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Organoid profiling identifies common responders to 
chemotherapy in pancreatic cancer

A full list of authors and affiliations appears at the end of the article.

Abstract

Pancreatic cancer is the most lethal common solid malignancy. Systemic therapies are often 

ineffective and predictive biomarkers to guide treatment are urgently needed. We generated a 

pancreatic cancer patient-derived organoid (PDO) library that recapitulates the mutational 

spectrum and transcriptional subtypes of primary pancreatic cancer. New driver oncogenes were 

nominated and transcriptomic analyses revealed unique clusters. PDOs exhibited heterogeneous 

responses to standard-of-care chemotherapeutics and investigational agents. In a case study 

manner, we find that PDO therapeutic profiles paralleled patient outcomes and that PDOs enable 

longitudinal assessment of chemo-sensitivity and evaluation of synchronous metastases. We 

derived organoid-based gene expression signatures of chemo-sensitivity that predicted improved 

responses for many patients to chemotherapy in both the adjuvant and advanced disease settings. 

Finally, we nominated alternative treatment strategies for chemo-refractory PDOs using targeted 

agent therapeutic profiling. We propose that combined molecular and therapeutic profiling of 

PDOs may predict clinical response and enable prospective therapeutic selection.

Keywords
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy often diagnosed at 

advanced stages. 15 – 30% of PDAC patients are diagnosed with clinically localized disease 

that is amenable to potentially curative surgical resection (1, 2). Following surgical 

resection, the majority of patients will have local or distant recurrence (3) and succumb to 

the disease. Systemic treatment, in the form of neoadjuvant or adjuvant cytotoxic 

chemotherapy, is used in conjunction with oncologic resection but only adds a modest 

benefit in survival (4, 5). Most patients are not surgical candidates and are diagnosed with 

locally advanced or metastatic disease. Therapeutic options for these patients include the 

combination chemotherapy regimens Gemcitabine/nab-Paclitaxel (6) or FOLFIRINOX (5-
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Fluorouracil, Leucovorin, Irinotecan, Oxaliplatin) (7). Despite therapeutic intervention, 

median overall survival is 6.7 – 11.1 months (Progression Free Survival/PFS = 3.3 – 6.4) for 

advanced disease (6, 7), compared to 25 – 28 months (PFS = 13.1 – 13.9) in surgically 

resected patients (4). Many PDAC patients have chemo-refractory disease, but a smaller 

subset exhibits significant response to chemotherapy. Current therapeutic selection for both 

local and metastatic pancreatic cancer patients is often based on patient performance status 

and co-morbidities. Altogether, this highlights the unmet clinical need to define responsive 

subgroups to inform treatment selection and to nominate alternative treatment options for 

patients who are resistant to currently approved treatment regimens. Therefore, approaches 

that predict the most effective chemotherapeutic regimen should improve patient care. To 

date, PDAC driver mutations have been hard to target in the clinical setting, with the 

exception of microsatellite instability (8), BRCA2 mutations (9) and potentially targetable, 

uncommon KRASG12C mutations (10). Furthermore, there are a considerable number of 

patients without these particular genetic alterations that would still benefit from alternative 

treatment strategies.

PDAC molecular subtypes have been described and validated in several independent patient 

cohorts (11–13). By growing consensus, two major subtypes of PDAC exist. The Basal-like, 

Squamous or Quasi-mesenchymal, subtype identifies PDAC patients with poor prognosis 

and is characterized by basal markers such as cytokeratins. The Classical or Pancreatic 

Progenitor subtype is characterized by differentiated ductal markers and identifies patients 

with a better prognosis. Moffitt and colleagues (13) found that the Classical subtype of 

PDAC is significantly under-represented in current PDAC cell culture models. Additional 

subtypes including Aberrantly Differentiated Endocrine Exocrine (ADEX) and 

Immunogenic subtypes have been reported (11), but The Cancer Genome Atlas pancreas 

cancer project recently demonstrated their association with tumors exhibiting low neoplastic 

cellularity, suggesting that stroma and normal pancreas contribute markedly to these subtype 

signatures (14). Regardless of the subtype, the low neoplastic cellularity of primary tumors 

makes it difficult to access molecular details regarding a particular profile of genetic 

alterations and gene expression changes in the neoplastic compartment.

Until recently, the phenotypic study of early and late PDAC has been hampered by a lack of 

tractable patient-derived models that encompass the full spectrum of disease, which would 

enable rapid evaluation of predictive biomarkers of treatment response. Using advances in 

organoid culture technology, we established the methodology to culture PDAC patient-

derived organoids (PDOs) from both surgical resection specimens as well as fine needle 

biopsies (FNB) with a high success rate (15, 16). These cultures exhibit mutation allele 

frequencies indicative of pure neoplastic cultures. Seino and colleagues have generated and 

characterized a library of 39 PDO cultures (17), which recapitulate the expected DNA 

signature of PDAC and exhibit a differential Wnt dependence that was inversely correlated 

with the Classical subtype. However, the utility of pancreatic cancer PDO cultures for 

defining predictive biomarkers of treatment response remains to be explored.

Herein we describe a library of 66 PDO cultures obtained from fine needle biopsy, surgical 

resection, and rapid autopsy PDAC specimens collected from multiple clinical institutions. 

Using deep molecular characterization of the PDO genome and transcriptome, we identify 
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the expected hallmarks of PDAC. In addition, we find high concordance between the 

primary tumor and paired PDO samples when sufficient neoplastic cellularity was observed 

in the patient specimen. We establish a PDAC-specific PDO drug-testing pipeline, termed 

“pharmacotyping”, and demonstrate that drug sensitivity profiles can be generated for each 

PDO within a clinically meaningful timeframe. In a retrospective analysis of a small subset 

of advanced PDAC patients from whom the PDOs were generated, the PDO chemotherapy 

sensitivity profile reflected patient response to therapy. These studies suggest that drug 

testing in PDO cultures may be used to inform treatment selection. In addition, longitudinal 

sampling in a single patient predicted acquisition of resistance to chemotherapy that 

paralleled clinical disease progression. Furthermore, several PDO cultures resistant to all 

available chemotherapeutic options exhibited exceptional sensitivity to targeted agents, 

providing alternative treatment options for chemo-refractory disease. Finally, to identify 

patients most likely to benefit from chemotherapy, we generated PDO-derived gene 

signatures predictive of chemotherapy sensitivity. We demonstrate that these chemo-

sensitivity signatures can retrospectively identify large groups of PDAC patients who are 

more likely to respond to several chemotherapeutics in either the adjuvant or advanced 

disease settings. These chemo-sensitivity signatures may enable more rapid treatment 

stratification of PDAC patients into those that may benefit from currently available 

chemotherapeutic interventions and those that should instead be considered for rationally 

targeted and investigational agents.

Results

Assembling a pancreatic cancer patient-derived organoid library

Previously, tumor models of patients with metastatic PDAC were often difficult to generate 

because of the limited material available from diagnostic biopsies. To comprehensively 

model the full clinical spectrum of PDAC, we obtained 159 human samples from primary 

tumors (hT) and metastases (hM) in 138 patients for PDO generation (15, 17) (Figure S1). 

