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 Vagus nerve electrical stimulation is known to improve learning processes and augment anti-

inflammatory treatment [1]. Current methods include the surgically implanted cuff electrode, or the 

noninvasive electric field that penetrates from the skin to the nerve. The former ensures target accuracy 

yet can be fraught with complications due to surgical implant, whereas the latter avoids procedural 

complications but may result in off target neurostimulation (i.e., other neuronal stimulation besides vagus 
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nerve) [2]. Off target neuronal stimulation can alter cardiac function and cerebral blood flow patterns [3] 

[4]. Converging lines of evidence now support non-invasive high temporal and spatial resolution focused 

ultrasound can result in brain and peripheral nerve stimulation [5] [6] [7]. Therefore, focused ultrasound 

is proposed to replace electrical nerve stimulation to effectively modulate the vagus nerve as a safe and 

noninvasive modality. To guarantee safety and efficacious vagus nerve focused ultrasound stimulation, 

real-time image guidance is required to provide efficient and accurate tracking of the vagus nerve. In this 

work, we propose to: 1) develop real time B-mode ultrasound imaging to visualize the vagus nerve and 2) 

employ neural networks capable of tracking the nerve location within the view. We implement the real-

time beamforming process from raw data to the reconstructed B-mode image and send it to the vagus 

nerve detector that is trained using convolutional neural networks. We successfully extract the location of 

the nerve from the beamformed data, validating the idea of real-time guidance.  Future work will focus on 

improving the efficiency of nerve detection algorithms that are then used as feedback for an eventual 

autonomous closed loop focused ultrasound nerve stimulation system. 



1 

 

Introduction 

- Motivation 

Vagal nerve stimulation (VNS) has proved to have significant effects in neural system therapies. 

Recent studies have shown evidence that VNS can improve learning, such as augmenting the extinction of 

conditioned fear thus suppressing the symptoms of post-traumatic stress disorder [8]. Moreover, decreases 

of inflammatory cytokines have been observed as a response of vagus nerve stimulation, suggesting this 

potential anti-inflammation therapy may soon be approved to treat diseases such as Rheumatoid Arthritis 

[1] [9]. Invasive, (surgically implanted), vagus nerve stimulators are FDA approved and show efficacy for 

treatment of depression and epilepsy.  Common to all implantable vagus nerve stimulator devices, is the 

fact that invasive vagus nerve stimulation requires surgical intervention fraught with complications 

related to implant as well as continuous neural inflammation (glial activation) and scarring that occurs 

with chronic implantation of foreign objects [10]. Therefore, there is a clear need for non-invasive 

technologies that stimulate the vagus nerve without the possibility of imparting neuronal damage.  

Current state of the art non-invasive vagus nerve stimulation techniques do not likely cause direct 

neuronal damage, however transcutaneous nVNS electric field can penetrate deep and may result in 

stimulation of off target neuronal structures such as the middle cervical ganglion (i.e. the sympathetic 

ganglion).  Prolonged off target stimulation of the sympathetic ganglion is known to cardiac dysfunction 

and changes cerebral blood flow patterns [3] [4]. The work in this thesis aims to circumvent potential 

damage to the vagus nerve (common with surgically implanted devices) and off target effects (common 

with non-invasive vagus nerve stimulation) by development of a focused ultrasound therapeutic and 

imaging system that are capable of safely stimulating only the vagus nerve, without off target stimulation 

effects. The process of focused ultrasound peripheral nerve stimulation has recently been developed and 

is an attractive methodology due to its noninvasive nature and high spatial resolution.  

- Problem Statement 
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In order to achieve safe and effective stimulation with focused ultrasound, accurate targeting of 

the vagus nerve is critical. Image guidance, therefore, is required to have an accurate view of important 

cervical neck structures including the vagus nerve within the field of interest. However, there are 

unavoidable movements of the nerve during the stimulation. First, the vagus is encapsulated within the 

external carotid artery sheath which moves with the pulse, therefore resulting in a local movement of the 

vagus as well. Moreover, if the patient moves, and or rotates his or her neck the targeted vagus nerve may 

exit the field of view.  Therefore, the image guidance needs to have capability to run accurately in real-

time with automatic control system. 

- Hypothesis 

The work in this study aims to develop the real-time image guidance with nerve detection 

capability for focused ultrasound noninvasive vagus nerve stimulation. The target, vagus nerve, can be 

auto-detected from a B-mode scan using the real-time beamforming and reconstruction integrated with a 

convolutional neural network. By embedding the network into the B-mode reconstruction pipeline, real-

time (with delay in millisecond scale) guidance and target movement tracking will be achieved. 

