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MULTICOMPONENT DIFFUSION .
G. W. Roper+»and D. P. Whittle
Materials and Molecular Research Division
Lawrence Berkeley Laboratory

University of California
Berkeley, Calif. 94720

SYNOPSIS

The uhderstanding of solid‘sfate diffusion is fundamental to that

of many high temperature metallurgical phenomena. The mechanistic

approach to‘diffusion theory is valuaBle as a means of interpreting
diffusion data-in terms of atomic‘structuré, However; its complexity
limits the scope of the mechanistic approach to very simple systems.
Practicallyvimportantvsystems, méanwhile are rarelyvsimple and demand a
theo#etical framework whicﬁ encompasses such multiéqmponent phenomena
as "Uphill Diffusion".. This siﬁuation demandsithe,devélopment of a

comprehensive phenomenologicél theory of diffusion. However, it is

" important to be aware of the pitfalls of applying a phenomenological .

.approaéh to such an inhomogeneous system as a solid metal.

The theme of this review is the development of ideas of solid
state diffusion from Fick's Laws onwards, with particular emphasis on

the area of multicomponent substitutional alloys. Recent advances in

:the analysis of'multicqmponent‘diffusion profiles, which render the

- determination of diffusion coefficients less tedious, are highlighted;

"Shell Research Centre, Thornton, Nr. Chester., England
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1. INTRODUCTION

Diffusion is the process whereby the atomic or molecular particles
of a system redistribute themselves within that system and, therefore,
the understandiné of diffusion is fundamental to that of almost all
tﬁe changes of structure or chemical composition which can occur in
the solid state. Such changés are the collective result of very many -
atomic movements, each of which is subjected to.a'conSiderable‘energy
barrier. Thus,»solid state'transformations (excluding_thoég which are
diffusionless) are generally slow, although the rate increases sharply
with increasing tempéfature. Since diffusion provides such a kinetic
restaint té the attainment of thermddynamic equilibrium in’solids, any
study'of high\temperafure metallurgicél phenomena such as annealing,
recrystalli;ation, homogenizatioﬁ, kinetics of precipitation, high
temperature oxidation, corrosion, creep, etc. must be based on an
understanding of diffusion. .

Because of the wéy in which ideas about diffusion developed, the

correct mathematical relationships were obtained for theldescriptions -

of diffusion in binary systems, but they were deduced on the basis of
ill—conceived theories concerning fhe nature_of'diffusion. It was not
until systems of more than. two components were studied‘that the flaws
in the early ideas on diffusion became apparent; Unfortunately, most
text—books:&ealing with diffusion intgoduce the sﬁbject with a dis-
cussion of Fick's Laws [1],-retaining the concept that the driving
force for diffusion of species is' the concentration gradient of that

species. By this approach, a éubstantial intellectual leap is required



to understand diffusion in systems of more than two components. This
: ’ \

is, perhéps, one of the réasons why stﬁdies of termary diffusion, takihg
fuil'account of the intefactions between the various elements present,
are few and‘far between. Another Possible explanation lies in thé
general unproductivity of ternary diffusion studies in terms of the
amount éf‘experimentation requiréd,to produce a given amount of dif-
fusion data;.

It is important, however, tﬁaf diffusion be studied in ternary‘-
systems, because theré are two features éf multicomponent diffusion
’ whiéh cannot be simulated in als§stem of»less tha% three components.
The first of these is so célled "Uphiil Diffusionﬁ, in which the atoms
of a giveﬁ species diffuéé up the céncentration gradient'of‘that
species. \This_océurs‘when the gradients of concenfration and chemical
potentialvare opposite in sigﬁ and it illﬁstrates the:fact that the
driving force for’diffusion is ;he latter rather than the former.

The second(multicomponent effect which cannot be simulafed ih a
binary system ‘is the possibility of ﬁaviﬁg a composition gradient

. , _ _

through a two-phase region. This. arises because the Phase Rule allows
only two degrees of freedom if two phases are to exist together in
equilibrium in a two component system. Thus if pressure and'témpéra—
ture are fixed then the compositiéns of the two phases in equilibrium
are fixed and so it is not possible to have a composition gradient
thraugh'suéh a region. This rules out the possibiiities of internal
precipitates and-uhstaBle plan;f interfaces in binary systems since

phase boundaries in the latter must be planar and perpendicular to the



‘composition gradient.

In addition to the above, ternary diffusion studies are of great

value as a means of investigating the thermodynamic interactions between

the components of a system. In particular, the effect which one com-

poﬁent.has on the Gibb's Free Energy of another is reflected directly

in the sign and magnitude of the respective cross diffusion coefficient.



2. APPROACH TO DIFFUSION THEORY

There are two distinct ways in whicﬁ'diffusion may be analyséd,
each being useful under differentvcircumstances. These are, respective¥
ly, the mechanistic énd‘the phenomenological approaches.' Of these,
the most active area of study is in diffusion'mechanisms because it
is thus possible to ascribe>some fundamental meaniﬁé td the'diffusion
coefficients. Heﬁce, diffusién study can contribute much valuable
information to the atomic modéls of solidé. However,‘thisbapproach
is ?ery_limited in écbpe in that it éan'only'cqpe'with vefy simple
systems. In order to deal with the complex systems- met in practice;
the’phenomenoiogical theory muét be relied onh. However, caution must
Be exercised when applying a phenoggnologically baéed>diffusion theory
to metals in the solid state, since the lattervare-rarely homogeneous
structures inbperfectrthermodynamic eduilibrium, buﬁ usually contain
grain boundaries and other crysﬁal'defebté. Under certain circumstances,
however, the diffusion process is dominated by so called volume dif-

¢ ' L
fusion (i.e. through the crystal lattice rather than along gfain
boundaries, dislocations été.) and it is in this regime that a phenom-
enological theory is.valid.

In order to be aware of the extent of thesé limitations on the
application'of ﬁhe phenoménélogical approach to diffusion, it is-
necessary to give some prior consideration to the natﬁre of diffusion
at the étomic level. Such a consideration will also givé séme insight

into the shortcomings of the mechanistic approach to diffusion theory.
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3. ATOMISTICS OF DIFFUSION

The atéms in a solidvmetal occupy specific sites in a crystal
lattice Strﬁcturé, and a considerable energy barrier must be'overcome
if an atom is_to'mbve out of ité site. However, at all temperatureé
above absolute zero, the atoms of the solid posséss thermal.energy
which'causes them to vibrate about their equilibrium positions.

From the model of a perfect gas it is possible to derive the so

called Maxwell-Boltzmann distribution of: energies which gives rise to

the prediction that the probability (P) that an atom possésses an

energy greater than or equal to a given energy (E) is given by:

~ F\.E
P 0 exp (if _ _ : (1)
where,
T = Temperature °K
k =:Boltzmann's Constant

1.380 x 1023 joules deg L [2]

This same function has been found to predict quite accurately the
vibrational énergy distribution of the atoms in a crystalline solid [3].
Thus there is a finite probability of a given atom acquiring the energy

required to overcome the barrier constraining it to a particular loca-

tion in the lattice.

Having established that the atoms in a crystal can move, it is
now necessary to consider the various mechanisms by which atomic motion

may occur [4].



3.1 Diffusion Mechanisms

The various different mechanisms of diffusion can be grouped into
two categorieé; that is those in which there ﬁay be more atoms per unit
cell than lattice sites and, secondly, those in which atoms are o
conétrained’to mbve oﬁly from one~l§}tice site to another, The‘firstf
category includes the Interstitiél Meéhanism, the Intefstitialey
Mechanism, the Mechanism of Gibson et al. [5] and the Crowdion Mechanism.
(Reference [4]>gives fuil details of each of these.) For sgbstituﬁional
alloys of close packed metals, however, interstitial type &efects
producé very large lattice distortions and are consequently rare;except
in irradiated.ér cold-worked specimens. _Thﬁs, thé meéﬁanisms listed
above are relatively uﬁiﬁportant for these materials.

of thersecond category of diffusion mechaﬁisms mentioned above
(i.e in which atoms are confinéd to lattice sites), the earliest
hypothesis was the Direct Exchange Meéhanism whgreby.two nearest
neighbodr atoms simply exchange places. However, caiculations later
showed [6;7] that the large lattice distortions produced by tﬁis
mechanism made it energetically unfavourable comparéd with the:Vacaﬁcj'
Mechanism. It can>be shown [3] that at any given temperatﬁré abové

: r » :
absolute zero thére is a finite'equilibrium concentration of vacancies
which éxist in a crystal lattice given by:

S /k -E_/kT ' . v
n/N = e F e F _ (2) '

where, ‘ ' : y

o}
[

Number of Vacancies

Number of Lattice Sites

=
i



wn
]

Vacancy Formation Entropy

F

EF = Vacancy Formatioh Energy
k = Boltzmann's Constant
T = Temperatﬁre °K /

This arises because the presence of vacancies in a cfystal lattice
contributes both to the internal'energy and to the enfrdpy_of the
system. Th;s the dpportunity exists for a systém to reduce.its free
energy by ﬁhe production of vacancies. A close packe& atom can move.
into a vacancy with relatively little distortion and so the vacancy
diffusion mechanism ié favoured energetically.

In 1950, Zener [8] postulated the Ring Mechanism for diffusion
as a more_generalized‘version of the Direct Exchange Meéhaﬁism. The
suggestion was that three or four atoms could move éimultaneously in
a ring, but caléulétions showed that this was still less energetically
favourable than the Vaéancy Méchanism for close packed metals and,
indeed, there is considerable experimental evidence against ﬁhe Riﬂg
Mecﬁanism. Smigelskés aﬁd Kirkendall [9] conducted an experiment with
inert markers at the interface’of a diffusion éouplé between éépper

"and brass. The movement of the ﬁarkers in the direction of the brass
side pf_tﬁe coﬁple cannoﬁ be explained entirely bf the change in volume
on mixing. This result has been coﬁfirmed in several other systems

'by Da Silva and Mehl [10] and suggests that the sum of the diffusion
fluxes is not zero. This observation can beAéxplained if diffusion’
occurs by a vacancy mechanism, but not if either the ring or direct

exchange mechanism operates.
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‘Hence, the ring mechanism is no lgpger considered as a possibility

in close packed alloys. However, it has been suggested that it may

occur to some extent in b.c.c. metals to explain some of the anomalous

diffusion coefficients obtained for such sjstems. The open nature of

the b.c.c. lattice makes this a reasonable

3.2 Stafistical Treatment of Diffusion

suggestion,

In order to relate the observed macroscopic behavior of a system

undergoing diffusion to ‘the assumed mechanism, statistical mechanics

is used. Consider the motion of a single atom by the vacancy mechanism

through a homogeneous matrix:

Jump Frequency .

