated with the “correct” pGM polarizabilities compared with that of 

the “wrong” polarizabilities might be explained by the fact that the van der Waals parameters 

for the pGM models were taken directly from the ff12pol force field without any 

optimization. As shown in Table 5.2, with the original polarizabilities, both pGM-perm and 

pGM-ind overestimate the interaction energies. Since the interaction energies can be 

decomposed to the electrostatic and van der Waals contributions, the overestimation in the 

interaction energies can be explained by the overestimation of the van der Waals term in the 

current pGM models. Specifically, the dispersion effect of the van der Waals term might be 
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too attractive. As shown in Table 5.6 and Table S5.2, the amount of overestimation in the 

interaction energies is reduced with the alternative polarizabilities, indicating weaker 

electrostatic attractions. Consequently, the overestimation of the van der Waals term is 

compensated by the underestimation of the electrostatic term with the alternative 

polarizabilities, leading to lower overall RMSEs. Therefore, there is a need to re-

parameterize the van der Waals terms, and we anticipate the pGM models with re-

parameterized van der Waals terms will give interaction energies with better agreement 

with QM results than those with the “wrong” polarizabilities. 

In contrast to the interaction energies IE(Glym: Glyn), as expected, the many-body 

interaction energies ME(Glym: Glyn)  calculated by the pGM models with the “wrong” 

polarizabilities are consistently worse than those with the “correct” pGM polarizabilities 

shown in Table 5.3. For the pGM-perm model, the overall RMSE of the many-body 

interaction energies increased from 0.40 kcal/mol to 0.70, 0.69, and 1.11 kcal/mol for the 

scaled pGM, Amoeba13, and ff12pol polarizabilities, respectively. Similarly, for the pGM-ind 

model, the overall RMSE increased from 0.38 kcal/mol to 0.69, 0.68, and 1.10 kcal/mol for 

the scaled pGM, Amoeba13, and ff12pol polarizabilities, respectively. Remarkably, the many-

body interaction energies produced by the pGM models with alternative polarizabilities 

consistently outperform the Amoeba13 and ff12pol force fields with their respective native 

polarizabilities shown in Table 5.3. With the Amoeba13 polarizabilities, the RMSEs of the 

Amoeba13 force field, the pGM-perm and pGM-ind models are 1.16, 0.69, and 0.68 kcal/mol, 

respectively; with the ff12pol polarizabilities, the RMSEs of the ff12pol force field, the pGM-

perm and pGM-ind models are 1.62, 1.11, and 1.10 kcal/mol, respectively. Because short-

range terms contribute much less to ME(Glym: Glyn)  than to IE(Glym: Glyn) , these 
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improvements are likely attributable to the differences in the treatment of long-range terms, 

including the electrostatic and polarization terms. This shows that the pGM models are 

highly robust in terms of modeling the many-body interactions of peptide mainchain 

hydrogen bonding structures. The improvement is remarkable, given the substantial 

differences among the different force fields in their functional forms of the electrostatic and 

polarization terms. Both the Amoeba13 and ff12pol force fields are based on the Thole 

screening schemes, in which only the cross induction between the induced dipoles is 

screened to avoid polarization catastrophe. In the pGM models, all electrostatic terms are 

represented as Gaussian densities. Consequently, all electrostatic interactions are screened, 

including charge-charge, charge-dipole, and dipole-dipole interactions. The improvement 

observed in this comparison is likely attributable to the inherent consistency of the 

treatment of electrostatic terms in the pGM models. 

The non-additive and additive contributions to the many-body interactions 

calculated by the pGM-perm and pGM-ind models with the alternative polarizabilities are 

shown in Table 5.7 and Table S5.3, respectively. With the scaled pGM polarizabilities, the 

RMSEs of the non-additive contributions of the pGM-perm and pGM-ind models increase 

from 0.33 and 0.30 kcal/mol to 0.60 and 0.58 kcal/mol, respectively. Despite the fact that the 

functional forms of the polarization terms of the pGM models are different from those of the 

Amoeba13 and ff12pol force fields, the non-additive contributions of the pGM models with 

the Amoeba13 and ff12pol polarizabilities are remarkably similar to Amoeba13 and ff12pol 

with their respective native polarizabilities. With the Amoeba13 polarizabilities, the RMSEs 

of the Amoeba13 force field, the pGM-perm and pGM-ind models are 0.59, 0.59, and 0.57 

kcal/mol, respectively; with the ff12pol polarizabilities, the RMSEs of the ff12pol force field, 
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the pGM-perm and pGM-ind models are 0.95, 0.96, and 0.95 kcal/mol, respectively. We 

therefore conclude that the changes in the functional forms in the calculations of induction 

energies from their respective native forms did not lead to intolerable level of error. 

For the additive contribution calculations, the RMSEs of the pGM-perm and pGM-ind 

models with the scaled pGM polarizabilities increase from 0.09 and 0.10 kcal/mol to 0.12 

and 0.13 kcal/mol, respectively, which are essentially unchanged. Remarkably, both pGM 

models with the Amoeba13 and ff12pol polarizabilities notably outperform their respective 

native counterparts (Amoeba13 and ff12pol force fields) in the calculation of the additive 

contributions. With the Amoeba13 polarizabilities, the RMSEs of the Amoeba13 force field, 

the pGM-perm and pGM-ind models are 0.59, 0.12, and 0.13 kcal/mol, respectively; with the 

ff12pol polarizabilities, the RMSEs of the ff12pol force field, the pGM-perm and pGM-ind 

models are 0.72, 0.17, and 0.18 kcal/mol, respectively. In fact, for the additive contribution 

calculations, the RMSEs of both pGM models with the alternative polarizabilities are 

comparable to those with the original polarizabilities. The notably better performance of the 

pGM models with the Amoeba13 and ff12pol polarizabilities than the Amoeba13 and ff12pol 

force fields in the additive contribution calculations suggest that the PyRESP scheme of fitting 

charges and permanent multipoles from QM calculated ESPs is a reliable approach in the 

development of molecular mechanical force fields and has the ability to compensate the 

errors in the initial parameterization of polarizabilities. 
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Table 5.6. The Interaction Energies IE(Glym: Glyn)  and Many-Body Interaction Energies 

ME(Glym: Glyn) of Glycine Dipeptide Oligomers Glym:Glyn Calculated by the pGM-perm Model 

with the Alternative Polarizabilities (kcal/mol)a, b 

 

a See Table 5.2 and text for notation. b The values in parentheses are differences between 

the values calculated by the pGM-perm model with the alternative polarizabilities and 

corresponding values calculated by the B97X-D/aTZ method, which can be found in Table 

5.2 and Table 5.3, respectively. c pGM-perm/scaled, pGM-perm/Amoeba, and pGM-

perm/ff12pol represent the pGM-perm models with the pGM polarizabilities scaled by a 

factor of 0.9, the Amoeba13 polarizabilities and the ff12pol polarizabilities, respectively. 

 

Table 5.7. The Non-additive Contributions MENA(Glym: Glyn) and Additive Contributions 

MEA(Glym: Glyn)  to the Many-Body Interaction Energies of Glycine Dipeptide Oligomers 
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Glym:Glyn Calculated by the pGM-perm Model with the Alternative Polarizabilities 

(kcal/mol)a, b 

 

a See Table 5.6 and text for notation. b The values in parentheses are differences between 

the values calculated by the pGM-perm model with the alternative polarizabilities and 

corresponding values calculated by the B97X-D/aTZ method, which can be found in Table 

5.4 and Table 5.5, respectively. 

 

5.5. Conclusions 

In this chapter, we assessed the capabilities of the recently developed pGM models46-

47 in modeling the many-body interactions of glycine dipeptides mainchain hydrogen 

bonding conformers. Two types of pGM models were considered, including that with (pGM-

perm) and without (pGM-ind) permanent atomic dipoles. The performances of the pGM 

models were compared with several other widely used force fields, including Amoeba13,28 
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ff12pol,22-25 ff19SB,7 ff15ipq54 and ff03.55 The glycine dipeptide oligomers were selected as 

the model systems since glycine has the minimalist side chain so that we can focus on 

mainchain hydrogen bonding interactions. 

We first identified B97X-D/aug-cc-pVTZ without counterpoise BSSE correction as 

the most suitable DFT method for our molecular systems. Compared with other DFT 

methods tested (M062X and B3LYP) with and without counterpoise corrections, B97X-D 

without counterpoise correction produced the interaction energies of the formamide dimer 

and the glycine dipeptide dimers with the best agreement to those calculated at the 

CCSD(T)/CBS level of theory. 

Next, we compared the interaction energies IE(Glym: Glyn)  and many-body 

interaction energies ME(Glym: Glyn) calculated at the B97X-D/aug-cc-pVTZ level of theory 

and those calculated by the seven molecular mechanical force fields. The overall RMSEs of 

the interaction energies and many-body interaction energies of the seven force fields are 

shown in Figure 5.2. Encouragingly, the overall RMSEs of the interaction energies 

IE(Glym: Glyn) calculated by the pGM-perm and pGM-ind models are 1.35 and 1.37 kcal/mol, 

respectively, which significantly outperform other polarizable (Amoeba13, 2.91 kcal/mol; 

ff12pol, 2.28 kcal/mol) and additive (ff19SB, 2.67 kcal/mol; ff15ipq, 1.87 kcal/mol; ff03, 3.78 

kcal/mol) force fields. For the many-body interaction energies ME(Glym: Glyn), the overall 

RMSEs of the pGM-perm and pGM-ind models are 0.40 and 0.38 kcal/mol, respectively. In 

comparison, the RMSEs of other polarizable (Amoeba13, 1.16 kcal/mol; ff12pol, 1.62 

kcal/mol) and additive (ff19SB, 2.45 kcal/mol; ff15ipq, 2.04 kcal/mol; ff03, 2.58 kcal/mol) 

force fields are notably higher than that of the pGM models. In addition, for both interaction 
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energies and many-body interaction energies, the deviations between the B97X-D results 

and the pGM models results across different conformations and oligomers with different 

sizes are highly consistent, while all other force fields exhibit non-uniform deviations across 

different conformations, and these deviations increase with the size of oligomers. Therefore, 

our data show that the pGM models perform the best among all seven tested force fields in 

terms of calculating interaction energy and many-body interaction energy. 

For polarizable force fields, the  many-body interaction energy can be decomposed 

into the non-additive contribution MENA(Glym: Glyn)  and the additive contribution 

MEA(Glym: Glyn), so that we compared both contributions calculated by the four polarizable 

force fields with those of B97X-D calculations. Figure 5.2 shows the overall RMSEs of the 

non-additive and additive contributions to the many-body interaction energies of the four 

polarizable force fields. Encouragingly, the pGM models result in the lowest RMSEs for both 

non-additive (pGM-perm, 0.33 kcal/mol; pGM-ind, 0.30 kcal/mol) and additive (pGM-perm, 

0.09 kcal/mol; pGM-ind, 0.10 kcal/mol) contributions. In comparison, the Amoeba13 force 

field gives RMSEs of 0.59 kcal/mol for both the non-additive and additive contributions. The 

ff12pol force field gives RMSEs of 0.95 kcal/mol for the non-additive contribution, and 0.72 

kcal/mol for the additive contribution. Therefore, the pGM models perform the best among 

all tested polarizable force fields in terms of modeling both the non-additive and additive 

contributions to the many-body interactions. 
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Figure 5.2. Overall RMSEs of the interaction energies IE(Glym: Glyn), many-body interaction 

energies ME(Glym: Glyn) (left) as well as the non-additive contribution MENA(Glym: Glyn) 

and the additive contribution MEA(Glym: Glyn)  to the many-body interaction energies 

(right) of the tested force fields with the B97X-D/aug-cc-pVTZ calculated results. 

 

Finally, we tested the robustness of the pGM models against parameterization errors 

by employing alternative polarizabilities. Interestingly, the pGM models with the alternative 

polarizabilities produce interaction energies with lower RMSEs compared with those 

produced by the original pGM polarizabilities. This might be explained by the fact that the 

current pGM models share identical van der Waals parameters as the ff12pol force field, and 

the overestimation of the van der Waals term is compensated by the underestimation of the 

electrostatic term with the alternative polarizabilities. In future works, the van der Waals 
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parameters of the pGM models will be re-parameterized using similar ways as we did for 

parameterizing the ff12pol force field.25 On the other hand, the pGM models with the 

alternative polarizabilities produce many-body interaction energies as well as the non-

additive and additive contributions to the many-body interactions with higher RMSEs 

compared with those with the original pGM polarizabilities. Even so, both pGM models with 

the alternative polarizabilities still give better or similar performances compared with the 

Amoeba13 and ff12pol force fields. Our data show that the pGM models are robust against 

polarizability errors and perform well even with those “wrong” polarizabilities.  

