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MULTI COMPONENT DIFFUSION . 

+ G. W. Roper, and D. P. Whittle 

Materials and Molecular Research Division 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, Calif. 94720 

SYNOPSIS 

LBL-9758 

The understanding of solid state diffusion is fundamental to that 

of many high temperature metallurgical phenomena. The mechanistic 

approach to 'diffusion theory is valuable as a means of interpreting 

diffusion data in terms of atomic,structure. However, its complexity 

limits the scope of the mechanistic approach to very simple systems. 

Pract:1callyimportant systems, meanwh~le are rarely simple and demand a 

theoretical framework which encompasses such mUlticomponent phenomena 

as "Uphill Diffusion". This situation demands the development of a 

comprehensive phenomenological theory of diffusion. However, it is 

important to be aware of the pitfalls of applying a phenomenological 

.approach to such an inhomogene~us system as a solid metal. 

The theme of this review is the development of ideas of solid 

state diffusion from Fick's Laws onwards, with particular emphasis on 

the area of ~ulticomportent substitutional alloys. 'Recent advances in 

the analysis of multi component diffusion profiles~ which render the 

determination of diffusion coefficients less tedious, are highlighted. 

+ . Shell Research Centre, Thornton, Nr. Chester.~ England 

( 
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1. INTRODUCTION 

Diffusion is the process whereby the atomic or molecular particles 

of a system redistribute themselves within that system and, therefore, 

the understanding of diffusion is fundamen·tal to that of almost all 

the changes of structure or chemical composition which can occur in 

the solid state. Such changes are the collective result of very many 

atomic movements, each of which is subjected to. a considerable energy 

barrier. Thus, solid state'transformations (excluding those which are 

diffusionless) are generally slow, altllOugh the rate increases sharply 

with increasing temperature. Since diffusion provides such a kinetic 

restaint to the attainment of thermodynamic equilibrium in solids, any 

study of high ,temperature metallurgical phenomena such as annealing~ 

recrystallization, homogenization, kinetics of precipitation, high 

temperature oxidation, corrosion, creep, etc. must be based on an 

understanding of diffusion. 

Because of the way in which ideas about diffusion developed, the 

correct mathematical relationships were obtained for the description· 

of diffusion in binary systems, but they were deduced on the basis of 

ill-conceived theories concerning the nature of diffusion. It was not 

until systems of more than. two components were studied that the flaws 

in the early ideas on diffusion became apparent. Unfortunately, most 

text-books dealing with diffusion introduce the subject with a dis

cussion of Fick's Laws [lJ, retaining the concept that the driving 

force for diffusion of species is the concentration gradient of that 

species. By this approach, a substantial intellectual leap is required 
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to understand diffusion in systems of more than two components. This 

is, perhaps, one of the reasons why studies of ternary diffusion, taking 

full account of the interactions between the various elements present, 

are few and far between. Another possible explanation lies in the 

general unproductivity of ternary diffusion studies in terms of the 

amount of experimentation required to produce a given amount of dif-

fusion data. 

It is important, however, that diffusion be studied in ternary' 

systems, because there are two features of multicomponent diffusion 
( 

which cannot be simulated in a system of less than three components. 

The fir~t of these is so called "Uphill Diffusion", in which the atoms 

of a given species diffuse up the concentration gradient of , that 

species. This occurs when the gradients of concentration and chemical' 

potential are opposite in sign and it illustrates the fact that the 

driving force for diffusion is the latter rather than the former. 

The second,multicomponenteffect which cannot be simulated in a 

binary system is the possibility of having a composition gradient 

through a two-phase region. This, arises because the Phase Rule allows 

only two degrees of freedom if two phases are to exist together in 

equilibrium in a two component system. Thus if pressure and tempera-

ture are fixed then the compositions of the two phases in equilibrium 

are fixed and so it is not possible to have a composition gradient 

through such a region. This rules out the possibilities of internal 

precipitates and unstable planar interfaces in binary systems since 

phase boundaries in the latter must be planar and perpendicular to the 
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composition gradient. 

In addition to the above. ternary diffusion studies are of great 

value as a means of investigating the thermodynamic interactions between 

the components of a system. In particular. the effect which one com

ponent has on the Gibb's Free Energy of another is reflected directly 

in the sign and magnitude of the respective cross diffusion coefficient. 

• ,J 
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2. APPROACH TO DIFFUSION THEORY 

There are two distinct ways in which diffusion may be analysed, 

each being useful under different circumstances. These are, respective-

ly, the mechanistic and 'the phenomenological approaches. Of these, 

the most active area of study is in diffusion mechanisms because it 

is thus possible to ascribe some fundamental meaning to the diffusion 

coefficients. Hence, diffusion study can contribute much valuable 

information to the. atomic models of solids. However, this approach 

is very limited in scope in that it can only cope with very simple 

systems. In order to deal with the complex systems met in practice., 

the phenomenological theory must be relied upon. However, caution must 

be exercised when applying a pheno~enologically based diffusion theory 

to metals in the solid state, since the latter are rarely homogeneous 

structures in perfect thermodynamic equilibrium, but usually contain 

grain boundaries and other crystal defects. Under certain circumstances, 

however, the diffusion process is dominated by so called volume dif~ 
( 

fusion (i.e. through the crystal lattice rather than along grain 

boundaries, dislocati~ns et~.) and "it is in this regime that a phenom-

enological theory is valid. 

In order to be aware of the extent of these limitations on the 

application of the phenomenological approach to diffusion, it is 

necessary .to give some prior consideration to the nature of diffusion 

at the atomic level. Such a consideration will also give some insight 

into the shortcomings of the mechanistic approach to diffusion theory. 



-7-

3. ATOMISTICS OF DIFFUSION 

The atoms in a solid metal occupy specific sites in a crystal 

lattice structure, and a considerable energy barrier must be overcome 

if an atom is to move out of its site. However, at all temperatures 

above absolute zero, the atoms of the solid possess thermal energy 

which causes them to vibrate about their equilibrium positions. 

From the model of a perfect gas it is possible to derive the so 

called Maxwell-Boltzmann distribution of energies which gives rise to 

the prediction that the probability (P) that an atom possesses an 

energy greater than or equal to a given energy (E) is given by: 

P ex exp (~i) (1) 

where, 

T Temperature oK 

k = Boltzmann's Constant 

-23 -1 1.380 x 10 joules deg [2] 

This same function has been found to predict quite accurately the 

vibrational energy distribution of the atoms in a crystalline solid [3]. 

Thus there is a finite probability of a given atom acquiring the energy 

':- required to overcome the barrier constraining it to a particular loca-

tion in the lattice. 

Having established that the atoms in a crystal can move, it is 

now necessary to consider the various mechanisms by which atomic motion 

may occur [4]. 
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3.1 Diffusion Mechanisms 

The various different mechanisms of diffusion can be grouped into 

• 'J 

two categories, that is those in which there may be more atoms per unit 

cell than lattice sites and, secondly, those in which atoms are 

constrained to move only from one lattice site to another. The first . ~ 

category includes the Interstitial Mechanism, the Interstitialey 

Mechanism, the Mechanism of Gibson et al. [5] and the Crowdion Mechanism. 

(Reference [4] gives full details of each of these.) For substitutional 

alloys of close packed metals, however, interstitial type defects 

produce very large lattice distortions and are consequently rare except 

in irradiated. or cold-worked specimens. Thus, tqe mechanisms listed 

above are relatively unimportant for these mat~rials. 

Of the second category of diffusion mechanisms mentioned above 

(i.e in which atoms are confined to lattice sites), the earliest 

hypothesis was the Direct Exchange Mechanism wh~reby two nearest 

neighbour atoms simply exchange places. However, calculations later 

showed [6,7] that the large lattice distortions produced by this 

mechanism made' it energetically unfavourable compared with the Vacancy 

Mechanism. It can be shown {3] that at any given temperature above 

absolute zero there is a finite equilibrium concentration of vacancies 

which exist in a crystal lattice given by~ 

SF/k -EF/kT \.I. 

n/N e e (2) 

where, 

'n = Number of Vacancies 

N = Number of Lattice Sites 
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SF = Vacancy Formation Entropy 

EF Vacancy Formation Energy 

k Boltzmann's Constant 

T Temperature oK 

This arises because the ,presence of vacancies in a crystal lattice 

contributes both to the internal energy and to the entropy of the 

system. Thus the opportunity exists for a system to reduce its free 

energy by the production of vacancies. A close packed atom can move 

into a vacancy with relatively little distortion and so the vacancy 

diffusion mechanism is favoured energetically. 

In 1950, Zener [8] postulated the Ring Mechanism for diffusion 

as a more generalized version of the, Direct Exchange Mechanism. The 

suggestion was that three or four atoms could move simultaneously in 

a ring, but calculations showed that this was still less energetically 

favourable than the Vacancy Mechanism for close packed metals and, 

indeed, there is considerable experimental evidence ,'against the Ring 

Mechanism. Smigelskas and Kirkendall [9] conducted an experiment with 

inert markers at the interface of a diffusion couple between copper 

and brass. The movement of the markers in the direction of the brass 

side of the couple cannot be explained entirely by the change in volume 

on mixing. This result has been confirmed in several other systems 

by Da Silva and Mehl [10] and suggests that the sum of the diffusion 

fluxes is not zero. This observation can be explained if diffusion 

occurs by a vacancy mechanism, but not if either the ring or direct 

exchange mechanism operates. 
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Hence, the ring mechanism is no i~?ger considered as a possibility 

in close packed alloys. However, it has been suggested that it may ... 
occur to some extent in b,c.c. metals to explain some of the anomalous 

diffusion coefficients obtained for such systems. The open nature of ., 

the b.c.c. lattice makes this a reasonable suggestion. 