This depends on the number of nearest neighbour sites which are

vacant and on the time required by the atom concerned to jump into an

adjacent vacant site. The second of these

jump frequency is very difficult to define

attempted to describe the problem in terms
of the atoms by assuming that the movement
the sum of all the displacements'caused'by

passing through the lattice.

terms contributing tq_the
rigorouély. Rice [11] has
of the vibrational modes

of a particular ato@ is just

the random acoustic waves

In a different approach, statistical mechanics is used to deter-

-

mine the concentration of "activated complexes' in a system, i.e. atoms

midway between two equilibrium sites. -This procedufe [4] gives the

folldwiﬁg‘ekpression for the average frequency (W) with which an atom

jumps into an adjacent vacant site:-
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W = v. exp (-AG/RT) - (3)
where,
Average velocity of atoms passing through activated
v = ' complex state
Width of barrier to motion of the atom
AG = Free energy of activation, for the movement of an atom

to the activated complex state.

This, W is subdivided into a frequency factor (v):and a term which
measures the probability of an.atom haviﬁgisufficient energy to over—”
come the barrier conStrainiﬁg it to its lattice site.

An.atom‘acﬂieves the'conditions required of it to make a jump by
a completely random proceés, so the time taken by the atom to jump is
variable. However, the overall diffusion process involves such'a 1érge
_numbgr of jumps ;haﬁ iﬁ is reasonable'to éonsider the jump frequéncy

as a constant, equal to the average rate of jumping.

Jump Distance
v Since the atoms of a crystalline metal are constrained to jump
from one lattice site to another, the jump distance is defined by the

pafticular'crystallography concerned.

Jump.Direction.

in-order for ény significant redistributioﬁ of atomic species to
téke place in a system by diffusion, eaéh étom ﬁﬁst-move é cbﬁsiderable
distance and theréfore make many jumps. Thus the direétiqn in which

a given atom jumps is of some importance. A5 will be described later,
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successive atomic jumps are not entirély independent of one:another,
but this effect is of minor importance when dealing with pure metals.

The jump direction of diffusing atoms is also influenced by the
presence of pbtential grédients in a system which make-the éctiyation
energy for jumps in certain airecpions lower than in others.‘ However,
in the absence of.such complications, it may be aésumed that each‘
_atomié.jué£ is entirely random in direction. Thus, it is possible to
determine tbe probability of finding any given atom at a particular
location after a.particulér number of jumps.

Suppose an atom makes n jumps of distancé_a. The final poéition
oflthe atombcan be described in'tefms of'the:vector_z, defined from

the origin. The probability of the atom being found in the volume

element dV (= dx-dy-dz) formed by the'increment'qi of r is given by

[2,12]:-
‘b3/2 )
P(r)-dv = [;] o exp (-b+|r|%)edv. (4)
where
3
b=
2na2

The probability of finding the atom at some distance r from the

origin is obtained by reolacing dV by the volume of an elemental'sphere

. . . . : . 2
of inner radius r and outer radius r + dr (i.e. 4mr-dr). -

» 3/2
P(r)e-dr = 47 rz [%] . exp (—brz)-dr . (5.



-

‘gradient at x
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From equation (5) can be found the root mean square distance that

an atom will travel after n random jumps of length a:-

———ee e

ViZ = aVn ()

3.3 Mechanistic Derivation of Diffusion Equation

‘Diffusion in metals can be investigated using radioactive tracers.

Into a block of a puré metal is diffused a radioactive isotope of the

_same element. After a_éuitable annealing time, the distribution of

trécer throﬁgh the block is determined by téking thin slices off the
block and then measuring the intensity of radiation from each‘slice.

A system like'this is very eAsy to treat theoretically becaﬁse,
although the radiocactive isotope can be readily identified in the
system, its chemical behaviour is identical to that of the hosf.stable
iSotope and, furthermore, the two épécies hgve the.same atomic size.
Therefore, despite.the'concentration gradient ﬁhrough the material,

there are no potential gradients to influence the diffusion. In

addition, both the equilibrium concentration of vacancies .and alsd,the

frequency with which atoms jump into adjacent vacancies remain invariant

2

with composition.
Consider then a system like the one described with a one dimen-

sional concentration gradient of tracer.v Further consider two adjacent

atomic planes perpendicular to the direction of the concentration

1

.and Xy The number of tracer atoms jumping from'xl to

X

i koL . - 4 _
, in unit time (nlz) is given by. .
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ny, = K.Pv.V.n] | (1)
whefe
K = Nﬁmbgr of nearestjneighbouf sites which an atom in plane x1
has ip piane xé. | |
Pv = Probabilify that a given nearest neighbouf site is vacant
= Nv.(i.e. the fraction éf vacant sites in the lattice)
W = Averﬁge frequency withbwhich an atom jumps into an adjacent
vacant site. |
ni = Number pf trace; atoms in ﬁlane'xl.
similarly
4n;1 = K‘.PV¢w.n; | U | f_ - (8)
ﬁhere
'ng = Ngmber.of tracer atomé in plgne.xz.

Since it is tracer diffusion that is under consideration, it is
reasonable to assume that K, Pv and W are independenf of composition.
However, when deaiing with alloys, the species presént are not
’ cheﬁically identical and so this assumption is not valid.

From equations (7) and (8), the net.number of tracer atoms flowing .

from X to xz_pervunit time_is;—

* &k N _ . E I :
(n12 nZl) f_K.NV.W (nl ' n2) . = (9)
‘The concentratioh of tracer atoms in any plane, xi, is the total

mass of tracer in the'plane divided by the volume occupied by all the

atoms in the plane:-



4

b

¢t = . ' (10)

"Where,
M* = Atomic weight of tracer.
a = Interatomic spacing and hence also the width of the atomic
plaﬁes.
A = Area bf~a£omic planes.

Eliminating n:vbetween equations (9) and (10) gives:-

* x | M* - ’ *
(n12 — n21).7rf- K.NV.‘W.a.(Cl - C

¥

» an

Now, the left hand Side of equation:(1l) is the net mass of tracer.

atoms flowing'in the +x direction per unit time through unit cross:-

'sectidnal-area, which is defined as the diffusion flux EJ). Further,

* '
(Ci —'Cz) can be replaced by means of the relationship:-
‘ * * '
gg _ (C2 - C].)
9x a
Thus, equation (11) becomes:-
g=o - 2
Where - ‘ . , . .
2 » o .
D = K.N_,.W.a" - - S (13)

Thus; starting with some knowledge concerning the mechanism of
diffusion, it has been possible to show that the diffusion flux is

diréctly proportional to the negative concentration gradient. , The
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proportionality constant (D) is called the diffusion coefficient, or
diffusivity, and for the example of'tracer diffusion it really is
constant because ail the factors in equation (13) are constant., D isb
not constant with composition in alloys however because many of the

assumptions made in arriving at equation (13) cease to be valid.

3.4 Réfinements\ﬁo\ﬁhe Mochanistic Interpretation of D
| It is possible to extend the above description of diffusion to
. deal with dilute binary alloys.
In the casé of interstitial alloys, the solute atoms diffuse on

a sub-lattice whose sites are essentially all vacant. Because of the
sharp distinction between tﬁe sites which may be occupied by solvent
atoms and those which can only accommodate'soiute atoms, the theofeti—
cal treatment of intérstitial oiffusion is relatively uocomplicated.

.In a dilute substitutional alloy, however, solute and solvent atoms
occupy sites on the same lattice and this makes it very much more dif—
ficult to derive an expression for the diffusion coefficient in terms
of atomic- parameters. In a'dilute alloy, it is not unreasonable to

neglect chemical interactions between the two different atomic species

present. However, there are two other factors omitted from the mechanis-

tic treatment of tracer diffusion which must be included in a descrip—
tion of substitutional alloys.

The first of these is that, in an alloy, the juﬁp frequéncies of
the Solute and solvent atoms may differ.' This has been analysed [13]
in terms of the effect of solute atoms on the electronic size distribu-

tion surrounding the ion cores which make up the lattice, and also



)

[14,15] by consideriﬁg the mechanical stresses induced by the different
sizes of solute and solvent atoms. However, there is no unified theory
to account for the simultaneous operation of‘electfonic and size effects,
The second factor which must be taken into account when‘dealiﬁg
with alloys is Correlatioq\between successive atomic jumps.
.Consider firstly the jumpg of é vacancy moving through a pﬁre
metal. After any jump, all the neiéhbours of the vacancy are identical
so it shows no preference'in the direction of its nextvjump. The jﬁmps
are therefore said to\be uncorrelated or cqmpletely random, so the mean
squafe,distapce (;;55 travelled 5y the vﬁcancy‘aftgr.n jumps of 4istance Co
a is given by néz, from equation (6).
Consider now a tracer atom diffusing by a vacancy mechapism in
a pure meﬁal. After any jump of the tracer atom, its neighbours are

not all identical, one of them being a vacancy. This influences the

probabilities of the various directions in which the tracer atom could

‘move on its next jump. - In fact, the tracer atom will have a greater

tendency to jump back in the direction from whence it came then it does

to continue in the same direction as its previous jump. Therefore, -

Jjump directions are correlated and not entirely random. The effect

of this is that the mean square distance (r*z) travelled by the tracer

' . e s . 2 . L
atom after n jumps of distance a is less than na because the direction

of a given jump has a greater than random tendency of cancelling out

the previous jump. The degree of correlation in a particular structure

g

is given by the correlation factor (f), which ismaefined ag :
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(14)

Taking account of correlation, equation (13) should actually read:-

D = f‘K.Nv-W-a2 ' (15)

where f is less than uhity for diffusion by a vacancy mechanism.

It canlbe shown [16] that for tracer diffusion, f is approximateiy-
unity and so correlation effects can be qonveniently ignored, but this
"is not the ;ase for alloys where correlation éffacts are often of prime
importance in détermining the diffusion coefficients of the varioﬁs

. atomic species.