In summary, this chapter validates that the pGM models have the capabilities to 

accurately model the interaction energies, many-body interaction energies, as well as the 

non-additive and additive contributions to the many-body interactions of peptide mainchain 

hydrogen bonding structures. We expect that the pGM models have the potential to serve as 

templates for developing the next-generation polarizable force fields for modeling various 

polarization-sensitive biological processes. 

 

5.6. Supporting Information 
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Figure S5.1. The formamide dimer hydrogen bonding conformation. 

 

 

Figure S5.2. The Gly:Gly dimer hydrogen bonding conformations. Left: -helix 

conformation; Middle: parallel -sheet conformation; Right: anti-parallel -sheet 

conformation. 
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Figure S5.3. The Gly:Gly2 trimer hydrogen bonding conformations. Left: -helix 

conformation; Middle: parallel -sheet conformation; Right: anti-parallel -sheet 

conformation. 

 

Figure S5.4. The Gly:Gly3 tetramer hydrogen bonding conformations. Left: -helix 

conformation; Middle: parallel -sheet conformation; Right: anti-parallel -sheet 

conformation. 
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Figure S5.5. The Gly2:Gly2 tetramer hydrogen bonding conformations. Left: -helix 

conformation; Middle: parallel -sheet conformation; Right: anti-parallel -sheet 

conformation. 
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Figure S5.6. The Gly3:Gly3 hexamer hydrogen bonding conformations. Left: -helix 

conformation; Middle: parallel -sheet conformation; Right: anti-parallel -sheet 

conformation. 

 

Table S5.1. The Interaction Energies of the Two Middle Peptides IEmid(Glym: Glyn) in the 

Presence of the Neighboring Peptides of Glycine Dipeptide Oligomers Glym:Glyn Calculated 

by B97X-D/aTZ and Polarizable Force Fields (kcal/mol)a, b 
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a The formula for the interaction energies of the two middle peptides IEmid(Glym: Glyn) in 

the presence of the neighboring peptides Glym-1 and Glyn-1 is shown in eq 5.23. b See Table 

5.2 and text for notation. 

 

Table S5.2. The Interaction Energies IE(Glym: Glyn) and Many-Body Interaction Energies 

ME(Glym: Glyn) of Glycine Dipeptide Oligomers Glym:Glyn Calculated by the pGM-ind Model 

with the Alternative Polarizabilities (kcal/mol)a, b 
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a See Table 5.6 and text for notation. b The values in parentheses are differences between 

the values calculated by the pGM-ind model with the alternative polarizabilities and 

corresponding values calculated by the B97X-D/aTZ method, which can be found in Table 

5.2 and Table 5.3, respectively. c pGM-ind/scaled, pGM-ind/Amoeba, and pGM-ind/ff12pol 

represent the pGM-ind models with the pGM polarizabilities scaled by a factor of 0.9, the 

Amoeba13 polarizabilities and the ff12pol polarizabilities, respectively. 

 

Table S5.3. The Non-additive Contributions MENA(Glym: Glyn) and Additive Contributions 

MEA(Glym: Glyn)  to the Many-Body Interaction Energies of Glycine Dipeptide Oligomers 

Glym:Glyn Calculated by the pGM-ind Model with the Alternative Polarizabilities (kcal/mol)a, 

b 
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a See Table S5.2 and text for notation. b The values in parentheses are differences between 

the values calculated by the pGM-ind model with the alternative polarizabilities and 

corresponding values calculated by the B97X-D/aTZ method, which can be found in Table 

5.4 and Table 5.5, respectively. 
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CHAPTER 6 

Transferability of the Electrostatic Parameters of the Polarizable 

Gaussian Multipole Model 

 

6.1. Introduction 

Molecular modeling techniques at atomic level such as molecular dynamics (MD) 

simulations and Monte Carlo (MC) simulations rely on the development of accurate and 

transferable molecular mechanical force fields.1-3 The ability to transfer parameters from 

one molecule to another molecule or across different conformations of the same molecule is 

crucial for general purpose force fields that aim at applications to a wide range molecular 

systems. For this type of force fields, it is of critical importance to accurately reproduce the 

properties and behaviors of not only the training molecules and conformations used for 

parameterizations, but also larger testing systems (such as oligomer clusters, molecule 

complexes, or polymers) and different conformations that are absent from the 

parameterization process. For example, the AMBER force fields are general purpose force 

fields that were designed for modeling biomolecules such as proteins and nucleic acids,4 

whose parameterizations were performed on smaller training molecules such as amino acid 

dipeptides and nucleotides in selected representative conformations.5-7 

One of the most important components of force field developments is the treatment 

of electrostatic interactions. In the extensively used point-charge additive force fields, the 

electrostatic terms are modeled by the interactions between fixed atom-centered point 

partial charges that obey the Coulomb’s law. One commonly used parameterization method 

for obtaining the atomic partial charges is to use least-squares fitting to reproduce the 
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quantum mechanically (QM) determined electrostatic potential (ESP) at a large number of 

grid points around the molecule.8-12 However, these fixed-point charges suffer from two 

disadvantages of being lack of both accuracy and transferability. First, charges on atoms that 

are buried by the other atoms are often poorly determined and their values often have high 

degree of uncertainty while fitting to QM ESPs. Consequently, unphysically large charges may 

be assigned to these buried atoms. Second, the ESP derived atomic charges are often 

sensitive to molecular conformations, leading to a lack of transferability of the charges across 

different conformations of identical molecules, as well as among common functional groups 

in related molecules. The problems of the ESP fitting strategy have been addressed by the 

restrained electrostatic potential (RESP) method developed by Bayly et al., which restrains 

the atomic charges towards zero using a hyperbolic penalty function to avoid impractically 

large charges.13-14 Additionally, the multiple-conformation fitting strategy further improved 

the transferability of ESP fitted charges.15-16 Using the combination of the multiple-

conformation fitting strategy and the RESP method, Cieplak et al. derived the charges for all 

ribonucleotides, deoxyribonucleotides, and amino acids using ESPs calculated at the HF/6-

31G* level of theory, which were incorporated into the AMBER ff94 force field.5-6 Since then, 

the charge set of the ff94 force field has become the foundation of various subsequent 

AMBER force fields, including the AMBER ff99 force field,7 the AMBER SB (Stony Brook) 

family force fields for modeling proteins17-19 and the AMBER OL (Olomouc) family force 

fields for modeling nucleic acids.20-22 The changes made by these subsequent force fields are 

mainly in torsional parameters, while the charges remain mostly unchanged. 

Despite the improved accuracy and transferability of the additive AMBER force fields 

with the charge parameters derived using the RESP method, the additive force fields suffer 
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from a major disadvantage of being unable to model the atomic polarization effects, i.e., the 

redistribution of the atomic electron density due to the electric field produced by nearby 

charged atoms.23 Polarization effects are important in various biological processes such as 

protein-ligand bindings,24-26 nucleic acid-ion interactions,27-28 the dielectric environmental 

changes during protein folding,29-30 and ion transport through transmembrane ion 

channels.31-32 Therefore, a variety of methods have been proposed to properly incorporate 

polarization effects into polarizable force fields, including the induced dipole models,33-38 the 

fluctuating charge models,39-40 the Drude oscillator models41-42, and the continuum dielectric 

models.43-44 

The induced dipole model is one of the most studied polarizable models, which has 

been incorporated into various AMBER polarizable force fields, including ff02,33 ff02rl,34 and 

ff12pol.35-38 In this model, the induced dipole 𝝁𝑖 of atom 𝑖 subject to the external electric field 

𝑬𝑖  that comes from all atoms other than 𝑖 is 

𝝁𝑖 = 𝛼𝑖 [𝑬𝑖 − ∑ 𝑻𝑖𝑗𝝁𝑗

𝒏

𝑗≠𝑖

] (6.1) 

where 𝛼𝑖 is the isotropic polarizability of atom 𝑖, and 𝑻𝑖𝑗 is the dipole field tensor with the 

matrix form 

𝑻𝑖𝑗 =
𝑓𝑒

𝑟𝑖𝑗
3

𝑰 −
3𝑓𝑡

𝑟𝑖𝑗
5

[

𝑥2 𝑥𝑦 𝑥𝑧

𝑥𝑦 𝑦2 𝑦𝑧

𝑥𝑧 𝑦𝑧 𝑧2

] (6.2) 

where 𝑰 is the identity matrix; 𝑥 , 𝑦  and 𝑧  are the Cartesian components along the vector 

between atoms 𝑖 and 𝑗 at distance 𝑟𝑖𝑗 ; 𝑓𝑒  and 𝑓𝑡  are distance-dependent damping functions 
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that modify 𝑻𝑖𝑗  to avoid the so-called “polarization catastrophe” problem, which is the 

phenomenon that induced dipole diverges due to the cooperative induction between 

induced dipoles at short distances.23, 45 Various damping schemes have been proposed by 

Thole,46 which have been incorporated into the AMBER ff12pol force field.35-38 However, one 

disadvantage of Thole’s schemes is that they only screen the interactions between induced 

dipoles, leading to an inconsistent treatment of the polarizations due to fixed charges and 

permanent multipoles. About a decade ago, a damping scheme that models atomic electric 

multipoles using Gaussian electron densities was proposed by Elking et al.,47-49 which was 

later named as the polarizable Gaussian Multipole (pGM) model.50-53 The pGM model 

overcomes the disadvantage of Thole’s schemes by screening all short-range electrostatic 

interactions in a physically consistent manner, including the interactions of charge-charge, 

charge-dipole, charge-quadrupole, dipole-dipole, and so on. The formula of damping 

functions 𝑓𝑒 and 𝑓𝑡 for the pGM model are as follows 

𝑆𝑖𝑗 =
𝛽𝑖𝛽𝑗𝑟𝑖𝑗

√2(𝛽𝑖
2 + 𝛽𝑗

2)
 

𝑓𝑒 = erf(𝑆𝑖𝑗) −
2

√𝜋
𝑆𝑖𝑗 exp(−𝑆𝑖𝑗

2) (6.3) 

𝑓𝑡 = erf(𝑆𝑖𝑗) −
2

√𝜋
𝑆𝑖𝑗 exp(−𝑆𝑖𝑗

2) (1 +
2

3
𝑆𝑖𝑗

2) 

where 𝛽𝑖 = 𝑠 (
2𝛼𝑖

3√2𝜋
)

−
1

3
 is the pGM “radius” of the Gaussian density distribution of atom 𝑖; 𝑠 is 

a constant screening factor; erf(𝑆𝑖𝑗) is the error function of 𝑆𝑖𝑗 . 
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In the current pGM model design, the atomic charges and atomic induced dipoles are 

always present, while the inclusion of the atomic permanent dipoles is optional, leading to 

two distinct pGM models. The pGM model without atomic permanent dipoles is named pGM-

ind, indicating the atomic dipoles of this pGM model only have contributions from atomic 

induced dipoles; The pGM model with atomic permanent dipoles is named pGM-perm, 

indicating the atomic dipoles of this pGM model have contributions from both induced 

dipoles and permanent dipoles. Based on the observation that atomic permanent dipole 

moments mainly exist along the direction of covalent bonding interactions, a local frame for 

the permanent dipoles formed by covalent basis vectors (CBVs) that are unit vectors along 

the directions of covalent bonds has been proposed for the pGM-perm model, so that the 

atomic permanent dipoles of the pGM-perm model always exist along the directions of 

covalent bonds.51 An alternative pGM-perm model is called pGM-perm-v, where “v” stands 

for “virtual”. In the pGM-perm-v model, the CBVs exist not only along the directions of 

covalent bonds (1-2 connecting atoms), but also along the directions of virtual bonds (1-3 

connecting atoms) such as between the two hydrogen atoms of a water molecule. 