 

  



3 

 

Chapter 1 Background 

1.1 Ultrasound Imaging 

The development of ultrasound imaging can be dated back to the 1940s during WWII. At that 

time, radar and sonar technologies were developed for marine forces, and soon the medical research 

community applied this pulse-echo measurement for biological tissue visualization. This marked as the 

start of using ultrasound to image tissues and organs for medical diagnosis, that have now expanded to 

include variable ultrasound imaging techniques (such as; B-mode, 3D scanning and Doppler imaging) for 

a variety of applications. Ultrasound has been shown to be a safe and time-efficient technology for tumor 

detection, cardiac disease diagnosis, pregnancy tests and other clinical examinations. Moreover, 

ultrasound is now widely used as an adjunct guide for minimally invasive procedures (such as use for 

blood draw, and in multiple interventional pain procedures which depend on accurate needle guidance), 

that together improve procedural accuracy, efficacy and reduce procedural complications.   The following 

subsections will provide a comprehensive background on the basics of ultrasound imaging. 

1.1.1 Physics 

Sound waves are the mechanism by which energy is transmitted by mechanical propagations 

along the medium. Forces are applied to the particles, causing them to vibrate back and forth, that results 

in vibration spread among neighboring medium (tissue) further propagating to form the transmission of 

the energy. Waves are categorized into transverse and longitudinal waves, based on the directions of 

particle movement and wave propagation. If the wave travels in the same direction as the particle 

oscillates, then it is a longitudinal wave; if it travels perpendicularly to the particle movement then it is a 

transverse wave. Sound waves in most media are longitudinal; bone is known to be the only biological 

tissue that can produce transverse or (long) sound waves [11].  

Frequency of the wave is the description of how fast the particles vibrate. It is the number of 

cycles/vibrations within a second, denoted by the symbol f and the unit Hertz (Hz). It is one of the most 
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important properties for sound waves. Frequency can be interpreted as what we called “tune” in daily life, 

where higher tunes refer to higher frequencies. The audible range for the human ear is 20Hz to 20kHz. 

Period (T) is the inverse of frequency which represents the time to complete one cycle. Frequency, or 

period, is highly related with wavelength and sound velocity by the equation 

𝑐 = 𝑓 ∗ 𝜆 =
𝜆

𝑇
 

where velocity c is the speed of wave propagation, and wavelength λ is the propagation distance in one 

period. 

Ultrasound is characterized as sound waves with frequencies higher than our audible range 

(>20kHz). Although we cannot hear the wave, it turns out to be a very helpful resource to “view” things. 

As the wave propagates through the media and hits a boundary of a structure, part of the energy bounces 

back as echoes. This phenomenon is called reflection and is caused by the acoustic impedance mismatch 

between two media. The acoustic impedance of a medium is given by the product of sound speed c and 

density ρ: 

𝑍 = 𝜌 ∗ 𝑐 

And the reflection coefficient at a perpendicular incidence surface is given by: 

𝛼𝑟 = (
𝑍2 − 𝑍1

𝑍2 + 𝑍1
)

2

 

Different media have different sound velocity c and thus different acoustic impedance. If a large 

impedance mismatch occurs at an interface, there will be large amounts of echoes reflecting back. 

Moreover, echoes that travel into deep tissue and then reflect from a deeper interface take more time to 

reach the surface for acquisition, resulting in a time difference of the received data. Therefore, if we send 

a wave towards some targets and record the echoes coming back along certain amount of time, we can 

convert them into a structural mapping of the targets. 
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These essential tissue properties constitute the basis of ultrasound imaging. Modern diagnostic 

ultrasound probes are typically multiple elements arranged as a linear or curved array. Each element 

contains a piezoelectric crystal that can produce mechanical waves when excited by an applied voltage 

[11]. The probe acts as both transmitter and receiver during ultrasonic scanning. First, it serves as a 

transmitter that sends out a pulse wave to the field of interest. The transmission stops very quickly to 

allow time for the previously generated wave to travel through the media. Post transmitter pulse the 

piezoelectric crystals detect the incoming echoes (which are mechanical waves), that are then converted 

to an electric signal. The transmitted echoes that are bounced back and received by the transducer then 

processes the recorded signals in software to produce an image representing the information of the 

scanned field. 