3.5 Breakdown of Mechanistic Approach
Without having gone into much detail, it is clear that, even in

the relatively simple case of a dilute binary substitutional alloy,

a complete understanding of diffusion coefficients in terms of mechanism.

is very involved. 1In fact, it is quite unrealisticitd attempt a
complete mechanistic descriptién of diffusion in more concentrated alloy
systems where chemical interactions are important. It is, therefore,
necessary to consider the problem of how to aﬁalyse diffusion phenomena
in systems such'as these where the mechanistic approach is too gompléx
to be of any use. The anéwer to the dilemma is to treat the problem
phenomenologically, by which means it is possible to deal with the type
of system met in practice, containing several componenfs and possibly

more. than one phase.
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However, even within the context of .a phenbmenological theory,
it is important to be aware of the mechanistics of diffusion, because
there are two factors which prevent a solid metal from béing treated
as an amorphous mass.

~ The first ofvthese is Aniéotrogz, which provides the bpﬁortﬁﬁity
for diffusion béhaviour to vary with the direction of measurement, |
: Extendiﬁg the one dimensional dérivatién of fhe_basic diffusion

equation (12), the most general relationship that can be written for

the flux components in a system containing a three dimensional concen-

tration gradient is as follows:-

. oC aC oC

JX = - Dxx Dx ay - Dxz _B—Z-
- aC . 3C.

Jy Dyx - % Dyy 3 Dyz 3z

N . 9oC . oC aC

z = Dzx X Dzy 3y Dzz Nz

However,fﬁhe nine coefficienﬁs defined above are'nOt'always.all.éigni—
ficant. For the cubic, tetragonal,»qrthorhdmbic and.hexagonal struc-—,
tures, all the coefficients of the typé Dij (where i and j are not

feqﬁal)_afg zero. Further, for strﬁctures with cubic symmetry; all the

cubic directions (i.e. (100) type) are identical and hence:-

Dxx ‘Dyyv#’Dzz'

Noﬁ, J:

Jx+Jdy + Iz

Thus, for the cubic structufes descfiBed above:
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-3C , 3¢ ¢
9x ~ 3y 2z

| e
It

- Dxx

J =-D,VC : _ | (16)
Thus, p;ovided it is a cubic.structure that is under cdnsideration,
the isotropy reqﬁirement of the.phenomenological approach is satisfied.
In non-cubic structures,ball directioﬁs are no longer equivalent, but,
provided the degree of anisotropy is smali, the directional dependency
of diffusion properties may be neglected in pblyérystalline materials
whose grains afe randomly oriented éﬁd small compared with the overall
dimensions of the samples. However, to have small grains implies having
maqy graih boundaries which themselves disturb the uniformity of the |
“crystal lattice and .thereby add a further complication to the phenomeno-
logical treatment. This intréduces the second of the features of a

solid metal which prevent its structure being ignored with respéct to

diffusion, i.e. Structural Defects.

(a) Point Defects

Point defects, whose presence and mobility-are.essential to the
process of diffusion, do not invaiidate the use of a phenqmenological
theory providing that their concentration remains atvits equilibrium
value, as defined by equation (2). Thus, the applicébility of éuch'

a theorylis confined_to materials which have not been subjected ;o
quenching, cold work or irradiation, each of wﬁich can produce a non-
equilibrium distribution of point defects in a system. In practice,

at the high temperatures at which most diffusion expefiments arevcarrigd

out, small departures from equilibrium of point defect concentrations



are‘quickly rectified by the available sources and sinks. If, héwever,
the épecimen has previqusly been subjected to conditions which have
produced a 1arge excess of vacancieé; §6ids.can be formed on annealing
by vacancy condensation. (N.B. The energetics render vacancies the
more important category of point defects in close packed substifutional
metals)

. Another situation in which the point defeét concentration can be
diétrubed fgom equilibrium is where the redistribution of  two or moré,
chemically different atomic species is taking pléce in a substitutional
..alloy system. vathere is an imbalance of the fluxes across some inter-
face in the system, then there ié.a net flow of matter across the inter¥
face, ﬁhich_results in an excess of vacancies on the side Which is
losiné material and vice versa, assuming that diffusion occurs by a
vacancy mechanism. If the flux imbalance is so largevthat the available
sinks cannot cope with the vacancy exéess, then voids can form. . This
phenomenon is known as Kirkendalllporosity, haQing been\discqvered by
Smigelskas and Kirkendall [9]:

It has been suggested by Manning [17,18,19,20,21,22,23] that, even
in the absence of Kirkendall pdrosity, the diffusion pfocess is affected
by anvacancy wind whenever a‘fluk imbalance occurs. It is suggested
that not all lattice sites are,immédiately'adjacént to a 'vacancy source/
sink and so a flux imbalance creates a flow of vacancies, or Vééancy
wind, in the opposite direction to ﬁhe net flow of matefial. The flﬁx
of any given atomic species would be affected by the vacancy wind, bu£

the vacancy wind depends on the overall motion of all the atoms, so

\
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the flux'of‘a given species depends indirectly on the chemical pbténtial
gradients'bf_all the species present.

Dayananda f24] haé adaptéd his earlier work on "Atomic Mobilities
in Multicomponent Diffusion" [25] to take account of vacancy wind
effects. HoWever, acceptance of these ideas has not been uﬁivérsal,

~since ﬁhé evidence of the various attempts.to verify the existence and
importance of vacancy wind effects [26,27,28,29,30,31] have pfoved
- somewhat inconclusiVe.-

In‘their kinetic analyseé of diffusion in a concentration gradient,

Le Claire [32] and Lane and Kirkaldy [33].followed the example set by

Darken [34] in assuming that the Vacancy concentration remains at
equilibfiuﬁ throughout an.iﬁhomogenedus sysfem undergoing diffusion.
Furthermore, Kirkaldy and Lane [35] have convincingly defended this
' assumption. | |

The problems thrown up by the po;ential existence of a vacancy
wind are only'importaﬁt in connection with the determination of
intrinsic diffusion coéfficiehts. These characterise the individual
fluxes of the different atomic species present in an alloy system, as
opposed to interdiffusién coefficients which describe‘thé overail
diffusion process.

(b) High Diffusivity. Paths

Although vacancies are the only thermodynamically stable defects
in a solid metal, other types of structural imperfections, which remain
in existence for kinetic reasons, are invariably present. Even a well

annealed piece of metal contains a dislocation density of approximately
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106 cm—2 [36], while a polycfjstaliine specimen also contains grain
boundaries, which are regions of misorientation in the crystal lattice.
In addition, the uniformity of the structure is disturbed by the
,preéénce of free‘surfacésv&hosé efféct on the diffusion process is
likely to depend on the size and shape of the specimen under considera-
tion.

| In the regions of ﬁhe metal where these various.defects bccur,
the regular closg packing of the atoms is distﬁrbed_in some way, which
results in a relatively "Opeh" structure compared with that of the
perfect lattice. The result of this is that thé diffuéion coefficients
pertaining to these defects are higher than the values characteristic
of therperfect lattice. Hence, such défects ére called High Difquivity
Paths. |

Because atoms move at different speeds along different routes

through a piecg of metal,_the observed diffusion flux results from the
combiﬁed‘effect of the fluxes along each of these routes and is
essentially a measure of the average flow of matter ﬁhrough any randomly
chosen unit cross section. The contribution to the total flux from
any one of the diffusion routes depends on the relevant value of the
diffusion coefficient and also oﬁ'thé fraction of the total number of
atoms oCcupying sites_lying on that route. Now, it so happens.thatr
the qontributions from the various routés differ by orderé of magnitude
from one énother‘and therefore, in general, the overall diffusion flux
is complefely dominated by the process making the largest coﬁtributionf

Thus, the observed diffusion coefficient (D) equals the characteristic
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coefficient of the dominant process.

The dependence of diffusion coefficient on temperature varies from
one proéess to aqother and it has been shown [37] that as'the temperature
varies the dpminant diffusion process changes. The transition tempera-—
tures between processes are found to be approximately constant for all

metals if they are expressed as a fraction of the metal's melting point

(Tm)rin degrees :-

When,. T

m> T > 2T, /3 lattice diffusion dominates

2T,/3 > T > T/2 grain boundary diffusion dominaﬁes

Tm/Z >T - dislocation diffusion dominates

Theréfore, experiments conducted at temperatures.aﬁove two thirds
of the melfing point of the syétem‘under consideration will yield dif-
fusion data charaéteristic of lattice diffusion, and so on, Surface
diffusion does not, in general, make a significant contribution to the
"diffusion flux in metal épecimens of the sizé and shape normaily
employed in diifusioh experiments. .

In any comparison between the diffusion behaviour of one system
with another, it is importantlto ensure that the dominaht diffusion
process is the same in eachvcase, otherwise the comparison is of 1i£t1e
value; Thus, the temperature ranges over which such gompaiative studies
may be made are often quite 1imited, this being anotherrpiece-of informa;

tion which does not arise from the general phenomenological theory.
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4. PHENOMENOLOGICAL TREATMENT OF DIFFUSION

4.1 Binary Systems

‘

A considerable knowledge of the structure of a solid metal and

the mechanism of diffusion was required in order to derive an equation

for the diffusion flux in an isothermal, isobaric, one dimensional

binary system (equation (12)). However, as early as 1855, Adolf Fick

{1] obsgrved'that in any inhomogenééus single phase system matter tends

to flow so as tovreduCe,concentratioﬁ gradients, and thus arrived at

équation (12) intuitively, prior to any experimental work in diffusion.
Fick's 1st. Law, as this earliest.formulation'of diffusion behaviour

is called, is essentiall& a static‘law, but a dynamic variant can‘be

derived from it:- -

B2 o] an

This dynamic’equation, which relates the variation of cgﬁcentration
with time at any point to tﬁe concentratién gradient, is Fick'é 2nd.
Law. |

Fick's 1lst. and 2nd. Laws can.easily be extended to cope Qith
diffuéion in more than one dimensiﬁn.as shown by eqﬁatibn (16).‘ However,

for isotropic systems all dimensions are equivalent, so for ease of

presentation only the one dimensional equations will be considered here.