Consequently, in the pGM-ind model, the electric field 𝑬𝑖  at the position of atom 𝑖 in eq 6.1 

is only produced by fixed point charges of all atoms other than 𝑖. While in the pGM-perm and 

pGM-perm-v models, the electric field 𝑬𝑖  is produced by both point charges and permanent 

dipoles of all atoms other than 𝑖. The formula of the electric field 𝑬𝑖  for the pGM-ind model 

is shown in eq 6.4, and that for the pGM-perm and pGM-perm-v models is shown in eq 6.5. 

𝑬𝑖 = ∑ 𝑓𝑒

𝑞𝑗

𝑟𝑖𝑗
3

𝒓𝑗𝑖

𝑛

𝑗≠𝑖

(6.4) 
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𝑬𝑖 = ∑ (𝑓𝑒

𝑞𝑗

𝑟𝑖𝑗
3

𝒓𝑗𝑖 + 𝑻𝑖𝑗𝒑𝑗)

𝑛

𝑗≠𝑖

(6.5) 

where 𝑞𝑗  is the point charge of atom 𝑗, 𝒑𝑗  is the permanent dipole of atom 𝑗 in the global 

frame, 𝒓𝑗𝑖 is the unit vector pointing in the direction from atom 𝑗 to atom 𝑖. 

In a series of recent works, the pGM models have been further developed and made 

available to the molecular modeling community. First, using an optimization method based 

on the genetic algorithm, we obtained a set of isotropic atomic polarizabilities and radii for 

the pGM models by fitting to molecular polarizability tensors of 1405 molecules or dimers 

calculated at the B3LYP/aug-cc-pVTZ level of theory.50 Second, the closed-form analytical 

formula of the electrostatic energy and forces of the pGM models have been derived, and has 

been interfaced with the particle mesh Ewald (PME) method for molecular simulations 

under the periodic boundary conditions.51 Third, the pGM internal stress tensor expression 

for constant pressure MD simulations of both flexible and rigid body molecular systems has 

been derived.52 Finally, following the idea of charge parameterization by reproducing QM 

ESPs of the RESP method, we implemented the PyRESP program enabling the electrostatic 

parameterizations of the point-charge additive model and various induced dipole 

polarizable models, including the pGM-ind, pGM-perm, and pGM-perm-v models.54 

The accuracy of the pGM models has been demonstrated by various previous works. 

It has been shown that even without atomic permanent dipoles, the pGM-ind model can 

notably improve the prediction of molecular polarizability anisotropy compared with the 

AMBER ff12pol force field that is based on the Thole’s damping schemes.50 Moreover, the 

electrostatic parameterizations on various molecules with various electrostatic models 
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using the PyRESP program show that the pGM models consistently produce ESPs and 

molecular electric moments with better agreement with QM calculated results than the 

additive point charge model.54 A recent work assessed the accuracy of the pGM models in 

reproducing QM interaction energies, many-body interaction energies, as well as the non-

additive and additive contributions to the many-body interactions for peptide mainchain 

hydrogen-bonding conformers, which shows the pGM models outperform all other tested 

widely used polarizable and additive force fields.53  

However, there has been no work assessing the transferability of the pGM models. 

That is, whether the pGM models can accurately reproduce the electrostatic properties of 

larger molecular systems or different molecular conformations other than the molecules or 

conformations used for parametrizations? This is the first focus of this work. Another focus 

of this work is to find the optimal parameterization strategy for developing the next 

generation polarizable force fields based on the pGM models. Specifically, we aim to identify 

how many and what conformations should be applied for parameterizing amino acids for the 

pGM-ind and pGM-perm models that can give optimal accuracy and transferability for 

modeling long amino acid peptides or proteins. The performances of the pGM models were 

compared with that of the additive point charge model, which we call the “additive model” 

for short. The electrostatic parameterizations of the additive, pGM-ind, and pGM-perm 

models were performed by fitting to the same QM ESPs of each data set. One caveat of the 

pGM-perm and the pGM-perm-v models is that their parameterizations suffer from the so-

called “singularity problem”, which originates from the use of the permanent dipole local 

frame formed by CBVs. Fortunately, the restrained fitting strategy and the multiple-

conformation fitting strategy implemented in the PyRESP program can theoretically address 
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the singularity problem, both of which have been demonstrated to successfully improve the 

accuracy and transferability of the electrostatic parameters of the additive model. The details 

of the singularity problem of the pGM-perm and pGM-perm-v models as well as the 

discussion of how restrained fitting and multiple-conformation fitting can address this 

problem can be found in the Appendix B. Therefore, extra attention will be paid to the 

performance of the pGM-perm an pGM-perm-v models with different parametrization 

strategies in this chapter. 

 

6.2. Computational Details 

6.2.1. Data Sets and Geometry Preparations 

A total of nine data sets were generated and used for testing the transferability of the 

pGM models in this chapter, including WAT4, WAT6, WAT8, WAT10, ALA-di, ALA-tet, ALA-

poly, GLY-poly, and BASE. The WAT4, WAT6, WAT8, WAT10 data sets are comprised of 100 

water tetramer clusters, 72 water hexamer clusters, 13 water octamer clusters and 10 water 

decamer clusters, respectively. The initial geometries of the water clusters were extracted 

from 1 ns of MD simulations of a periodic box of 322 TIP3P waters.55 100 snapshots were 

saved at 10 ps intervals, and all clusters were extracted from these 100 TIP3P water boxes 

by randomly selecting a water molecule together with those closest water molecules. The 

MD simulation was conducted using the sander program from the AmberTools22 program 

suite.56 Next, the WAT4 data set were optimized at the MP2/6-311++G(d, p) level of theory, 

and the WAT6, WAT8 and WAT10 data sets were optimized at the B3LYP/6-311++G(d, p) 

level of theory. 
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The ALA-di data set is comprised of 14 alanine dipeptides (ACE-ALA-NME) capped 

with an N-acetyl (ACE) group at the N-terminal, and an N-methylamide (NME) group at the 

C-terminal. The ACE and NME caps are used to mimic the chemical environment within 

peptides. Each alanine dipeptide was optimized at the MP2/6-311++G(d, p) level of theory 

with the mainchain torsional angles ϕ and ψ fixed according to Table 6.1. The ALA-tet data 

set is comprised of a total of 15 alanine tetrapeptides (ACE-ALA3-NME), including (1) those 

in the conf1-conf10 conformations optimized at the HF/6-31G** level of theory by Beachy et 

al.,57 which were further optimized at the MP2/6-311++G(d, p) level of theory without any 

constraints, and (2) those in a, L, R,  and pII conformations optimized at the MP2/6-

311++G(d, p) level of theory with all mainchain torsional angles ϕ and ψ constrained. The 

mainchain torsional angles ϕ and ψ of each of the optimized conf1-conf10 conformations 

and the torsional angle constraints of the a, L, R,  and pII conformations are given in 

Table 6.2. 

The ALA-poly and GLY-poly data sets are comprised of 60 alanine polypeptides (ACE-

ALAn-NME) and 60 glycine polypeptides (ACE-GLYn-NME), respectively, where n is the 

number of repetitive ALA or GLY residues, ranging from 1 to 20. Each ACE-ALAn-NME and 

ACE-GLYn-NME have 3 conformations: a, R and . To prepare the ALA-poly and GLY-poly 

data sets, three alanine dipeptides (ACE-ALA-NME) and three glycine dipeptides (ACE-GLY-

NME) were optimized at the B97X-D/6-311++G(d, p) level of theory with the mainchain 

torsional angles fixed at (ϕ, ψ) = (-140°, 135°), (-57°, -47°) and (-119°, 113°), corresponding 

to the a, R and  conformations, respectively. Next, all ACE-ALAn-NME and ACE-GLYn-NME 

with n greater than or equal to 2 were generated from optimized alanine and glycine 

dipeptides by rigid body translation and rotation with the same ϕ and ψ torsional angles. 
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The BASE data set is comprised of 4 individual DNA nucleobases, including adenine 

(A), thymine (T), guanine (G), and cytosine (C), each capped with a methyl group to mimic 

the chemical environment within nucleosides, 2 Watson-Crick (WC) base pairs (A-T and C-

G), and 8 stacked WC base pair tetramers (A-T/A-T, A-T/T-A, A-T/C-G, A-T/G-C, G-C/A-T, G-

C/T-A, G-C/C-G, and G-C/G-C). The WC base pair tetramers are named as follows: the A-T/C-

G tetramer means an A-T base pair stacked onto a C-G base pair, where A and T is stacked 

with C and G, respectively. To prepare the BASE data set, the two WC base pair dimers were 

first optimized at the MP2/6-311++G(d, p) level of theory. The individual nucleobases were 

extracted from the WC base pair dimers without further optimization. The tetramers were 

constructed from the WC base pairs by rigid body alignment of the base pair dimers to the 

B-DNA geometry created using the nucgen program,58 without further optimization. 

All QM geometry optimizations were performed using the Gaussian 16 software.59 

 

Table 6.1. The Mainchain Torsional Angle Constraints for Geometry Optimizations of the 

Alanine Dipeptides from the ALA-di Data Set and their QM Molecular Dipole Moments 

Conformation ϕ/° ψ/° 𝜇/Debyea 

C5 -140 120 1.8190 

C7eq -80 80 2.5090 

C7ax 60 -70 3.1220 

a1 -60 -40 5.9446 
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a2 -52 -53 5.9848 

al 70 30 5.5989 

ap -160 -40 5.1311 

1 -161.9 166.4 3.0836 

2 -130 20 4.5831 

a -140 135 2.2315 

L 57 47 5.7158 

R -57 -47 5.9860 

 -119 113 0.8758 

pII -79 150 2.0894 

a The QM molecular dipole moments are calculated at the MP2/aug-cc-pVTZ level of theory. 

 

Table 6.2. The Mainchain Torsional Angles of the Optimized Alanine Tetrapeptides in Conf1-

Conf10 Conformations and a, L, R,  and pII Conformations from the ALA-tet Data Set 

and their QM Molecular Dipole Moments 

Conformation ϕ1/° ψ1/° ϕ2/° ψ2/° ϕ3/° ψ3/° 𝜇/Debyea 

Conf1 -158.4 157.1 -158.1 156.5 -157.5 154.0 5.8104 
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Conf2 -158.3 155.7 -158.9 152.6 -80.1 84.7 1.7551 

Conf3 -76.9 95.1 73.8 -59.0 -75.4 85.1 2.8191 

Conf4 -159.1 156.0 -79.9 87.9 -160.7 143.3 3.4964 

Conf5 -157.4 164.0 -59.9 -35.8 -76.7 90.1 3.0076 

Conf6 -85.5 64.8 51.8 28.1 -179.0 139.2 6.0550 

Conf7 52.2 -160.6 -88.0 71.2 -166.6 -53.3 10.6094 

Conf8 69.3 -74.8 -52.8 134.4 54.3 33.9 3.7092 

Conf9 74.3 -54.9 74.5 -53.4 74.4 -50.5 10.1255 

Conf10 66.8 20.1 45.6 42.3 68.6 -74.5 9.6006 

a -140.0 135.0 -140.0 135.0 -140.0 135.0 4.2870 

L 57.0 47.0 57.0 47.0 57.0 47.0 14.7002 

R -57.0 -47.0 -57.0 -47.0 -57.0 -47.0 15.2678 

 -119.0 113.0 -119.0 113.0 -119.0 113.0 0.8339 

pII -79.0 150.0 -79.0 150.0 -79.0 150.0 5.0536 

a The QM molecular dipole moments are calculated at the MP2/aug-cc-pVTZ level of theory. 

 

6.2.2. Electrostatic Parameterizations 
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The electrostatic parameterizations of the additive, pGM-ind, pGM-perm and pGM-

perm-v models require the QM ESPs of a set of points in the solvent-accessible region around 

molecules as input. The QM ESPs of the molecules from the data sets WAT4, WAT6, WAT8, 

WAT10, ALA-di, and ALA-tet were calculated at the MP2/aug-cc-pVTZ level of theory, and 

that of the data sets ALA-poly, GLY-poly, and BASE were calculated at the B97X-D/aug-cc-

pVTZ level of theory. The points were generated using the strategy developed by Singh et al. 

on molecular surfaces (with a density of 6 points/Å2) at each of 1.4, 1.6, 1.8 and 2.0 times the 

van der Waals radii.60-61 The QM molecular dipole moments of alanine dipeptides and alanine 

tetrapeptides from the ALA-di and ALA-tet data sets are shown in Table 6.1-6.2, and the QM 

molecular dipole moments of alanine polypeptides, glycine polypeptides, and WC base pair 

tetramers from the ALA-poly, GLY-poly, and BASE data sets are shown in Table S6.1-S6.3. 