3.2 Statistical Treatment of Diffusion 

In order to relate the observed macroscopic behavior of a system 

undergoing diffusion to the assumed mechanism, statistical mechanics 

is used. Consider the motion of. a single atom by the vacancy mechanism 

through a homogeneous matrix: 

Jump Frequency 

This depends on the number of nearest neighbour sites which are 

vacant and on the time required by the atom concerned to jump into an 

adjacent vacant site. The second of these terms contributing to the 

jump frequency is very difficult to define rigorously. Rice [11] has 

attempted to describe the problem in terms of the vibrational modes 

of the atoms by assuming that the movement of a particular atom is just 

the sum of all the displacements caused by the random acoustic waves 

passing through the lattice. 
I 

In a different approach, statistical mechanics is used to deter-

mine the concentration of "activated complexes" in a system, i. e. atoms 

midway between two equilibrium sites. ·This procedure [4] gives the 
. ". 

following expression for the average frequency (W) with which an atom 

jumps into an adjacent vacant site:-



where, 
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W = v. exp (-6G/RT) 

Average velocity of atoms passing through activated 
complex state 

Width of barrier to motion of the atom 

Free energy of activation, for the movement of an atom 
to the activated complex state. 

(3) 

This, W is subdivided into a frequency factor (v) and a term which 

measures the probability of an atom having sufficient energy to over-

come the barrier constraining it to its lattice site. 

An atom achieves the conditions required of it to make a jump by 

a completely random process, so the time taken by the atom to jump is 

variable. However, the overall diffusion process involves such'a large 

number of jumps that it is reasonable to consider the jump frequency 

as a constant, equal to the average rate of jumping. 

Jump Distance 

Since the atoms of a crystalline metal are constrained to jump 

from one lattice, site to another, the jump distance is defined by the 

particular crystallography concerned. 

Jump Direction 

In order for any significant redistribution of atomic species to 

take place in a system by diffusion, each atom must move a considerable 

distance and therefore make many jumps. Thus the direction in which 

a given atom jumps is of some importance. As will be described later, 
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successive atomic jumps are not entirely independent of one another, 

but this effect is of minor importance when dealing with pure metals. 

The jump direction of diffusing atoms is also influenced by the 

presence of potential gradients ina system which make the activation 

energy for jumps in certain directions lower ,than in others. However, 

in the absence of such complications, it may be assumed that each 

atomic jump is entirely random in direction. Thus, it is possible to 

determine the probability of finding any given atom at a particular 

location after a particular number of jumps. 

Suppose an atom makes n jumps of distance a. The final position 

of the atom can be described in terms of 'the, vector ~, defined from 

the origin. The probability of the atom being found in the volume 

element dV (= dx~dy·dz) formed by the incrementdr of r is given by 

[2,12] :-

where 

'[
bJ

3/2 2 
P(~)·dV TI '. exp (-b'I~1 )"dV 

b 
3 

2 2na 

The probability of finding the atom at some distance r from the 

(4) 

origin is obtained by replacing dV by the volume of an elemental sphere 

of inner radius r and outer radius r + dr (i.e. 4nr2dr). 

P(r)·dr 
2 [

bJ
3/2 2 

47T T TI " exp (-br )·dr (5) 
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From equation (5) can be found the root mean square distance that 

an atom will travel after n random jumps of length a:-

(6) 

3.3 Mechanistic Deri:ration of DHfusioll Equation 

Diffusion in metals can be investigated using radioactive tracers. 

Into a block of a pure metal is diffused a radioactive isotope of the 

same eleme~t. After a suitable annealing time~ the distribution of 

tracer through the block is determined by taking thin slices off the 

block and then'measuring the intensity of radiation from each slice. 
I 

A system like this is very easy to treat theoretically because~ 

although the radioactive isotope can be readily identified in the 

system, its chemical behaviour is identical to that of the host stable 

isotope and, furthermore, the two species have the same atomic size. 

Therefore, despite the concentration gradient through the material, 

there are no potential gradients to influence the diffusion. In 

addition, both the equilibrium concentration of vacancies and also the 

frequency with which atoms jump into adjacent.vacancies remain invariant 

with composition. 

Consider then a system like the one described with a one dimen-

sional concentration gradient of tracer. Further consider two adjacent 

atomic planes perpendicular to the direction of the concentration 

. gradient atx
l 

and x2 . The number of tracer atoms jumping from xl to 

x2 in unit tIme (n~2) is given by:-
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* * n12 = K.Pv.V.n
l 

where 

K Number of nearest neighbour sites which an atom in plane xl 

has in plane x
2

• 

Pv = Probabil{ty that a giyen nearest neighbour site is vacant 

= Nv (i. e. the fraction of vacant sites in the lattice) 

W Average frequency with which an atom jumps into an adjacent 

vacant site. 

* nl Number of tracer atoms in plane xl. 

similarly 

(8) 

where 

. n; = Number. of tracer atoms in plane x
2

• 

since it is tracer diffusion that is under consideration~ it is 

reasonable to assume that K, Pv and Ware independent of composition. 

However, when dealing with alloys, the species present are not 

chemically identical and so this assumption is not valid. 

From equations (7) and (8)~ the net number of tracer atoms flowing 

from xl to x2 per unit time is:-

K.N .W (n* - n*) 
vI. 2 

The concentration of tracer atoms in any plane, X., is the total 
1 

mass of tracer in the plane divided by the' volume occupied by all the 

atoms in the plane:-

(9) 
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* * n .• M 
C~ = _1. __ 

1. a.A 

M* = Atomic weight of tracer. 

(10) 

a Interatomic spacing and hence also the width of the atomic 

planes. 

A = Area of atomic planes. 

Eliminating n~ between equations (9) and (10) gives:-
1. 

(11) 

Now, the left hand side of equation (11) is the net mass of tracer, 

atoms flowing in the+x direction per unit time through unit cross: 
, 

sectional area, which is defined as the diffusion flux (J). Further, 

* * (C
l 

- C2) can be replaced by means of the relationship:-

Where 

ac (C* - C*) 
2 1 

a 

Thus, equation (11) becomes:-

D 

J = -D • ac ax 

Thus, starting with some knowledge concerning the mechanism of 

diffusion, it has been possible to show that the diffusion flux is 

directly proportional to ,the negative concentration gradient. ,The 

(12) 

(13) 
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proportionality constant (D) is called the diffusion coefficient~ or 

diffusivity, and for the example of tracer diffusion it really is 

constant because all the factors in equation (13) are constant. D is 

not constant with composition in alloys however because many of the 

assumptions made in arriving at equation (13) cease to be valid. 

3.4 Refinements'S~the Mechanistic Interpretation of D 

It is possible to extend the above description of diffusion to 

deal with dilute binary alloys. 

In the case of interstitial alloys, the solute atoms diffuse on 

a sub-lattice whose sites are essentially all vacant. Because of the 
, 

sharp distinction between the sites which may be occupied by solvent 

atoms and those which can only accommodate sol~te atoms~ the theoreti-

cal treatment of interstitial diffusion is relatively uncomplicated. 

In a dilute substitutional alloy, however~ solute and solvent atoms 

occupy sites on the same lattice and this makes it very much more dif-

ficult to derive an expression for the diffusion coefficient in terms 

of atomic parameters. In a dilute alloy~ it is not unreasonable to 

neglect chemical interactions between the two different atomic species 

present. However, there are two other factors omitted from the mechanis-

tic treatment of tracer diffusion which must be included in a descrip-

tion of substitutional alloys. 

The first of these is that, in an alloy, the jump frequencies of 

the solute and solvent atoms may differ.· This has been analysed [13] 

in terms of the effect of solute atoms on the electronic size distribu-

tion surrounding the ion cores which make up the lattice, and also 
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[14,15] by considering the mechanical stresses induced by the different 

sizes of solute and solvent atoms. However, there is no unified theory 

to account for the simultaneous operation of electronic and size effects. 

The second factor which must be taken into ac~ount when dealing 

with alloys is Correlation between successive atomic jumps. 

Consider firstly the jumps of a vacancy moving through a pure 

metal. After any jump, all the neighbours of the vacancy are identical 

so it shows no preference in the direction of its next jump. The jumps 

are therefore said to ,be uncorrelated or c~mpletely random, so the mean 

square ,distance (rv2) tra~elled by the vacancy after n jumps of distance 

a is given by na2 , from equation (6). 

Consider now a tracer atom diffusing by a vacancy mechanism in 

a pure metal. After any jump of the tracer atom, its neighbours are 
I 

not all identical, one of them being a vacancy. This influences the 

probabilities of the various directions in which the tracer atom could 

move on its next jump. In fact, the tracer atom will have a greater 

tendency to jump back in the direction from whence it came then it does 

to continue in the same direction as its previous jump. Therefore, 

jump directions are correlated and not entirely random. The effect 
-2 . , 

of this is that the mean square distance (r* ) travelled by the tracer 

atom after n jumps of distance a is less than na
2 

because the directio~ 

of a given jump has a greater than random tendency of cancelling out 

the previous jump. The degree of correlation in a particular structure 

is given by the correlation factor (f), which is defined ai:;": 
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2 
r* 

f = lim (14) 
n -+ 00 

--2 
r 

v .- 1'1 

Taking account of correlation, equation (13) should actually read:-

. 2 
D = f·K.Nv·W·a (15) 

where f is less than unity for diffusion by a vacancy mechanism. 