The factor D in Fick's Laws was originally introduced as a
proportionality constant, but it was later demonstrated for the dif-

fusion of electrolytes by Clack [38] and fér metallic systems by Mehl [39]
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that in general diffusion cpefficienté afe not constant, but are
functions of‘composition. |

Muph of the theoretical work in diffusion is associated withv
solving Fickﬂs an.Law fof various boundary conditions. This is
relatively s#raightforward for the case of Binary systems in which D
is aSSumed to be>independent of ébﬁposition, and Crank_[40] has p;ovided
a comprehensive listing qf the various solutions available. If D is
not independent of composition, héwever, then it is a function of dis-
tance and cannot be taken outside the differential in Fick's 2nd. Law,i
which is consequenfly‘rendered inhomogeneous and unable tovbe directly -
integrated. >However, Boltzmann t41] showed that x and t in equation.

(17) can be replaced By a single variablé, A= x/Vt -

SEESCIO o
This is now an ordinary homogeneous differential equatibn between.
C énd X. It is important to note, however, thgt‘this transformation
of x and t into A and equation (18) can only be used in’situations where
the boundafy éénditions are expressable in terms of>k alone.

For example, consider the diffusion couple defined by the following

boundary conditions :-

C. =C, at x<0, t
1

i 0; and at x > —», t>0

c

+
i Ci at x>0, t = 0; and at x > +°, t>90

Where i refers to any one of the components of the system, These

conditions could also be expressed as :-
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1]
1
8

(19)

C; =C; at A =+ (20)

Thus, siﬁce x and t are‘not invélved separately, equation (18)
_can be empioyed. |

Kirkaldy, Lane and Mason [42] derived the following iterable solu-
tion to equation (18), ﬁhich is rapidly-conyergent éven'when D varies

strongly with C :-

C =v1.<2 +kl { D exP [—g T d)\] « dA . (21)

where kl-and k, are constants of integration.

2

.

However, of greater interest here is an alternative integral-of :
equation (18) which was noted by Boltzmann {41]. For the case of aﬁ-
infinite diffusion couple, as defined by the boundary conditions (19)
and (20) above, equation (18) can be integrated (remembering that
dC/d\ = 0 at C=C ) to give:-

. L C , - .
1 "ac=-0 & | ()
2 o | o |

{

where b thfoughoUt refers to the concentration of the dependent
species.

Although it is not a solution to the diffusion’equation, equation
(22) can be ;Séd to dgterﬁine the diffusion coefficient at any point
along the concentration profile of an infinite diffusion éouple. Since

the concentration profile to be analysediis at a fixed time, then

Pl
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equation (22) can be written:-

- %— [ xdC = Dt %% ' (23)
S C- | c=C

From a graph of the concentration profile, the concentration
. : C

gradient can easily be measured at any point, and the integral, 'f x dC,
o . C-

can be determined by measuring the appropriate area under the curve.

Errors in the value of D caléulated using equation (23) are greatest
where C is near the terminal compositions because in these regions

[ x dC and dC/dx are both very small.

c- C

An important point to nbﬁice is that the‘determiﬁation.bf f X dC
by measuring the atea_ﬁnder'the curve requires knowledge of thecy |
position of x=d. This may be found by considering equation (23) ét
c=c" where dc/dx = 0:- |

+
C

[ xdc=0" o (24)
c-

The interface defined in this way.is called the Matano‘Interfacé
after Chujiro Matano who first employed equation (23)-to'dgtermine
' diffusion-coefficients in metallic systems. [43]. This techniqué of
determiﬁing coefficients has since become known as the Boltzmaqn—ﬁatano
method.

Equation (23) is_strictly only valid fdr a system which showé no
volume cﬁange on mixing, but it can be’médified to cope witﬁ systemé

- where the variation of molar volume with composition is not negligible:-

c
1
-y
. (¢

[

4dc Dt dC

=z ¢ =T i« (25)

<l
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where Vm = Molar volume.
In its original form, the Boltzmann-Matano technique was somewhat
tedious, principally because of the need to locate the Matano Interface.

'Howevef; equation (23) has been quified [44,45,46], such’that the -

- distance parameter only appears in differential form, thus obviating

" the need to locate its origin. Using the same format as before, the

modifiéd.form of equation (23) is :-

+o =
+ dC :
(C -C) dx = 2Dt ax . (26)

X , o
(1-v) [ (c-C) dx + Y [
-0 - : C=C

X
Molar volume is here assumed to be constant, and the differential

of C with respect to x is written as a perfect differential since t

is assumed to be.constant.

"The factor Y in equation (26) is defined as follows:—

!

4.2 Reference Frame for Diffusion

| Until the 1940's, it was assumed.that the reference framé for dif-
fusion was fixed relative to the extegnai geometry of the system ané
so distance measurements could be made froﬁ any poiﬁt fixed with respect

to that geometry. Thus for the case ofi metallic diffusion couples,

comprising welded pairs of alloys, the origin for measurements was con-

sidered to be fixed at the position of the original interface.

Now, at this time the direct exchange mechanism was the established

idea for diffusion in substitutional metallic alloys and hence it was
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 assumed tﬁat the amount of component 1 diffusing in one direction in
a given.time was tﬁe same as the amount of component 2 diffusing.in
the reverse direction in the samé time. This idea is not only consis-
tent with the concept éf the Matano Interface, which consequently had
coﬁsidefabie intuitive appeai at the time, but.also prédiCts that the
Maténo Inferface is coincident with the position of the ofiginél'inter-
face between the welded pair,hin ;he absence of molé} volﬁﬁe changes
on mixing. |

The first attack on these mutually consistent'ideas‘qf subsfifu—-
tional diffusion in Binafy metal alloys was éimed at ﬁhénconcept of
the direct exchange mechanism. Thié was led by Huntington”andeeitz
[6,7]; wﬂo showeditﬁat'thé.vacaﬁcy diffusion mechanism, which pgrmits'
the two components‘tovmove at diffefent épeeds, is energeticaliy much
mbre favourable than the direct exchange mechanism. Now, if méterial
flows in one diréction in a diffuéion couple faster than it does in
the other, then the side énjoying a nett receipt éf material»will‘
exband at\the expensé of thé other. "Therefore the interfacé betﬁéen
the two sides of the couple will mbve_relagive tp an external reference
point. The onl§ wéy to obéerve such an effect is to incorporate'into
the system aﬁ internal reference frame of some kind and theﬁ to monitor
this relativé to the exterﬁal frame. This experimentvwas'first carried
~.out by Hartley {47] who studied the motion of inert titanium dioxide
markers in the diffusion of acetone‘in cellulose acétate. However,
it was Smigelskas and Kirkendall [9], who first brought the concept

to the attention of the metallurgical world with their observation of
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‘the motion of inert molybdenum wires in diffusion couples between

copper and & brass.

The vélue of making diffusion measurements relative to aﬁ internal
frame of refexence was first recognized by Darken [34], who shpﬁed that
it.was thus poséible to evaluate two aifferent diffusion coefficienés
for a binary system charactefiging the respectiVé motions of the two
different étbmic species. These were later’called_intrinsic Diffusién
Coefficients by Hartley and Crank [48];'who'arrived at the same con-
clusions as Dgrken in an indééendent treatment of this subjecf.

.ConsiQering one dimenéion only, the flux of component 1 as measured
in an extefnal reference frame (Jl) comprises two elgments;—

a) Tﬁat by diffusion; which is relative to local inert markers ana
is given by Fick's lst Law:-
BCl )

- Dl ox

b) That in common with local inert markers, which travel at an external-

-1y measured velocity of v (a function of position (x) and time (t)):—

Thus, . _' _ 'Clv
' _ ~ D3¢, : :
Conversion to a Fick's 2nd. Law - type expression gives:-
3¢y _ 3 ;[Dl,acl e ‘ (28)
ot 9x ox 1

and by analogy
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[ D,3C ' '
2 3 [P2%% . »
ot T [ % sz] “ (29)

Assuming that the concentrations, C, and CZ’ represent atomic fractions:-

1

1 2
- & <+ E = 0
at ot -

N

_Heﬁce addition of equations (28) and (29) giVes:-
‘ o\ :

5 Dv.acl o ac, I

ox 1 9x "2 0x
Integrating:

2 , ’ ,
D, =~ +D, =——-v =1 _ - ,.(30)

where I is a constant of integration. -

Now, at very great distances from the initial interface of the

binary diffusion couple, 3C1/8x and 8C2/8x are zero.

Vi g =1 . o (31)

By fixing the co-ordinate frame such that the x axis is fixed
relative to the ends of the_couple,.V°° is” zero. Therefore, from

equation (31):

Equation (30) becomes:

V=D, ——+D, —% _ - (32)
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Substitute for V in equation (28):-

3¢ | - 3¢ 3C. -
—1_23 1 2
T [(1‘01) Dy % ClDZ\BX:l (33)
Néw, 1 - Cl =‘C2
. ac, ac
and 2 = - 1
OxX ox
3C aC , :
19 1
T [(C?_Df’ ¢,Py) Bx] | 34
Substitute A = x/tl/2
1 [ dcl:l .
-5 rdc =dflepren) 5| o (35)

Since x and t have disappeared from equation (35) then C. = £

1
is the solution to equation (34) provided the boundary conditions are
satisfied. To meet this coﬁdition‘the originvmust be selected‘as the
position of the initial interface of the diffusion couplé; Thisis
so becausé at t=0, A¥‘” at all positive values of x, and X==—w‘;t all
negative values of x; Therefore, unless x=0 corresponds to the step‘
éhéngewin concentﬁgtign, then A= does not correspond to a single vélue
of €, f.e. C # E(N).

iﬁtegrating equation (35) from A==—?f where-Cl = Cl_ and dCl/dAv= 0,

to a point of interest where Cl = Cl -

1 (36)
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Now, from equation (22), this expression can be seen .to be equal
to D, the single coefficient describing the overall diffusion process
as measured in the Boltzmann-Matano method.

i.e. D = C2D1+ ch2 3 . (37)

where Ci énd C

respectively.