1.1.2 Basic System Block Diagram 

Extensive research has been carried out that focuses on either the source signal transmission or 

the received data analysis, depending on different applications. For example, B-mode gives a 2D structure 

map to show the tissue, vessels and organs; M-mode measures movements in depth and is commonly 

used in cardiac motion diagnosis; Doppler imaging can detect the blood flow velocity and indicates the 

direction using red (towards the sensor) and blue (away from the sensor) in the image. In this project we 

focused on cervical neck structures with high resolution B-mode imaging. To be specific, our work will 

investigate the principles for receiving and processing the data to obtain a displayable image for 

Figure 1.1: System diagram for data processing of a modern ultrasound imaging transducer 
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diagnosis. The processing pipeline for a modern ultrasonic imaging transducer is demonstrated as the 

block diagram in figure 1.1. More details on what each step does will be discussed in Chapter 2. 

1.1.3 Beam Formation 

To execute the valid signal processing for each block along the pipeline, it is important to 

understand the most critical step: beamforming. As the very first step in the pipeline, it ensures the correct 

transformation from time signals to the spatial representation as an image. The reflected echoes from the 

target, as time signals, travel back to the surface in radiated directions. If the elements are placed in a 

curved pattern pointing towards the target, then the signals will arrive at the elements at the same time. 

However, for a linear array this is not the case. The signals are first captured by the closest element (i.e. 

the one along the normal line), and then reach its neighbors and so on. Therefore, to correctly obtain the 

information of the target we need to compensate the time differences of signal arrival at each element. 

This process is called beamforming. 

Figure 1.2: Beamforming process. a) Delay and summation configuration for a 

linear array, and b) Delay calculation. 
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Figure 1.2 demonstrates the idea of the delay process. Based on the arrival time differences at 

each channel, the delay process accordingly shifts the signals so that the echoes representing the same 

target are processed simultaneously. The relative delay time between the channels can be calculated in a 

simple geometry model (figure 1.2b). Suppose D (m) is the distance from the object to the probe. 

Consider two channels, one at the perpendicular line and the other is arbitrary. Let a (m) denotes the 

element pitch which is the physical distance between the center of the two elements. As we can see from 

the figure, the difference between the travel distances from the target can be calculated using Pythagorean 

Theorem. Assuming the sound velocity c0 to be constant, we can obtain the time delay between the two 

channels: 

𝑡𝑑𝑒𝑙𝑎𝑦 =
1

𝑐0
∗ (𝐷 − √𝐷2 + 𝑎2 ) 

After obtaining the time delays for each element, the signals are shifted accordingly such that 

they become aligned without the delays. The adjusted signals are then summed up across the elements to 

yield one scan line, which is a more representative signal for the actual target. The summation represents 

the illustration in figure 1.2a, where ri(t) is the raw data recorded by the ith element and K is the number of 

elements to generate one scan line x. The real output of beamforming is then stacking all scan lines 

together, where each scan line x(j) is constructed from the local group of K elements. 

𝑥(𝑗) = ∑ 𝑟𝑖(𝑡 + 𝑡𝑑𝑒𝑙𝑎𝑦)

𝑗+𝐾−1

𝑖=𝑗

 

Beamforming is considered as the most important step for B-mode ultrasound image 

reconstruction, since it sets the foundation for all subsequent reconstruction steps. As the output of 

beamforming, the scan lines (with time delays corrected) then has the right representation for the spatial 

information and thus ensuring the valid image processing. 

1.2 Neuromodulation 
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1.2.1 Literature Review of Neuromodulation Using Focused Ultrasound 

Besides imaging, ultrasound has also been developed and extensively used in medical treatments 

for its capability to perform high resolution energy delivery, such as tissue ablation with High Intensity 

Focused Ultrasound (HIFU) and Focused ultrasound neuromodulation (FUS-NM). If an investigator 

focuses the ultrasound waves to a localized nerve area with enough intensity, the energy at that spot can 

modulate the neural circuit behaviors and cause crucial biological effects [5]. Recently, there is a growing 

interest in ultrasound neuromodulation that is known to impart significant advantages when compared to 

alternative neuromodulatory techniques. For example, surgically implanted deep brain stimulation 

electrodes are precise in terms of localization yet they require an invasive surgical operation and possible 

incurred procedural risks(bleeding, infection, death) [8], while transcutaneous electric field stimulation is 

non-invasive, but unfortunately has low spatial resolution that may cause off target effects [2] [12].  