All QM ESPs and molecular dipole moments were calculated using the Gaussian 16 

software.59 

The recently developed PyRESP program was used to parameterize the atomic 

charges (and permanent dipoles) of the molecules from each data set for each electrostatic 

model.54 For polarizable models pGM-ind, pGM-perm and pGM-perm-v, the isotropic atomic 

polarizabilities derived in our previous work were used to calculate the induced dipoles.50 A 

two-stage parameterization procedure was adopted.54 In the first stage, all charges (and 

permanent dipoles) were set free to change, and a weak restraining strength 0.0005 was 

applied. In the second stage, intra-molecular equivalencing was enforced on all charges (and 

permanent dipoles) that share identical chemical environment with others, such as those of 

methyl and methylene hydrogens. A stronger restraining strength 0.001 was applied, and all 

other fitting centers were set frozen to keep the values obtained from the first stage. In both 
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stages, the restraints were only applied to non-hydrogen heavy atoms. The parameters of 

individual water molecule for the WAT4, WAT6, WAT8 and WAT10 data sets have been 

derived in our previous work.54 The parameters for the ALA-di, ALA-tet, ALA-poly and GLY-

poly data sets were obtained by constraining the total molecular charge to be zero, and the 

intra-molecular charge of the ACE and NME groups sum to zero in order to ensure zero net 

charge of the central amino acid fragments (-NH-CHR-CO-). For the parameterizations of 

amino acid tetrapeptides, intra-molecular equivalencing was enforced in both the first and 

the second stages to ensure identical parameters across the three repetitive central amino 

acid fragments. For multiple-conformational fittings, inter-molecular equivalencing was 

enforced in both stages to ensure identical atomic charges and permanent dipoles of the 

same molecule in different conformations. The parameters for the BASE data set were 

derived using single-conformation fittings with zero total molecular charge constraint only, 

and no additional intra-molecular charge constraint. For the parameterizations of the pGM-

ind, pGM-perm and pGM-perm-v models, both 1-2 and 1-3 polarization interactions were 

included for reasons elucidated before.50, 62 

 

6.2.3. Transferability Tests 

The transferability of the electrostatic parameters of all electrostatic models were 

measured by the relative-root-mean-square errors of the overall molecular dipoles (𝑅𝑅𝑀𝑆𝜇) 

of each data set and the relative-root-mean-square errors of ESPs (𝑅𝑅𝑀𝑆𝑉) of each molecule 

(or molecule oligomer), given by 
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𝑅𝑅𝑀𝑆𝜇 = √
∑ (𝜇𝑖

𝑄𝑀 − 𝜇𝑖)
2𝑚

𝑖=1

∑ (𝜇𝑖
𝑄𝑀

)
2𝑚

𝑖=1

(6.6) 

𝑅𝑅𝑀𝑆𝑉 = √
∑ (𝑉𝑖𝑗

𝑄𝑀 − 𝑉𝑖𝑗)
2𝑛𝑖

𝑗=1

∑ (𝑉𝑖𝑗
𝑄𝑀

)
2𝑛𝑖

𝑗=1

(6.7) 

and the average-relative-root-mean-square errors of ESPs (𝐴𝑅𝑅𝑀𝑆𝑉) of each data set is 

𝐴𝑅𝑅𝑀𝑆𝑉 =
∑ 𝑅𝑅𝑀𝑆𝑉

𝑚
𝑖=1

𝑚
(6.8) 

where 𝑚  is the number of molecules for each data set; 𝑛𝑖  is the number of ESP points 

surrounding molecule (or molecule oligomer) 𝑖 ; 𝜇𝑖
𝑄𝑀

 and 𝜇𝑖  are the overall molecular 

dipoles of molecule/oligomer 𝑖  given by QM calculations and molecular mechanics (MM) 

calculations, respectively; 𝑉𝑖𝑗
𝑄𝑀 and 𝑉𝑖𝑗 are the ESP values at point 𝑗 of molecule/oligomer 𝑖 

given by QM calculations and MM calculations, respectively. 

To calculate the total molecular dipole and ESP values of molecule A with the 

electrostatic parameters transferred from the parameterization results of molecule B, the 

input file (-i) and qin file (-q) of molecule A are created manually using the parameters from 

molecule B, which are provided as the inputs for the PyRESP program. The control parameter 

irstrnt of the PyRESP program is set to 2 so that no parameterization on molecule A is carried 

out, and the total molecular dipole and ESP values of molecule A with the transferred 

parameters from molecule B are printed in the output file (-o) of the PyRESP program.54 



 

226 
 

All scatterplots, boxplots and line plots are plotted using the Python package 

Matplotlib. The QM ESPs surrounding water tetramer clusters and the differences between 

QM and MM calculated ESPs are visualized using the UCSF Chimera software.63 

 

6.3. Results and Discussion 

6.3.1. The pGM-perm and pGM-perm-v Models Show the Best Transferability from 

Water Monomer to Water Oligomer Clusters 

The transferability of the additive, pGM-ind, pGM-perm and pGM-perm-v models 

from water monomer to water oligomer clusters is tested by investigating the quality of the 

overall water cluster dipoles and ESPs calculated by MM calculations in comparison to those 

calculated at the MP2/aug-cc-pVTZ QM level of theory, measured by 𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉, 

respectively. The parameters of water monomer for each electrostatic model have been 

derived in the original PyRESP work.54 As discussed in the Appendix B, the water molecule 

is nonsingular, so that single-conformation fitting is sufficient for the parameterization of the 

pGM-perm and pGM-perm-v models for the water molecule. The single set of water 

monomer parameters are used in testing all WAT4, WAT6, WAT8 and WAT10 data sets. 

Figure 6.1A shows the scatterplots of MM dipoles calculated by each electrostatic model for 

the 100 water tetramer clusters from the WAT4 data sets versus those calculated by QM 

methods. It can be observed that all three pGM models outperform the additive model, as the 

𝑅𝑅𝑀𝑆𝜇 of the pGM-ind (0.0711), pGM-perm (0.0817), and pGM-perm-v (0.0823) models are 

only 34%, 39%, and 39% of that of the additive model (0.2110). Figure 6.1B shows the 

boxplots of the 𝑅𝑅𝑀𝑆𝑉 of each electrostatic model for the WAT4 data sets, and we can see 
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that the 𝐴𝑅𝑅𝑀𝑆𝑉 of both the pGM-perm (0.0788) and pGM-perm-v (0.0790) models are 34% 

of that of the additive (0.2319) model and are 53% of that of the pGM-ind (0.1481) model. 

Interestingly, adding the virtual dipoles along the H-H direction in the pGM-perm-v model 

does not improve the quality of calculated overall dipoles and ESPs, as both the 𝑅𝑅𝑀𝑆𝜇 and 

𝐴𝑅𝑅𝑀𝑆𝑉 of the pGM-perm-v model are slightly higher than those of the pGM-perm model. 

To further explore the transferability difference among different models, the scatterplots of 

MM versus QM ESPs for the water tetramer clusters with the highest QM overall dipole 

(Figure 6.1C, dipole = 4.2850 Debye) and with the lowest QM overall dipole (Figure 6.1D, 

dipole = 0.0008 Debye) are shown. The pGM-perm and pGM-perm-v models produce the 

lowest 𝑅𝑅𝑀𝑆𝑉 for both water clusters. For the water cluster with the highest QM dipole, the 

pGM-perm and pGM-perm-v models produce 𝑅𝑅𝑀𝑆𝑉  of 0.0745 and 0.0743, respectively, 

both of which are 31% of that of the additive model (0.2393) and 56% of that of the pGM-

ind model (0.1324). For the water cluster with the lowest QM dipole, the pGM-perm and 

pGM-perm-v models produce 𝑅𝑅𝑀𝑆𝑉 of 0.0785 and 0.0788, respectively, both of which are 

37% of that of the additive model (0.2138) and 52% of that of the pGM-ind model (0.1526). 

Once again, the 𝑅𝑅𝑀𝑆𝑉 of the pGM-perm and pGM-perm-v models are very similar. 
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Figure 6.1. The transferability tests of the additive, pGM-ind, pGM-perm, and pGM-perm-v 

models from water monomer to water tetramer clusters. A. Scatterplots of MM dipoles of 

each electrostatic model versus QM dipoles. Each plot shows a total of 100 data points, with 

each point representing a water tetramer. B. Boxplots of the 𝑅𝑅𝑀𝑆𝑉  of each electrostatic 

model with QM results. Each plot shows a total of 100 data points, with each point 

representing a water tetramer. C. Scatterplots of MM ESPs of each electrostatic model versus 

QM ESPs for the water tetramer with the highest QM dipole (dipole = 4.2850 Debye). Each 
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plot shows a total of 4660 data points, with each point representing an ESP point. D. 

Scatterplots of MM ESPs of each electrostatic model versus QM ESPs for the water tetramer 

with the lowest QM dipole (dipole = 0.0008 Debye). Each plot shows a total of 4339 data 

points, with each point representing an ESP point. For A, C, and D, the dashed lines 

correspond to perfect matching. 

 

Figure 6.2 illustrates the QM ESPs surrounding the water tetramer clusters with the 

highest and lowest QM overall dipoles, as well as the differences between QM ESPs and MM 

ESPs calculated by each electrostatic model. It can be observed that the additive model is 

unable to accurately reproduce the ESP of polar regions, i.e., regions with high ESP absolute 

values. Specifically, the additive model tends to generate ESPs with lower values than QM 

results where the QM ESPs have large positive values but generate ESPs with higher values 

than QM results where the QM ESPs have large negative values. The pGM-ind model 

improves the ESP fitting significantly. It is noteworthy that both the pGM-ind and additive 

models have identical number of electrostatic parameters. Therefore, the significant 

improvement observed in the pGM-ind model over the additive model is strong evidence to 

the critical roles that intra-molecular polarization plays in transferability. The pGM-perm 

and pGM-perm-v models give ESPs nearly identical to QM results in both polar and nonpolar 

regions. Note that the ESP differences with QM results given by the pGM-perm and pGM-

perm-v models are almost indistinguishable. Therefore, we conclude that the additional 

dipoles along the H-H virtual bond in the pGM-perm-v model do not improve the ESP fitting 
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quality and transferability compared with the pGM-perm model for the water tetramer 

clusters. 

 

 

Figure 6.2. Visualization of QM ESPs surrounding water tetramer clusters and the 

differences between QM and MM calculated ESPs of the additive, pGM-ind, pGM-perm, and 

pGM-perm-v models. The upper panel shows the water tetramer with the highest QM dipole 

(4.2850 Debye) and the lower panel shows the water tetramer with the lowest QM dipole 

(0.0008 Debye). The leftmost column shows the QM ESPs, with red color indicating positive 

ESP value and blue color indicating negative ESP value. All other columns show the 

differences between QM ESPs and MM ESPs, with red color indicating QM ESP is greater than 

MM ESP and blue color indicating QM ESP is less than MM ESP. 