Seventy-eight (78) specimens were isolated from surgical resections, 60 from fine needle 

biopsies of primary or metastatic lesions (hF), 20 from metastatic disease following rapid 

autopsies and 1 from a video-assisted thoracoscopic surgical (VATS) resection of a lung 

metastasis. Organoid culture conditions do not enable the survival or outgrowth of non-

epithelial cells (15). We successfully generated PDO cultures that expanded for at least 5 

passages. Using these metrics, the PDO generation efficiency was 75% (72% for fine needle 

biopsies - hF, 78% for tumor resections - hT), resulting in a total of 114 PDO cultures from 

101 patients (73% of patients) (Figure 1A). As previously reported by Seino and colleagues, 

addition of serum to the culture media was detrimental to the isolation and propagation 

efficiency (17). The pancreatic cancer PDOs exhibited mixed morphology consisting of 

hollow epithelial lined cystic structures with differing degrees of filled lumens (Figure 1B). 

In parallel, 11 human normal (hN) pancreatic ductal organoids were established from heathy 

normal pancreata obtained from islet transplant centers (15, 17) (Table S1A), all of which 

exhibited a hollow epithelial cystic architecture.
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Patient-derived organoids recapitulate genetic hallmarks of pancreatic cancer and reveal 
new characteristics

We developed a precision medicine pipeline that first focuses on molecular characterization 

of the PDO library as the organoid cultures pass quality control criteria (Figure S1). The 

criteria to be classified as a confirmed tumor PDO culture required the presence of known 

pathogenic mutations. Eighty-eight (88) PDO cultures have thus far been subjected to 

Sanger (KRAS only) or whole exome sequencing (WES), and 69 (78%) of the PDO cultures 

harbored genetic alterations consistent with PDAC (Figures 1C–D, S1, Table S1A–D). 

Nineteen (19, 22%) PDOs exhibited diploid genomes without discernable genetic hallmarks 

of pancreatic cancer, suggesting the outgrowth of normal ductal epithelial cells as previously 

reported (17), and were not further analyzed. The 11 hN organoid cultures isolated from the 

exocrine compartment obtained from normal healthy donors for islet cell transplantation 

were also subjected to WES and maintained a diploid genome without bona fide pathogenic 

mutations (Figure 1C–D). De-identified patient clinical data were available for the 69 

confirmed PDAC PDO cultures. 12 PDAC PDO cultures were generated from 5 pre-treated 

patients with metastatic disease while the remaining 57 organoids were isolated from 55 

patients who were treatment naïve at the time of PDO generation. Given that many patients 

who present with resectable disease typically receive neo-adjuvant therapy prior to surgical 

resection, this PDO library is a unique resource. For 66 of the PDAC patients with clinical 

stage data, PDO cultures were generated from patients with stage 1 (n = 1), 2 (n = 34), 3 (n 

= 7) and 4 (n = 24) disease (Table S1A).

KRAS was mutated in 66/69 PDOs (96%), while 3/69 organoids presented with wildtype 

KRAS. The expected prevalence of KRAS mutations was observed in the PDO cultures, 

with 31 (45%) cases exhibiting G12V, 29 (42%) G12D, 4 (6%) G12R, 2 (3%) Q61H, and 3 

(4%) wildtype KRAS. In 2 (3%) cases, multiple KRAS mutations were detected within a 

single PDO culture (Table S1A), with one case exhibiting a bi-allelic KRASG12V and 

KRASG12R mutation (hF50) and the other (hF70) exhibiting an amplified KRAS allele likely 

harboring a compound KRASG12D,G179S mutation. Of the KRAS wildtype PDO cultures, 

hF43 harbored an oncogenic PIK3CAE110del allele (18), hF39 exhibited an activating 

MAP2K1Q58_E62del allele associated with MEK1 inhibitor resistance (19, 20), and hT102 

harbored a hyper-activating mutation of ERBB2S310F (21) concomitant with a copy number 

gain of the wildtype ERBB2 allele. TP53 mutations were detected in 58/66 (88%) of the 

organoids subjected to WES (excluding the KRAS only Sanger Sequenced organoids) and 

were concomitant with loss of heterozygosity (LOH) in 56/58 cases (97%) (Table S1B). In 

addition, we observed a high rate of deep copy number loss (log2 < −3) or homozygous, 

inactivating mutation of CDKN2A (n = 32% and 24%, respectively) and SMAD4 (n = 8% 

and 20%, respectively). 35% of KRAS mutant PDO cultures exhibited inactivation of all 

three commonly altered PDAC tumor suppressor genes (TP53, SMAD4, CDKN2A) while 

45% exhibited inactivation of two of these tumor suppressors (Table S1C). A small fraction 

(14%) of the KRAS mutant PDOs harbored inactivation of only one tumor suppressor. 64 

out of the 66 PDAC PDO cultures subjected to WES were aneuploid, while two cultures, 

hT83 and hF43, maintained a largely diploid genome (Figure S2A). For these cultures, hT83 

harbored a KRASG12R and TP53 mutation, but did not exhibit TP53 LOH or inactivation of 

other canonical tumor suppressor genes; whereas hF43 had features of mismatch repair 

Tiriac et al. Page 4

Cancer Discov. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



deficiency, including MSH6 mutation, complete loss of MLH1 and a frequency of insertions 

and deletions (per megabase) more than 8-fold higher than the cohort mean (11.54 versus 

1.303 indels/MB) (Fig. S2B) (22).

Whole genome sequencing (WGS) was performed on a subset of PDAC-confirmed PDOs 

derived from surgical resections and their matched primary tumor (bulk), and both were 

germline corrected using normal tissue (n = 13) (Figure 2A, S2C). 82.49% – 99.96% (mean 

97.43%) of the mutations detected in the primary tumor specimen were also detected in the 

PDO culture. The four most commonly altered genes in PDAC (KRAS, TP53, CDKN2A, 
SMAD4) were also examined for their overlap between matched primary and PDO 

specimens. In 11 of the 13 cases, the PDO cultures completely recapitulated the PDAC core 

mutation profile found in the patient, although in the primary tumor specimens, there were 

often low numbers of reads and the mutation was not confidently called (Table S1D). The 

primary tumor specimens from the two sample pairs that did not exhibit overlap had 

extremely low purity (<15%) and no alterations in PDAC core genes were detected in the 

primary tumor specimens. High concordance of somatic mutations was achieved between 

the primary tumor and PDO in most cases (6 > 80%, 11 > 59%), with more somatic 

mutations detected in the PDO cultures due to the pauci-cellular nature of the primary 

tumors and high neoplastic purity of the organoids. In 2 cases where there was low tumor 

purity (<15%), low concordance (<10%) was observed, likely due to the limited ability to 

detect somatic mutations in the pauci-cellular primary tumors compared to the increased 

ability to extract genetic alterations from the purely neoplastic PDO cultures. Copy number 

analyses of the paired primary tumors and PDOs also showed concordance in the primary 

specimen with high purity (purity > 40%, hT98) (Figure 2B), however, most primary tumor 

specimens had insufficient purity to reveal copy number alterations (CNA), whereas CNA 

and gross chromosomal rearrangements were readily discernable in the PDO cultures 

(Figures 2C, S2D, S3). In addition to the hT PDO and primary tumor pairings, WGS with 

germline correction was also performed on 8 hF PDO cultures. Due to the small amount of 

tissue obtained from these biopsies, the entire specimen was directed towards PDO 

generation such that primary tumor tissue from the hF PDO cultures was unavailable for 

comparison. Complex genomic rearrangements were also observed in several of the PDO hF 

cultures (Figures S3). While genetic assessment of PDAC primary tissue specimens is often 

challenging due to their low neoplastic cellularity, these genomic analyses revealed the high 

depth and clarity in which PDAC genetics can be evaluated in PDO cultures, providing 

alternative means of identifying actionable genetic alterations in PDAC patients.