It can be shown [16] that for tracer diffusion, fis approximately 

unity and so correlation effects can be conveniently ignored., but this 

is not the case for alloys where correlation 'effects are often of prime 

importance in determining the diffusion coefficients of the various 

atomic species. 

3.5 Breakdown of Mechanistic Approach 

Without having gone into much detail, it is clear that, even in 

the relatively simple case of a dilute binary substitutional alloy, 

a complete understanding of diffusion coefficients in terms of mechanism 

is very involved. In fact, it is quite unrealistic to attempt a 

complete mechanistic description of diffusion in more concentrated alloy 

systems where chemical interactions are important. It is, therefore, 

necessary to consider the problem of how to analyse diffusion phenomena 

in systems such as these where the mechanistic approach is too complex 

to be of any use. The answer to the dilemma is to treat the problem 

phenomenologically, by which means it is possible to deal with the type 

of system met in practice, containing several components and possibly 

more than one phase. 
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However, even within the context of .a phenomenological theory, 

"' :\ \ . it is important to be aware of the mechanistics of diffusion, because 

there are two factors which prevent a solid metal from being treated 

... 
as an amorphous mass. 

The first of these is Anisotropy, which provides the opportunity 

for diffusion behaviour to vary with the direction of measurement. 

Extending the one dimensional derivation of the basic diffusion 

equation (12), the most general relationship that can be written for 

the flux components in a system containing a three dimensional concen-

tration gradient is as follows:-

·ac ac aC 
- - Dxt • ay - Dxy • ay - Dxz • az 

ac aC ac 
Dyx • ax - Dyy • ay - Dyz' az 

,,~ . 

Jz. ~ ac ac ac 
- Dzx • ax - Dzy • ay - Dzz • az 

However, the nine coefficients defined above are not always all signi-

ficant. For the cubic, tetragonal, orthorhombic and hexagonal struc-, 

tures, all the coefficients of the type Dij (where i and j are not 

equal) are zero. Further, for structures with cubic symmetry, all the 

cubic directions (Le.( 100) type) are identical and hence:-
. .:;." 

Dxx Dyy = Dzz . 
/ 

Now, J Jx +Jy + Jz 

Thus, for the cubic structures described above: 
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J = - Dxx ae+~+ae ax· ay az 

. ~ 
J = - Dove (16) 

Thus, provided it is a cubic structure that is under consideration, 

the isotropy requirement of the phenomenological approach is satisfied. 

In non-cubic structures, all directions are no longer equivalent, but, 

provided the degree of anisotropy is small, the directional dependency 

of diffusion properties may be neglected in polycrystalline materials 

whose grains are randomly oriented and small compared with the overall 

dimensions of the samples. However, to have small grains implies having 

many grain boundaries which themselves disturb the uniformity of the 
\ 

crystal lattice and thereby add a further complication to the phenomeno-

logical treatment. This introduces the second of the features of a 

solid metal which prevent its structure being ignored with respect to 

diffusion, i.e. Structural Defects. 

(a) Point Defects 

Point defects, whose presence and mobility are essential to the 

process of diffusion, do not invalidate the use of a phenomenological 

theory providing that their concentration remains at its equilibrium 

value, as defined by equation (2). Thus, the applicability of such 

a theory is confined to materials which have not been subjected to 

quenching, cold work or irradiation, each of which can produce a non-

equilibrium distribution of point defects in a system. In practice, 

at the high temperatures at which most diffusion experiments are carried 

out, small departures from equilibrium of point defect concentrations 
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are quickly rectified by the available sources and' sinks. If, however, 

the specimen has previously been subjected to conditions which have 

produced a large excess of vacancies, voids can be formed on annealing 

by vacancy condensation. (N.B. The energetics render vacancies the 

more important category of point defects in close packed substitutional 

metals) 

Another situation in which the point defect concentration can be 

distrubed from equilibrium is whereth~ redistribution of two or more. 

chemically different atomic species is taking place in a substitutional 

alloy system. If there is an imbalance of the fluxes across some inter-

face in the system, then there is a net flow of matter across the inter-

face, which. results in an excess of vacancies on the side which is 

losing material and vice versa, assuming that diffusion occurs by a 

vacancy mechanism. If the flux imbalance is so large that the available 

sinks cannot cope with the vacancy excess, then voids can form .. This 

phenomenon is known as Kirkendall porosity, having been,discovered by 

Smige1skas and Kirkendall [9]. 

It has been suggested by Manning [17,18,19,20,21,22,23] that~ even 

in the absence of Kirkendall porosity, the diffusion process is affected 

by a vacancy wind whenever a flux imbalance occurs. It is suggested 

that not all lattice sites are.immediate1y adjacent to a vacancy source/ 

sink and so a flux imbalance creates a flow of vaqmcies, or vacancy 

wind, in the opposite direction to the net flow of material. The flux 

of any given atomic species would be affected by the vacancy wind, but 
I 

the vacancy wind depends on the overall motion of all the atoms, so 
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the flux of a given species depends indirectly on the chemical potential 

gradients of all the species present. 

Dayananda [24] has adapted his earlier work on "Atomic Mobilities 

in Multicomponent Diffusion" [25] to take account of vacancy wind 

ef f ec ts . However" acceptance of these ideas has not been universal, 

since the evidence of the various attempts to verify the existence and 

importance of vacancy wind effects [26,27,28,29,30,31] have proved 

somewhat inconclusive •. 

In their kinetic analyses of diffusion in a concentration gradient, 

Le Claire [32] and Lane and Kirkaldy [33] followed the example set by 

Darken [34'] in assuming that the vacancy concentr,ation remains at 

equilibrium throughout an inhomogeneous system undergoing diffusion. 

Furthermore, Kirkaldy and Lane [35] have convincingly defended this 

assumption. 

The problems thrown up by the potential existence of a vacancy 

wind are only important in connection with the determination of 

intrinsic diffusion coefficients. These characterise the individual 

fluxes of the different atomic species present in an alloy system, as 

opposed to interdiffusion coefficients which describe the overall 

diffusion process. 

(b) High DiffusivityPaths 

Although vacancies are the only thermodynamically stable defects 

in a solid metal, other types of structural imperfections, which remain 

in existence for kinetic reasons , are invariably present. Even a well 

annealed piece of metal contains a dislocation density of approximately 

:../. 
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6 -2 . 
10 cm [36], while a polycrystalline specimen also contains grain 

boundaries, which are regions of misorientation in the crystal lattice. 

In addition, the uniformity of the structure is disturbed by the . . 
,presence of free surfaces whose effect on the diffusion process is 

likely to depend on the size and shape of the specimen under considera~ 

tion. 

In the regions of the metal where these various defects occur, 

the regular close packing of the atoms is disturbed in ·some way, which 

results in a relatively "open" structure compared with that of the 

perfect lattice. The result of this is that the diffusion coefficients 
'. I~' 

pertaining to these defects are higher than the values characteristic 

of the perfect lattice. Hence, such defects are called High Diffusivity 

Paths. 

Because atoms move at different speeds along different routes 

through a piece of metal, the observed diffusion flux results from the 

combined effect of the fluxes along each of these routes and is 

essentially a measure of the average flow of matter through any randomly 

chosen unit cross section. The contribution to the total flux from 

anyone of the diffusion routes depends on the relevant value of the 

diffusion coefficient and also on the fraction of the total number of 

atoms occupying sites lying on that route. Now, it so happens that 

the contributions from the various routes differ by orders of magnitude 

from one another and therefore, in general, the overall diffusion flux 

is completely dominated by the process making the largest contribution. 

Thus, the observed diffusion coefficient CD) equals the characteristic 
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coefficient of the dominant- process. 

The dependence of diffusion coefficient on temperature varies from 

one process to another and it has been shown [37] that as the temperature 

varies the dominant diffusion process changes. The transition tempera~ 

tures between processes are found to be approximately constant for all 

metals if they are expressed as a fraction of the metal's melting point 

(T ) in degrees :
m 

lattice diffusion dominates 

2Tm/3 > T > Tm/2 grain boundary diffusion dominates 

Tro/2 > T dislocation diffusion dominates 

Therefore, experiments conducted at temperatures above two thirds 

of the melting point of the system under consideration will yielddif-

fusion data characteristic of lattice diffusion, and so on. Surface 

diffusion does not, in general, make a significant contribution to the 

diffusion flux in metal specimens of the size and shape normally 

employed in diffusion experiments. 

In any comparison between the diffusion behaviour of one system 

with another, it is important to ensure that the dominant diffusion 

process is the same in each case, otherwise the comparison is of little 

value. Thus, the temperature ranges over which such comparative studies 

may be made are often quite limited, this being another piece of informa-

tion which does not arise from the general phenomenological theory. 
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4. PHENOMENOLOGICAL TREATMENT OF DIFFUSION 

4:1 Binary Systems 

A considerable knowledge of the structure of a solid metal and 

the mechanism of diffusion was required in order to derive an equation 

for the diffusion flux in an isothermal, isobaric, one dimensional 

binary system (equation (12)). However, as early as 1855, Adolf Fick 

[1] observed that in any inhomogeneous single phase system matter tends 

to flow so as to reduce concentration gradients, and thus arrived at 

equation (12) intuitively, prior to any experimental work in diffusion. 

