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Abstract

Determining the degree to which two events are interrelated is a common subtask for
artificial intelligence systems, especially learning systems. This note examines four corre-
lational measures which allow quantization of the relationships between events. Despite
the fact that the measures have diverse motivations and formulations, they all indicate
irrelevance precisely at the point of statistical independence.

1 Introduction

Determining the degree; to which two events are interrelated is a common subtask in artificial
intelligence. Moreover, it is frequently the case that events are not associated in an all-or-none
manmer, and thus their relationship requires quantization. One goal of learning, for example, iz
to specifically determine which events are associated. This paper compares four measures that
have been developed to meet these needs. Following a brief description of the motivation behind
each measure and its use in machine learning, a short proof is offered which demonstrates that

each measure is equivalent to the notion of statistical independence.

2 Category utility

Psychological research has indicated that some categories are easier to learn and recall than
others. Examples of this behavior arise in the context of hierarchically related categories such
as animal-dog-beagle. One category, dog, has been shown to be easier to verify and name. This
category has been termed the basic level (Gluck & Corter, 1983).

Gluck and Corter (1985) have formulated a correlational measure which indicates the basic
level in a hierarchy. Given a hierarchical grouping of objects and their description in terms of

attribute-value pairs, this measure indicates the expected utility of each category. It is defined
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as »
iCl 14l Vi
1

CU(C, 4) = 7 3 p(C) 3 [p(4; = ViiCi)? = pl(4; = Vo)’] (1)
Yi=1 J=1lk=1
‘Where C is'a level of categories in the hierarchy, A is the set of attribute-values over which the

objects are defined, and |V| is the number of values for a particular attribute. This measure is
then applied to each of the levels in a hierarchy. The level with the highest expected category
utility is the one the measure predicts will be the basic level.

Fisher (1986) has incorporated this measure in a conceptual clustering program called COB-
WEB. As each new object is processed, the algorithm examines the possibilities of including the
new object in an existing category or creating a new one; the action which results in the highest
category utility is performed. This heuristic is employed as the algorithm traverses down the
category hierarchy to process the new instance.

The category utility measure indicates non-utility always and only when the category and
attributes are statistically independent. In order to simplify the following proof, consider a
restricted form of category utility for only one category and one attribute. For a single, binary
valued attribute equation 1 reduces to:

CU(pos, 4) = %p(pOS) [p(4 =Vipos)® +p(A#Vipos)’ —p(A=V)2 -p(4 #V)}]  (2)
The point at which there is no expected utility resulting from this categorization is when

CU(pos, A) = 0. Setting equation 2 to zero yields:
%p(pos) {p(A = Vipos)? +p(A # Vipos)? —p(A=V)? —p(A # V)2 =0
Canceling out 2p(pos)
p(A =Vlpos)? = p(A # V'pos)® —p(A=V)? - p(Ad #V)? =0

Expanding p(4 = V'|pos) according to the definition of conditional probability

plpos A A =V)? N p(pos A A # V)?

p(pos)? o(pos)? p(A=V) -p(Ad#V)* =0

LA slightly more complex form of this equation is also presented by Gluck and Corter.
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Eliminating all occurrences of p(A4 # V) by noting that
plpos ANA#V)? = [p(pos) — p(pos A A = V)|?

= plpos A A=V)? — 2p(pos)p(pos A A = V) + p(pos)?
PAZV)? = [1-pa=V)]

p(A=V)?-2p(A=V)+1 -

Results in

2p(pos A A = V)2 — 2p(pos)p(pos A A = V') + p(pos)? 3

20(A=V)? +2p(A=V)-1=0
p(pos)?

Multiplying both sides by p(pos)?
2p(posnA = V) ~2p(pos)p(posA 4 = V)+p(pos): ~2p(pos)*p(A = V)+2p(pos) p(A = V)—p(pos)® = 0
Canceling out +p(pos)? and —p(pos)? and then dividing both sides byl 2
plpos A A =V)? — p(pos)p(pos A A = V) = p(pos)p(A = V)? + p(pos)*p(A = V) = 0
Solving for p(pos A A = V') as a general quadratic equation with a solution of the form
_bx vbE—dac

2a
With the following substitutions
z = plposnA=V)
a = 1
b = —p(pos)
¢ = p(pos)’p(d=V)—p(pos)?p(A=V)
We then have
- 0s) %= 01)% —dipipns)? =V )=plpnaiplA=V)2
plposANA=V) = - p(pos) =y/pipos) 4,p|p;2;pm )=plpoajip )2]

Multiplying both sides by 2 and expanding

2p(pos ANA=V) = p(pos) = /plpos)? — 4p(pos)?p(A = V') + 4p(pos)?p(4 = V)2
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Factoring out p(pos)?