Focused ultrasound, therefore, is a competitive choice as it is; 1) a non-invasive modality, and 2) is 

capable of high spatial resolution that can be tuned for nerve specific neurostimulation. As early as in 

1971, Gavrilov and colleagues proved the validity of high intensity focused ultrasound to stimulate 

peripheral nociceptors that resulted in reproducible tactile responses [6]. In 2008, Tyler and colleagues 

first showed FUS-NM was possible with using low intensity, low frequency focused ultrasound [13]. This 

seminal work showed brain stimulation FUS-NM was possible, largely due to use of low frequencies can 

penetrate the skull. Transcranial ultrasound stimulation modulating the somatosensory cortex has since 

been successfully conducted in preclinical and clinical human trials [7] [14] [15].  

1.2.2 Vagus Nerve Stimulation 

The Vagus nerve is a primary neural component of the parasympathetic nervous system, while it 

plays a crucial role in cardiac function, hepatic glucose production, integrated visceral regulation, as well 

as regulation of the inflammatory reflex [1]. With this therapeutic potential, widespread interest in 

modulating the vagus nerve (with both preclinical and clinical study) have been initiated to discover more 

efficient and effective clinical therapies.  In 1997, the Food and Drug Administration approved vagus 
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nerve stimulation (VNS) for prevention of seizures in patients who have drug-resistant epilepsy [8]. It has 

been widely applied to many medical treatments such as migraine and cluster headache and is emerging 

as a potential treatment for Rheumatoid Arthritis [16] [17].  Carefully timed VNS can enhance 

neuroplasticity that is inherent to learning. For example, in a pre-clinical VNS fear study (using surgical 

implanted electrodes) [8], rats were exposed to a conditioned fear stimulus, and then received vagus nerve 

stimulation concurrent with a fear extinction paradigm. Two weeks post initial exposure, the rats were re-

exposed to the conditioned fear again, while the main finding was improved fear extinction observed only 

in the VNS group. Similarly, patients with post-traumatic stress disorders (PTSD) whom also have 

dysfunctional fear extinction, may benefit from VNS.  Multiple clinical trials are now underway to 

translate these preclinical findings.  Moreover, VNS is known as. a potentiate endogenous anti-

inflammatory signaling, that has preliminary evidence for therapeutic treatments [1]. As shown in the 

model (figure 1.3a), the pathogen or tissue injury molecules activate immune cells that release 

inflammatory signal molecules(cytokines) that activate afferent vagal nerve fibers.  An activated vagus 

nerve then transmits these signals to the brainstem that results in reflexive modulation of the immune cells 

Figure 1.3: Vagus nerve circuits for anti-inflammatory response. a) Immune system gets activated and the 

inflammatory cytokines triggers the afferent vagus nerve, and b) Activated vagal afferents transmit from NTS to 

the DMN then to splenic nerve resulting in ChAT 1T cell release of the neurotransmitter acetylcholine (Ach), 

which tells the immune system to express the nicotinic acetylcholine receptor subunit a7 (a7nAChR). Activated 

a7nAChR results in suppression of the inflammatory cytokines transcription. (figure permission given by 

Lerman [1]) 
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as they pass through the spleen circuit.   Together the initial inflammatory insult results in eventual 

suppression of cytokine release and culminates in the anti-inflammatory effect (figure 1.3b). The VNS 

anti-inflammatory effects have been shown in multiple pre-clinical and clinical models substantiating it as 

a potential therapeutic target for immunomodulation.  

To date all methods of vagus nerve stimulation solely employ an electrical stimulus; either with 

implanted cuff-electrodes or with a noninvasive electrical field. Only recently has there been an interest in 

vagus nerve stimulation using focused ultrasound neuromodulation. Juan and colleagues first applied 

focused ultrasound to the vagus nerve in 2013. They observed inhibition of the vagus nerve after 

continuous vagus nerve for prolonged periods of time ultrasound sonification [18]. Of particular note 

prolonged neuronal stimulation using focused ultrasound can result in heat and likely contributes to the 

reported results by Juan and colleagues. Since this initial work Irazoqui and colleagues (2019) recently 

show that short bursting (4ms) FUS results in modulation of the vagus nerve anti-inflammatory reflex and 

cause anti-inflammatory effects [19]. These promising preclinical results are clear, but to date there is no 

published clinical FUS-NM to the vagus nerve.  We aim to fill this gap by developing novel, safe and 

non-invasive FUS-Vagus Nerve Stimulation (FUS-VNS) that may lead to a readily available clinically 

effective therapy.            