Fick's 1st. Law, as this earliest formulation .of diffusion behaviour 

is called, is essentially a static law, but a dynamic variant can be 

derived from it:-

aC 
at = (17) 

This dynamic equation, which relates the variation of concentration 

with time at any point to the concentration gradient, is Fick's 2nd. 

Law. 

Fick's 1st. and 2nd. Laws can easily be extended to cope with 

diffusion in more than one dimension as shown by equation (16). However, 

for isotropic systems all dimensions are equivalent, so for ease of 

presentation only the one dimensional equations will be considered here. 

The factor D in Fick's Laws was originally introduced as a 

proportionality constant, but it was later demonstrated for the dif-

fusion of electrolytes by Clack [38] and for metallic systems by Mehl [39] 
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that in general diffusion coefficients are not constant, but are 

functions of composition. 

Much of the theoretical work in diffusion is associated with 

solving Fick's 2nd Law for various boundary conditions. This is 

relatively straightforward for the case of binary systems in which D 

is assumed to be independent of composition, and Crank [40] has provided 

a comprehensive listing of the various solutions available. If D is 

not independent of composition, however, then it is a function of dis-

tance and cannot be taken outside the differential in Fick's 2nd. Law, 

which is consequently rendered inhomogeneous and unable to be directly 

integrated. However, Boltzmann [41] showed that x and t in equation 

(17) can be replaced by a single variable, A = x/It :-

_ ~ • dC = _.d [D . dCJ 
2 dA dA dA (18) 

This is now an ordinary homogeneous differential equation between 

.C and A. It is important to note,however, that .this transformation 

of x and t into A and equation (18) can only be used in situations where 

the boundary conditions are expressab1e in terms of A alone. 

For example, consider the diffusion couple defined by the following 

boundary conditions :-

C. 
J. 

C. 
J. 

C. at x<O, t 
J. 

C + at x> 0, t 
i 

0; and at x -+ -00, t> 0 

0; and at x -+ -too, t >0 

Where irefers to anyone of the components of the system. These 

conditions couid also be expressed as :-
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Ci = Ci at -A - 00 (19) 

Ci 
+. 

A Ci at = +00 (20) 

Thus, since x and t are not involved separately, equation (18) 

can be employed. 

Kirka1dy, Lane and Mason. 142] derived the following iterab1e solu-

tion to equation (18), which is rapidly convergent even when D varies 

strongly with C :-

00 

~ exp [- (' 2~ • d.lJ • d.l (21) J 
A 

• where k1 and k2 are constants of integration. 

However, of greater interest here is an alternative integral of 

equation (18) which was noted by Boltzmann [41]. For the case of an 

infinite diffusion couple, as defined by the boundary conditions (19) 

and (20) above, equation (18) can be integrated (remembering that 

dC/dA = 0 at C =C-) to give:-

1 C J AdC 
2 C-

-D dC 
DA C=c 

where C throughout refers to the concentration of the dependent 

species. 

(22) 

Although it is not a solution to the diffusion equation, equation 

(22) can be used to determine the diffusion coefficient at any point 

along the concentration profile of an infinite diffusion couple. Since 

the concentration profile to be analysed is at a fixed time, then 
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equation (22) can be written:-

C 
J xdC 

I 
2 c-

D. 
dC 

t-
dxC=C 

From a graph of the concentration profile, the concentration 

(23) 

C 
gradient can easily be measured at any point, and the integral, J x dC, 

c-
can be determined by measuring the appropriate area under the curve. 

Errors in the value of D calculated using equation (23) are greatest 

where C is near the terminal compositions because in these regions 
C 

J x dC and dC/dx are both very small. 
C- C 

An important point to notice is that the determination of J x dC 
C-

by measuring the area under the curve requires knowledge of the 

position of x=O. This may be found by considering equation (23) at 

+ C=C where dC/dx = 0:-

o (24) 

The interface defined in this way is called the Matano Interface 

after Chujiro Matano who first employed equation (23) to determine 

diffusion coefficients in metallic systems [43]. This technique of 

determining coefficients has since become known as the Boltzmann-Matano 

method. 

Equation (23) is strictly only valid for a system which shows no 

volume change on mixing, but it can be modified to cope with systems 

where the variation of molar volume with composition is not negligible:-

I 
2 

c 
J 

a-
x 

Vm 
Dt 

dC =
Vm 

dC 
dx 

(25) 
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where Vm = Molar volume. 

In its original form, the Boltzmann-Matano technique was somewhat 

tediou~, principally because of the, need to locate the Matano Interface . 
./ 

'However, equation (23) has been modified [44,45,46], such that the 

distance parameter only appears in differential form.. thus obviating 

the need to locate its origin. Using the same format as before, the 

modified form of equation (23) is :-

(l-y) 
x +00 

f (C-C-)dx + Y f (C+-C) dx (26) 
_00 x 

Molar volume is here assumed to be constant~ and the differential 

of C with respect to x is written as a perfect differential since t 

is assumed to be·~onstant. 

The factor Y in equation (26) is defined as follows:-

Y = 

4.2 Reference Frame for Diffusion 

C-C 
+ C -C 

Until the 1940's, it was assumed that the reference frame for dif~ 

fusion was fixed relative to the external geometry ~f the sys~em and 

so distance measurements could be made from any point fixed with respect 

to that geometry. Thus for the case ofimetallic diffusion couples, 

comprising welded pairs of alloys, the origin for measurements was con-

sidered to be fixed~at the pOSition of the original interface. 

Now, at this time the direct exchange mechanism was the established 

idea for diffusion in substitutional metallic alloys and hence it was 
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assumed that the amount of component 1 diffusing in one direction in 

a given time was the same as the amount of component 2 diffusing in 

the reverse direction in the same time. This idea is not only consis

tent with the concept of the Matano Interface, which consequently had 

considerable intuitive appeal at the time, but also predicts that the 

Matano Interface is coincident with the position of the original inter

face between the welded pair, in the absence of mola'r volume changes 

on mixing. 

The first attack on these mutually consistent ideas of substitu

tional diffusion in binary metal alloys was aimed at the concept of 

the direct exchange mechanism. This was led by Huntington and Seitz 

[6,7], who showed that the vacancy diffusion mechanism, which permits 

the two components to move at different speeds, is energetically much 

more favourable than the direct exchange mechanism. Now~ if material 

flows in one direction in a diffusion couple faster than it does in 

the other, then the side enjoying a nett receipt of material will 

expand at the expense of the other. Therefore the interface between 

the two sides of the couple will move. relative to an external reference 

point. The only way to observe such an effect is to incorporate into 

the system an internal reference frame of some kind and then to monitor 

this relative to the external frame. This experiment was first carried 

o~t by Hartley [47] who studied the motion of inert titanium dioxide 

markers in the diffusion of acetone in ce'llulose acetate. However, 

it was Smigelskas and Kirkendall [9], who first brought the concept 

to the attention of the metallurgical world with their observation of 
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'the motion ,of inert molybdenum wires in diffusion couples between 

copper and ex. brass. 
... . 

The va'lue of making diffusion measurements relative to an internal 

frame of reference was first recognized by Darken [34], who showed that 

it was thus possible to evaluate two different diffusion coefficients 

for a binary system characterising the respective motions of the two 

different atomic species. These were later called Intrinsic Diffusion 

Coefficients by Hartley and Crank [48], who arrived at the same con-

elusions as Darken in an independent treatment of this subject. 

Considering one diinension only, the flux of component 1 as measured 

in an external reference frame (J
l

) comprises two elements:-

a) That by diffusion, which is relative to local inert markers and 

is given by Fick's 1st Law:-

b) That iIi conunon with local inert markers, which travel' at an external-

ly measured velocity of v (a function of position (x) and time (t»:-

Thus, 

(27) 

Conversion to a Fick's 2nd. Law - type expression gives:-

'. 
(28) 

and by analogy 
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[

D
2

dC 2 
dX 

(29) 

Assuming that the concentrations" C
l 

and C2~ represent atomic fractions:-

,Hence addition of equations (28) and (29) gives:-

[ 
dC" \ dC 

l D ,_1 + D _2_ 
dX 1 dX ZdX 

v] = 0' 

Integrating: 

I , (30) 

where I is a constant of integration. 

Now, at very great distances from the initial interface of the 

binary diffusion couple, dCl/dX and dC 2/dX are zero. 

V At x= I (31) 

By fixing the co-ordinate frame such that the x axis is fixed 

relative to the ends of the couple" Voo is/zero. Theref9re~ from 

equation (31): 

I = 0 

Equation (30) becomes: 

(32) 

... 
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Substitute for V in equation (28):-

(33) 

and 

(34) 

Substitute A 

I - - A dC 2 I (35) 

Since x and t have disappeared from equation (35) then C
I 

= f(A)· 

is the solution to equation (34) provided the boundary conditions are 

satisfied. To meet this condition the origin must be selected as the 

position of the" initial interface of the diffusion couple. This \is 

so because at t=O, A = 00 at all positive values of x, and A = _00 at all 

negative values of x. Therefore, unless x=O corresponds to the step 

change. in concentrtation, then A = 00 does not correspond to a single value 

of C
I

, i.e. C
I 

I f(A). 

Integrating equation (35) from A = _00, whereC
I 

to a point of interest where C
I 

= C
I 

:-

I 
2 

0, 

(36) 
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Now, from equation (22), this expression can be seen to be equal 

to D, the single coefficient describing the overall diffusion process 

as measured in the Boltzmann-Matano method. 