) are atom fractions of components 1 and 2,

Hence, it is seen-fhatlthe, so'called, interdiffusion coefficiént
D as measured in the Boitzmann—Matano method‘rémains a Qa;id description
of the diffusion'pfocess, and comprises a weighted sum of tbe two
intrinsicvcoeffiéients. Tovdetermine the intrinsic coefficients from

<

the interdiffusion coeffiéient requires an additional relationship
N .

between the two unknowns, which'is,suppiied by equation (32).
=== (D, - D)) —= - (38)

Thus by carrying put.a‘diffusion experiment using inert markers,
apdfby measufing the velocity of these markérs in the same'exterﬁal
refereﬁée frame‘aé the measurement of the ihterdiffusionvcoefficieht, .
the iﬁtrinsic cbefficients can be found by simultaneous solution of
equations (37) ahd‘(38):

Despite being describéd’as intrinsic, such coefficients are n6t
fundamental parameters of\the elements to which they refer. From
above, it is seeﬁ_that intrinsic'coefficients‘cqntain more information

than interdiffusion coefficients, but they are no less dependent on
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composition. For most practical purposes, therefore, intrinsic
coefficients are of no greater value as a means of describing diffusion
behaviour than interdiffusion coefficients, which are easier to

evaluate.

4.3 Mulficomponent Systems

The theory of diffpsioﬁ in binary systems has been described on
the bésis'of Fick's Laws. It has long been recognized that-diffusion
coeffidientsvas defined bf Fiék's Laws are functions of state variables
suéh as coﬁposition. Howevér, since D is alwé&szpositive in binary
éystemé, the general.conceﬁt of Fick's Laws that thé»driving force for
diffusion of a species is tﬁe concentratidn gradient of that species
(in the absence of temperature, pressure and electric poteﬁtial
gradients) was considefed-to hold true‘in metallic systems until systems
of more than two components_stérted to. be studiéd in the 1940s..

Even before this time, however, diffusion inrnonfmetallic systems
had been related to chemical potential rathér than concentration
gradients; The groundwork was laid by Nernst [4Qj in 1888. who expressed
the driving:force for diffusioh between liquid1solutions of different
compositions in terms of osmotic pressure,_which'is.direc;ly reléted
to?the chemicalvpoteﬁtial. Much 1atér, in 1932, Onsager and Fuéss [50]
related tﬁe diffuéivity, mdbility,and activity coefficient in équeous
solutions; producing results which were cOnfirméd ekpérimentally_by,
Harned and Nuttall [51]. The conceptvthat chemical poteﬁtial or activity
gradients are the driving fqréeé for diffusion was belatedly applied

to metallic systems by Darken [52] who later [53] answered scepticism
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with experimentél evidence of "uphill" diffusion in a number of ternary
metallic systems. Darken looked at four diffusion couples between
steels of different compositions. - Of these, one in particular has

become famous as the "Darken Couple®, whichbcomprised the two alloys:

¥

Fe 0.478%C 3.80%8i —— Fe 0.441%C.

Followingla diffusion anneal,'the resultant carbon concentration
profile was detérmined and is reproduced in Figure 2, from which it
is seen that althougﬂ_the carbon concentratiqn was initially approxi-
mately uniform right across the couplé, carbon has diffgséd'awéy from.
the silicon coﬁtaining side of the couple to produce what appeafs to

be a steﬁ change in carbop éoncentration;

In facﬁ, there is not’reallY‘a discontinuity in the cafbon con-
centration profile, but the gradiént at the inferface-is very steep
be¢ause_the substitutional silicon diffuses much slower than the
intgrstitial carbon,'so that on the scale of Fig. 2 the initial step
change in silicon concentration;at the original junction of the couple
has been removed to an iﬁpérééptible degree. However, the fact remains
that the initially uﬁiform carbon.concentrafion has cré;ted a coﬁcentra-
tibn gradient by diffusion and carbon has continued to’diffuse up tha;
gradient.  The reason for this is that'the’presence of silicon in the
steel»increésés the chemical potential of carbon. Therefore, although
theré.is initually no_carbon concentration gradient in the couple, there

~

is a carbon activity gradient and it is the latter which provides the

’

driving force for diffusion.



—37-

Thio éXamplo_of thélDarken Coﬁple illustrates clearly the extent
of the interaction betweeﬂhchemicallf different species in -a system.
It is, therefore, apparent that the-appiication of Fick's 1st. Law
directly to ternafy (and higher) systems, by simply writing the flux
of eaoh component to be.proportionél to the negative of its own con-
centrationvgradient, is not very satisfactofy. Hence, a rethink of.

the basic phenomenological equations of diffusion is required.

Phenomenological Equations of Multicomponent'Diffusion

If a force is épplied to a body then the'body accelerates in the
direction of the force (Newton's 2nd. Law of Motion). If, however,
ohe motion‘of the body generates a retarding-force, which ioofeaées
with velocity, then eventually'fhe applied and retarding forces will
become eoual at whioh point the velocity of the body will stabilize.

Where the body io motion io a diffusing atom, it:is éssumed fhat
the refarding.force, which is oqual ond opposite to the applied force
in the steady state, is proportional.to fhe.velocity of thé atom.‘vTo
the authors"knowledge, this aésumption remains neither oonfirmed nor
conteétéd,,with tﬁe result that it has come to be accepted as self-
evident by Workers in the diffusion field. However, in the matheﬁatical—
1y analagous field of viscosity (where transportlof momentum rather
than'mass-is the concern), it.is known thét so called_Non—Néwtonian
.Fluids exiSt in which the viscosity is a function of the applied stress
and hence the momentum gradient. Examples include Bingham Fluids, many
of whico show thixotropy (e.g. Non-drip paints). Neverthéless, ﬁhe

proportionality between diffusion flux and applied force will be

'
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accepted here. The velocity per unit force is called the mobility (B)

-

of the species.
Thus for the simple case where a species (i) is acted upon by a

single force (Fi), then the flux (Ji) can be written:-

J, = F,
i i

Now any force can be written as a negative potential gradient,

therefore assuming that T is the relevant potential field:-

J, « - Vm . .
i . v
If attention is focussed on the single dimension x:-

I =M . om .
i im 9x

(39)

where Miﬂvisﬁthe proportionality constant or cbefficient. However,
in general the atomic species7of.é system are squected'to.more than
one potential field. |

The term flux can be interpreted as the rate at whiqh a system
returns to equilibriuﬁ having been aistrubed #herefrom; Therefore,
the potehtials which céntribute to the fqu are ;hose which describe
the'thermodyﬁamic equilibrium of a'system, that is:- Tempetature (T),
Pressure or Mechanical Stress (P), Electric or othef scalar potential
()] and‘thé Chemical Potentials (ui) of all the different atomic
species present. Chemical potential is défined as the partial molar

Gibbs Free Energy:-
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3G
- 96 ey
Yy I:an, P, T, n, +7d
1 J .
Where G:= Gibbs Free Energy of the subsystem or phase
" ni'é Number of moles of component i.

~ Thus from Eq. (39),. the most general equation for the flux of
component 1 in an n cbmponent system is:-

0uy Uy Y 3P 56

My -~ Mip 3x " Mig ox

1= M1 5% " Yo 5k in 3% ~ W4T 3% (40)

For ease §f presentation an isothermal, isobaric and isoelectric-
potential system will be considered here; so the last three terms of
Eq. (40) go to zero. However, if the vacancy diffusionvmechanism'is
to be assumed then a.terﬁ to take account of theﬁvacancy potential

gradient must be included:-

‘ n du, By, R
Ji T ;éi Mij ox Miv 39X ’ (41)

Equations of this form exist for the fluxes of each of the n
species, while an analogous eddation exists for the vacancy flux:-
ou

n CIV v -
JV=_J§1 Moot -M (42)

vj Vv 9x

,

’ There are thus (n+l) equations containing (n+1)2 M coefficients.

However, it is possible to reduce these numbers by considering the
. : . ° ° N

existence of dependences between the fluxes, and dlso between the
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coefficients;-
Firstly it is assumed that the total number of lattice sites is

conserved, in which case the net current of sites must vanish:-

S+ Y 3 =0 )

i=1 -
VBConsidér equations (41) for i=1 to n and equation (42), and further |
consider that all the potential gradients are zero exceﬁt for aul/ax.

Application of eqﬁation (43) then:gives:_

M, + Z M, = 0.
o i=1
Therefore, by extension it is seen that if equations (41) and (42)
are to be valid for all values of the chemical poténtial gradients;

then equation (43) dictates that :-

o8
-

j=1ton O 4)

v S04
n _ . _ ’ ’ o .
Mvv = Z Miv" . | - (45)
i=1 '

Another set of relationships ‘between.the M coefficiehts_is
obtained by invoking Onsager's concept of microscopic reversibility
[54,55] which states that for a system in thermodynamic equilibrium

- every type of micromotion occurs just as often as its reverse. The

consequences of this are that the M éoefficients described above form
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a symmetrical matrix:-

M_.
1]

Mji for all i and j . (46)

M

, M. for all i’ : (47)
iv vi : :

' The application of equations (43) to (47) inclusive results in a

simplification of the flux equations to :-

n 3 (M5 = By) a C =
Ji = - 2: Mjj ° Ad- v i=1¢ton (48)
j':l - .

0xX

Now, if it is assumed that the concentration of vacancies is

maintained in -local equilibrium, then uy = 0 and so:-

’ n du, - ‘ ‘ . : -
Ji = -.;éi Mij . 7;% N : 1.% 1 ton o ‘49)

The question of whether vacancies are able to eqﬁilibraﬁe with
the lattice throughout thé system ﬁas,been diséussed,earlier., It was
Mainning [17-23] who first suggeéfed:that "v should notlbe assumed to
be zero at all points in a system, in connectionvwith his work on the
"Vacancy Wind". Ho&ever;'the_idea has not been universally accepted.

The assumption is usually made that the cross coefficients in

equation (49) (Mij, i # j) are zero.

i.e. J, =-M -, i=1lton . - (50)
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This implies that the flux of a given species in a systém is
dependent only on the chemical potential gradient of that species.
Howeﬁef, this would not be true if Manning's theories are correct. His

. vacancy wind would have a correlation effect on the motion of atoms
in the system,'but the vacancy wind would be a consequence of the
fluxes of all the diffuéing‘specieé. fherefore, by a secpnd order
effect, the diffusion flux of eacﬁ species would depeﬁd én all the
chemical potential gfadiehts.' However, it will be assumed here that .
this effect,.if.real, is negligibly'small,_such that equation (50) is

a good approximation..

Practical Diffusion Equations.