1.2.3 Safety 

Currently vagus nerve stimulation on human is performed through either invasive cuff electrodes 

positioned directly on the nerve or through the use of a noninvasive electric field. As mentioned in 

previous sections, implanted electrodes are invasive and require surgical operation that may result in 

procedural complications. Noninvasive electrical stimulation suffers from low spatial resolution and lack 

of specific localization of the stimulus. Therefore, focused ultrasound is a perfect choice to be both 

noninvasive and target specific. However, it also has its own safety concerns. Since focused ultrasound 

delivers a substantial amount of energy to perform neuromodulation, it is critical to ensure the safe energy 

transmission without causing any damage to the nerve and surrounding tissues. Too much power will 
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result in heat accumulation that can result in neuronal inhibition and eventual tissue damage. In addition 

to heat, the mechanical forces imparted by focused ultrasound to the tissue can result in microbubble 

formation that culminate in either stable cavitation or inertial cavitation. While stable cavitation resulting 

from low acoustic intensity results in small amplitude bubble vibration within very few bioeffects, inertial 

cavitation induces large amplitude bubble expansion that can cause tissue tearing and eventually cause 

organ damage [20]. Besides the control for energy input, the location of the target is also crucial as we 

want to avoid off target effects. Inevitable movements that occur with each pulse, as the vagus nerve is 

ensheathed in the carotid artery, require careful targeting and real time updating for sonification spot. 

Therefore, a real-time image guidance alongside the stimulation is needed to provide the target location as 

well as monitoring for any damage. 

In many current focused ultrasound applications such as transcranial stimulation, MRI is a 

common technology to provide guidance for the ultrasound beam with high spatial resolution. However, 

MRI has high operational costs and are only available in limited locations with special experimental 

settings. Besides, MRI temporal resolution is inordinately slow, on the order of seconds, therefore it is 

incapable of real-time guidance. Ultrasound imaging, on the other hand, is mobile, wearable, provides 

high temporal resolution, making real-time processing possible. It has relatively high spatial resolution 

that is more than sufficient for medical grade diagnosis, and the algorithms to track the target (i.e. the 

vagus nerve). The existing diagnostic ultrasound imaging systems provide imaging power within the FDA 

limits, meaning that the energy from the imaging probe is safe enough not to cause any damage to the 

tissue. 

To this date there are no systems existing that employ ultrasound imaging as guidance for focused 

ultrasound stimulation simultaneously, thus substantiating this study as a unique pilot. We propose to 

have the ultrasound imaging system to monitor the target and use the detected location to control the 

ultrasound stimulation system. We will integrate the real-time ultrasound imaging with a convolutional 

neural network for nerve tracking, which will be discussed in the next few sections. 
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1.3 Medical Image Processing and Computer-Aided Diagnosis (CAD) 

1.3.1 Classical Methods for Medical Image Processing 

Extensive research efforts are now focused on automatic object segmentation and detection in 

image processing and computer vision using machine learning. For normal RGB images such as photos of 

traffic, researchers have built many efficient algorithms for the computer to identify pedestrians, cars, 

stop signs and many other different objects within the scene, making automated real-time tracking 

possible. 

In medical image processing, there arises a similar need for such technology, namely computer-

aided diagnosis (CAD). In recent years, medical researchers have been working on applying the same 

machine learning techniques to identify biological objects in medical images. Existing works were 

already reported to successfully detect certain nerves in ultrasound images or classify and differentiate 

abnormal tissues from healthy tissue. For example, the median nerve has been detected and auto-labeled 

using Median Gabor Binary Pattern as a segmentation filter combined with SVM classifier [21]. In 

addition, a Linear Discriminant Analysis was applied to classify tumor mass from contrast-enhanced 

ultrasound images [22]. The pipeline for those methods follows the classical learning flowchart (figure 

1.4), including contrast enhancement, denoising, feature mapping and classification [21] [23].  

 

The research on CAD technology has opened huge fields of applications for machine learning in 

medical imaging. It can benefit doctors who aim for more efficient diagnosis with less dependency on 

human control and may foster future remote clinical treatment paradigms. These systems may also enable 

autonomous device diagnostics performed by the at home patient.  

Figure 1.4 Example pipeline of feature segmentation method in B-mode image 



13 

 

1.3.2  Deep Learning and Artificial Intelligence in CAD Applications 

While many early-stage CAD systems relied on classical image processing pipeline and hand-

craft features to recognize tissue patterns, those traditional methods failed to accommodate large 

variations among tissue types, image contrast, as well as between patient variability. Fortunately, the 

recent revolution of Artificial Intelligence has brought Deep Learning to the spotlight. Deep learning 

surpasses the traditional machine learning techniques with its capability to extract mid-level and high-

level patterns with deeper convolutional neural networks [24]. This is extremely important for medical 

images, because their large variations of image resolution and large dependencies on prior medical 

knowledge make some tissue patterns unrecognizable by only low-level features such as edges. 