2p(posAA=V) = p(pos) £ ﬁ(pos)z{l —4p(A=V) +4p(4 =V)2I

Factoring 1 — 4p(A =V) + 4p(A = V)? yields

2p(pos AA=V)

i

p(pos) £ v/p(pos)?(1 — 2p(A = V)|?
= p(pos) £ p(pos){1 — 2p(A =V
= p(pos) + p(pos){1 — 2p(A4 = V)] or p(pos) — p(pos)[1 — 2p(A = V)]
= 2p(pos) — 2p(pos)p(4 = V) or 2p(pos)p(4 = V)
plpos NA=V) = p(pos){1 - p(A = V)| or p(pos)p(4 = V)
= p(pos)p(A # V) or p(pos)p(4 = V)

Since the definition of statistical independence is p(AA B) = p(A)p(B) (Fine, 1973), the category

‘and attribute are statistically independent when the category utility measure is zero. This proof

is only a demonstration for a simplified form of the category utility measure. A proof for the

more general form of category utility could follow the same format.

3 Logical sufficiency/necessity

The Prospector mineral exploration system (Duda, Gaschnig, & Hart, 1979) utilizes a pair of
correlational measures to encode the contribution of a number pieces of evidence toward belief in
a hypothesis. In mineral exploration, the presence of a particular geological formastion (evidence)
may indicate that the area is likely to contain a rich ore deposit (hypothesis). It may also be the
case that the absence of the formation indicates that the ore is. unlikely. The first measure used
is termed logical suffictency (LS), and it measures the degree to which the presence of evidence
(E) increases belief in a hypothesis (H). The second is called logical necessity (LN) and measures

the degree to which the absence of evidence decreases belief in a hypothesis. They are defined
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Lg_ PLEIH) Ly = PCERE)

p(ET-H) PEH) ®)
Both of these measures have similar interpretations. A value of unity indicates that the evidence
is irrelevant to the hypothesis. Greater than unity indicates that the evidence confirms the
hypothesis, while less than unity corresponds to evidence that infirms the hypothesis.
Since p(-E|H) = 1 — p(E|H) and p(—E|-H) = 1 — p(E|-~H) it is the case that the LN
measure (for example) could be rewritten as:

_ 1 p(EH)
LN = 1w

Using this identity, it is easy to show that when LS = 1 (and therefore p(E|H) = p(E|-H))
then LN = 1. Similarly, wh-en either LS or LN are greater than unity, the other is also; when
one is less than unity so is the other. However, it is not true in general that LS = LN. For
example, if p(E{H) = 0.3 and p(E!~H) = 0.1 then LS = 3 and LN = . Maintaining a pair of
measures allows differentiating between the positive and negaied assocliations.

For the purposes of analysis, consider the conditions under which the LS measure fails to
indicate relevance. As stated previously, LS = 1 indicates that the evidence has no relevance to

the hypothesis.
pIEH)
p(E'-H)

Multiplying both sides by the denominator gives:
p(EIH) = p(E'-H)

By the definition of conditional probabilities we have:

p(E A H) _ p(E A —=H)
p(H —  p(-H)

Cross multiplying yields:
p(—H)p(E A H) = p(H)p(E A —H)

%In the original definition, LN has the inverse definition.

(1]
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Substituting 1 — p{H) for p(-H) and multiplying on the left hand side:
1—p(H)lp(EAH) = p(H)p(EA-H)
p(EAH)-p(H)p(EAH) =
Adding p(H)p(E A H) to both sides and factoring out p(H)
p(EAH) = p(H)p(EA-H)+p(H)p(EAH)

= p(H)p(EA~H)+p(EA H)|

&

Reducing p(EA—H) + p(E A H) to p(E)
p(EAH) = p(E)p(H)

Which is precisely the definition of statistical independence. The derivations for LS > 1 and
LS < 1 are similar. When the LS and LN measures indicate relevance, the evidence and
hypothesis are statistically dependent; when the Prospector measures indicate irrelevance, the

evidence and hypothesis are statistically independent.

4 Contingency

In the late 1960’s animal learning researchers formulated a law of learning which characterized a
class of situations in which animals failed to learn that two events were associated. Specifically,
in a classical conditioning experiment a subject is given repeated presentations of a no;rel cue
(NC) and an unpleasant stimulus (US). Researchers found that animals will learn that the novel

NC) > p(US!=-NC) (Rescorla, 1963). If the

cue leads to the unpleasant stimulus only if p(US
probability of the unpleasant stimulus is the same with or withoﬁt the novel cue, subjects fail to
learn an association between them.