(37) 

where C
l 

and C2 are atom fractions of components 1 and 2, 

respectively. 

Hence, it is seen that the, so called, interdiffusion coefficient 

D as measured in the Boltzmann-Matano method remains a valid description 

of the diffusion process, and comprises a weighted sum of the two 

intrinsic coefficients. To determine the intrinsic coefficients from 

the interdiffusion coefficient requires an additional relationship 
"-

between the two unknowns, which is supplied by equation (32). 

v (38) 

Thus by carrying out a diffusion experiment using inert markers, 

and by measuring the velocity of these markers in the same external 

reference frame as the measurement of the interdiffusioncoefficient, 

the intrinsic coefficients can be found by simultaneous solution of 

equations (37) and (38). 

Despite being described as intrinsic, such coefficients are not 

, . 
fundamental parameters of the elements to which they refer. From 

above, it is seen that intrinsic coefficients contain more information 

than interdiffusion coefficients, but they are no less dependent on 
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composition. For most practical purposes, therefore, intrinsic 

coefficients are of no greater value as a means of describing diffusion 

behaviour than interdiffusion coefficients, which are easier to 

evaluate. 

4.3 Multicomponent Systems 

The theory of diffusion in binary systems has been described on 

the basis of Fick's Laws. It has long been recognized that diffusion 

coefficients as defined by Fick's Laws are functions of state variab.les 

such as composition. However, since 0 is always positive in binary 

systems, the general concept of Fick's Laws that the driving force for 

diffusion of a species is the concentration gradient of that species 

(in the absence of temperature, pressure and electric potential 

gradients) was considered to hold true in metallic systems until systems 

of more than two components started to, be studied in the 1940s. 

Even before this time, however, diffusion in non-metallic systems 

had been related to chemical potential rather than concentration 

gradients. The groundwork was laid by Nernst [49] in 1888 who expressed 

the driving force for diffusion between liquid solutions of different 

compositions in terms of osmotic pressure, which is directly related 

to the chemical potential. Much later, in 1932, Onsager and Fuoss [50] 

related the diffusivity, mobility and activity coefficient in aqueous 

solutions, producing results which were confirmed experimentally by, 

Harned and Nuttall [51]. The concept that chemical potential or activity 

gradients are the driving forces for diffusion was belatedly applied 

to metallic systems by Darken [52] who later [53] answered scepticism 
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with experimental evidence of "uphill"diffusion in a number of ternary-

metallic systems. Darken looked at four diffusion couples between . -
steels of different compositions. Of these~ one in particular has 

become famous as the "Darken Couple", which comprised the two alloys: 

Fe 0.478%C 3,80%St Fe 0.441%C. 

Following'a diffusion anneal, the resultant carbon concentration 

profile was determined and is reproduced in Figufe 2, from which it 
, , 

is seen that although the carbon concentration was initially approxi-

mately uniform right across the couple, carbon has diffused away from. 

the silicon containing side of the couple to produce what appears to 

be a step change in carbon concentration. 

In fact, there is not really a discontinuity in the carbon con-

centration profile, but the gradient at the interface is very steep 

because the substitutional silicon diffuses much slower than the 

interstitial carbon, so that on the scale of Fig. 2 the initial step 

change in silicon concentration at the original junction of the, couple 

has been removed to an imperceptible degree. However, the fact "remains 

that the-initially uniform carbon concentration has created a concentra-

tion gradient by diffusion and carbon has continued to' diffuse up that 

gradient.' The reason for this is that the presence of silicon in the 

steel increases the chemical potential of carbon. Therefore, although 

there is initually no carbon concentration gradient in the couple, there 

is a carbon activity gradient and it is the latter which provides the 

driving force for diffusion. 



.~, .... 

.'.: 

-37-

This example of the Darken Couple illustrates clearly the extent 

of the int.eraction between chemically different species ina system. 

It is, therefore, apparent that the application of Fick's 1st. Law 

directly to ternary (and higher) systems, by simply writing the flux 

of each component to be proportional to the negative of its own con

centration gradient, is not very satisfactory. Hence, a rethink of· 

the basic phenomenological equations of diffusion is required. 

Phenomenological Equations of Multicomponent Diffusion 

If a force is applied to a body then the body accelerates in the 

direction or the force (Newton's 2nd. Law of Motion). If, however, 

the motion of the body generates a retarding force~ which increases 

with velocity, then eventually the applied and retarding forces will 

become equal at which point the velocity of the body will stabilize. 

Where the body in motion is a diffusing atom. it is assumed that 

the retarding force, which is equal and opposite to the applied force 

in the steady state, is proportional to the velocity of the atom. To 

the authors' knowledge, this assumption remains neither confirmed nor 

contested,with the result that it has come to be accepted as self

evident by workers in the diffusion field. However~ in the mathematical

ly analagous field of viscosity (where transport of momentum rather 

than mass is the concern), it is known that so called Non-Newtonian 

Fluids exist in which the viscosity is a function of the applied stress 

and hence the momentum gradient. Examples include Bingham Fluids, many 

of which show thixotropy (e.g. Non-drip paints). Nevertheless, the 

proportionality between diffusion flux and applied force will be 
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accepted here. The velocity per unit force is called the mobility (B) 

-of the species. 

Thus for' the simple case where a species (i) is acted upon by a 

single force (F.), then the flux (J.) can be written~-
1 1 

J. ex: F. 
1 1 

Now any force can be written as a negative potential gradient, 

therefore assuming that IT is the relevant pptential field:-

J. ex: _ VIT 
1 

If attention is focussed on the single dimension x:-

J. -M. 
aIT 

1 lIT ax 

where M. is the proportionality constant or coefficient. However, 
l1T 

in general the atomic species of a system are subjected to more than 

one potential field. 

The term flux can be interpreted as the rate at which a system 

returns to equilibrium having been distrubed therefrom. Therefore, 

the potentials which contribute to the flux are those which describe 

(39) 

the thermodynamic equilibrium of a system, that is~- Temperature (T), 

Pressure or Mechanical Stress (P), Electric or other scalar potential 

(0) and the Chemical Potentials (Jli) of all the different atomic 

species present. Chemical potential is defined as the partial molar 

Gibbs Free Energy:-

( .. 

". 
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[ OGJ )1. = --
1 oni P, T, nj 

Where G = Gibbs Free Energy of the subsystem or phase 

n.' 
1 

Number of moles of component i. 

Thus from Eq. (39), the most general equation for the flux of 

component i in an n component system is:-

J. 
1 

(40) 

For ease of presentation an isothe~l, isobaric and isoe1ectric-

potential system will be considered here, so the last three terms of 

Eq. (40) go to zero. However, if the vacancy diffusion mechanism is 

to be assumed then a term to take account of the vacancy potential 

gradient must be inc1uded:-

J. = -
1 

n 

L 
j=l 

M 
ij 

0)1. 0)1 
.-:....1 _ M v 
ox iv ox 

Equations of this form exist, for the' fluxes of each of the n 

species, 'while an analogous equation exists for the vacancy f1ux:-

J -v 

n 

L 
j=l 

0)1 • 
M . .-:....1 

VJ ox 

(41) 

(42) 

There are thus (n+1) equations containing (n+1)2 M coefficients. 

However, it is possible to reduce these numbers by considering the 

existence of dependences between the fluxes, and also between the 
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coefficients. 

Firstly it is assumed that the total number of lattice sites is 

conserved, in which'case the net current of sites must vanish:-

n 
.J + L J 1 = 0 

v i=l'. 
(43) 

'Consider equations (41) for i=l to n and equation (42), and further 

:consider that all the potential gradients are zero except for all1/aX. 

Application of equation (43) then gives:-

Therefore, by extension it is seen that if equations (41) and (42) 

are to be valid for all values of the chemical potenti~l gradients, 

then equation (43) dictates that :- . 

n 
M = L M .. vj 

i=l 1J 
j '1 to n (44) 

.n 
M = - L M. 
vv i=l 1V 

(45) 

Anotper set of re1ationshipsbetween.the M coefficients is 

obtained by invoking Onsager's concept of microscopic reversibility 

[54,55] which states that ,for a system in thermodynamic equilibrium 

. every type of micromotion occurs just as often as its reverse. The 

consequences of this are that the M coefficients described above form 
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a symmetrical matrix:-

M .. = M.. for all i and j 
lJ Jl 

(46) 

M. = M . for all i 
lV Vl 

(47) 

The application of equations (43) to (47) inclusive results in a 

simplification of the flux equations to :-

i = 1 to n 

Now, if it is assumed that the concentration of vacancies is 

maintained in local equilibrium, then ~v = 0 and so:-

J. = 
1 

n' 

L 
j=l 

M 
ij 
~ 
ax i = 1 to n 

The question of whether vacancies are able to equilibrate with 

(48) 

(49) 

the lattice throughout the system has been discussed earlier. It was 

Mainning [17-23] who first suggested,that ~v should not be assumed to 

be zerq at all points in a system, in connection with his work on the 

HVacancy Wind". However, the idea has not been universally accepted. 

The assumption is usually made that the cross coefficients in 

equation (49) (Mij' i =1= j) are zero. 

Le. -M .. 
11 

a]J • 
1 

ax ' i 1to n (50) 
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This implies that the flux of a given species in a system is 

dependent only on the chemical potential gradient of that species. 