Transcriptomic profiling and subtyping of pancreatic cancer PDO cultures

RNA sequencing was performed on 44 PDAC-confirmed PDOs and 11 hN organoid 

cultures. The hN cultures clustered separately from the PDAC PDOs in principal component 

analysis (Figure 3A). The hM19A-D series of organoids were isolated from different 

metastatic sites of the same patient following rapid autopsy and represent a distinct cluster 

relative to the other stage 4 PDO cultures. Gene set enrichment analysis (GSEA) of the 

differentially expressed genes in PDAC relative to hN organoids indicated an enrichment in 

MYC and E2F targets, the G2M Checkpoint, as well as pathways involved in metabolism 

that include glutathione metabolism, steroid biosynthesis, and biosynthesis of unsaturated 
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fatty acids (Table S2). These PDO RNA sequencing data were used to identify the Classical 

and Basal-like subtype signatures previously derived from bulk tissues following virtual 

microdissection (13) (Figure 3B). 70% of the PDO cultures are the Classical subtype (31/44) 

and 30% are Basal-like (13/44) - a notable finding as there are very few available cell line 

models of the Classical PDAC subtype (13) (Table S3A). Therefore, in addition to being 

able to efficiently culture organoids from every stage of pancreatic cancer, including 

previously difficult to access metastatic disease, this culture method enables the propagation 

and study of PDO cultures from both Classical and Basal-like PDAC subtypes.

The PDO transcriptomes were also independently classified using non-negative matrix 

factorization (NMF) clustering, revealing two stable clusters in PDAC PDO cultures (Figure 

3C, S4A–B and Table S3B). Cluster C1 was enriched for TGFβ signaling and EMT by 

GSEA (Figure 3D, Table S2). In contrast, Cluster C2 exhibited enrichment for xenobiotic 

metabolism, fatty acid metabolism, and oxidative phosphorylation by GSEA. While the 

genes comprising the C1/C2 signatures did not overlap with those defining Basal and 

Classical subtypes (1 gene overlap is MYO1A), the classifications were largely concordant 

with 83% of the Basal-like PDO cultures falling in the C1 classifier and 93% of the Classical 

PDO cultures falling in the C2 cluster. Therefore, PDO cultures revealed unique gene 

expression programs that divide PDAC into two distinct molecular classes.

PDO pharmacotyping corresponds with individual patient treatment responses

Therapeutic profiling or “pharmacotyping” was performed on 66 PDAC-confirmed PDOs 

using the five chemotherapeutic agents most commonly used to treat PDAC patients: 

Gemcitabine, nab-Paclitaxel (Paclitaxel used in PDOs), Irinotecan (SN-38, active metabolite 

used in PDOs), 5-Fluorouracil (5-FU) and Oxaliplatin. PDO pharmacotyping revealed 

marked interpatient variability in the PDO response to single chemotherapy agents as 

evaluated using dose response curves and the corresponding area under the curves (AUC) 

(Figure 4A–E, Table S4A). The PDO culture pharmacotyping was stable over multiple 

passages with minor variation only occasionally observed (Figure S5). For each 

chemotherapeutic agent, we divided the PDO library into three subgroups: the least 

responsive (resistant, top 34% AUC), the most responsive (sensitive, lowest 33% AUC) and 

those exhibiting intermediate response (middle 33% AUC). To determine whether this 

subgrouping was informative for individual patients, we obtained retrospective clinical 

follow-up from 9 patients with advanced PDAC who were treated with these 5 agents 

(Figure S6A). Of the 6 patients with a progression-free survival (PFS) longer than the 

published median PFS (6, 7), 5 were treated with at least one drug to which the matched 

PDO culture was particularly sensitive and no drug to which the matched PDO culture was 

resistant. These 6 patients had a mean PFS of 332 days compared to the expected PFS of 

180 days (6, 7). Two (2) of the 3 patients who rapidly progressed were treated with a 

chemotherapeutic agent to which their PDO was markedly resistant. One of the nine patients 

exhibited an outcome inconsistent with the matched PDO (hF50) pharmacotyping profile. 

Altogether, these data suggest the potential relevance of this approach.

For one patient, corresponding with PDO hF2, extensive retrospective data was available 

following the generation of the PDO. The PDAC patient from which the hF2 PDO was 
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generated was first treated with a four-drug combination including two drugs with an 

intermediate PDO response profile (Oxaliplatin and 5-FU) and one drug with a resistant 

PDO response (Paclitaxel) (Figure S6B–C). This patient exhibited early progression in both 

the primary and metastatic sites (Figure S6C) and was switched to a second line regimen 

that contained two drugs to which the PDO was sensitive (Gemcitabine and SN-38). 

Following the change in regimen, the patient exhibited a partial response for 388 days before 

adopting third and fourth line therapeutic strategies until ultimately succumbing to disease 

1,020 days following diagnosis (Figure S6C). For this single patient case study, the 

retrospective clinical data paralleled the PDO chemo-sensitivity profile.

Temporal evolution of PDO chemo-sensitivity

In an analogous case study manner, we found that longitudinal PDO generation reflected the 

clinical course for an individual patient (Figure 5A). In the hM1 series, the hM1A PDO was 

isolated from a VATS resection of a lung metastasis and following resection the patient was 

found to respond well to both FOLFIRINOX and Gemcitabine/nab-Paclitaxel regimens. 

Indeed, the hM1A PDO was sensitive to Gemcitabine, Paclitaxel, 5-FU and Oxaliplatin and 

exhibited an intermediate SN-38 response within our cohort. Approximately two years later, 

the patient presented with progressive disease that histologically exhibited neuroendocrine/

small cell-like characteristics. A repeat organoid culture, hM1E, was established from a 

percutaneous core biopsy of a lung metastasis. The patient succumbed to the disease shortly 

afterwards and a rapid autopsy was performed, leading to the generation of the final hM1F 

organoid. Intriguingly, the hM1E and hM1F PDO cultures showed amplification of the 

KRAS allele (Figure 1D) and were resistant to Gemcitabine, Paclitaxel, and SN-38 while 

hM1F gained additional resistance to Oxaliplatin and switched to a more Basal-like subtype 

(Figure 3B). This case suggests the utility of longitudinal PDO sampling following repeat 

biopsies to evaluate the acquisition of resistance mechanisms to first line chemotherapeutic 

regimens. At the same time, this longitudinal case series revealed resistance to all commonly 

used chemotherapeutics for pancreatic cancer, a common issue observed in several PDO 

cultures and encountered in the clinic.