.ﬁquation'(SO) describes diffusion fluxes iﬁ ferms of chemical
kpotentials, and it ié valid irrespective of the number of components
in the syétem. However, it suffers from the disadyantagevthat chemical
potential gradients are inherently difficult to measu¥e¢ and so if the
scope for experimental work in multicompanent systems is not to be
seQefely reétricfed the chemical potential term in equation (50) ﬁust

be replaced by more amenabie parameteré.

(a) Binary Systems

A practical.diffusiOn equation has already been describgd fﬁr
binary systems,.that ié Fick's lst. Law which relates the flpx.of a
species to its concentration gradient -~ equation (12). }

" The fact that two independént flux equations exist ((12) and (50))
for binary systéms.enabled Darken [34] to produce a relatiomship

between the intrinsic diffusion coefficient (Di)'of a species (i) in
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a binary system and its aétivity coefficient (Yi)'

j.e. : D, =B, RT [l +Ni
1 1

Where, B, = Mobility of i;:as defined earlier.
R = Gas Constant (i.e. Boltzmann's Constant x Avagadro's Number)
+ T = Temperature K |
-Ni~= Mole Fraction of i

The activity coefficient is defined as:-

where a, is the activity of component i and is related to its chemical

potential as follows:-

-

Ui = Y4° % RT 1n ai

where "i°% is the chemical potential of i in its reference or stapdard
‘State. When the species is in its,sténdard stafe, its activity is
unity. |

If the activity. coefficient of a épecies in a solution is

independent of composition then equation (51) becomes:-

D. = B.RT ' ' ' (52)
i i ,

This equation was first formulated by Einstein [56], but it is

seen here to be true only when Y is constant. This condition prevails

i=12 (51)



.

only in an.ideal solution (yi=1)'or in a solution which is éufficiently »
dilute that the activity of the solute obeys Henry's Law (i.e.

Activify a Concentration) while tﬁat of the solvent obeys.RaQult'é

Law (i.e. ideal behaviour).

It is rare for a metallic,solgtion to even approach ideality, but ‘
many sSystems do approximate to, so called, regular behaviour [57] ovef
wide ranges of compbéition. A regular sdlutién is one for which‘thé
entropy of mixing is equal to theAentrop&.of.mixing quan.ideaiv'

~solution. For such a system it can be shown that:-

9 ‘
in Yy = a-Nz (53)
in = o N2 | - (54)
Y2 1 _ : _ .
Where o is a constant.
By differentiation of equations (53) and (54):-
dimy, an,
TaN, T CMyray, T RN o B
-1 ) 1 ‘ : ‘
d lny2 le
—an. - OL'ZNl T —20LN1 (56)

2 2 :
Substitution in equation (51) gives:-

172

D, = B, RT (1 - 20N.N.) i=12" - (57)
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"By means of equation (51) together with equation (37), Darken [34]
went on to produce a relationship between the interdiffusion coefficient
D for a binary system, as measured in a Boltzmann-Matano éxperiment,'

and the tracer difquioﬁ.coefficients of the two species:~

d Invy.
- * % » e i
D = (N;D, + N,D)) [1 + N, N, ] | (58)

Where i = 1 or 2, since from the Gibbs Duhem equation:

d 1ny d 1ny.
i W
.71 dN, - T2 4N

1 2
N * e re . . . .
D1 and'D2 are the diffusion coefficients as measured in a radio-
active tracer experiment, which Darken showed to be virtually equivalent

to the self diffusion coefficients of the two pure elements.

For a regular solution, equation (58) becomes: ~

. * * .
D= (NlD2 + N2D1) 1 - ZaN;NZ) (59)

While for ideal: or dilute (Henrian/Raoultian) solutions:-

- N.D) ¥ | (60)
D = N;D, + ND; | v N |

(b) * Multicomponent Systems
Inbdeveloping a practicalvequation for multicomponent systems,

equation (50) will be taken as the starting point. For the isothermal,

~

isobaric, iso-electric potential system under consideration, the
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chemical potential of each species is a function of the only non-

constant state variable, that is composition.

Mi = f ‘lecz’

du;  dmy  aC

. n

= R T 8_u£ “a (61)
09X oC,. . -3x ' ac 9x
v 1 n
Substituting for aui/Bx from equation (61) into equation (50)
gives: -
n Bui‘ aci . :
B My e T Thw i=lton (62)
j=1
_ . Bui
s . T - : =
Putting ». D iy Mii 5C
, n . aC, ,
J.. = - p'.; —d , " i=1ton (63)
i j=1 i) 9x

!

This is now a practical diffusion equation since the diffusion-

fluxes are related to concentration gradients which can usually be

“-measured easily. For an n component system there are n equations of

. .2 .
the form of (63), each containing n terms, therefore n~ coefficients

are required to describe such a system. However, dependencies exist

between the concentration gradients and also between the fluxes which

reduce the number of coefficients required.

The total of the concentrations of all the species must be

- constant:
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r

e
oF

o

I

§ Constant
j=1 ‘
n oC,
X 5o =0
j:l &
3C, o=l acy
x - ‘\_—_-: X
j=1
3C . ol Yol v :
P n _  _ P e —d . :
D'in T = j};-:l D'in * 5m (64)

Now, equation (63) can be re-written:-

5c. . aC

_ n-1 ‘ 3 0
- X | — - | i
I = 2; D ij ox Dlin x
=1 v
‘Substitute from equation (64):-
n-1 . 3Cc., n-l ac,
J.== % o', =L+ o,
i ij ox k din 9x
: j=1 ‘ j=1 :
. n-1 3C. -
J; = - Z Dij _—J—Bx , i=1 to n (65)
j=1 :
. =n' - 1N
Where Dij =D 15 D in

Thus, each eqﬁation now contains only (n~1) terms. Further, by
- defining an appropriate fundamental reference frame, one of the fluxes

can be made dependent so that only (n-1) diffusion equations are



required'containing'(n--l)2 coefficients. Examples of fundamental

reference frames which have been'used include-[58]:—.

i) - Mass Fixed frame -:which is defined to be'fixed‘felétiVé
to the ﬁoving céntfe of mass of the systeﬁ, so that the
sum of all th; fluxes is zero.

ii);rsdivent fixed frame - which is defined such thatvfheré ié

- no net flux of solvent.
iii) Volume fixed frame - in which fluxeé aretmeasured with
v;esﬁect to the local centre of volume.
| The values of thé‘diffusion coeffidients in the noﬁ (n-1)
equations of the form éf equation (65) depend Qn‘the particular flux
which hés been'selectéd as the dépendént'one.' Therefore for glarity,
“the species whoée'flux is dependent is usually Written-as a super—--5
w;cript to the diffusion coefficients. Assﬁming the flﬁx’of‘componént

n to be dependent:-~

J; =- Ei% ng ag', i=1lton - i- | ..‘ ’ (56)
j=1 g

This is the practicai diffusion equatioﬁ éought and is the
multicomﬁpnent vérsion of~Fi?k'svlst.,ﬂaw. The ng ére‘interdiffﬁsion
cdefficients and give a measﬁre.of tﬂe effect of the j.conceﬁfration
gradiént on the diffﬁsion flux of i,\when the fiux1of n isAconsiééred
dependeqt.r When i-=‘j, the ng- afe called Direct or On-Diagonal
bCoéfficients,.while when i #=j,‘they ére cgllea Crosé or Off—Diagénal

Coefficients.
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If is the existence of quss.céefficients which prbvides the
sﬁbstantial intellec£ual jump between the understanding of diffusion
in binary’systems:and that in ternary and higher order systems. IE can
be seen that when n = 2, equation (66) redﬁcés to the original form
of Fick's lst. Law containing»é single direct diffusion coefficient
vénd no cross coefficients. Thus it is seen that.for binary systems,
the cOrreét mathem;ticalbrelationships are obtained by assuming the .
driving force for diffusion of a species to be its own concentration
gradient. ‘The additional féature inherent in systems of more tﬁan twb
.componen;S'is the dependence of fhe &iffusion flux of a species on the::
concenﬁrétion gradients of all the other species and it is the cross
,diffuéionvcoefficients'which describe this effect. This reflects the
.fact that the driving forcé for diffusion of a species is actually its

chemical potential gradient, which is a function of the concentration

gradients of all the species'present.

 'Dependencies between the Diffusion Coefficients

It was éhown originally by Onsager'[59],_and later clarified by
Hooyﬁan [6Q] that application of the principle of Microscopic
Reversibility [54,55] to the practical multicomponent diffusion.
equation (66) leads to dependencies amongst the b coefficients.v-Hence,
in principle the number of D coefficienté requifed fé describe an n:
.component system can be reduced to n(n-1)/2, e.g. For a ternéry_
system there are three independent coefficientg. Héweyer, to achieve
this involvés a re-introduction of the thermodynamic pafameter,‘chemical

potential.
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This drawback can. be overcome in:dilute solutions, in whicﬂ
Henrian behaviour is shown by the solutes. In such circumstances, the
variation of activity with coﬁpdsition is linear with the result that
equations relating the D coeffiéiénts can be written in terms of

o 7 . ) :
concent:ations {42]. For nqn-Henrién solutions, this simplification"
is not possible, sd that in genéfal the (n-l)2 matrix of D coefficients
is the minimum.nuﬁbef needed to describe aﬁ.n component system.ﬁ

In addition to the above mentioned reference [42] the applicatidnv
of thermodynamiq conditions t;_the~allowed:values of D coefficients"
is alSq coﬁsidered in reférencesv[Gl, 62, 631.

A useful result of Kirkaldy, Weichert and Zia-Ul-Haq [63] is a

set of conditions applicablé to the values of the interdiffusion

coefficients of a ternary system ABC assuming A to be the solvent:-

P *+ Pec >0
_ > |
Ppp Poc = Pac Pcp = O | (67)
N2 s,
(Dgp + Dg() = 4 (Dgg Dp( = Dyg Dep)

These conditions result_from purely‘thermodynamic considerations.
However, kinetic constraints are also important (see for example [64]),
and consideratioﬁ of‘these in addition to the‘thermodynamic effects
leads to the following more restrictive conditions on the valués of the

D coefficients:-
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>

Dy 0

Do >0 -
(68)

. =

DgePg = O
- >

Ppp Dec = Ppc Pep = O

For a ternary.system, it is usually apparent which species is
considered to be the solvent and so, as liere, the superscript to the

diffusion coefficients is fréquent1y omitted.