There have been successful works on using deep learning methods in medical image recognition 

and classification. Convolutional neural networks (CNNs) were applied to X-ray images of the chest to 

identify pathology from the healthy ones [25]. More specific classification was achieved using CNNs on 

CT scans of lung to identify 7 different conditions of interstitial lung diseases [26]. Ultrasound B-mode 

images also gained attention in such studies due to their high temporal resolution. Of particular note, the 

Carotid artery (directly adjacent to the vagus nerve and a critical targeting aid in this proposal) could be 

detected and labeled from B-mode images using deep CNNs as classifier [27]. Similar applications 

worked in carotid artery plaque localization and size characterization in B-mode imaging [28]. Such 

capability of CNN to detect high-level tissue patterns and the fast processing time of ultrasound imaging 

further support CNN capability in real-time vagus nerve tracking (vagus nerve within the carotid artery 

sheath). We propose that we can feed the real-time beamformed data of the neck into the CNN model that 

computes the location of the vagus nerve, which then serves as the guidance for the control system for our 

FUS-VNS device. 
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Chapter 2 Method 

2.1 Software Beamformer and Scan Converter Pipeline 

For the imaging transducer, we use L12-3v from Verasonics. The transducer is a 192-element 

linear array with center frequency of 8.92MHz. It is connected to the Verasonics Vantage System which 

has its compound functionalities to drive the probe and process the data. However, the received RF data 

goes through the built-in reconstruction functions that are opaque to customer users. In other words, we 

cannot directly read the line-to-line implementation of the Verasonics coding of the final B-mode image 

from the raw data. Verasonics does provide an “external” option, where customers can bypass their 

reconstruction processes with our own functions. Therefore, in the external function we implement the 

imaging pipeline according to the block diagram (figure 1.1). K-Wave toolbox, which is a free open 

source for acoustic wave simulation in MATLAB, provided a template for ultrasound linear array 

imaging [29]. We utilized the K-Wave template and modified it according to the specifications for the 

L12-3v probe and other experimental settings. 

- Raw Data Extraction 

The Raw data is received by all elements and is stored in a 2D array, called RData, with size 

ReceiveSample*Elements. “ReceiveSample” represents the depth view that is tunable at the user 

Figure 2.1 Raw data structure in the software 
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interface, and “Elements” are the 192 elements that cover the horizontal field of view. The RData is 

passed as input to the external function for reconstruction. 

- Beamforming 

In Raw data, each of the 192 channels doesn’t represent the vertical view (i.e. a scan line) exactly 

underneath that single element. Instead, one scan line consists of the information coming from a small 

local group of elements, as described in previous section on beam formation (see Section 1.1.3). The 1D 

scan line that represents the real intensity of the object is obtained by taking summation of all channels in 

the local group with their delays fine-tuned. 

In our experiment, we compute for the complete 2D view by sliding a window of 4, 8, 16, and 32 

elements through the raw data and examine the computational time cost as well as the image quality. 

From each group of elements, we obtain one column of scan line and move the sliding window one 

element to the right to calculate the next scan line.  

 

There is a trade-off between number of elements in a group and the spatiotemporal resolution. We 

can achieve higher spatial resolution if more channels contribute to one scan line. However, with more 

channels employed, it can take more time to compute the delay at each channel, resulting in a much 

Figure 2.2 grouped elements as a sliding window for beamforming of a linear array 
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longer processing time to obtain the scan lines one by one and thus tremendously slowing down the frame 

rate. 

- Time Gain Compensation 

As the ultrasound wave travels through the tissue, the energy gets attenuated due to the 

interaction with biological tissue (absorption and scattering). Therefore, when a certain spot reflects an 

echo back to the surface, the energy signal captured by the probe is lower than the actual energy imparted 

at the spot. In order to compensate this energy loss, we first introduce the attenuation model which 

follows: 

𝐼 = 𝐼0 ∗ 𝐴(𝑑) = 𝐼0 ∗ 𝑒−𝛼𝑓𝑑 

where α is the attenuation factor in dB/(MHz*cm), f is the center frequency of the ultrasound probe, d is 

the total distance that the wave propagates, I0 is the original intensity, and I is the received intensity that is 

attenuated along d. As we can see from the formula, I0 can be recovered from I by a simple scaling: 

𝐼0 = 𝐼 ∗ 𝐴(𝑑)−1 = 𝐼 ∗ 𝑒𝛼𝑓𝑑 

- Frequency Filtering 

After TGC is applied to the scan lines, a bandpass filter is applied to the data for removing the 

noise outside the bandwidth of the transducer. In our case, the center frequency fc of the transducer is 

8.92MHz with bandwidth 4-12Mhz. Obtaining the spectrum of the scan lines by Fourier Transform, the 

majority of responses fall within the transmit frequency range and some noise outside the range. In the 

frequency domain, we apply a Gaussian Filter centered at fc=8.92Mhz and has 100% BW. In this way, we 

can preserve the signals around the fundamental frequency and smooth the noise outside our interest. 