Spatial intra-patient heterogeneity of chemo-sensitivity

We also examined the therapeutic sensitivity of four different PDO cultures generated from 

two liver (hM19A, B) and one diaphragmatic metastases (hM19C), as well as ascites 

(hM19D) from the same patient following a rapid autopsy (Figure 5B). We found that these 

four hM19 cultures exhibited similar therapeutic profiles to three chemotherapeutic agents, 

but different sensitivities to 5-FU. While these four PDOs harbored similar DNA mutations 

by exomic sequencing (Figure 1C), they possessed small differences in CNA (Figure 1D) 

and mRNA expression (Figure 3A–C). Whether these molecular differences underlie this 

therapeutic profile heterogeneity remains to be determined, and this case highlights the 

possibility that metastatic patients may possess different cancer subclones that will require 

novel therapeutic regimens to achieve the best clinical response.

Nomination of alternative treatment strategies for chemo-refractory PDO cultures

To ascertain alternative treatment strategies for PDO cultures, pharmacotyping was 

performed using a panel of targeted agents (n = 21) on 66 PDAC-confirmed PDO cultures 
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(Figure S7A, Table S4B). Among the PDO cultures lacking sensitivity to any of the five 

chemotherapeutic agents (n = 22 out of 66, 33%) (Table S4C), alternative treatment 

strategies were evaluated for 21 of these PDO cultures. We were able to identify targeted 

agents with extreme PDO sensitivity (10% most sensitive) for half (n = 11) of these 

chemotherapy-insensitive PDO cultures. For example, hT89 was resistant to four 

chemotherapeutic regimens, but sensitive to the broad-spectrum kinase inhibitor Sunitinib 

(Table S4C). Targeted agent sensitivities were also evaluated for chemo-sensitive PDO 

cultures. For instance, hT105, which was sensitive to Oxaliplatin and Paclitaxel, was also 

sensitive to several targeted agents including Selumetinib, Afatinib, Everolimus and 

LY2874455 (FGFR inhibitor). In line with previous findings, the PDO hF39 that harbors the 

oncogenic MEK1 allele MAP2K1Q58_E62del was not sensitive to MEK inhibitor Selumetinib 

(20). The ERBB-directed agent Afatinib showed increased activity towards PDOs harboring 

ERBB2 amplification, with the most sensitive PDO being the KRAS wildtype PDO hT102 

that harbors the hyper-activating ERBB2S310F allele in the setting of amplifications in 

EGFR, ERBB2 and AKT2 (Figure 5C). Evaluation of other genes involved with 

homologous repair deficiency revealed that while there are many haploid losses in the copy 

number of these genes, these single copy losses do not correspond with Olaparib sensitivity 

(Figure 5D, 1D, S7B). Deleterious BRCA1/2 mutations were not present in this PDO library. 

Nonetheless, a trend was observed between Olaparib sensitivity and complete loss of PALB2 
(Figure 1C–D). The only organoid harboring a PIK3CA mutation, the KRAS wildtype PDO 

hF43 that carried the oncogenic PIK3CAE110del allele (18), was highly sensitive to the 

Rapamycin analogue Everolimus (Figure 5E). Finally, the previously mentioned hM1 

longitudinal series includes hM1A, which was isolated from a lung metastasis and exhibited 

a pancreatic ductal adenocarcinoma pathology while the two PDO cultures, hM1E and 

hM1F were isolated after the lung metastases switched to a small cell-like (neuroendocrine) 

phenotype. Neuroendocrine tumors are often responsive to mTOR inhibition (24), which is 

potentially paralleled by the switch of the hM1 series from an average to a sensitive 

Everolimus therapeutic profile (Figure 5E). These results suggest that targeted therapy 

sensitivities empirically identified in PDO pharmacotyping may supplement precision 

medicine approaches for PDAC patients.

PDO pharmacotranscriptomic signature reflects treatment response in pancreatic cancer 
patients

To investigate whether PDO pharmacotyping could be applied to advanced pancreatic cancer 

patients, we generated drug sensitivity signatures by correlating PDO transcriptional profiles 

with the pharmacotyping results. For each chemotherapeutic agent, we computed the 

Spearman correlation between PDO gene expression and the AUC for each drug, and 

thereby defined distinct transcriptional signatures (Figures 6A, S8, S9A–E, S10A–B and 

Table S5A–E). We refined the signatures to include genes that increased in expression when 

AUC decreased (negative rho value), which is indicative of increased drug sensitivity. By 

clustering the PDO cultures using the individual drug response signatures, the PDOs could 

be grouped into sensitive or non-sensitive classes for each individual chemotherapeutic 

signature. To determine whether the PDO-derived pharmacotranscriptomic signatures 

reflected treatment responses in patients, we obtained neoplastic cell-enriched gene 

expression data and associated clinical details from 126 patients who underwent resection of 
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their pancreatic tumor and then either received adjuvant treatment (n = 95) or no treatment 

(n = 31) (ICGC-CA) (25). In this sample set, 43% of the patient tumors (55/126) were the 

Basal-like subtype of PDAC. Treated patients received either Gemcitabine alone or in 

combination with other chemotherapeutic agents. Therefore, we applied the Gemcitabine-

specific PDO sensitivity signature to this patient cohort and determined that 50% of patients 

were enriched (Figure S11A). We used this signature to evaluate patient response in the 

subgroup of 55 patients who received Gemcitabine monotherapy, and found that patients 

with enrichment for the Gemcitabine sensitivity signature had a significantly better 

progression free survival (PFS, 772 vs 373 days, HR= 0.54, P = 0.04) (Figure 6B–C), and a 

trend towards improved overall survival (OS) (Figure S11B). Interestingly, in this cohort of 

55 patients, the Basal-like subtype was similarly represented in the Gemcitabine sensitive 

and non-sensitive groups (Figure 6B). Application of this gemcitabine sensitivity 

transcriptomic signature to a larger subgroup of 91 patients who either received Gemcitabine 

monotherapy or Gemcitabine in combination with 5-FU or Cisplatin also identified patients 

with a significantly better PFS, but not OS (Figure S11C–D). In the small cohort of 30 

untreated patients, the Gemcitabine sensitivity signature did not identify patients with 

improved PFS or OS, demonstrating that this signature is treatment dependent (Figure 6D, 

S11E–F).