However, this would not be true if Manning's theories are correct. His 

vacancy wind would have a correlation effect on the motion of atoms 

in the system, but the vacancy wind would .be a consequence of the 

fluxes of all the diffusing species. Therefore, by a sec.ond order 

effect, the diffusion flux of each species would depend on all the 

chemical potential gradients. However, it will be assumed here ,that 

this effect,if real, is negligibly small, ,such that equation (50) is 

a good approximation .. 

Practical Diffusion Equations 

Equation (50) describes diffusion fluxes in terms of chemical 

potentials, and it is valid irrespective of the number of components 

in the system. However, it suffers from the disadvantage that chemical 

potential gradients are inherently difficult to measure" and so if the 

scope for experimental work in multicomponent systems is not to be 

seve're1y restricted the chemical potential term in equation (50) must 

be replaced by more amenable parameters. 

(a) Binary Systems 

A practical diffusion equation has already been described for 

binary systems, that is Fick's 1st. Law which relates the flpx of a 

species to its concentration gradient - equation (12)., 

The fact that two independent flux equations exist «12) and (50» 

for binary systems enabled Darken [34] to produce a relationship 

between the intrinsic diffusion coefficient (D.) of a species (i) in 
1. 
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a binary system and its aCtivity coefficient (y.). 
1 

i.e. B. RT 
1 

Where, B. Mobility of i, as defined earlier. 
1 

i = 1,2 (51) 

R = Gas Constant (i.e. Boltzmann's Constant x Avagadro's Number) 

T = Temperature K 

N. = Mole Fraction of i 
1, ' 

The activity coefficient is defined as:-

a. 
1 

Y1- =-N . 
1 

Where a. is the activity of component i and is related to its chemical 
1 

potential as fo11ows:-

J.I i O + RT1n a. 
1 

Where jJiois the chemical potential of i in its reference or standard 

state. When the species is in its,standard state, its activity is 

unity. 

If the activity coefficient of a species in a solution is 

independent of composition then equation (51) becomes:-

D. 
1 

B.RT 
1 

This equation was first formulated by Einstein [56], but it is 

(52) 

seen here to be true only when y. is constant. 'This condition prevails 
1 

'.," 
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only in an ideal solution (y.=l) or in a solution which is sufficiently 
1 

dilute that the activity of the solute obeys Henry's Law (Le. 

Activity a Concentration) while that of the solvent obeys Raoult's 

Law (i.e. ideal behaviour). 

It is rare for a metallic solution tb even approach ideality, but 

many systems do approximate to, so called, regular behaviour [57] over 

wide ranges of composition. A regular solution is one for which-the 

entropy of mixing is equal to the-entropy of mixing of an ideal 

solution. For such a system it can be shown that:-

In Y2 

Where a is a constant. 

2 
a N 

2 

~y differentiation of equations (53) and (54):-· 

d lnY2 
dN2 

dN
l 

a-2N --I dN2 

Substitution in equatipn (51) gives:-

-2aN 
2 

i = 1,2 

( ; 

(53) 

(54) 

(55) 

(56) 

(57) 
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By means of equation (5l) together with equation (37), Darken [34] 

went on to produce a relationship between the interdiffusion coefficient 

D for a binary system, as measured in a Boltzmann-Matano experiment, 

and the tracer diffusion coefficients of the two species:-

(58) 

Where i = 1 or 2, since from the GibbsDuhem equation: 

= 

* * Dl andD2 are the diffusion coefficients as measured in a radio-

active tracer experiment, which Darken showed to be virtually equivalent 

to the self· diffusion coefficients of the two pure elements. 

For a regular solution, equation (58) becomes:-

(59) 

While for ideal or dilute (Henrian/Raoultian) solutions:-

(60) 

(b) Multicomponent Systems 

In developing a practical equation for multicomponent systems, 

equation (50) will be taken as the starting point. For the isothermal, 

isobaric, iso-electric potential system under consideration,· the 
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chemical potential of each species is a function of the only non-

constant state variable, that is composition. 

lli = f (C
l 

,C 2 , ............. C ) 
n 

dll. dll. dC l dll . dCn ·1 1 + ' 1 --= -- ............. . 
dX dC I · ax dC dX n 

Substituting for dlli/dx from equation -(61) into equation (50) 

gives:-

n dll. dC; 
J. -M·.· .. 

1 ~ i 1 = . to n 
1 11 de: dX , 

j=l J 

Putting D ' .. Mii 
dll i 

1J dC. 
J 

n dC. 
J .. D' . ~ i 1 

/ 
= - = to n 

1 .1J dX 
, 

j=l 

This is now a practical diffusion 'equation since the diffusion 

fluxes are related to c.oncentration gradients which can usually be 

measured easily. For an n component system there are n equations of 

the form of (63), each containing n terms, therefore n2 coefficients 

are required to describe such a system. However, dependencies exist 

(61) 

(62) 

(63) 

between the concentration gradients. and also between the fluxes which 

reduce the number of coefficients required. 

The total of the concentrations of all the species must be 

constant: 
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i.e. 
n 

L: 
j=l 

C. 
J 

n ac. 
L:--..l 
. 1 ax J= 

D'. 
111 

= 
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Constant 

o 

n-1 aC j 
L: ax 
J=l 

n-1 (lC j - L 
j=l 

D' '.' • 
111 ax 

Now, equation (63) can be re-writteri:-

J. = -
1 

n-1 
L 
j=l 

D' .. 
1J 

Substitute from equation (64):-

n-1 
J. = - 2: D' .. 
l' j=l 1J 

n-1 
J. = - L Dij 1 

j=l 

Where Dij = D'ij 

ac. 
_J..- D,. 
ax 1n 

ac. n-1 
~+ L ax j=l 

aCj 
ax 

, 

D' . 
,111 

i 

D' . 
111 

1 to 

aCj 
ax 

n 

Thus, each equation now contains only (n-1) terms. Further, by 

(64) 

(65) 

defining an appropriate fundamental reference frame, one of the fluxes 

can be made dependent so that only (n-1) diffusion equations are 
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required containing (n-l) 2 coefficients. Examples of fundamental 

reference frames which have been used include [58]:-

i) Mass Fixed frame -which is defined to be fixed "relative 

to the moving centre of mass of the system, so that the 

sum of all the fluxes is zero. 

ii) Solvent fixed frame - which is defined such that there is 

no net flux of solvent. 

iii) Volume fixed frame - in which fluxes are measured with 

respect to the local centre of volume. 

The values of the diffusion coefficients in the now (n-l) 

equations of the form of equation (65) depend on the particular flux 

which has been selected as the dependent one. Therefore for clarity, 

the species whose flux is dependent is usually written as a super-
.".': 

script to the diffusion coefficients. Assuming the flux of component 

n to be dependent:~ 

n-l 
J i = - L 

j=l 
D~. 

1J 

dC· J . ax- ' i = 1 to n - 1 

This is the practical diffusion equation sought and is the 

(66) 

multicomponent version of Fick's 1st •. Law. 
n. 

The Dij are interdiffusion 

coefficients and give a measure of the effect of the jconcentration 

gradient on the diffusion flux of i, when the flux of n is considered 

dependent. 
n 

When i = j, the D{j· are called Direct or On-Diagonal 

Coefficients, while when i * j, they are called Cross or Off-DiagQnal 

Coefficients. 
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It is the existence of cross coefficients which provides the 

substantial intellectual jump between the understanding of diffusion 

in binary systems and that in ternary and higher order systems. It can 

be seen that when n = 2, equation (66) reduces to the original form 

of Fick's 1st. Law containing a single direct diffusion coefficient 

and no cross coefficients. Thus it is seen th~t, for binary systems, 

the correct mathematical relationships are obtained by assuming the 

driving force for diffusion of a species to be its own concentration 

gradient. The additional feature inherent in systems of more than two 

components is the dependence of the diffusion flux of a species on the", 

concentra·tion gradients of all the other species and it is the cross 

diffusion coefficients which describe this effect. ,This reflects the 

fact that the driving force for diffusion of a species is actually its 

chemical potential gradient, which is a function of the concentration 

gradients of all the species present. 

Dependencies between the D'iffusion Coefficients 

It was shown originally by Onsager [59], and later clarified by 

Hooyman [60] that application of the principle of Microscopic 

Reversibility [54,55] to the practical multicomponent diffusion 

equation (66) leads to dependencies amongst the D coefficients. Hence, 

in principle the number of D coefficients required to describe an n 

,component system can be reduced to n(n-l)/2, e.g. For a ternary 

system there are three independent coefficients. However, to achieve 

this involves a re-introduction of the thermodynamic parameter, chemical 

potential. 
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This drawback can be overcome in dilute solutions, in which 

Henrian behaviour is shown by the solutes. In such circumstances, the .-
variation of activity with composition is linear with the result that 

equations relating the D coefficients can be Written in terms of 
./ 

concentrations [42]. For non-Henrian solutions, this simplification 

is not possible, so that in general the (n_l)2 matrix of D coefficients 

is the minimum number needed to des~ribe an n component system. 

In addition to the above mentioned reference [42] the app1icatiori 

of thermodynamic conditions to the allowed values of Dcoefficients . 

is also considered in references [61, 62, 63]. 

A useful result of Kirkaldy, Weichert and Zia-UI-Haq[63] is a 

set of conditions applicable to the values of the interdiffusion 

coefficients of a ternary system ABC assuming A to be the solvent:-

> 0 

DBB Dec - DBc DCB ~ 0 (67) 

. 2 
(DBB + DCC) ~ 4 (DBB DCC - DBC DCB ) 

These conditions result from purely thermodynamic considerations. 