𝑢𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑡) = 𝐹𝑇−1{𝐹𝑢_𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝜔)} = 𝐹𝑇−1{𝐹𝑢(𝜔) ∗ 𝐺} 

In some applications we will want to look at harmonic imaging, this step is also useful by 

applying another bandpass filter to the original signal. The new filter is now centered at the first harmonic 
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(2fc) and has some tunable bandwidth. We eliminate this process because we don’t need the harmonic 

image in this project, yet it remains a useful and available option if needed. 

- Envelope Detection 

The signals are still in modulated sinusoid pattern which has too much variation to be displayed 

as an image. Instead, we expect to assign the pixel value with only the peaks (maximum intensity) of the 

sinusoid. This is done by a demodulation process that is called envelope detection. The envelope of a 

signal is defined as the magnitude of its complex value: 

𝐸(𝑢) = √𝑢𝑟(𝑡)2 + 𝑢𝑖(𝑡)2 

where the complex signal is defined as; u = ur(t)+jui(t). In general, the waves are complex signals with 

both real and imaginary parts. In our case, however, all the processes so far are based on the RF data 

which only stores the real signal ur(t). To accurately compute for the envelope E(u), we need to 

reconstruct the imaginary part ui(t) from the given real part ur(t). This is done by taking the Hilbert 

Transform H(.) of the real part. In signal processing, we know that: 

𝑢𝑖(𝑡) = 𝐻(𝑢𝑟(𝑡)) = 𝑢𝑟(𝑡) ∗∗ (
1

𝜋𝑡
) 

where the Hilbert Transform of ur(t) is the convolution of ur(t) and 1/(πt). Usually this is done in 

frequency domain, when the relationship between their Fourier Transform is: 

𝐹𝑢𝑖(𝑡)(𝜔) = Ӻ{𝐻(𝑢𝑟(𝑡))} = 𝐹𝑢𝑟(𝑡) ∗ (−𝑗 𝑠𝑔𝑛(𝜔)) 

where sgn(ω) denotes the sign of ω. The second term is a 90⁰ phase shift based on the sign of frequency. 

Therefore, given the scan lines data which is the real signal, we can construct the corresponding 

imaginary signal using Hilbert Transform and finally obtain the envelope. 

- Log Compression 
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The proceeded scan lines have a relatively large dynamic range that is not suitable for a gray 

scale display. Therefore, we need to remap the pixel intensities to a more reasonable distribution. This is 

done by log compression, which is a histogram equalization process that rescales the signal histogram 

using a logarithmic function expressed as: 

𝑦 =
log10(1 + 𝛼𝑥)

log10(1 + 𝛼)
 

where x is the input signal, α is the compression factor that can be tuned, and y is the output. Here the 

input x is essentially the detected envelope from the previous step. 

- Scan Conversion 

The last step in the pipeline is to reshape the scan lines to increase resolution for display. Since all 

the previous processes focus mainly on obtaining reasonable resolution along the longitudinal dimension, 

scan conversion is the step focusing on increasing the lateral resolution. In this experiment, we upsample 

the lateral view by 4 to make lateral resolution comparable with the longitudinal, and the result will be the 

final image readied to display. 

- Evaluation 

To quantitatively examine the spatiotemporal resolution of our implemented reconstruction, we 

use peak-signal-to-noise-ratio (PSNR) and frame rate to evaluate the results. The frame rate is simply 1 

over the total processing time which is evaluated from the beginning of beamforming to the end of scan 

convertor. PSNR is defined as: 

𝑃𝑆𝑁𝑅 = 10 log10

2552

𝑀𝑆𝐸
 

where MSE is the mean square error between the test image X and reference Iref, with the same total 

number of pixel N: 
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𝑀𝑆𝐸 =
1

𝑁
∑ (𝑋(𝑖) − 𝐼𝑟𝑒𝑓(𝑖))

2
𝑁

𝑖=1

 

All the implementation and evaluation are done in MATLAB with k-wave toolbox installed. 