Recently, Granger and Schlimmer (1985) have formulated a 1ea,r_ning model which uses the

ratio of the two conditional probabilities as a correlational measure. A second measure is for-
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mulated from the ratio of p(~US|-NC) and p(—US|NC).

_ p(USINC) _ p(-US|—-NC)
Cl1= [US-NC) O2= " USING) (4)

These two measures are estimated by a simple process of counting event types. Additionally, they
are used in a manner similar to Prospector’s LS and LN to adjust expectation of the unpleasant
stimulus. If the novel cue is present, C1 is used to modify expectation; if it is absent, C2 is
used. These two measures also guide formation of Boolean functions representing combinations
of novel cues. C1 indicates good conjunctions while C2 indicates good disjunctions (Granger &
Schlimmer, 1983).

An irrelevant C1 or C2 measure indicates that the two stimuli are statistically independent.
The proof closely parallels the proof for the Prospector measures. By visually substituting
evidence (E) for the unpleasant stimulus (US) and the hypothesis (H) for the novel cue (NC),
the two sets of measures become syntactically equivalent.

As an aside, it may be interesting to note that measures seemingly similar to C1 or C2 may
not indicate statistical dependence. For instance, p(US,'NC) fails to make the same correlational
distinction, for it‘ca,n range from nearly zero to unity while the two events are either statistically
dependent or not. If p{(US{NC)} = 0 then all that can be said is that p(USANC) = 0. Conversely,
if p(US'NC) = 1 then p(US A NC) = p(NC). In either case, the probability of a unpleasant
stimulus may be either zero or unity, and thus this measure does not assess correlation in a

manner similar to statistical independence.

5 Expected information

Another formulation for describing the correlation between two events is based on the informa-
tion conveyed by one event about the other. If one event always occurs, then the other event’s
occurrence does not convey any information. Similarly, if the two events are completely uncor-

related, then the occurrence of one event offers little information about the second. However,
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if the two events always occur together, the occurrence of one provides complete information
abo.ut the occurrence of the other.

Quinlan (1985) has formulated an information theoretic measure for the purpose of assessing
the correlation between attributes of concept instances and their identification as positive or
negative examples of a concept to be learned. His concept attainment program, ID3, uses this
measure to select the most highly correlated attribute as a root for a decision tree. Through an
iterative process, [D3 constructs a complete decision tree in order to distinguish examples from
nonexamples. An arbitrary process could be followed to select test attributes, but using the
information theoretic measure yields smaller decision trees which capture more of the regularity
inherent in the training concept.

The information theoretic measure Quinlan uses is based on the difference between the
amount of information that a complete decision tree provides and the amount of information
provided by a particular attribute. Given that there are p positive instances of the concept and

n negative instances, the amount of information provided by a complete decision tree is

p p n n
I(p,n) = — 1 - log. 5
(p,n) o B T T 0% (5)

Given the attribute A; with V values is known to be the root of a decision tree, the information
conveyed about the instance class is the weighted average of the informaction conveyed by each

of the resulting subtrees:

v
pig tnij )
B(4) =3 =L i (pes i) (6)
. p+n
j=1
pi.j is the number of known positive instances for which attribute 4; has value V}; n; ;, negative
instances with A; = V;. The expected information gain by choosing attribute A; as the root,

therefore, is the difference between the information conveyed by the complete tree and the

expected information given root attribute A,:

Gain(4:) = I(p,n) - E(4)
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ID3 chooses a root attribute which maximizes this gain. As Quinlan notes, since I(p, n) remains
constant for each subtree it is sufficient to minimize E(A4;).

If we expand equation 6 by substituting in the definition of I(p,n) we have:

v
E(A) = Pij T My {— Pl log, Py M log,
ptn Pij T Ny Dij T Niy Piy T Naj Pij ~ Ny

LW

(7)
J=1
Since p;j + ny; is the number of instances where attribute A4; has value V}, and p + n represents

the total number of known instances, the fraction EL")—I—Zﬁ is equal to the probability that

attribute A, has value V;, or p(A; = V;). Likewise, the fraction rf’;_"T” may also be interpreted
as a probability if we multiply by 1‘::—” =1
Piy _ pis/(p+n)

Pig + g (pij+naj)/(p+n)