Finally, the chemo-sensitivity signatures were applied to an independent transcriptomic data 

set obtained from tumors of PDAC patients on the COMPASS trial (26). Patients on the 

COMPASS trial had advanced pancreatic cancer and underwent core needle biopsy prior to 

treatment with combination chemotherapy. The biopsies were of sufficient size to perform 

laser capture micro-dissection for mRNA isolation and transcriptomic analysis. 30% of the 

tumors (22/73) were the Basal-like subtype of PDAC. We found that 44, 37, 31, 29 and 36 

(60%, 51%, 42%, 40% and 49%) patients exhibited enrichment for the PDO-derived 

sensitivity signatures for Oxaliplatin, 5-FU, SN-38, Gemcitabine and Paclitaxel, respectively 

(Figure 7A, S12A–D). The Basal-like patients were equally distributed between the chemo-

sensitive and non-sensitive signatures with the exception of Oxaliplatin, which exhibited an 

enrichment of the Basal-like subtype in the non-sensitive patient group (Figure 7A, S12A–

D). Response evaluation criteria in solid tumors (RECIST) measurements were available for 

most patients 8 weeks following the initiation of therapy. We found that the Oxaliplatin 

signature significantly correlated with response (r = −0.396, P = 0.0078) in patients 

receiving FOLFIRINOX (n = 47). Patients that had an enrichment for the Oxaliplatin 

signature exhibited better tumor responses to FOLFIRINOX than their non-sensitive 

counterparts, but the 5-FU and SN-38 signatures did not provide additional information 

(Figure 7B). There was also a trend for increased overall survival in the Oxaliplatin sensitive 

patients (Figure 7C), and notably there is a larger number of patients still alive in the 

Oxaliplatin sensitive (n = 13) versus non-sensitive cohorts (n = 5). Intriguingly, of the 6 

Basal-like patients that lacked enrichment of the Oxaliplatin chemo-sensitivity signature and 

progressed on FOLFIRINOX, 5 exhibited enrichment for the Gemcitabine chemo-sensitivity 

signature (Figure 7B).

19 tumor biopsies from patients with advanced PDAC were obtained prior to treatment with 

the combination chemotherapy regimen Gemcitabine and nab-Paclitaxel, and RECIST 

criteria was again measured at 8 weeks. In this smaller subset of patients, 7 patients harbored 
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the Gemcitabine sensitivity signature and 7 patients also exhibited the Paclitaxel sensitivity 

signature (Figure S12A–B, S13). The 4 patients that were sensitive to both Gemcitabine and 

Paclitaxel had reduced tumor sizes by their 8-week radiological evaluation and many 

patients sensitive to either Gemcitabine or Paclitaxel also responded, although the sample 

size is limited and the analysis interim (Figure S13). The ability of the PDO chemo-

sensitivity signatures to expediently identify patients with better response in both the ICGC-

CA and COMPASS studies suggest that these signatures may have potential clinical utility 

following evaluation in prospective clinical trials.

Discussion

The poor response of PDAC patients to therapies has been attributed to neoplastic cell 

characteristics such as cancer stem cells (17), redox metabolism (27) and intermediary 

metabolism (28, 29); and to non-cell autonomous properties such as limited drug delivery 

(30–32), impaired intra-tumoral immunity (33) and fibroblast- and microbial-mediated drug 

metabolism (34, 35). While the influence of different matrix components or cancer-

associated fibroblasts to therapeutic response is worthy of future examination, in this study, 

we employ PDOs as a well-defined model system and demonstrate a broad range of intrinsic 

neoplastic cell drug sensitivities to conventional chemotherapeutic agents. These data reveal 

the additional impact of interpatient diversity to chemotherapeutic drug responses that may 

supersede or modify other potential causes of drug resistance. The biological basis of this 

interpatient drug responsiveness is currently under investigation and may involve drug 

transport, metabolism and/or response to cell damage. Importantly, such questions may be 

addressed with PDOs as they are representative of the various features of PDAC observed 

across a large population, including a similar distribution of the Basal-like and Classical 

PDAC subtypes: 30% compared to 70%, respectively. By considering individual drug 

sensitivities in organoids, transcriptional signatures were derived that mirrored patient 

outcomes in two separate clinical cohorts following the adjuvant treatment of patients with 

Gemcitabine, or the palliative treatment of patients with modified-FOLFIRINOX or 

Gemcitabine/nAb-Paclitaxel. These signatures may identify common responders to first line 

chemotherapy agents and enable stratification of patients such that they may rapidly achieve 

clinical benefits while more tailored treatments can be developed for each patient. 

Interestingly, there are a number of patients who exhibit enrichment for the chemo-

sensitivity signatures in both the adjuvant and the advanced disease setting that are 

continuing to respond. Whether these long-term surviving, chemo-sensitive patients 

represent exceptional responders to either Gemcitabine or Oxaliplatin will require additional 

investigation. The 5-FU sensitivity signature, which contained a relatively small number of 

genes, did not perform well when evaluated in patients and will require further laboratory 

assessment and optimization. Additionally, while promising in PDOs, the SN-38 signature 

did not clarify the impact of the Oxaliplatin signature in the COMPASS trial patients. This 

may reflect the reduced Irinotecan dosing on the modified FOLFIRINOX regimen and/or the 

need to further refine the SN-38 signature. On the other hand, the Gemcitabine, Oxaliplatin 

and Paclitaxel signatures show concordance with patient responses in our preliminary 

studies. Cases that lack concordance with the Oxaliplatin, Gemcitabine and Paclitaxel 

chemo-sensitivity signatures may represent intra-tumoral heterogeneity that existed at the 

Tiriac et al. Page 10

Cancer Discov. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



initiation of therapy or evolved quickly. Methods that utilize non-invasive biomarkers as 

surrogates for disease response may facilitate rapid adjustment to a more effective 

therapeutic regiment for patients. Additionally, while both subtypes of pancreatic cancer 

were found in the chemo-sensitive and non-sensitive transcriptomic subgroups, there was 

enrichment for the Basal-like subtype in the Oxaliplatin non-sensitive group. Of note, some 

of these Oxaliplatin non-sensitive patients demonstrated enrichment for other chemo-

sensitivity signatures, suggesting that alternative chemotherapies might be beneficial to 

those patients. Going forward, these pharmacotranscriptomic signatures will need to be 

refined and prospectively evaluated on larger cohorts of patients from whom high-quality 

PDAC transcriptomes can be obtained.

While the pharmacotranscriptomic signatures can conceivably immediately benefit many 

PDAC patients, an additional group of patients may also benefit from organoid profiling 

with investigational agents that are available in a clinical trial setting. Indeed, approximately 

one third of the PDAC PDOs lacked sensitivity to any of the five chemotherapies evaluated. 

For these chemotherapy non-sensitive PDOs, 52% (11 out of 21) of the PDO cultures 

demonstrated sensitivity to one or several targeted agents on the small panel we employed. 

Whether these PDO sensitivities will translate into clinical responses in patients has yet to be 

determined in prospective clinical trials. Additionally, our study has focused on assessing 

single agent activity, and it is likely that drug combinations may yield more clinical 

opportunities in the future.

Low cellularity is a common problem in primary pancreatic cancer specimens, often making 

it difficult to discern molecular characteristics with high clarity and depth. Indeed, we found 

few genetic alterations when assessing primary tumor specimens in all but 1 out of 13 cases 

that were analyzed by WGS. In contrast, the PDO cultures yielded mutations with the 

expected allele frequency for pure, neoplastic cultures in addition to complex genetic 

rearrangements. These analyses and the high concordance between primary tumor 

specimens and their associated PDO cultures demonstrate the added benefit of performing 

deep genetic analyses on PDO cultures. In addition to thoroughly characterizing the 

canonical genomic hallmarks of pancreatic cancer, three cases of KRAS wildtype pancreatic 

cancer were identified that harbored uncommon oncogenic drivers such as the oncogenic 

alleles ERBB2S310F, MAP2K1Q58-E62del and PIK3CAE110del. In two of these cases, 

exquisite sensitivities to Afatinib (ERBB2S310F, hT102) and Everolimus (PIK3CAE110del, 

hF43) were observed, suggesting that these are actionable genetic alterations.