 

After analyzing the transferability from water monomer to water tetramer clusters, 

we examined the transferability of each electrostatic model from water monomer to water 
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oligomers with larger sizes, including hexamer, octamer, and decamer clusters from the 

WAT6, WAT8, and WAT10 data sets, respectively. The scatterplots of MM dipoles of each 

electrostatic model versus QM dipoles, the boxplots of the 𝑅𝑅𝑀𝑆𝑉 of each electrostatic model 

with QM results, and the scatterplots of MM ESPs of each electrostatic model versus QM ESPs 

for the water hexamer, octamer, and decamer clusters with the highest and lowest QM 

dipoles are shown in Figure S6.1-S6.3. The 𝑅𝑅𝑀𝑆𝜇  and 𝐴𝑅𝑅𝑀𝑆𝑉  of each water oligomer 

cluster size produced by each electrostatic model are summarized in Figure 6.3. The pGM-

ind, pGM-perm and pGM-perm-v models consistently outperform the additive models in 

terms of both 𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉, regardless of the water oligomer cluster sizes. Although 

the pGM-ind model performs slightly better than the pGM-perm and pGM-perm-v models in 

terms of 𝑅𝑅𝑀𝑆𝜇, the latter two models significantly outperform the pGM-ind model in terms 

of 𝐴𝑅𝑅𝑀𝑆𝑉 . Another observation is that the 𝑅𝑅𝑀𝑆𝜇  and 𝐴𝑅𝑅𝑀𝑆𝑉  of each water oligomer 

cluster data set produced by the pGM-perm and pGM-perm-v models are essentially 

indistinguishable, as their plots overlap each other, consistent with the earlier observations 

in the case of water tetramers. In fact, as discussed in the original PyRESP work,54 the virtual 

dipoles in the pGM-perm-v model may lead to overfitting problem and is expected to 

increase the computational time in simulations. Furthermore, the virtual dipole may cause 

additional singularity problems during parameterization, as discussed in Appendix B. For 

these reasons, the transferability test of the pGM-perm-v model will only be performed for 

the water oligomer clusters for illustration purpose. For other data sets, we will only test the 

transferability of the additive, pGM-ind and pGM-perm models. 
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Figure 6.3. The 𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉 of the WAT4, WAT6, WAT8, and WAT10 data sets of 

the additive, pGM-ind, pGM-perm and pGM-perm-v models parameterized with water 

monomer. Note that the plots of the pGM-perm and pGM-perm-v models overlap each other. 

 

6.3.2. Electrostatic Parameterization of the pGM Models with Amino Acid Dipeptides 

Leads to Lack of Transferability to Tetrapeptides 

In the previous subsection, we have shown that the pGM-perm and pGM-ind models 

outperform the additive model in terms of the transferability from water monomer (training 

molecule) to water oligomer clusters (testing molecules). Next, we move on to compare the 

transferability of the additive, pGM-ind, and pGM-perm models across different 

conformations of amino acids, as well as from short amino acid dipeptides (training 

molecules) to longer amino acid tetrapeptides (testing molecules). The reason why we are 

interested in amino acids is that they are the building blocks of proteins, so that the 

electrostatic parameterizations of amino acids are of critical importance for the 

development of force fields for modeling biomolecules. Therefore, we aim to explore the best 
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parametrization strategy of amino acids for developing the next generation polarizable 

Amber force field based on the pGM models. As discussed in the Appendix B, every amino 

acid molecule is a singular molecule in the context of the parameterization of the pGM-perm 

model, due to the existence of the sp3 alpha carbon in every amino acid backbone. Therefore, 

the combination of restrained fitting and multiple-conformation fitting implemented in the 

PyRESP program will be explored for the electrostatic parameterizations of each model, 

which are expected to improve the transferability of each model and to mitigate the 

singularity problem of the pGM-perm model. Alanine was selected as the model amino acid 

for testing the transferability of each electrostatic model. In this test, five alanine dipeptides 

(ACE-ALA-NME) in R (QM dipole = 5.9860 Debye),  (0.8758 Debye), C7eq (2.5090 Debye), 

a (2.2315 Debye), and C5 (1.8190 Debye) conformations from the ALA-di data set were 

used for electrostatic parameterization because of their wide range of molecular dipole 

moments as shown in Table 6.1. A total of nine parameterization combinations of the five 

conformations were tested, including three single-conformation fittings (R, , C7eq), three 

double-conformation fittings (R/, R/C7eq, /C7eq), one triple-conformation fitting 

(R//C7eq), one 4-conformation fitting (R//C7eq/a), and one 5-conformation fitting 

(R//C7eq/a/C5). 

We first tested the transferability of the additive, pGM-ind, and pGM-perm models 

across different conformations of alanine dipeptides within the ALA-di data set, which 

contains a total of 14 conformations. Among all the three single-conformation fittings, the 

C7eq conformation gives the best overall performance for the transferability of the pGM-ind 

and pGM-perm models, with 𝑅𝑅𝑀𝑆𝜇  of 0.0386 and 0.0641, and 𝐴𝑅𝑅𝑀𝑆𝑉  of 0.1074 and 
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0.1237, respectively. (Data not shown) Among all the three double-conformation fittings, the 

combination of the R and  conformations gives the best overall performance for the pGM-

ind and pGM-perm models, with 𝑅𝑅𝑀𝑆𝜇 of 0.0244 and 0.0239, and 𝐴𝑅𝑅𝑀𝑆𝑉 of 0.1004 and 

0.0858, respectively. (Data not shown) Figure 6.4A-B summarizes the 𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉 

of the ALA-di data set of each electrostatic model parameterized with alanine dipeptides in 

1-5 conformations, where the single-conformation fitting and double-conformation fitting 

are C7eq and R/, respectively. One observation is that for all the additive, pGM-ind, and 

pGM-perm models, both 𝑅𝑅𝑀𝑆𝜇  and 𝐴𝑅𝑅𝑀𝑆𝑉  reached convergence with double-

conformation fittings, and multiple-conformation fittings with more than two conformations 

do not significantly improve the transferability across different conformations of alanine 

dipeptides in the ALA-di data set. Another observation is that the pGM-perm model performs 

the best among the three models in terms of both 𝑅𝑅𝑀𝑆𝜇  and 𝐴𝑅𝑅𝑀𝑆𝑉 . Taking double-

conformation fitting as an example, the 𝑅𝑅𝑀𝑆𝜇  and 𝐴𝑅𝑅𝑀𝑆𝑉  of the pGM-perm model are 

0.0239 and 0.0858, respectively, which are 98% and 85% of those of the pGM-ind model 

(0.0244 and 0.1004), and 39% and 54% of those of the additive model (0.0607 and 0.1601). 

One exception is the case of single-conformation fitting, where the pGM-perm model shows 

worse transferability than the pGM-ind model, as the 𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉 of the pGM-ind 

model (0.0386 and 0.1074) are 60% and 87% of those of the pGM-perm model (0.0641 and 

0.1237). The worse performance of the pGM-perm model with single-conformation fitting 

might be explained by its singularity problem. Even so, the pGM-perm model still performs 

much better than the additive model, as the 𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉 of the pGM-perm model 

are only 38% and 62% of those of the additive model (0.1687 and 0.1994). 
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Next, we tested the transferability of each electrostatic model from alanine dipeptides 

(ACE-ALA-NME) to longer alanine tetrapeptides (ACE-ALA3-NME). Specifically, the 

electrostatic parameters derived with the nine combinations of alanine dipeptides in the 

previously used five conformations (R, , C7eq, R/, R/C7eq, /C7eq, R//C7eq, 

R//C7eq/a, and R//C7eq/a/C5) from the ALA-di data set were used to calculate the 

𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉  of alanine tetrapeptides from the ALA-tet data set, which contains a 

total 15 conformations. Among all the three single-conformation fittings, the C7eq 

conformation again gives the best overall performance for the transferability of the pGM-ind 

and pGM-perm models, with 𝑅𝑅𝑀𝑆𝜇  of 0.1306 and 0.1892, and 𝐴𝑅𝑅𝑀𝑆𝑉  of 0.1652 and 

0.2066, respectively. (Data not shown) This is consistent with the transferability test across 

alanine dipeptides in different conformations. Among all the three double-conformation 

fittings, the combination of the R and C7eq conformations gives the best overall 

performance for the pGM-ind and pGM-perm models, with 𝑅𝑅𝑀𝑆𝜇 of 0.1268 and 0.1634, and 

𝐴𝑅𝑅𝑀𝑆𝑉  of 0.1663 and 0.1836, respectively. (Data not shown) This is different from the 

transferability test across different alanine dipeptide conformations where the best 

performance is given by the combination of the R and  conformations. Figure 6.4C-D 

summarizes the 𝑅𝑅𝑀𝑆𝜇  and 𝐴𝑅𝑅𝑀𝑆𝑉  of the ALA-tet data set of each electrostatic model 

parameterized with alanine dipeptides in 1-5 conformations, where the single-conformation 

fitting and double-conformation fitting are C7eq and R/C7eq, respectively. It can be observed 

that the transferability of the additive, pGM-ind, and pGM-perm models from alanine 

dipeptides to alanine tetrapeptides show very different patterns compared with the 

transferability across alanine dipeptides in different conformations. First, the transferability 

of each model tends to get worse with more conformations used for parametrization, as 



 

236 
 

shown by the results of both 𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉. Second, the pGM-ind model consistently 

gives the lowest 𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉, which outperforms both the additive and pGM-perm 

models. However, with the 𝑅𝑅𝑀𝑆𝜇  of each model consistently greater than 0.13, and the 

𝐴𝑅𝑅𝑀𝑆𝑉  of each model consistently greater than 0.16, none of the three models give 

satisfactory transferability from alanine dipeptides to alanine tetrapeptides. Therefore, we 

conclude that parameterization using amino acid dipeptides is inadequate for developing 

polarizable force fields based on the pGM models, as those parameters have the risk of 

lacking transferability to polypeptides or proteins. 
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Figure 6.4. The 𝑅𝑅𝑀𝑆𝜇  and 𝐴𝑅𝑅𝑀𝑆𝑉  of the ALA-di and ALA-tet data sets of the additive, 

pGM-ind, and pGM-perm models parameterized with alanine dipeptides from the ALA-di 

data set in 1-5 conformations. A-B. The 𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉 of the ALA-di data set. The 1-5 

conformations are C7eq, R/, R//C7eq, R//C7eq/a, and R//C7eq/a/C5. C-D. The 

𝑅𝑅𝑀𝑆𝜇  and 𝐴𝑅𝑅𝑀𝑆𝑉  of the ALA-tet data set. The 1-5 conformations are C7eq, R/C7eq, 

R//C7eq, R//C7eq/a, and R//C7eq/a/C5. 

 

6.3.3. Electrostatic Parameters of the pGM Models Derived with Amino Acid 

Tetrapeptides Are Highly Transferable Across Different Conformations 

The transferability of the electrostatic parameters derived from dipeptides is 

unsatisfactory for all three models, particularly from dipeptides to tetrapeptides. We 

hypothesize that part of the reason is that there are two terminal groups (ACE and NME) in 

each dipeptide, making the terminal/amino acid ratio to be 2, much higher than that in 

polypeptides in which this ratio can be orders of magnitude lower. Therefore, we attempted 

to perform parameterizations using tetrapeptides in which three repetitive amino acid 

residues are present, making it possible to mimic multiple chemical environments and 

multiple conformations. The alanine tetrapeptides (ACE-ALA3-NME) in R (QM dipole = 

15.2678 Debye),  (0.8339 Debye), pII (5.0536 Debye), a (4.2870 Debye), and L (14.7002 

Debye) conformations from the ALA-tet data set were selected for parameterizations 

because of their wide range of molecular dipole moments as shown in Table 2. A total of 

nine parameterization combinations of the above five conformations were tested, including 

three single-conformation fittings (R, , pII), three double-conformation fittings (R/, 
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R/pII, /pII), one triple-conformation fitting (R//pII), one 4-conformation fitting 

(R//pII/a), and one 5-conformation fitting (R//pII/a/L). 

We first tested the transferability of each electrostatic model across different 

conformations of alanine tetrapeptides within the ALA-tet data set, which contains a total of 

15 conformations. Among all the three single-conformation fittings, the pII conformation 

gives the best overall performance for the transferability of the pGM-ind and pGM-perm 

models, with 𝑅𝑅𝑀𝑆𝜇 of 0.0197 and 0.0978, and 𝐴𝑅𝑅𝑀𝑆𝑉 of 0.0893 and 0.1073, respectively. 

(Data not shown) Among all the three double-conformation fittings, the combination of the 

R and  conformations gives the best overall performance for the pGM-ind and pGM-perm 

models, with 𝑅𝑅𝑀𝑆𝜇 of 0.0182 and 0.0249, and 𝐴𝑅𝑅𝑀𝑆𝑉 of 0.0881 and 0.0744, respectively. 