However, kinetic constraints are also important (see for example [64]), 

and consideration of these in addition to the thermodynamic effects 

leads to the following more restrictive conditions on the values of the 

D co~fficient~:-
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DBB > 0 

DCC > 0 

(68) 
DBC DCB ~ 0 

DBB DCC- DBC DCB ~ 0 

For a ternary system, it is usually apparent which species is 

considered to be the solvent aI1-d so, as here, the superscript to the 

diffusion coefficients is frequently omitted. 

Dynamic Multicomponent Diffusion Equation 

Equation (66), like Fick's 1st. Law, is a static equation since 

it relates an instantaneous flux to a number of instantaneous con-

centration gradients. However, in the same way that Fick's 2nd. Law 

was derived from his first, so a dynamic version of equation (66) can 

be written to deal with non-steady state situations:-' 

d 
dX 

[D~ . 
1J 

ae. 
~], i l'to (n-l) (69) 

Equation (69) is the most general form of diffusion equation for 

an isothermal, isobaric, iso-electric potential single phase system 

in which concentration gradients are uni-dimensional. 

Solution of the Multicomponent Diffusiqn Equatiqn 

As it stands, equation (69) is inhomogeneous and consequently it 

cannot be solved except by numerical methods. However, if certain, 
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assumptions can be made concerning the ways in which'the various 

diffusion coefficients vary with composition then there exists some 

scope for simplification. 

(a) Solutions with Constant Coefficients 

There are a number of conditions under which an analytical or 

iterable solution may be obtained for the diffusion equation when the 

coefficients are constant [65]. 
• l 

Attention here will be focussed'on 

ternary systems, and of particular interest are the boun~ary conditions 

applicable to the infinite diffusion couple; these can be uniquely 

defined in terms of the parameter A (A = x/tl/2) without involving 

either x or t separately. The boundary conditions, so defined, are 

given by equations (19) and (20). 

Writing equation (69) for a ternary system ABC, with A specified 

as solvent, in terms of A, assuming the diffusion coefficients to be 

independent of composition:-

dCB d
2
c d

2 
-A 

DBB 
B + DBC 

Cc 
= . . 

2 dA dA2 d/ 
(70) 

dCC d2c 
2 

-A, 
DCB 

B 
+ D 

d Cc 

2 dA dA2 cc dA2 
(71) 

Thus it is seen that the diffusion equations are now homogeneous 

with A as the only independent variable and, since the boundary 

conditions for an infinite diffusion couple are defined in terms of A 

alone, solutions ,of equations (70). and (71) will be unique for such a 

couple. 
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The complete solutions of equations (7) and (71) have been derived 

• by Fujita and Costing [66] and are reported below:-

CB = a erf A + b erf 
A ' 

+ c (72) '., .... 

2ul / 2 2vl/2 

Cc =d erf A + e erf A + f (73) 
2ul / 2 2vl/2 

where:-

1 . + -
c = 2" (C

B 
+ CB ) 

1 + 
e = 2" (CC - Cc - 2d) 

D 
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This solution is very complex in the general case, but the solu-

tions are simplified considerably if one of the cross-coefficients 

is zero. Also in the special case in which DBB = Dcc while DCB = 0, 

D (defined above) goes to zero, so that a and d (and hence b and e) 

become indeterminate. However, '-use of L'Hl>pital's rule yields a 

solution. 

The assumption of finite constant values for the cross coefficients 

of a ternary system can lead to the prediction of negative concentra-

tions near the binary limits of a ternary isotherm. Therefore, such 

assumptions are clearly unreasonable, but Kirkaldy [65] has expressed 

the opinion that provided the overall c~ange in composition across 

a diffusion couple is .no more than 20% of th'e average composition, then 

the assumption of constant coefficients is justified. However, many 

practical sit,uations fall outside the scope of this limitation and so 

solutions to the diffusion equation must be sought without the 

assumption of constant coefficients. Again, attention will be focussed 

on a ternary system:-

. (b) Solutions with Variable Coefficients 

For a ternary system with independently variable coefficients, 

equation' (69) bec>omes:-

o 
ox ~BB oCBl 

oxJ 
+.1... oX 

OCc ] 
ox (74) 

. ~ 



.. . 

oC 
c 

at = 
a 

oX 
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+~ ox (75) 

Such equations may be solved directly by numerical methods [67]. 

However, an integral iterative technique has been developed by Kirkaldy, 

Lane and Mason [42] which is claimed to be less tedious than direct 

numerical solution since the convergence of the iteration process is 

very rapid provided ~he diffusion coefficients vary only moderately 

with composition. Nevertheless, this solution remains complex and 

unwieldy. Simplification can only be achieved by seeking dependences 

amongst the coefficients which necessitates a return to thermodynamics, 

i.e. the resultant equations will involve chemical potentials. 

This situation demands some relationship between chemical potential 

and composition which can be applied to solutions showing neither 

Henrian nor Raoultian behaviour. Wagner [68] has shown that for a 

multicomponent solution comprising A as solvent and dilute with 

respect to the solutes B, C, D etc., the logarithm of the activity 

coefficient (y) of ?ne of the solutes (i) is given by:-

Where, 

ln y. 
1 

N. 
J 

E: •• 
1J 

Activity Coefficient of i at infinite dilution, 
i. e. the Henrian Activity Coefficient. 

= Mole fraction of component j. 

Interaction Parameter defined as follows:-

.(76) 



a ln y. 
1. 
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aN. N 1 
J A + 

Bolze, Coates and Kirkaldy [69] have utilized this, so called, 

Wagner Dilute Solution Model (equation (76» to derive dependencies 

(77) 

amongst the diffusion cO,efficients of a ternary system. They assumed 

a vacancy diffusion model and commenced their analysis with' a funda-

mental diffusion equation written'in terms of chemical potential rather 

than concentration gradients. The application of thermodynamic and 

kinetic constraints enabled them to produce expressions for and 

relationships between the fundamental coefficients. As was shown 

earlier (equations (62) and (63», fundamental coefficients can be 

replaced by practical coefficients (which relate fluxes to concentra-

tion rather than chemical potential gradients), but the translation 

between the two involves the derivatives of chemical potential with 
. . 

respect to composition. However, such derivatives can easily be 

obtained if the Wagner Dilute Solution Model can be invoked~Thus, 

Bolze, Coates and Kirkaldy were able to transform the equations 

describing the fundamental coefficients into expressions for the 

practical coefficients with the aid of equation (7,6). 

The following are the expressions they obtained for the two 

direct coefficients to the first order in concentrations:-

[ 

, C 

DBB = a~PB, 1 + p! + ..• J (78) 



Where, 

It 

(C
B and 

Further, 

is 
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PA) + -
P + ... .] 

a = Lattice Parameter 

p. = Jump Frequency of i atoms in 
1 

PA = Molar Density of Solvent A 

V. = 
1 

Partial Molar Volume of i 

E.. • Wagner Interaction Parameter. 
1J 

"\ 

seen from equations (78) and (79) 

C 

the x direction 

that in the dilute 

Cc -+ 0) the two direct coefficients approach constancy. 

throughout the dilute range, these coefficients remain 

(79) 

limit 

slowly 

varying functions of composition so that the assumption of average 

constant values for DBB and DCC is not unreasonable. 

The other results obtained by Bolze, Coates and Kirkaldy are 

expressions for the ratios of the cross coefficients to the respective 

direct coefficien~:-

DBC CB [OBe- Vc Pc PA VB Vc Pc PA eB =- -0-+-. _ £BB +=- 0 E --.-+-
• pA 2 DBB pA VA PB PB VA Bc VA PB PB 

V VB Vc Pc PA C ...... -] + c ~+ ECC +-=.- - -- -+-
VA VA VA PB PB pA2 

/ 
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To the first order in concentration this becomes:-

GBC 
Vc DBC C 

• Pc + PA ] B 

DBB pA VA PBPB 

- which for dilute solutions ca:n be written:-

= (80) 

Similarly: 

= (81) 

Where aBC and aCB are Proportionality Constants. 

Pc and VA = VB = Vc (i.e. when molar volumes are 

identical and the Kirkendall Effect vanishes) then aBC and aCB become 

purely. thermodynamic and equations (80) and (81) become:-. 

D . BC 

DBB 

Where NB and NC are Mole Fractions. 

It is of interest to note that Wagner showed €BC to be equal to 

€CB in the dilute limit. 

(82) 

(83) 

~ ~ 

.- ~.' 

'. 



r~ ._ 

'. 

-59-

Coupled with the results obtained earlier for the direct coeffi-

cients, equations (SO) and (Sl) can be approximated to D
BC 

oc C
B 

and 

DCB oc Cc in the dilute range. Such a result is reasonable in that it 

predicts thatDBc will go to zero wheri CB goes to zero (and similarly 

for DCB and Cc):-

From equation (65) 

J B = - DBB 

When CB goes to zero, aCB/ax and J B go to zero, and therefore so 

must DBC becauseacC/ax may remain finite. 

With the aid of equations (SO) and (Sl) together with the assump-

tion of average constants for the values of the direct coefficients, 

-the solutions of equations (74) and (75) are substantially simplified. 