Precision medicine approaches for pancreatic cancer are challenging due to the short median 

survival of metastatic pancreatic cancer patients. In some cases, PDO pharmacotyping was 

completed in less than 6 weeks, demonstrating the ability of the PDO pharmacotyping to 

produce recommendations within a clinically meaningful timeframe for both early and late 

stage pancreatic cancer. Complementary genomic and transcriptomic profiling has recently 

been shown to be feasible for advanced pancreatic cancer patients (26), thus providing 

further capacity to validate PDO phamacotyping and pharmacotranscriptomic signatures in a 

prospective manner, even when first-line therapy is being selected. The technology of 

generating and analyzing PDOs will continue to iteratively improve as the methodology is 

not uniformly successful for all patients. Altogether, these early results suggest that chemo-
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sensitivity signatures may stratify and thereby improve the initial care of pancreatic cancer 

patients. Furthermore, when coupled with longitudinal PDO molecular and pharmacological 

profiling, this approach can be tailored to optimize the care of individual patients. This 

strategy should not be limited to pancreatic cancer.

Conclusion

We generated a pancreatic cancer, patient-derived organoid library that encompasses a broad 

spectrum of disease stage, uncommon genetic events as well as the previously established 

subtypes of pancreatic cancer. PDO cultures facilitate in depth molecular characterization 

that has been traditionally challenging in the unique pauci-cellular state of primary 

pancreatic tumors. PDO profiling using next-generation sequencing of DNA and RNA 

combined with pharmacotyping may predict responses in pancreatic cancer patients and 

provide a rational for prioritizing therapeutic regimens. This approach merits further 

evaluation in prospective clinical trials for pancreatic cancer patients.

Methods

Human specimens

Normal pancreatic tissues were obtained from the islet transplant program at the University 

of Miami Miller School of Medicine as described previously (15). Pancreatic cancer tissue 

was obtained from patients undergoing surgical resection or tissue biopsy at Memorial Sloan 

Kettering, Stony Brook University (GI Cancer Clinical Resource Core), Johns Hopkins 

University, Northwell Health, Weill Cornell University, University of California Davis, and 

Thomas Jefferson University Hospital, MD Anderson Cancer Center, Washington University 

St. Louis, and St. Francis hospital. Autopsy specimens from metastatic sites were obtained 

from Rapid Autopsy Program at University of Nebraska Medical Center and Washington 

University St. Louis. All tissue donations and experiments were reviewed and approved by 

the Institutional Review Board of Cold Spring Harbor Laboratory and all clinical 

institutions. Written informed consent was obtained prior to acquisition of tissue from all 

patients. The studies were conducted in accordance to recognized ethical guidelines 

(Declaration of Helsinki). Samples were confirmed to be tumor or normal based on 

pathologist assessment.

Organoids, cell cultures and culture conditions

For human samples, tissues were minced and incubated in digestion media (1mg/mL 

Collagenase XI, 10μg/mL DNAse I, 10.5μM Y-27632 in Human complete Medium) at 37˚C 

with mild agitation for up to 1 hour. Cells were plated with Matrigel and grown in Human 

complete Feeding Medium: advanced DMEM/F12, HEPES 10mM, Glutamax 1X, A83-01 

500nM, hEGF 50ng/mL, mNoggin 100ng/mL, hFGF10 100ng/mL, hGastrin I 0.01μM, N-

acetylcysteine 1.25mM, Nicotinamide 10mM, PGE2 1μM, B27 supplement 1X final, R-

spondin1 conditioned media 10% final, Afamin/Wnt3A conditioned media 50% final (17, 

36). Organoid nomenclature is as follows: human normal (hN), human tumor obtained from 

resections (hT), human fine needle biopsies obtained by either fine needle aspiration or by 

core biopsy (hF), and human metastasis obtained from direct resection of metastases 
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following rapid autopsy or VATS resection (hM). All organoid models were isolated, 

cultured, and routinely tested for Mycoplasma at Cold Spring Harbor Laboratory. Organoid 

models were characterized by DNA sequencing, and no additional authentication was 

performed.

WGS library preparation and sequencing

Whole genome sequencing (WGS) libraries were prepared using the Truseq DNA PCR-free 

Library Preparation Kit in accordance with the manufacturer’s instructions. Briefly, 1ug of 

DNA was sheared using a Covaris LE220 sonicator (adaptive focused acoustics). DNA 

fragments underwent bead-based size selection and were subsequently end-repaired, 

adenylated, and ligated to Illumina sequencing adapters. Final libraries were evaluated using 

fluorescent-based assays including qPCR with the Universal KAPA Library Quantification 

Kit and Fragment Analyzer (Advanced Analytics) or BioAnalyzer (Agilent 2100). Libraries 

were sequenced on an Illumina HiSeq X sequencer (v2.5 chemistry) using 2 x 150bp cycles 

aiming for 40, 60, and 80X coverage for normal germline, PDO, and primary tumor 

specimens.

Exome panel library preparation and sequencing

Whole exome sequencing (WES) libraries were prepared using the KAPA Hyper Prep 

(Roche) and xGen Research Exome v1 Panel probes (Integrated DNA Technologies) in 

accordance with the manufacturer’s instructions. Briefly, 200ng of DNA was sheared using a 

Covaris LE220 sonicator (adaptive focused acoustics). DNA fragments were end-repaired, 

adenylated, ligated to Illumina sequencing adapters, amplified 7 cycles. The libraries were 

normalized and pooled equal molar in 12-plex ponds. A total mass of 2500ng of the pre-

capture ponds were blocked and hybridized for 16 hours with the probes following the 

manufacturer’s recommendations. Resulting captured libraries were then amplified 10 

cycles. Final libraries were evaluated using fluorescent-based assays including PicoGreen 

(Life Technologies) and Fragment Analyzer (Advanced Analytics) and they were sequenced 

on an Illumina HiSeq2500 sequencer (v4 chemistry) using 2 x 125bp cycles aiming for 50X 

coverage.

Sequencing Pre-Processing and Variant Calling

WGS and WES data for the tumor, organoid and matched normal samples were processed 

by the NYGC somatic pre-processing pipeline which includes aligning reads to the GRCh37 

human reference genome using the Burrows-Wheeler Aligner (BWA) (37), marking of 

duplicate reads by the use of NovoSort (a multi-threaded bam sort/merge tool by Novocraft 

technologies http://www.novocraft.com), joint indel realignment for matched samples, and 

base recalibration via Genome Analysis Toolkit (GATK) (38). The Exome study used the 

HapMap NA12878 sample in place of a matched normal sample, which was processed using 

the same protocol as the organoid samples. Somatic Single Nucleotide Variant (SNV) calling 

is performed using muTect v1.1.7 (39), LoFreq v2.1.3a (40), and Strelka v1.0.14 (41), and 

indel calling was performed using Pindel v0.2.5 (42), Scalpel v0.5.3 (43) and Strelka 

v1.0.14. Structural nucleotide variants (SNVs) were detected by the use of Crest v1.0 (44), 

Delly v0.6.1 (45), and BreakDancer v1.4.0 (46). Copy-number variants (CNVs) were 

detected using NBIC-seq v0.7 (47) for WGS, and FACETS v0.5.2 (48) for Exome, resulting 
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in segmented profiles where the copy number is approximated by a piecewise-constant 

function of the genomic position.