(Data not shown) Figure 6.5 summarizes the 𝑅𝑅𝑀𝑆𝜇  and 𝐴𝑅𝑅𝑀𝑆𝑉  of each electrostatic 

model of the ALA-tet data set parameterized with alanine tetrapeptides using 1-5 

conformations, where the single-conformation fitting and double-conformation fitting are 

pII and R/, respectively. Similar to the transferability test across different conformations 

of the ALA-di data set, both the 𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉 of the additive and pGM-perm models 

reached convergence with double-conformation fittings, and multiple-conformation fitting 

with more than two conformations do not significantly improve the transferability across 

different conformations in the ALA-tet data set. Interestingly, the pGM-ind model 

consistently shows the lowest 𝑅𝑅𝑀𝑆𝜇 (less than 0.02) among all three models, regardless of 

the number of alanine tetrapeptide conformations used for parameterizations. The best 

performance shown by the pGM-ind model is somewhat surprising, given that the pGM-ind 

model does not take atomic permanent dipoles into account, in contrast to the pGM-perm 
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model. In terms of 𝐴𝑅𝑅𝑀𝑆𝑉 , the pGM-perm model shows the best performance with 

multiple-conformation fittings. In contrast, with single-conformation fitting, the pGM-ind 

model again outperforms the pGM-perm model, as the 𝐴𝑅𝑅𝑀𝑆𝑉  of the pGM-ind model 

(0.0893) is 83% of that of the pGM-perm model (0.1073). This is consistent with the 

transferability test across different conformations of the ALA-di data set, which can be 

explained again by the singularity problem of the pGM-perm model. Furthermore, the 

additive model consistently gives the worst transferability as measured by both 𝑅𝑅𝑀𝑆𝜇 and 

𝐴𝑅𝑅𝑀𝑆𝑉 . For example, with double-conformation fittings, the 𝑅𝑅𝑀𝑆𝜇  of the pGM-ind 

(0.0182) and pGM-perm (0.0249) models are only 21% and 28% of that of the additive 

model (0.0875), and the 𝐴𝑅𝑅𝑀𝑆𝑉 of the pGM-ind (0.0881) and pGM-perm (0.0744) models 

are 46% and 39% of that of the additive model (0.1909). 

 

 

Figure 6.5. The 𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉 of the ALA-tet data set of the additive, pGM-ind, and 

pGM-perm models parameterized with alanine tetrapeptides from the ALA-tet data set in 1-
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5 conformations. The 1-5 conformations are pII, R/, R//pII, R//pII/a, and 

R//pII/a/L. 

 

6.3.4. Electrostatic Parameterization of the pGM Models with Amino Acid 

Tetrapeptides Leads to Satisfactory Transferability to Longer Polypeptides 

In addition to the transferability across different conformations, another question 

that needs to be addressed is the transferability across polypeptide chains with different 

lengths. This is a rather critical question because for practical purposes, all protein force 

fields are parameterized using short peptides or model compounds and are applied to 

proteins that can be hundreds-amino acid long. Therefore, we need to know how well the 

electrostatic parameters obtained from parameterizing tetrapeptides transfer to longer 

polypeptides. To answer this question, transferability tests were performed using the ALA-

poly data set containing a total of 60 alanine polypeptides (ACE-ALAn-NME), and the GLY-

poly data set containing a total of 60 glycine polypeptides (ACE-GLYn-NME), where n ranges 

between 1 and 20. Each ACE-ALAn-NME and ACE-GLYn-NME is represented by 3 

conformations: a, R and . Due to the large molecule size of long polypeptides such as ACE-

ALA20-NME (212 atoms) and ACE-GLY20-NME (152 atoms), the B97X-D DFT method was 

used for both geometry optimizations and ESP calculations for the two data sets to save 

computational resources. The electrostatic parameters (atomic charges and permanent 

dipoles) of alanine polypeptides and glycine polypeptides were both obtained by R/ 

double-conformation fittings to the ESPs calculated at the B97X-D/aug-cc-pVTZ level of 

theory, using alanine tetrapeptides (ACE-ALA3-NME) from the ALA-poly data set and glycine 
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tetrapeptides (ACE-GLY3-NME) from the GLY-poly data set, respectively. The re-

parameterization of alanine tetrapeptides is necessary to ensure that the parameters are 

consistent with other alanine polypeptides, since the ESPs of alanine tetrapeptides in the 

ALA-tet data set were calculated using a different QM method (MP2/aug-cc-pVTZ), which 

leads to slightly different ESPs. The 𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉 of the ALA-poly data set and the 

GLY-poly data set of each electrostatic model are shown in Figure 6.6A-B and Figure 6.6C-

D, respectively. Encouragingly, with R/ double conformation fittings, both the pGM-ind 

and pGM-perm models show great transferability to alanine and glycine polypeptides with 

lengths range from 1 to 20, although the pGM-perm model performs slightly better than the 

pGM-ind model. Interestingly, both the pGM-ind and pGM-perm models exhibit higher 

𝐴𝑅𝑅𝑀𝑆𝑉  at the shorter end compared to longer polypeptides. This is indicative that the 

underlying chemical environment in peptides of 1-2 amino acids are somewhat different 

from that of longer polypeptides. This explains why electrostatic parameterization with 

dipeptides leads to unsatisfactory transferability to longer polypeptides. The additive model 

consistently shows the worst transferability to alanine and glycine polypeptides among all 

the three electrostatic models. In general, the longer the polypeptides are, the higher 𝑅𝑅𝑀𝑆𝜇 

and 𝐴𝑅𝑅𝑀𝑆𝑉  the additive model produces. Therefore, we conclude that double-

conformation fitting using amino acid tetrapeptides in the R and  conformations is a sound 

strategy for amino acid electrostatic parametrizations for the pGM models. In the future 

development of the pGM force fields for proteins, this strategy is expected to be applied to 

the systematic electrostatic parameterizations for all amino acids. 
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Figure 6.6. The 𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉 of the ALA-poly and GLY-poly data sets of the additive, 

pGM-ind, and pGM-perm models parameterized with alanine or glycine tetrapeptides. A-B. 

The 𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉 against the length of alanine polypeptides from the ALA-poly data 

set. Each model is parameterized with alanine tetrapeptides from the ALA-poly data set 

using R/ double-conformation fitting. C-D. The 𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉 against the length of 

glycine polypeptides from the GLY-poly data set. Each model is parameterized with glycine 

tetrapeptides from the GLY-poly data set using R/ double-conformation fitting. 
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6.3.5. The pGM Models Outperforms the Additive Model in Transferability from 

Nucleobase Monomers to WC Base Pair Dimers and Tetramers 

Besides amino acids, another key component of force field development for modeling 

biomolecules is the electrostatic parameterizations of nucleotides, the building blocks of 

nucleic acids including DNA and RNA. Nucleotides are composed of three subunits, including 

a nucleobase, a five-carbon sugar, and a phosphate group. The ability of nucleobases to 

form hydrogen-bonding WC base pairs and to stack upon each other through - 

interactions leads directly to the double-stranded helical structures of DNA molecules. 

Therefore, in this subsection, we aim to compare the transferability of the additive, pGM-ind, 

and pGM-perm models from the DNA nucleobase monomers, including adenine (A), thymine 

(T), guanine (G), and cytosine (C), to the WC base pair dimers and stacked WC base pair 

tetramers formed by the four DNA nucleobases. All monomers, dimers, and tetramers used 

in this chapter are from the BASE data set. Each nucleobase is capped with a methyl group 

to mimic the chemical environment within nucleosides. The two WC base pair dimers include 

the A-T base pair with two hydrogen bonds and the G-C base pair with three hydrogen bonds. 

The eight stacked WC base pair tetramers include A-T/A-T, A-T/T-A, A-T/C-G, A-T/G-C, G-

C/A-T, G-C/T-A, G-C/C-G, and G-C/G-C. For instance, the A-T/C-G tetramer is formed by 

stacking the A-T base pair onto the C-G base pair, where A and T is stacked with C and G, 

respectively.  

Since the nucleobases are rigid molecules in nature, each DNA nucleobase monomer 

was parameterized using single-conformation fitting to ESPs calculated at the B97X-D/aug-

cc-pVTZ level of theory. Table 6.3 shows the molecular dipole and quadrupole moments 
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calculated by each electrostatic model and QM methods as well as the 𝑅𝑅𝑀𝑆𝑉 of the A-T and 

G-C WC base pair dimers. It can be seen that the pGM-ind and pGM-perm models produce 

molecular dipole moments and quadrupole moments with better agreement with the QM 

moments than the additive model. However, nucleobases are also singular molecules in 

terms of the parameterizations of the pGM-perm model due to the existence of sp2 carbons 

in all nucleobases (see Appendix B), which can explain the observation that the pGM-ind 

model gives slightly better agreements with the QM calculated electric moments than the 

pGM-perm model. On the other hand, the 𝑅𝑅𝑀𝑆𝑉 consistently decreases with the order of 

the additive, pGM-ind, and pGM-perm models for both WC base pairs. For the A-T base pairs, 

the 𝑅𝑅𝑀𝑆𝑉 of the pGM-ind (0.1250) and pGM-perm (0.0904) models are 86% and 62% of 

that of the additive model (0.1454); For the G-C base pairs, the 𝑅𝑅𝑀𝑆𝑉  of the pGM-ind 

(0.1183) and pGM-perm (0.0766) models are 71% and 46% of that of the additive model 

(0.1657). Therefore, the pGM models outperform the additive model significantly in terms 

of transferability to WC base pairs with single-conformation fitting with A, T, G, and C 

monomers. Note that the G-C base pair (QM dipole = 6.0874 Debye) has much higher overall 

dipole moment than the A-T base pair (1.9010 Debye). The observation that the additive 

model gives higher 𝑅𝑅𝑀𝑆𝑉 for the G-C base pair than for the A-T base pair, while the pGM 

models give lower 𝑅𝑅𝑀𝑆𝑉 for the G-C base pair than for the A-T base pair indicates that the 

pGM models can better model the polarization effects in the highly polar G-C base pairs. 

Figure 6.7A-C show the scatterplot of MM dipoles of the eight WC base pair tetramers 

from the BASE data set calculated by each electrostatic model versus those calculated at the 

B97X-D/aug-cc-pVTZ level of theory. It can be observed that the 𝑅𝑅𝑀𝑆𝜇 of the pGM-ind 

(0.0141) and pGM-perm (0.0209) models are much lower than that of the additive model 
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(0.1293), as the 𝑅𝑅𝑀𝑆𝜇 of the pGM-ind and pGM-perm models are only 11% and 16% of that 

of the additive model. The slightly better performance of the pGM-ind model than the pGM-

perm model is consistent with the better electric moments agreement with QM results given 

by the pGM-ind model for WC base pair dimers, which might be caused by the singularity 

problem of the pGM-perm model. Figure 6.7D shows the boxplots of the 𝑅𝑅𝑀𝑆𝑉 of the WC 

base pair tetramers of each electrostatic model, and we can see that the 𝐴𝑅𝑅𝑀𝑆𝑉 decreases 

in the order of the additive (0.2000), pGM-ind (0.1063), and pGM-perm (0.0737) models, as 

the 𝐴𝑅𝑅𝑀𝑆𝑉 of the pGM-ind and pGM-perm models are 53% and 37% of that of the additive 

model. To further explore the transferability difference among different models, the 

scatterplots of MM ESPs versus the QM ESPs for the G-C/G-C tetramer with the highest QM 

overall dipole (dipole = 10.5748 Debye) and the A-T/T-A tetramer with the lowest QM 

overall dipole (dipole = 2.1904 Debye) are shown in Figure 6.8. Once again, for both WC 

base pair tetramers, the 𝑅𝑅𝑀𝑆𝑉 of the pGM-perm model are the lowest, and that of the pGM-

ind model are the second lowest. For the G-C/G-C tetramer, the 𝑅𝑅𝑀𝑆𝑉 of the additive, pGM-

ind, and pGM-perm models are 0.1804, 0.1016, and 0.0678, respectively. For the A-T/T-A 

tetramer, the 𝑅𝑅𝑀𝑆𝑉 of the additive, pGM-ind, and pGM-perm models are 0.2301, 0.1092, 

and 0.0781, respectively.  