Dynamic Multicomgpnent Diffusion EQuation

Equation (66),.like Fick's 1lst. Law, is a static equaﬁion sihce“
it relateé aﬁ instantaneous flux to a numberfbf instantanebus“coﬁe
centratioﬁ gradients. HoweQer, in the'same way.that Fick's an; Léw
was defived‘frém hié’first, so‘a dynamic version:of équation (66) éaﬁ:

be written to deal with non-steady state situations:-

ac,

¢, ml o v o ‘
Tl 3 3 [Dij . 753—], i=1¢to (n-1) (69)

Equation (69) is the most general form of diffusion equation for
an isothermal, isobaric, iso-electric potential single phase system

in which concentration gradients are uni-dimensional.

Solution of the Multicomponent Diffusion Equatiqh

As it stands, equation (69) is inhomogeneous and consequently it

. cannot be solved except by numerical methods. However, if certain
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assumptions can be made concerning the ways in which' the various
diffusion coefficients vary with composition then there exists some

scope for simplification.

(a) Solutions with Constant Coefficients

There are a number of conditions under which an analyticai or
iterable solution may be obtained for the.diffusion equation when the
coefficients afe constant [65]. Attention here will be foc&ssed‘on
ternary systems, aﬁd of particular interest are the boundary conditions
applicable to the infinite diffusion.couple; these can be uniquely
.defined in terms of the paraﬁeter x_(x = x/fllz) without involving
either x or t separatély. The boundary conditions, so defiged, are
givén by‘eQuations (19) and (ZO)-

Writihg equation (69) for a ternary system ABC, with.A‘spec£fied
1as solvent, in terms-of_A; assuming the diffusion éoeffiéieﬁts to be

independent of composition:-

- dc ' d%c - dc
A B p LB L p . ¢ (70)
2 dax BB dez BC | .d)\z .
_, dc a’c, dc,
— 53~ =D, — + D — (71)
2 d) CB dAZ- ce dAZ' ,

Thus it is seen that the diffusion equétions.are now homogeneous
with A as the only independent vafiable and, since.the boundary
conditions for an:infihite diffusion couple are defined in terms of X 
alone, solutions pf equationé (76)_and (71) will be unique for such a

couple.
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The complete solutions of equations (7) and (71) have been derived

by Fujita and Gosting [66] and are reported below:-

where: -

)\ '

A
C,=aerf ——= + b erf —= + ¢ (72)
B 2u1‘/2 T g 12
C.=derf —2— + eerf —2_ 4+¢ - (73)
c 172 1/2 '
2u 2v
L
c, - ¢
1| + - | B~ °B
iﬁ'[:DBc (Cc - C) - (D - Dgg) - DI - 2 ~
1, + - -
5 (CB - CB - 2a)
1+ -
E'@B ch)
(c. -c.)
1 + ¢ "%
2D [:DCB (Cg - Cg) = [(Dyy - Dgp) - DI )
1, + -
5 (CC - CC - 24)
l . —
3 (o +Co)
D.. + L {(p.,-D_) + D]
3B T 2 cc ~ P
D +% [(D. -D_) -D]
cc T3 BB
2 o 41/2
[(Dpg — Dge) ™ + 4DpeDeyl
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This solution is very complex iﬁ the general case, but the solu-

tions are simplified considerably if one of the cross—coefficients

[
&

is zero. Also in the special case in which D = DCC while D

BB cs = 0>

D (defined ébove) goeé to zeré, S0 thé£ a and d (and hence b and é)v
become indeterminate. Héwever,“usé of L'Hépita;’s fule yields a
-solution. |

The assumptioh of finite constant values for the cross coefficieﬁts
of a ternary system can lea& to the>prediction of negative concentra-
tions ﬁear the binary limits of a ternary isotherm. Therefore, sucﬁ-
assumptiéné are clearlf unreasdnablé, but Kirkaldy [65] has'expfessed
the opinion that provided the overall change in compositionvécrosé
a diffusion couple is.no.mére than 20% of the average éoﬁposition, then
thé aééﬁmptioﬁ of constant coefficients is justified.x However, many
practical situations fall butside the scope éf this limitation éﬁd so
solutions to the diffusion equation must Ee sought without the
assumptioﬁ of constaﬁt coefficients. Again, éttentioﬁ will be focussed

on a ternary system:-

(b) Solutions with Variable Coefficients
For a ternary system with independently variable coefficients,

equation - (69) becomes:-—

at ox BB 9x _ 90X BC 9x
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2, Cac, 3c,
St T o P ax T Poc 73

Such équations may be solved directly by numeriqal methods [67].
However, an integral iterative technique has been developed by Kirkaldy,
Léné and Mason [42] which is claimed to be lesé tedious than direct
numericalvsolqtion since the convergence of the iteration process is
very rapid provided Fhe diffusion cogfficients vary only moderately
with composition. Nevertheless, this solution remains complex and
unwieldy. .Simplification can only be achieved by seeking dependences
amongst the éoefficients which necessitates a return to therﬁodynamics,
i.e. the resultant equations will involve chemical potentials.

This situation demandsvsome relationship between chemical potential
and composition which can be applied to sélutions showing neither |
Henrian nor Raoultian behaviour. Wagner [68] has shown fhat fof a
multicompbnentvsolution comprising A as solvént and dilute with
respect to the solutes B, C, D etc., the logarithm of the activity

coefficient (y) of ome of the solutes (i) is given by:-

o

= o+ + . -
in Y4 Iln Y4 4-NB B +_NC ¢ ND €0 etc _ (76)
~ Where,
yio = Activity»Coefficieht of i at infinite dilution,
i.e. the Henrian Activity Coefficient.
Nj = Mole fraction of component j.

Interaction Parameter defined as follows:-

€ .
1]
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3 1n Yy :
€5 . T . ' an

o

i\ J

v Bolze, Coatesvand Kirkaldy [69] have utilized thié; so célléd,
Wagner Dilute Solution Model.(equation (76)) to derive depenﬁencies
amongst thé diffusion coefficienfs of a ternary:system.‘ They assumed
a Vacanéy diffusion model and commencéd their-analysis with*a funda--
mentéi diffﬁsidn eqﬁaﬁion Writtén'in terms of chemical pofeﬁtial rather
than-concentratioﬁ grédients.v‘The:application of.thermodynamic and
kinetic constraints enabled them to produce_expressiohs fof and
relafioﬁships between the fundamental coefficients. As was shown
earlier (eQuations'(62) énd (63)), fundamental coefficients can be
reﬁlécédey'practical coefficients (which relate fluxes to gpnéeﬁtra—
tion rather than chemical potential gradients), but the translation
between tﬁe'twd ih&olﬁes the derivatives of chemical potential With,‘
résPect to composition. Hdﬁevet? sucﬁ derivafives,can easily,be
obﬁained if the Wagner DiiutevSQIution Model can be inVokéd; Thus,
Bolze, Coates and-Kirkaldy were able to transform the equations
‘describing the fundamental coefficients-into expressibﬁs for the
pfactiqal coefficients with the aid éfveqﬁation (76) . .

The following are the expreséioﬁs'they obtaiped for the two
direct coefficients to fhe first order in concentrations:-

) j e | _ e o
-2 B _B A
DBB = a'PB \l:l + oA <;EBB - VA_ + —PB> + :l (78)
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C v P .
pCC = ach [1 +5§_ <€CC - i—. + i%) + ] (79)
Where,
a = Lattice Parameter
Pi = Jump Frequency.of i atoms in the x direction
pA = Molar Density of Solvent A
Vi = Partial Molar Volume of i
eij = Wagner Interaction Parameter .

o ‘ '
It is seen from equations (78) and (79) that in the dilute limit

C

Further, throughout the dilute range, these coefficients remain slowly

(CB and C, » 0) the two direct coefficients approach constancy.

varying functions of composition so that the assumption of average

constant values for DBB and DCC is not unreasonable.

The other results obtained by Bqlze, Coates and Kirkaldy:are‘

expréssions for the ratios of the cross coefficients to the respective

direct coefficienéﬁ—

Pmc _ ‘s I} I T R Sl B W
DBB pA Be A PB PB BB Vy Be Ty PB PB' pA2
Ve Vg V¢ Po By Co
+ ECC+:— ¢ - == - - .P +§—' . 2+..... .

Va Vo VA ‘B B oA



e | B, Y P B
D oA |°Bc T F, PP

A B B

- which for dilute solutions can be written:-

D : _
BC .
— = 0On. C _ (80)
Dy - BCTB | :
Similarly: )
- D : : .
CB S
— = o, C : = (81)
Dec CB C ‘

Where o, , and a_., are Proportionality Constants.

BC CB
If Py = Pp = ?C and Yy f Va =.VCF(1.e._Vhen mola;‘volumes a?e
identical and the Kirkendall Effect vanishes) then a,. -and a B_become

BC C

purely,‘t_hermodynamic and equations (80) and (81) become:-

D ' o g ’
" BC - oo
= = ¢g,.N : - (82)
DBB ‘BC' B v
D . .
CB . :
DCC GB C B ,

., and N

there NB

c are Mole Fractions.

It is of interest to note that Wagner showed ¢ to be equal to -

BC

€cp 1n the dllute limit.
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Coupled with the results obtained earlier for'the-direct coeffi-

cients, equations (80) and (81) can be approximated to DBC @ CB and

Dg = C; in the dilute range. Such a result is reasonable in that it
predicts that—DBC wili'go to zero when Cy goes to zero (and similarly

for DCB anﬂ CC):—

From equation (65)

When CB goes to zero, acﬁ/ax and JB go to zero, and therefore so

- must D, because'BCC/ax may remain finite.

With the aid of equations (80) and (81) together with the assump-
tion of average constants for the values of the direct coefficients,
“the solutions of equations (74) and (75) are substantially simplified. .