Organoid-Tumor SNV Concordance

SNV concordance between tumor-organoid pairs was determined from the overlap of variant 

calls and variant allelic fractions. For each SNV called in the tumor or organoid, we ran 

Samtools Pileup (with minimum base quality and minimum mapping quality of 10) at this 

position for both samples to compute the variant allele fractions. If read evidence for the 

SNV was present in both samples (and therefore VAF>0), the SNV was considered 

concordant. To add confidence to this analysis, we only included SNVs that were called by 2 

or more variant callers in at least one of the samples.

Organoid-Tumor CNV Comparison

CNVs were compared between organoids and tumors by plotting the CNV log2 values 

across chromosomes. A threshold of −0.235 and 0.2 was used to delineate the cutoff for 

deletions and amplifications, respectively. This threshold is based off of a diploid sample 

with 30% purity. Neutral segments are colored in green, and deletions/amplifications in red. 

The y-axis range is smaller for the tumor samples so that possible CNVs can be more easily 

identified.

WGS Purity / Ploidy Estimates

Purity and ploidy for each sample was manually calculated by comparing the VAF of 

somatic SNV, BAF, and CNV log2 values of multiple variants within each sample. The final 

average ploidy/purity was taken from the Titan (49) or ABSOLUTE (50) estimate that most 

closely matched the manual calculation. No exact purity estimates were made for tumor 

samples that seem to have extremely low purity (<15%).

SNV and CNV landscape visualization

The SNV landscape is displayed using the Bioconductor package GenVisR v1.8.0 (51). The 

CNV per gene heatmap was generated using the Bioconductor package ComplexHeatmap 

v1.17.1 (52). A log2 value was assigned to each gene using the CNV region that covered at 

least 50% of the gene via a custom R script. When no CNV region respected that threshold, 

the gene was assigned a “No information” label. The CNV landscape per chromosome was 

illustrated using Bioconductor package gtrellis v1.11.1 (53).

RNA-sequencing library construction

For RNA-sequencing experiments, organoids in matrigel were lysed directly with 1 mL of 

TRIzol reagent (Thermo Fisher) and total RNA was extracted according to the 

manufacturer’s instructions. RNA-seq libraries were constructed using the TruSeq sample 

Prep Kit V2 (Illumina) according to the manufacturer’s instructions. Briefly, 2μg of purified 

RNA was poly-A selected and fragmented with fragmentation enzyme. cDNA was 

synthesized with Super Script II master mix, followed by end repair, A-tailing and PCR 

amplification. RNA-seq libraries were sequenced using an Illumina HiSeq2500 or NextSeq 
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platform with paired-end reads of 125 bases (Cold Spring Harbor Genome Center, 

Woodbury).

RNA-seq analysis

RNA-seq reads quality was first quantified using FastQC v0.11.5 [https://

www.bioinformatics.babraham.ac.uk/projects/fastqc]. Reads were then trimmed using 

Trimmomatic v0.36 (54) and aligned using STAR v2.5.2b (55) on the transcripts 

corresponding to the human genome (GRCh38.p10 assembly) and obtained from 

GENCODE (release 27) (56). RSEM v1.3.0 (57) was used to extract counts per gene. The 

counts per gene were normalized using Bioconductor package DESeq2 v1.14.1 (58). For 

further analysis, genes without at least one count in 10% of the organoids were discarded as 

well as genes not assigned as protein coding according to VEGA gene and transcript 

annotation from Ensembl human (release 91). An average of 50 million reads per sample 

were aligned to the reference genome.

Principal component analysis visualization

A principal component analysis (PCA) was performed on all organoids (normal and tumor 

organoids) using the normalized and filtered counts per gene (see RNA-seq analysis 

section). A variance stabilization transformation was performed using Bioconductor package 

DESeq2 v1.14.1 (58). The 2000 most variable genes were retained and used as input for the 

PCA analysis which was performed using R stats package (59). K-means clustering was 

performed on the PDO expression data reduced to three principle components, also using R 

stats package with the parameter for the number of clusters fixed to 2. The result of the 

PCA-based clustering was displayed using the CRAN package plotly v4.7.1 [https://

CRAN.R-project.org/package=plotly].

Differential gene expression analysis normal vs tumor organoids

A differential gene expression (DGE) analysis was performed with Bioconductor package 

DESeq2 v1.14.1 (58) using the normalized and filtered counts per gene from the RNA-seq 

analysis. The DGE analysis was performed between normal and tumor organoids using 

DESeq2 likelihood ratio test (LRT).

Clustering of tumor organoids

Using only tumor organoids, a non-negative matrix factorization (NMF) clustering was 

performed on the 2000 most variable genes, as determined in the RNA-seq analysis, to 

identify stable tumor organoids clusters using CRAN package NMF v0.20.6 (60). The NMF 

parameters were: Brunet factorization method, rank of 2 through 7, 500 iterations. The best-

performing clustering result was selected using the observed cophenetic correlation between 

clusters and the average silhouette width of the consensus matrices. The NMF clustering 

generated 2 stable tumor organoids clusters, labeled C1 and C2. Only the individuals with 

the higher consensus are included in C1 and C2 clusters. Three PDO cultures with poor 

cluster identity consensus were excluded from the subsequent differential expression 

analysis. The NMF clustering was refined to 245 genes (Figure 3, Table S3).
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Differential gene expression analysis tumor organoids

A DGE analysis was performed on the tumor organoids only. A differential gene expression 

analysis was performed between C1 and C2 tumor organoids clusters using DESeq2 with 

default parameters. The CRAN package gplots v3.0.1 (https://CRAN.R-project.org/

package=gplots) was used to generate a heatmap of the 250 genes most significantly 

differentially expressed between C1 and C2. Of these, 5 genes with a median expression 

count of zero were removed.

Pharmacotyping of organoids

Organoids were dissociated into single cells. 500 viable cells were plated per well in in 20μL 

10% Matrigel / human complete organoid media. Therapeutic compounds were added 24 

hours post plating, after the reformation of organoids was visually verified. 

Chemotherapeutic were tested in triplicates: gemcitabine, paclitaxel, SN38 range from 

8.1x10−12 M to 2.0x10−6 M, and 5-FU and Oxaliplatin range from 1.0x10−8 M to 5.0x10−5 

M. Targeted drugs were tested in singlicates (range from 1.0x10−8 M to 1.0x10−5 M). 

Compounds were dissolved in DMSO and all treatment wells were normalized to 0.5% 

DMSO content. After 5 days cell viability was assessed using CellTiter-Glo as per 

manufacturer’s instruction (Promega) on a SpectraMax I3 (Molecular Devices) plate reader. 