 

Table 6.3. Molecular Dipole/Quadrupole Moments and 𝑅𝑅𝑀𝑆𝑉 of the A-T and G-C WC Base 

Pair Dimers Fitted with A, T, G, and C Monomers with the Additive, pGM-ind, and pGM-perm 

Models 
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WC Base Pair Additive pGM-ind pGM-perm QM 

Dipole Moments/Debyea 

A-T 2.3174 1.8483 1.9134 1.9010 

G-C 4.6236 5.9753 5.9603 6.0874 

Quadrupole Moments/Debye Angstromsb 

A-T 

𝑄𝑥𝑥  46.5515 41.0910 40.7533 43.5328 

𝑄𝑦𝑦  -19.7216 -17.9977 -17.5097 -18.6448 

𝑄𝑧𝑧  -26.8299 -23.0933 -23.2436 -24.8879 

G-C 

𝑄𝑥𝑥  46.5542 43.6740 43.6416 46.3355 

𝑄𝑦𝑦  -20.9126 -19.4755 -19.1479 -20.4689 

𝑄𝑧𝑧  -25.6416 -24.1985 -24.4937 -25.8666 

𝑅𝑅𝑀𝑆𝑉 

A-T 0.1454 0.1250 0.0904  

G-C 0.1657 0.1183 0.0766  

a Dipole moment relative to center of mass. b Quadrupole moments along the principal axes. 
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Figure 6.7. The transferability tests of the additive, pGM-ind, and pGM-perm models from A, 

T, G, and C monomers to WC base pair tetramers. A-C. Scatterplots of MM dipoles of each 

electrostatic model versus QM dipoles. D. Boxplots of 𝑅𝑅𝑀𝑆𝑉  of each electrostatic model 

with QM results. Each scatterplot or boxplot shows a total of 8 data points, with each point 

representing a WC base pair tetramer. 
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Figure 6.8. Scatterplots of MM ESPs of the additive, pGM-ind, and pGM-perm models versus 

QM ESPs for representative WC base pair tetramers. The upper panel is for the G-C/G-C 

tetramer with the highest QM dipole (dipole = 10.5748 Debye). Each plot shows a total of 

14015 data points, with each point representing an ESP point. The lower panel is for the A-

T/T-A tetramer with the lowest QM dipole (dipole = 2.1904 Debye). Each plot shows a total 

of 14196 data points, with each point representing an ESP point. 

 

6.4. Discussion and Conclusions 

Two desirable properties of molecular mechanical force fields are accuracy and 

transferability. Various previous works have demonstrated the accuracy of the pGM models. 

50, 53-54 In this chapter, we assessed the transferability of the electrostatic parameters of the 
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pGM-ind and pGM-perm models by exploring whether the pGM models can accurately 

reproduce the electrostatic properties of larger molecular systems or different molecular 

conformations other than the molecules or conformations used for parametrizations. 

Encouragingly, as measured by 𝑅𝑅𝑀𝑆𝜇  and 𝐴𝑅𝑅𝑀𝑆𝑉 , both the pGM-ind and pGM-perm 

models show significantly better transferability than the point charge additive model. This 

has been demonstrated in the transferability tests (1) from water monomer to water 

oligomer clusters with various sizes; (2) across different conformations of amino acid 

dipeptides or tetrapeptides with widespread distributions of molecular dipole moments; (3) 

from amino acid tetrapeptides to longer polypeptides with up to 20 amino acid residues; and 

(4) from nucleobase monomers to WC base pair dimers and tetramers, which play key roles 

in the formation of double-stranded helical structures of DNA molecules. This and previous 

assessments together show that the accurate and transferable pGM models have the 

potential to serve as foundations for developing the next-generation polarizable force fields 

for modeling various biological processes that are sensitive to the polarization effects. 

Another focus of this chapter is to identify the optimal parameterization strategy of 

amino acids for developing the next generation polarizable force fields based on the pGM 

models. Taking previous AMBER force fields as examples, the amino acid charge sets of the 

ff94 additive force field5-6 and the ff02 polarizable force field33 were both derived with 

C5/R double-conformation fittings using amino acid dipeptides, and that of the ff12pol 

polarizable force field35-38 was derived with R//pII triple-conformation fittings, also using 

amino acid dipeptides. The electrostatic terms of the ff94 force field were parameterized 

using the RESP program,13-14 which have remain unchanged in various subsequent additive 

Amber force fields for almost 30 years.6-7, 17-22 The electrostatic terms of the ff02 and ff12pol 
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force fields were parameterized using an iterative charge fitting program named i_RESP.23 

Recently, the PyRESP program that performs electrostatic parameterizations for the pGM 

models using a direct matrix form solvation approach has been implemented.54 Therefore, 

we aim to identify the amino acid conformations and the number of conformations for 

parameterizing the pGM models that lead to the optimal transferability. We first tested 

parametrizations using dipeptides in 1-5 conformations. However, although the electrostatic 

parameters derived by fitting dipeptides transfer well across the 14 different dipeptide 

conformations, the transferability from dipeptides to tetrapeptides is unsatisfactory. 

Therefore, we moved on to test parametrizations using tetrapeptides directly. 

Encouragingly, the R/ double-conformation fitting with tetrapeptides shows great 

transferability not only across different tetrapeptide conformations, but also from 

tetrapeptides to longer polypeptides with lengths ranging from 1 to 20 repetitive amino acid 

residues for both the pGM-ind and pGM-perm models. In the future development of the pGM 

force fields for proteins, the R/ double-conformation fittings with tetrapeptides are 

expected to be applied to derive the electrostatic parameters of all amino acids 

systematically. 

An important question is: between the pGM-ind and pGM-perm models, which one 

has better transferability? In theory, the more elaborate pGM-perm model with atomic 

permanent dipoles has higher degree of freedom for parametrization, which can better 

reproduce the ESPs used for fitting and give better description for molecular electrostatic 

properties such as electric moments, leading to better transferability. This is indeed the case 

for water molecules as shown in Figure 6.1-6.3, where the pGM-perm and pGM-perm-v 

models yield much lower 𝐴𝑅𝑅𝑀𝑆𝑉  than the pGM-ind model, regardless of the water 
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oligomer cluster size. Additionally, all pGM models give similar 𝑅𝑅𝑀𝑆𝜇  for each water 

oligomer cluster data set. However, as discussed in the Appendix B, the parameterization of 

the pGM-perm model suffers from the singularity problem for most biomolecules, due to the 

use of the permanent dipole local frame formed by CBVs. In contrast, the pGM-ind model 

does not have this problem since it does not take atomic permanent dipoles into account. In 

theory, the singularity problem can be addressed by the restrained fitting strategy as well as 

the multiple-conformation fitting strategy implemented in the PyRESP program. As shown 

in Figure 6.4-6.7, for single-conformation fittings of alanine dipeptides, alanine 

tetrapeptides, and nucleobases, which are all singular molecules, the pGM-ind model 

consistently shows better transferability than the pGM-perm model, as measured by both 

𝑅𝑅𝑀𝑆𝜇 and 𝐴𝑅𝑅𝑀𝑆𝑉. With multiple-conformation fittings, the pGM-perm model generally 

outperforms the pGM-ind model, especially in the transferability from amino acid 

tetrapeptides to longer amino acid polypeptides. Therefore, we conclude that the pGM-perm 

model can be expected to give better transferability than the pGM-ind model for nonsingular 

molecules such as water. For singular molecules such as amino acids and nucleotides, if there 

are more than one conformation available for multiple-conformation fittings, the pGM-perm 

model is expected to give better transferability; otherwise, the pGM-ind model is expected 

to give better transferability for single-conformation fittings. 

Another important question for future users that wish to parameterize non-standard 

molecules (such as small molecule ligands) is: what types of conformations should be used 

for parameterizing the pGM models in general? For molecules that have rigid conformations 

such as nucleobases, there is probably not too many choices. However, the transferability 

tests on amino acids provide some insights for the parameterizations of flexible molecules. 
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For the parameterizations of both the alanine dipeptides and alanine tetrapeptides, we 

tested the single-conformation fittings and double-conformation fittings using 

conformations with the highest (R for both dipeptide and tetrapeptide), lowest ( for both 

dipeptide and tetrapeptide), and intermediate (C7eq for dipeptide and pII for tetrapeptide) 

molecular dipole moments. Among all single-conformation fittings, the conformations with 

intermediate dipole moments (C7eq or pII) consistently give the best overall performance for 

the transferability of the pGM-ind and pGM-perm models. In contrast, among all double-

conformation fittings, the best overall performance is consistently given by the combination 

of the conformations with the highest (R) and lowest () dipole moments. Therefore, for 

selecting conformations for the parameterizations of flexible molecules, conformations with 

intermediate molecular dipole moments are recommended for single-conformation fittings, 

while the combination of conformations with widespread molecular dipole moments (such 

as conformations with the highest and lowest dipoles from all available conformations) are 

recommended for multiple-conformation fittings. 

Our goal is to develop applicable and accessible pGM force fields for the molecular 

modeling community to perform simulation works on biomolecular systems that are 

sensitive to polarization effects. In future works, the electrostatic parameters of all amino 

acids and nucleotides for the pGM models will be derived using the strategy of restrained 

fitting in combination with multiple-conformation fitting provided by the PyRESP program.54 

A polarizable water model based on the pGM models will also be developed and analyzed. In 

addition, the van der Waals parameters for the pGM models need to be reoptimized using a 

similar strategy as was used in the development of the ff12pol force field.38 
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6.5. Supporting Information 

Table S6.1. The QM Molecular Dipole Moments (Debye) of Alanine Polypeptides (ACE-ALAn-

NME) from the ALA-poly Data Seta 

n a R  

1 2.2120 6.3642 0.7558 

2 5.0324 9.2828 3.8851 

3 4.6954 12.8546 1.4167 

4 6.9891 16.5098 4.1018 

5 7.2697 20.1370 2.1320 

6 9.2825 23.9253 4.4437 

7 9.8749 27.8535 2.8647 

8 11.7179 31.7575 4.8784 

9 12.4931 35.6524 3.6046 

10 14.2228 39.6364 5.3824 

11 15.1179 43.6645 4.3481 

12 16.7661 47.6550 5.9376 
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13 17.7462 51.6496 5.0937 

14 19.3327 55.7060 6.5310 

15 20.3767 59.7685 5.8404 

16 21.9144 63.7981 7.1528 

17 23.0086 67.8427 6.5878 

18 24.5065 71.9273 7.7963 

19 25.6412 76.0020 7.3357 

20 27.1060 80.0517 8.4565 

a The QM molecular dipole moments are calculated at the B97X-D/aug-cc-pVTZ level of 

theory. 

 

Table S6.2. The QM Molecular Dipole Moments (Debye) of Glycine Polypeptides (ACE-GLYn-

NME) from the GLY-poly Data Seta 

n a R  

1 2.2053 6.4344 0.7992 

2 5.0095 9.4508 3.8592 

3 4.6377 12.9440 1.2402 

4 6.9072 16.4893 3.9665 
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5 7.1531 20.0470 1.7384 

6 9.1329 23.7208 4.1480 

7 9.6946 27.4790 2.2585 

8 11.4985 31.2236 4.3893 

9 12.2468 34.9693 2.7887 

10 13.9330 38.7742 4.6800 

11 14.8043 42.6044 3.3240 

12 16.4059 46.4132 5.0110 

13 17.3647 50.2254 3.8623 

14 18.9021 54.0766 5.3749 

15 19.9268 57.9298 4.4023 

16 21.4135 61.7641 5.7654 

17 22.4900 65.6093 4.9436 

18 23.9355 69.4781 6.1776 

19 25.0540 73.3424 5.4858 

20 26.4651 77.1917 6.6076 

a The QM molecular dipole moments are calculated at the B97X-D/aug-cc-pVTZ level of 

theory. 
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Table S6.3. The QM Molecular Dipole Moments of WC Base Pair Tetramers from the BASE 

Data Seta 

Tetramers 𝜇/Debye Tetramers 𝜇/Debye 

A-T/A-T 3.4309 G-C/A-T 7.0369 

A-T/T-A 2.1904 G-C/T-A 5.3337 

A-T/C-G 5.3321 G-C/C-G 6.5897 

A-T/G-C 6.9265 G-C/G-C 10.5748 

a The QM molecular dipole moments are calculated at the B97X-D/aug-cc-pVTZ level of 

theory. 
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Figure S6.1. The transferability tests of the additive, pGM-ind, pGM-perm, and pGM-perm-v 

models from water monomer to water hexamer clusters. A. Scatterplots of MM dipoles of 

each electrostatic model versus QM dipoles. Each plot shows a total of 72 data points, with 

each point representing a water hexamer. B. Boxplots of the 𝑅𝑅𝑀𝑆𝑉  of each electrostatic 

model with QM results. Each plot shows a total of 72 data points, with each point 

representing a water hexamer. C. Scatterplots of MM ESPs of each electrostatic model versus 

QM ESPs for the water hexamer with the highest QM dipole (dipole = 5.7951 Debye). Each 
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plot shows a total of 5907 data points, with each point representing an ESP point. D. 