Consider equation (74), substituting for DBc from equation (Sl):-

(S4) 

Solution of equation (S4) requires kriow1edge of the analytical 

solution for CO, but the dif~usion equation for component C (equation 

(75» can only be solved knowing the expression for CB (i.e. the 

solution ~f equation (S4». Therefore, the assumption is made that 

in calculating the concentration distribution of a given component 

(B say) in a dilute solution, the neglect of the cross diffusional 

effects on the other component (C) is justified. i.e. For the purposes 
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of solving equation (84), DCB is assumed to be zero, so that equation 

(75) becomes:-

acc a
2
c 

DCC 
C (85) = at 2 ax 

- which has a simple error function solution. 

Similarly, the solution for Cc is obtained by setting DBC to zero. 

This procedure permits the solution to equations (74) and (75) to be 

obtained by a straightforward finite difference technique. 

4.4 Determination of Diffusion Coefficients for a ternary system 

From what has already been said, it would be inappropriate to 

start with the assumption of constant coefficients when considering 
I 

the means of determining such coefficients in a general ternary system. 

Therefore, by analogy with the procedure adopted for determining 

variable coefficients in binary systems, consideration is given .to 

an extension of the Bo1tzmann-Matano technique which would be amenable 

to a three component system. 

Kirkaldy [70] has observed that equation (69) written in terms of 

1/2 A(= x/t ) can be integrated to give:-

fi n-1 dCj 

Ic.=c. 
AdCi = - 2 L Dij . i 1 to n-1 dA C. j=l 

l. l. l. 

(86) 

Since the concentration profiles to be analysed are at a fixed 

time, equation (86) can be written:-

"!' ~ 

" 



f C~ 
Ci 

xdC. 
1 

n-l 
-2t 2: 

j=l 
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dCj 
Dij dx 

C.=C. 
1 1 

i 1 to n-l (87) 

If n = 2, equation (87) reduces to equation (23) which is the basis 

for the Boltzmann-Natano method of determining diffusion coefficients 

in binary systems. As described earlier, D can be determined at any 

composition point across a binary diffusion couple by measuring the 

integral i.C 
x.dC and gradient dC/dx at the composition point of 

C 
interest from an experimentally determined concentration profile, 

followed by substitution in equation (23). For a mUlticomponent 

system, however, things are not so simple. It is seen from equation 

(87) that for an n component system there are (n-1) ~quations available 

for the determination of (n_l)2 coefficients. Thus when n exceeds 

two, it becomes impossible to determine the coefficients from the 

measured concentration profiles across a single diffusion couple. 

Consider a ternary system, for which there exists four inter-

diffusion coefficients and two equations of the form (87). Further, 

consider two different diffusion couples in this system which have 

a common composition point. At that common composition the values 

of the four coefficients in one couple should be the same as those 

of the respective coefficients in the other. Therefore, the equations 

appropriate to each couple can be taken as a common set and can be 

solved simultaneously to give the values of the four coefficients at 

the common composition point. It is comparatively easy to design a 

pair of couples to have a common composition point since the latter 

'I' 
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coincides with the intersection of the diffusion paths of the two 

couples. (A diffusion path is a graph showing the variation of 

composition across a ternary diffusion couple without containing any 

spatial information.) 

It is apparent that there is a substantial drop in the productivity 

of diffusion measurements in going from a binary to a ternary system. 

For a binary system, the value of the single interdiffusion coefficient 

can be determined over a range of compositions from a single couple, 

while for a ternary system, two carefully chosen couples are required . . 

in order to determine the interdiffusion coefficient matrix at a single 

composition point. For systems of more than three components, it is 

likely that the amount of experimentation and computation required to 

determine diffusion coefficients by this technique would be prohibitive 

unless approximations are made. 

At this point mention may be made of a radical approach to the 

description of diffusion in multicomponent systems by De Hoff, 

Anusavice and Wan [71,72]. They have considered diffusion in ternary 

systems and have swept aside the traditional matrix of interdiffusion 

coefficients in favour of a simpler and more direct approach. The 

components of a ternary system are given Relative Penetration Tendencies' 

which relate the diffusion rate of any given species to those of the 

other two. This is an approximate-approach, but is shown to result 

in predictions in close agreement with observation for a number of 

ternary syste~. It may be that for dealing with systems of more than 

three components, a scheme similar to that described above will be the 
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only practicable theoretical description of diffusion. 

Returning to equation (87), it is seen that measurement of the 

integral term in the equation requires knowledge of the absolute value 

of x at any point on the profile. This means that the origin for 

making measurements of x must be known. This origin is the Matano 

Interface which is defined by writing equation (87) at Ci=Ci+ (x=oo) 

where all concentration gradients are zero:-

The location of the Matano Interface is a tedious and often 

inaccurate procedure. Further, if the molar volume varies with 

(88) 

composition, then the Matano Interfaces defined for each species will 

not cOincide, which adds further to the workload. Therefore, following 

the transformation of equation (23) into equation (26) [44,45,46], 

which obviated the need to locate the Matano Interface when carrying 

out a Boltzmann-Matano analysis of a binary system, Whittle and Green 

[73] deduced the following equation, which represents a similar 

transformation for the multicomponent case:-

Y. dx + Yi 
1 

n-l 
2t L: 

j=l 

dCj 
Dij • dx 

i = 1 to (n-l) 

. (89) 



Where Yi 
C. C.-
.~ - ~ 

+ -C. - c .. 
~ ~ 
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4.5 Analysis of Concentration Profiles Exhibiting Maxima and Minima 

(90) 

The situation can often arise in multicomponent diffusion couples, 

particularly when diffusional interaction is strong, where the con-

centration of one or more of the components exhibits a maximum 

(or minimum) and the local value of C. lies outside the range C. to 
~ ~ 

+ Ci . Under these circumstances, x is not a single-valued function of 

C. over part of the concentration profile, and, within this range, the 
~ 

integrals in. equations (87) and (88) cannot be evaluated. This has 

serious implications for the analysis of concentration profiles in 

multicomponent systems ,but appears not to have been recognized by 

previous workers (see for example [74;75,76]). It is not possible to 

assess the magnitude of the errors which might have been introduced, 

however, since. details of the actual integration procedures have not 

been published. 

A complete presentation of the mathematical treatment of a 

generalized concentration profile with m turning points (maxima and 

minima), from which it is desired to know the diffusion coefficient 

. . C l' between the pth and (p+l)th matrlx at some concentrat~on i y~ng 

turning points, is given in [77]. 

Briefly, it is necessary to separate the profile into (m+l) parts, 

for each of which x is a single':"valued function of C.. A separate 
1 

integral of the ~pe J x.dC. can then be defined for each part of the 
~ 

- ~ 
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profile and used in an expanded version of equatie,n (87). Integration 

by parts is then used to convert all the integrals to the type f C. ·dx 
1. 

and, in this format, the separate integrals can be recombined since 

C. is a sing1e.,.va1ued function of x throughout the entire profi1e:-
1. 

x.z. -
1. 

Z.-_ .dx 
1. 

n-1 
-2t L 

j=l 
D •• 

1.J 

dZ. 
~ 
dx (91) 

Where, Z. = C. - C. , and has been introduced to produce a finite 
1. 1. 1. 

integral. 

The term x in equation (91) must be measured from the Matano 

Interface. Using the technique of den Broeder [45], however, equation 

(91) can be modified so that the distance parameter only appears in 

differential form, thus obviating the need to locate th~ Matano 

Interface. The result of this procedure turns out to be none other 

than equation (89), which can be modified to account for changes in 

molar volume (V ) as follows [45,73]:
m 

(C. -'C.) (l-Y.) + - [ 
1. 1. 1. 

Y. 
~ • dx + Y. 
V 1. 

m 

n-1 
2t. L 

j=l 

f~ (l-y. ) 
1. 

x V 
m 

D.. dC. 
~~ 
V dx 

m 

. dX] = 

(92) 

In general, V can be approximated to a linear function of composition. 
m 



-66-

There is an added advantage of analysing concentration profiles 

containing maxima or minima, since at those points, the gradient dCi/dx 

of one of the compon.ents is zero. Thus, the right hand side of 

equation (89) can be modified. For example, at a turning point in 

the C profile of the ternary system ABC with A as solvent:-

(93) 

(94) 

and thus DBB and DCB . can be calculated directly without the require

ment of having two diffusion paths crossing at a common composition [75]. 

A common deslgn of diffusion couples in ternary diffusion studies, 

is the so-called Darken couple, in which the end concentrations of one 

of the components (e.g. B) are identical, while the other component 

(C) has a step change 'at the original interface. This type of couple 

is useful in demonstrating the existence of diffusional cross effects 

[53]. - + However, as CB = CB' then YB as defined by equation (90) is 

now indeterminate. Equation (91) has now to be used as it stands, 
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with x being measured from the Matano interface. Under these condi-

tions, the location of the Matano interface is trivial, since it is the 

position where the profile cuts theCB = C; C+ line. 
B 
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6. CONCLUDING REMARKS 

At the beginning of this review, it was emphasized that an under

standing of multicomponent diffusion was important with respect to 

many of the changes of structure and chemical composition occurring in 

metals. It is hoped that this review may help to provide s~ch an 

understanding, dealing as it does with the complete evolution of ideas 

on diffusion theory from Adolf Fick to the present "day. It has been 

shown how diffusion coefficient data may be determined for ternary 

systems by the .analysis of concentration profiles across infinite 

diffusion couples and it is hoped that these techniques will be fully 

implemented in the future for the generation of diffusion data for 

ternary systems to complement the already bountiful data referring to 

binaries. 
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