A three-parameter log-logistic function with upper limit equal to the mean of the DMSO 

values was fit to the pharmacotyping data (viability vs. dose) with CRAN package drc 

v3.0-1 (61). Quality control was performed on the curve fitness: rejection of the curve if 

100% plateau is located beyond 2 standard deviation of the mean DMSO control and visual 

inspection, leading to possible rejection, of the top 5% curves ranked with the highest sum 

of the squared differences between triplicate measurements and fitted curve. The area under 

the curve (AUC) was calculated using CRAN package Bolstad2 v1.0-28 (https://cran.r-

project.org/web/packages/Bolstad2/). Normalized AUC was obtained by dividing the AUC 

value by the maximum area for the concentration range measured for each drug. The range 

of the normalized AUC is between 0 and 1.

Pharmacotranscriptomic analysis

For each drug, the Spearman’s rank correlation coefficient was calculated between the 

organoid drug-specific AUC and the 10,000 most variably expressed genes (normalized 

counts) obtained from the RNA-seq analysis. The Spearman’s rank correlation was selected 

to test for monotonic, but not necessarily linear, dependence between the AUC and the gene 

expression. For derivation of drug-specific transcriptional signatures, genes were filtered 

using the p-values for the Spearman’s coefficient calculation as threshold (p-value < 0.01). 

Genes positively correlated with sensitivity (r < −0.38) to a chemotherapeutic drug were 

selected for validation in patient derived RNA-seq data (Table S5). Each filtered gene list 

was clustered separately using the Spearman’s rank correlation coefficients. To rank 

sensitivity of PDOs and patients using RNA-seq data, mean z-score was computed for the 

individual drug sensitivity signature and ranked from high mean expression to low mean 

expression. A flow chart of the pharmacotranscriptomic analysis pipeline is presented in 

Figure S8.
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Pathway analysis

Pathway analysis was performed with GSEA2 version 2.2.4 (62).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of significance

New approaches to prioritize treatment strategies are urgently needed to improve survival 

and quality of life for pancreatic cancer patients. Combined genomic, transcriptomic, and 

therapeutic profiling of patient-derived organoids can identify molecular and functional 

subtypes of pancreatic cancer, predict therapeutic responses and facilitate precision 

medicine for pancreatic cancer patients.
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Figure 1. Genomic landscape of pancreatic cancer PDO
A. Isolation efficiency rate of PDOs from total samples, biopsies (hF), and resected surgical 

specimens (hT). B. PDO morphology in brightfield microscopy. Scale bars are 1000 or 500 

μm as indicated. C. Single nucleotide variants in the PDO library. Mutation frequency 

indicated in both cancer and normal organoids (cancer % (left) / normal % (right)). Only 

mutations reported in COSMIC were included. Patient staging and type of mutation are 

denoted by a color-coded key. FS = Frameshift, Del. = Deletion, Ins. = Insertion, IF = In 

Frame, NA = Not Available. D. Copy number alterations (−2.0 through −0.235 and 0.235 

through 2.0 log2 copy number ratio color key) in the PDO library. The cancer stages of the 

patients are indicated.
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Figure 2. Deep molecular clarity obtained from PDO genetic analyses
A. Purity, ploidy, concordance and percent of the primary tumor mutations found in the PDO 

cultures using whole genome SNVs of the PDO and matched primary tumor specimens 

following germline variant removal. Representative Venn diagrams are shown of PDO and 

Primary Tumor SNVs. B. CNA in representative matched primary tumor specimens and 

corresponding PDO. Two representative cases with differing degrees of primary tumor 

purity are shown. C. Circos plots demonstrating CNA (red and blue CNA inner circles) and 

gross chromosomal rearrangements (connecting lines) in representative, matched primary 

tumor and PDOs following germline variant removal.
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Figure 3. Transcriptomic profiling of PDOs reveals distinct subtypes
A. Principal component analysis of organoids isolated from different cancer stages and 

normal healthy controls. B Clustering of PDO culture RNA-seq data reveals concordance 

with Classical and Basal-like subtypes. Patient staging and subtype are indicated. C. 

Clustering using Non-negative Matrix Factorization defines two distinct clusters of PDO 

cultures, C1 and C2. Patient staging and subtype are indicated. D. GSEA of genes 

differentially expressed genes between C1 and C2. Three Hallmark pathways are shown to 

be enriched in C1 compared to C2 (top panels), and three are enriched in C2 (lower panels, 

negative enrichment C1/C2).
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Figure 4. Pharmacotyping of PDOs reveals heterogeneity of chemotherapy response
A–E: Dose-response curves and normalized AUC distribution for Gemcitabine (A), 

Paclitaxel (B), SN-38 (C), 5-FU (D), and Oxaliplatin (E) on PDO cultures (n = 63 – 66). 

The blue portion represents the 33% most sensitive samples, the red portion the 34% most 

resistant samples, and the middle portion intermediate drug responses.
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Figure 5. Longitudinal, spatial and genetic influences on PDO response
A. AUC distribution of hM1A, E and F PDO longitudinal series. B. AUC distribution of 

hM19 A, B, C, and D PDOs from the same patient but different metastatic sites. C–E. AUC 

distribution and genotype correlation of Afatinib (C), Olaparib (D), and Everolimus (E) 

responders.

Tiriac et al. Page 28

Cancer Discov. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. PDO-derived Gemcitabine sensitivity signature stratifies pancreatic cancer patients 
with improved response to adjuvant Gemcitabine
A. The Gemcitabine sensitivity prediction signature was used to cluster the PDO RNA-seq 

data. Additional data regarding the Pharmacotyping AUC response (log2 transformed z-

score), C1/C2 subtype, Basal/Classical subtype, and stage are shown. B. The Gemcitabine 

sensitivity prediction signature was applied to RNA-seq data from patients who received 

single-agent Gemcitabine (ICGC-CA). Additional data regarding the Pharmacotyping AUC 

response (log2 transformed z-score), C1/C2 subtype, Basal/Classical subtype, and stage are 

shown. C. Kaplan-Meier analysis of PFS of Gemcitabine-sensitive and non-sensitive 

patients as identified in B. D. Kaplan-Meier analysis of PFS of Gemcitabine-sensitive and 

non-sensitive untreated patients. Log-rank (Mantel-Cox) test P value and log-rank Hazard 

Ratio are shown.

Tiriac et al. Page 29

Cancer Discov. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. PDO-derived Oxaliplatin sensitivity signature stratifies advanced pancreatic cancer 
patients with improved response to FOLFIRINOX
A. The PDO-derived sensitivity signatures were applied to the RNA-seq data from 73 

patients enrolled on the COMPASS trial that received either m-FOLFIRINOX or 

Gemcitabine with nab-Paclitaxel. B. A waterfall plot of the patients with RECIST criteria at 

8 weeks post baseline that received FOLFIRINOX. Oxaliplatin signature significantly 

correlated with response (r = −0.396, P = 0.0078). Additional data regarding the mean 

chemotherapeutic signature scores, C1/C2 subtype, and Basal/Classical subtype are shown. 

C. The overall survival of patients receiving m-FOLFIRINOX segregated by their 

enrichment of the Oxaliplatin signature. Log-rank (Mantel-Cox) test P value.
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