Scatterplots of MM ESPs of each electrostatic model versus QM ESPs for the water hexamer 

with the lowest QM dipole (dipole = 0.6914 Debye). Each plot shows a total of 5992 data 

points, with each point representing an ESP point. For A, C, and D, the dashed lines 

correspond to perfect matching. 
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Figure S6.2. The transferability tests of the additive, pGM-ind, pGM-perm, and pGM-perm-v 

models from water monomer to water octamer clusters. A. Scatterplots of MM dipoles of 

each electrostatic model versus QM dipoles. Each plot shows a total of 13 data points, with 

each point representing a water octamer. B. Boxplots of the 𝑅𝑅𝑀𝑆𝑉  of each electrostatic 

model with QM results. Each plot shows a total of 13 data points, with each point 

representing a water octamer. C. Scatterplots of MM ESPs of each electrostatic model versus 

QM ESPs for the water octamer with the highest QM dipole (dipole = 8.3545 Debye). Each 

plot shows a total of 7025 data points, with each point representing an ESP point. D. 

Scatterplots of MM ESPs of each electrostatic model versus QM ESPs for the water octamer 

with the lowest QM dipole (dipole = 0.2514 Debye). Each plot shows a total of 7139 data 

points, with each point representing an ESP point. For A, C, and D, the dashed lines 

correspond to perfect matching. 
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Figure S6.3. The transferability tests of the additive, pGM-ind, pGM-perm, and pGM-perm-v 

models from water monomer to water decamer clusters. A. Scatterplots of MM dipoles of 

each electrostatic model versus QM dipoles. Each plot shows a total of 10 data points, with 

each point representing a water decamer. B. Boxplots of the 𝑅𝑅𝑀𝑆𝑉  of each electrostatic 

model with QM results. Each plot shows a total of 10 data points, with each point 

representing a water decamer. C. Scatterplots of MM ESPs of each electrostatic model versus 

QM ESPs for the water decamer with the highest QM dipole (dipole = 8.9013 Debye). Each 
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plot shows a total of 7887 data points, with each point representing an ESP point. D. 

Scatterplots of MM ESPs of each electrostatic model versus QM ESPs for the water decamer 

with the lowest QM dipole (dipole = 0.0604 Debye). Each plot shows a total of 7669 data 

points, with each point representing an ESP point. For A, C, and D, the dashed lines 

correspond to perfect matching. 
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Appendix A: Proof of Many-Body Interaction Energies Decomposition 

In Chapter 5, we claim that the many-body interaction energies ME(Glym: Glyn) (eq 

5.22) can be decomposed into the non-additive contributions MENA(Glym: Glyn)  and the 

additive contributions MEA(Glym: Glyn), whose formulas are given in eq 5.24 and eq 5.25, 

respectively. We first prove the formula of the non-additive contributions in subsection A1, 

and then prove the formula of the additive contributions in subsection A2. 

 

A1. Non-additive Contributions 

The non-additive effect refers to that, for a molecular system with more than two 

atoms involved, any two atoms will interact differently compared with the situation where 

other atoms were not present.1 For additive force fields, the non-additive effect does not 

exist, i.e., MENA(Glym: Glyn) defined in eq 5.24 is always zero. Therefore, the interaction 

energy of the two middle peptides IEmid(Glym: Glyn)  in the presence of the neighbor 

peptides Glym-1 and Glyn-1 defined in eq 5.23 should be the same as the interaction energy of 

the two middle peptides IE(Gly: Gly) in the absence of the neighbor peptides. The key to 

prove this is that, for additive force fields, the interaction energy IE(A, B: C, D) of a four-body 

system A,B:C,D can be decomposed into 

IE(A, B: C, D) = IE(A: C) + IE(B: C) + IE(A: D) + IE(B: D) (A1) 

Therefore, the first three terms in eq 5.23 can be decomposed to 

IE(Glym: Glyn) = IE(Glym−1X: XGlyn−1) + IE(Glym−1X: Gly)

+IE(Gly: XGlyn−1) + IE(Gly: Gly) (A2)
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IE(Glym: XGlyn−1) = IE(Glym−1X: XGlyn−1) + IE(Gly: XGlyn−1) (A3) 

IE(Glym−1X: Glyn) = IE(Glym−1X: XGlyn−1) + IE(Glym−1X: Gly) (A4) 

Substitute eq A2-A4 into eq 5.23 gives 

IEmid(Glym: Glyn) = IE(Gly: Gly) (A5) 

Therefore, for additive force fields, the non-additive contribution MENA(Glym: Glyn) 

in eq 5.24 becomes zero. For polarizable force fields, the difference between IEN(Glym: Glyn) 

and IE(Gly: Gly) is naturally the non-additive contribution MENA(Glym: Glyn), which is a non-

zero value. 

 

A2. Additive Contributions 

For either additive or polarizable force fields, the additive contribution can be 

expressed in the following alternative formula by substituting eq 5.22-5.24 into eq 5.25 

MEA(Glym: Glyn) = IE(Glym: XGlyn−1) + IE(Glym−1X: Glyn) − IE(Glym−1X: XGlyn−1) (A6) 

For additive force fields, we need to show that the many-body interaction energies 

ME(Glym: Glyn) only have the additive contribution MEA(Glym: Glyn). This can be done easily 

by substituting eq A2 into the formula of the many-body interaction energy in eq 5.22. 

Therefore, we have proved that for additive force fields, we have 

ME(Glym: Glyn) = MEA(Glym: Glyn) (A7) 
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For polarizable force fields, the difference between the many-body interaction energy 

ME(Glym: Glyn)  and the non-zero non-additive contribution MENA(Glym: Glyn)  naturally 

gives the additive contribution MEA(Glym: Glyn). 

 

Appendix B: The Singularity Problem of the pGM-perm and pGM-perm-v 

Models and Solutions 

The parameterizations of the pGM-perm and pGM-perm-v models suffer from the 

singularity problem that originates from the use of the permanent dipole local frame formed 

by covalent basis vectors (CBVs). Since CBVs are along the direction of covalent bonds (and 

virtual bonds for pGM-perm-v), some molecules are “singular molecules” due to the 

existence of “singular atoms”. Taking carbon dioxide (CO2) as an example, the two covalent 

bonds associated with the central carbon atom are colinear, so that the two permanent C-O 

dipoles oriented in opposite directions can be assigned any value to give zero net dipole to 

the carbon atom. Therefore, the carbon atom in CO2 is a singular atom, and the CO2 molecule 

is a singular molecule. Figure A1 gives several examples of singular and nonsingular 

molecules. The water (H2O) molecule is nonsingular. Similar to the case of CO2, there are two 

covalent bonds associated with the central oxygen atom of water. However, the permanent 

O-H dipoles are not colinear, so that there only exists one solution for the value of the O-H 

dipole to give the correct atomic dipole for oxygen. The carbon atom of the ethene (C2H4) 

molecule and the nitrogen atom of the ammonia (NH3) molecule both have three covalent 

bonds associated. However, ethene is singular but ammonia is nonsingular. The two C-H 

dipoles and the C-C dipole of each carbon atom in the ethene molecule are coplanar, so that 
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the net atomic dipole of the ethene molecule can be produced by infinitely many linear 

combinations of the three dipoles. In contrast, the three N-H dipoles of the nitrogen atom in 

the ammonia molecule are not coplanar, so that there only exists one solution for the value 

of the N-H dipole to give the correct atomic dipole for nitrogen. For atoms associated with 

more than three covalent bonds (and virtual bonds), such as the central carbon of the 

methane (CH4) molecule, no matter how these bonds are oriented, there will always be 

infinitely many linear combinations of the dipoles on these bonds that can produce the net 

atomic dipole for the atom. Therefore, any atoms associated with more than three bonds are 

singular atoms, and any molecules containing this type of atoms are singular molecules. 

Furthermore, the virtual dipoles of the pGM-perm-v model may cause additional singularity 

problems during parameterization. For example, the oxygen atoms in CO2 are nonsingular 

atoms in the pGM-perm model but are singular atoms in the pGM-perm-v model, since the 

O-C covalent dipole and O-O virtual dipole are colinear. 

The general rule for checking whether an atom is singular in the context of the pGM-

perm and pGM-perm-v models is as follows: First, count the number of covalent bonds and 

virtual bonds associated with this atom. If there is only one bond, the atom is nonsingular; If 

there are more than three bonds, the atom is singular. In the case of two bonds, the atom is 

singular if the two bonds are colinear and nonsingular if the two bonds are not colinear. In 

the case of three bonds, the atom is singular if the three bonds are coplanar and nonsingular 

if the two bonds are not coplanar. In fact, most biomolecules are singular molecules, due to 

the widespread existence of sp3 carbons, such as the alpha carbon in every amino acid 

backbone, and the five carbons in the sugar unit of every nucleotide. If there is at least one 

singular atom exist in the molecule, the molecule is a singular molecule. 
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Figure A1. Several examples of singular and nonsingular molecules in the context of the 

parameterization of the pGM-perm model. The upper panel shows examples of singular 

molecules, and the lower panel shows examples of nonsingular molecules. In the left column, 

the singular carbon atom of the carbon dioxide (CO2) molecule has 2 covalent bonds; In the 

middle column, the singular carbon atom of the ethene molecule has 3 covalent bonds; In the 

right column, the singular carbon atom of the methane molecule has 4 covalent bonds. 

 

The mathematical explanation of the singularity problem is that the electrostatic 

parameterization of a molecule using the PyRESP program is essentially computing the least-

squares solution of the following equation2 
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𝑴𝑸 = 𝑽 (A8) 

where 𝑸 is a vector for all the point charges and permanent point dipoles of the molecule 

being parameterized, and the details of the equation can be found in our original PyRESP 

work.2 The least-squares solution can be obtained by solving the following equation, the 

proof of which can be found in most linear algebra textbooks 

𝑴𝑇𝑴𝑸 = 𝑴𝑇𝑽 (A9) 

If eq A9 has a unique solution, the square symmetric matrix 𝑴𝑇𝑴  needs to be 

positive definite and invertible. However, for the parameterization of singular molecules 

such as methane with the pGM-perm or pGM-perm-v models, the matrix 𝑴 contains linearly 

dependent columns, and the matrix 𝑴𝑇𝑴 becomes a singular matrix, which is not invertible. 

One solution to the singularity problem is the restrained fitting implemented the 

PyRESP program, which was originally implemented in its ancestor program RESP.3-4 The 

RESP program applies the following hyperbolic restraining function 𝜒 to the least-squares 

fitting of additive models 

𝜒 = 𝑎 ∑ (√𝑞𝑖
2 + 𝑏2 − 𝑏)

𝑛

𝑖=1

(A10) 

where 𝑞𝑖  is the point charge of atom 𝑖 ; 𝑎  is the scale factor that defines the restraining 

strength; 𝑏 determines the “tightness” of the hyperbola around its minimum, which has been 

recommended to be set to 0.1 to make the restraint appropriately tight.3 The PyRESP 

program extends the restraining functions of the RESP program by applying an additional 

penalty function with the same format as eq A10 for restraining atomic permanent dipoles, 
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and allowing the users to choose different restraining strength 𝑎  for point charges and 

permanent dipoles. In the restrained fitting process, the partial derivative of the penalty 

function 𝜒 to each electrostatic parameter is added to the diagonal terms of the matrix 𝑴𝑇𝑴, 

introducing nonlinearity into the singular matrix. Therefore, the matrix 𝑴𝑇𝑴  becomes 

invertible and eq A9 has a unique solution. 

Another solution to the singularity problem is the multiple-conformation fitting. By 

enforcing inter-molecular equivalences among multiple conformations of the same 

molecule, the rows and columns of the matrix 𝑴𝑇𝑴 corresponding to equivalent permanent 

dipoles are added up to form a single row and column, giving rise to a smaller matrix 𝑴𝑇𝑴. 

This operation essentially eliminates the linear dependence of the linearly dependent 

columns of the matrix 𝑴 , and the resulted smaller matrix 𝑴𝑇𝑴  becomes invertible. 

However, the disadvantage of the multiple-conformation fitting strategy is that it may be 

difficult, if not impossible, to construct multiple optimized conformations for small rigid 

singular molecules such as CO2, ethene, and methane. It is only an appropriate strategy for 

parameterizing large singular molecules such as amino acids and nucleotides. 
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