Consider equatioﬁ (74), substituting for Dy from equation (81):-

BCB . » ] 9 C_B ‘o . C, .. ] CC ‘o .OL' ] 3CB ' BCC
ot BB  3X2 - "BB "BC B axz BB "BC  9x-: X

(84)

Solution of equation (84) requires knowledge of the analytical
solution for CC, but the diffusion equation for component Cv(equationv

(75))‘can onlybbe solved knowing the expression for C (i.e. the

~

B

solution of equation (84)). Therefore, the assumption is made that
in calculating the concentration distribution of a given component -
(B say) in a dilute solution, the neglect of the cross diffusional

effects on the other component (C) is justified. i.e. For the purposes
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is assumed to be zero, so that equation

of solving equation (84), Doy

5\

(75) becomes:~

(85)

- which has a simple error function solution.

Similarly, the solution for CC

is obtained by setting DBC to zero.

-

This orocedure permits the solution to equations (74) and (75) to be

obtained by a straightforward finite -difference technique.

4.4 ﬁetermination of Diffusion COefficichts for a ternary system

From what has aircady beén:said,:it would bé inaopropriatevto
start with the'assumption of conscaot_coefficienté when considering
the means.of oetermining such coéfficicncs in a general térnary system.
Thereforo, by-analogvaicﬁ the procedure_adopted for determihing
variablc coefficients in binéry‘systems, consideration is éivenito
an‘extenoion,of'the Boltzmaon—Matano technique which wouli be émenébie
to a_thrée component systeﬁ.

Kirkaldy [70]vhas observed that cquation (69) written in terms of

(= x/tllz) can be integrated .to give:-

€1 onl i | |

Adci = -2 ) pij - 52 i =1 to n-1 (86)
- : , ax |
C =] - Ci= i .

Since the concentration profiles to be analysed are at a fixed

‘time, equation (86) can be written:-
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Ci - n-1 dci - B
| xdC, = -2t pij S i=1 to n-1 (87)
.- i : dx ‘
Cl J=l C -

If n=2, equation (87) reduces'to equation (23) which is the-basis
for the Boltzmann—Matano method of determining diffusion coefficients
in binary systems. .As descrlbed earller, D can be determlned at any
compo51tion point across a. blnary dlffu31on couple by measuring the
1ntegra1_/- x.dC and gradient dC/dx at the comp031tion point of
1nterest grom‘an experimentally determined concentration profile,

followed by substitution in equation (23). For a multicomponent

system, however, things are not so simple. It is seen from equation

A}

' (87) that fér an n component system there are (n-1) equations available

for the determination of (n—l)2 coefficientstr fhus when n exceeds.
two, it becomes impossible to determine the‘coefficients from the-
measured concentration profiles across a single diffusion couple.
Consider a ternary system, for which there exists four inter-
diffusion coefficients and two equations of the form (87). Further,
consider two different'diffusion couples in this system which have
a common composition point. At that common composition the yalnes
of the four coefficients in one,couple should be the same as those
of the respective'coefficients in the other. Therefore, the equations
appropriate to each couple can be taken as a common set and can be
solved simultaneously to give the values of the four coefficients at
the common composition'pointt It is comparatively easy to design a

pair of couples to have a common composition point since the latter
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coincides with the intersection of the diffusion paths of the two

couples. (A diffusion path is a graph showing the variation of
compésition across a ternary diffusion couple without containing any
- spatial information.) |

It is apparent that there is a substantial dfop_iﬁ the prodﬁcti&ity
of.diffusion measurements in going from a binary to a ternary system.
For a binary system, the value of thé single interdiffusion poefficient
can be determined over a r;;ge of cbmpositions from a single couple,
while for a ternary system, two carefully chOSen‘couples are required
in order to detérminélthe interdiffusion coefficient matrix at a single
composition point. For systems of more thaﬁ threercémponents, it is
likely tﬁat the amount of experimentation and computétion required to
determine diffusion‘coefficients by this technique would be prohibitive
unless apfrbximationé are méde;

At this point mention may be made of a radical appfoéch to the
description of diffusion in multicompoﬂent systems by De Hoff,
Anusavice and Wan [71,72]. They have éonsidered diffusion in ternary
systems and have swept asidebthe traditional matrix of interdiffusion
coefficients in favour of a simpler and more direct-approaéh. The
components of a terﬁary systém are given Relative Penetration Tendencies"
which relate the diffusion rate-of any given species to those of the
other two. This is an approximate- approach, but iévshown-to result
in predictions in close agreément with observation for a number of
ternary systems. It may be tha£ for dealing with systems of more than

three components, a scheme similar to that described above will be the
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only practicable ;héoretical description of diffusion.

Returniﬁg to.equation (87), it is seen that measurement 6f~the
integral term in the equation requires knowledge of the absolute value
of x at‘any point'on ;he profile. This means that the‘origin for
making,meaéufements of x must be‘known. This origin is the Matano
Interface which is defined by Writing equation (87) at Ci=Ci+ (x==)

where all concentration gradients are zero:-

ct :
;/- * x.dc, =0 : : (88)
. 1
Ci : . ) - o

The location of the Matano Interface is a tedious and often
inaccurate procedure. Furthef, if the molar volume varies with
composition, then the Matano Interfaces defined for each species will
nét coincide, which adds further to the wérkload. Therefore,‘féllowing
the transformation of equation (23) into equation (26) [44,45;46];
which obviated the need to iocafe the Matano Interface when c;rryiﬁg
out a Boltzmann—Matanovanalyéis.of a binary system, Whittle and Green
[73] déduced tﬁe following equation, which représents a simiiar

transformation for the multicomponent case:-

) + ’ _ 7 x  . 4o )
c,*-¢, [}1-Yi) f Y dx + v .£ (1-Yi)g%] _

00

. n-1 ac
2t 3, pij - G (89)
;T S

i=1¢to (n-1)
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C; _ C4” -
_Where : Yi = ———— | (90)
. -+ - . .
, c. -C
1 1

4.5 Analzsis bf Coﬁcentratibn Profiles ﬁxhibiting Méxima éﬁd Minima

-Theléitﬁation can often arise in ﬁultiéomponent diffusisn_couples,
particularly when diffusional interaction is strong, where the con-
centration_of one or more of the components exhibits a.maximum
(or minimum)‘and the local value 6f Ci lies outside the rangé Ci—itd
Ci+. Under thesé circumstances, x is not a single-valued fﬁnction of
Ci over.part of thg concentration profile, and, within this range, the. .
iﬁtegrals in\equafibns‘(87) and (88) cannot be evaluated. This has
serious imblicatioﬁs for the analysis of concentration profiles in
. multicomponent systems, but appears.not’to have been recognized by
previous workers (see for.eiample [74,75,76]1). It is hoﬁ possible to
asseés the magnitude of the efrors which might have been introduced,
‘however,_since,détails of the actual integration procedures have not
beeﬁ.published.

A céﬁplete présentation of the mathematical freatment éf a
generalized.concehtration'prbfile Qith m turning points (maxima and
minima), from which it is desiredvto know the diffusion coefficient
matrix at some concentration Ci lying bétween the pth and (p+l)th
turning points, is giveﬁ.inb[77]. |

Briefly, it is necessary to separate the profile into (m+1) parts,
for each of which x is a single-valued function of Ci.w A separate

integfal of the type f x.dCi can then be defined for each part of the

ar
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. profile and used in an expanded vérsion of equation (87). Integration

by parts is then used to convert all the integrals to the type f Ci-dx
and, in this format, the separate integrals can be recombined since

Ci is a single-valued function of x throughout the entire profile:-

x - n-1 dz.
x.Zi - _i Z;.dx = -2t jz=:1 Dij _ldx s C (?1)

' Where, Zi = Ci ;'Ci_, and hgs been introduced to.produce a finite
integral.

The térm x in equation (91),mﬁst be measured from ﬁhe Matano
Interface. Using the technique of den Broeder [45], however, equation
(91) can be modified so that the distance parameter only appears in
differential form, thus 6bviating the need,ko locate the Matano
Interface. The reSuit of this'procedure turns out to be none other
than équaticn'(sg), which can be modified to account for changes in

molar volume (Vm) as follows [45,73]:-

: x Y. ‘ 4o (1-Y,) ‘
(ch’-c;) l:(l—Yi) j L. dx + Y, f —_—. dx:l =

= m p' e m

2t. 3-2=:1 = = . - (92)v

In general, Vm can be approximated to a linear function of composition.
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 There is an added advantage‘bf(aﬁaljsing concentration profiles
_containing maxima or minima, sincevat thqse points, the gradient dCi/dx
of oﬁé of the components is zero. Thus, the right hand side of
‘equation (89).can be modified. For example, at a turning point in

the C profile of the ternary system ABC with A as solvent:-

: X +oo '
;- cp [(;-YB) ,f_w Yy - dx+Yy fx _(l—YB)-dx] =
dCB N
2t - [DBB qx + 0] (93) .

.  x | to -
c-Co) [(1-YC)_L° Y+ dx+Y, [{ (1—YC)-dx] =

-

,(C

[ dcy :
2t - DCB e fvo o _ (94)

, can be calculated directly without the require-

BB CB-

and'thusvD -aﬂd D

ment of having.th diffusioﬁ paths crossing at a common composition [75].
A common design of»diffusion couples in ternary diffusion stﬁdies,

is the so-called Darken couple, in which the end'copgentrations of one

of the components (e.g. B) are identical, ﬁhile the other component

(C) has a step change 'at the original interface. This type of couple

is useful in demonstrating the existence of diffusional cross effects

[53]. However, as C; = C;, then Y, as defined by equation (90) is

B

now indeterminate. Equation (91) has now to be used as it stands,
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with x being measured from the Matano interface. Under

tions, the location of the Matano interface is trivial,
+

= CB line.

position where the profile cuts the‘CB = Cg

these condi-

since it is the
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" 6. CONCLUDING REMARKS -

At the béginnihg of this reviéw,'it‘was emphasized that an under-
. standing of multicomponent diffusion waé important Qith respect to
manyrof the éhange; of strﬁcturé gnd.chemicai composition oqéurring'in
metals. it is- hoped that thié review may help to provide chh an |
understanding, dealipg as it does Qith the co&piete evolufion of ideas
on diffusion theory from Aaolf Fick to the preSentZQay. It has been
shown how diffusion coefficient data may be determined for ternary
systems By the analysis of concentration-brofiles across infinité
diffusion couples and it is hoped £hat thesé techniqﬁes will be fully
impleﬁepted in the futuréufor the generation of diffusion déta for

ternary systems to complement the already bountiful data referring to

binaries.
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