%J; is the number of positive instances with A; = V; divided by the total number of instances

and is thus equal to p(pos A A; = V). Using these substitutions, we may rewrite equation 7 as:

174 _p(PosAA=V) lOg plposAA,=V.)
4,=Vv 2 A=V,
B(a) =2 plai=Vy) | raovl e
— _plnegA_-i‘:V;j lo pinegAd, =V,)
7=l p(4=v,) 082 T pii,=v,)
Expressions of the form p‘p’?g?’ may be expressed as p(4!B) according to Bayes theorem. This

yields:
B(4) =Ygl = vy) | ATV s plpesids =T0) (5
J=1 —p(neg|Ai = V;)log, p(negids = V)

As can be seen by the above algebraic manipulations, minimizing equation 8 is equivalent to

maximizing expected gain. |
By examining the maximal value possible for E(A4;) we may identify the conditions under

which this measure identifies an attribute as irrelevant. We may simplify the inner term of the

summation by noticing that p(negid; = V;) = 1 — p(pos{A; = V;). Thus we may consider when

an equation of the form —zlogz — (1 — z)log{1l — z) for z € (0, 1! is maximal. This function is

plotted in figure 1; its maximum is at z = 0.3.
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z=0.5
Figure 1: f(z) = —zlogz — (1 — z) log(Ll ~ z).

E(A;) will therefore be maximum when each inner term is maximal or when p(pos{A; =
Vi) = p(negid; =V;) = % for all 7 € {1..V1.

Now, since the conditional probabilities for each A; = V; do not encompass the probability of
a positive instance when A4; # V;, a proof demonstrating equivalence to statistical independence

requires examining the value of p(posid; # V;). By the definition of conditional probabilities we

have
‘ plpos A A; # Vj)
Sw‘A{ V)=
p(PO . ‘_/é j) p(A. ?é V])

Knowing that all of the values for A; are mutually exclusive we may rewrite the above as:

. A Ai =V
p(posjdi #V;) = Ekgti(p;z/{ =V - (9)
J 1

Consider each term in the numerator of the right side of equation 9.

p(pos A A; = Viex))

Et;éjP(Ai =V

We may multiply by p(Ai = Viz,)/p(Ai = Viezy) =1

plpos A A; = Viezs)p(4A; = Vk#_)’)
Sz Pl Ai = Vi)p(4i = Viz))

10
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which simplifies to

p(A; = Viz))
OS'A,; =YV, 2= 77—
Poosl =Vl oA =10

Since we know that p(posid; = V) = ,_—f for all k£ we can factor each p(posjd; = Vix;) term in

the numerator of the right side of equation 9 out of the summation leaving

_ 1 P4 = Vi)
2 Zl;ﬁ_}'p(A': = {/l)

The ratio of sums is trivially reducible to unity and therefore p(pos|4; # V) = é The remainder

p(pos|Ai # V)

of the proof follows section 3 since p(pos|A; = V,) = p(pos|d; # V;).
Thus the point at which the information measure used by Quinlan’s [D3 reaches its maxi-
mum, indicating the greatest irrelevance, is precisely the point at which the attribute becomes

statistically independent of the class of the instance.

6 Conclusion

This paper has briefly examined four correlational measures. Category utility was formulated
to predict the basic level in a category hierarchy and is used in a conceptual clustering program.
Logical sufficiency and logical necessity were formulated to represent the contribution of different
types of evidence toward the belief in a hypothesis. A related pair of measures were motivated
by a law formulated from animal learning research. These measures are utilized in a concept
attainment program to guide prediction and the formation of>descriptive Boolean functions.
An information theoretic measure was developed for use in another concept attainment pfogram
which builds discrimination trees in order to characterize concepts. Use of this measure results in
small trees which capture concept regularity. Though these correlational measures have diverse
backgrounds and are formulated in different languages, they all indicate irrelevance precisely
when the events are statistically independent.

Though this paper has shown a common feature among some correlational measures, there

are other classes of correlational measures. A brief example of a conditional probability measure

11
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was given, but there are other measures which are used by artificial intelligence systems to assess
the relationships between events that do not adhere to the notion of statistical dependence. It is
the underlying assumption of this pdper that measures which perform some ad hoc measurement ‘
of correlation are inferior to those that reflect statistical independence.

What these derivations have not shown, however, is that the orderings between differentially
correlated situations is preserved across the four measures. For example, if the Prospector
meagsures indicate that one feature is more relevant than another, will the information theoretic
measure also? Early empirical studies in progress indicate that this may be the case, though

conclusive results will have to await further mathemasical analysis.
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