 

2.2 Convolutional Neural Network for Vagus Nerve Tracking 

2.2.1 Faster R-CNN Model 

 Multiple Computer Vision algorithms implement different deep neural networks to accomplish 

object detection and classification. One of the most well-known networks for real-time detection is Faster 

Region-based Convolutional Neural Network (Faster R-CNN). Derived from R-CNN and Fast R-CNN, 

this latest version beats them dramatically in processing speed for its shared convolutional layers from 

classifier network with the Region Proposal Network [30]. As demonstrated in the figure, the input image 

is fed into the shared convolutional layers to generate a feature map. The Region Proposal Network 

(RPN) then takes the feature map to compute for regions that have high probabilities to contain objects. 

The computed region proposals, together with the feature map, are sent to the region-of-interest pooling 

that finally generates the object class and the bounding box located at the object. 

In this experiment, we use a template trainer in MATLAB to train our model. The trainer 

initializes the model with a regular CNN classifier. Here we try with two predefined models, “AlexNet” 

Figure 2.3 Faster R-CNN model with Region Proposal Network 
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and “VGG16” [31] [32]. The architecture for the two models in MATLAB is displayed in the figure 2.4, 

with a shallower and the other deeper network which will show up in the difference of the processing time 

[33]. We choose stochastic gradient descent with momentum for back propagation update method and use 

0.001 for learning rate. The trainer starts with the classifier and adds the RPN accordingly while it trains 

the network. 

 

2.2.2 Training Data Preparation 

We use the L12-3v probe to get B-mode neck scans of our lab members and label the coordinate 

of the vagus nerve in each scan for ground truth with the ultrasound imaging expert assistance (Dr. 

Imanuel Lerman). We acquire 1091 images in total, including both left and right sides of the neck. We 

take the advantages of some prior knowledge about the vagus nerve for better data preparation. First, 

there are two sets of carotid artery + vagus nerve in our human neck, of which left and right side are 

approximately symmetrical. Therefore, it is reasonable to simply flip the images left-to-right for the sake 

of dataset augmentation. In this way, 2182 images become available for training and testing. Second, the 

vagus nerve is supposed to sit 1.2-2cm beneath the skin. The variations come from different thickness of a 

subject’s cervical tissue (skin, muscle and fat), yet it should never appear in close approximation to the 

skin surface or deeper inside the neck, i.e. below the carotid artery within the Longus Colli. This allows 

us to crop the reconstructed B-mode image to a smaller range of depth (1cm-2.5cm) so that the CNN 

Figure 2.4 Architecture for AlexNet and VGGNet in MATLAB 
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model can deal with the input image with much fewer pixels and thus dramatically decreasing processing 

time. 

2.2.3 Proposed Image Guidance Pipeline 

Current CAD techniques employ image detection algorithms on formed images that are already  

displayed on the screen. Therefore, current CAD techniques employ post-processing blocks and are thus 

not considered as real-time. 

In our experiment, we propose to apply the detection method before the final image so that the 

tracking information (i.e. bounding box around the nerve) can be shown together with the image on the 

screen and updated along the real-time scanning. 

Figure 2.5 Conventional ultrasound image processing pipeline for CAD applications 

Figure 2.6 Proposed processing pipeline with detection network 
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Chapter 3 Results 

3.1 B-mode Image Reconstruction using Beamforming 

3.1.1 Beamforming Pipeline Results: Step-to-step 

We apply our implemented reconstruction method to a real neck scan using the linear probe L12-

3v and obtain the outputs for each step in the pipeline (figure 3.1). Figure 3.1a) shows the raw data over 

all 192 elements, and figure 3.1b) is the scan lines after the delay-and-sum beamforming. The significance 

of having beamforming as the very first step is illustrated clearly with these two results. In figure 3.1a) the 

tissue pattern is undistinguishable and sparse before the correction, whereas in figure 3.1b) we can 

roughly identify some smooth patterns. Therefore, beamforming provides the accurate structure and 

allows all the following steps to work on the correct basis. Figure 3.1c) is the result after Time Gain 

Compensation where more far-field patterns become visible. After this attenuation correction, the pixel 

intensity is boosted as we can tell from the dynamic range on the color bar. Figure 3.1d) shows the result 

after envelope detection, and figure 3.1e) is the result after logarithmic histogram equalization. Up to this 

point, we are able to get the overall structure for our field of interest. The last step is scan conversion 

which simply upsamples the data by 4 in lateral direction. Since the raw data gives the echo information 

up to its maximum acquisition depth (in this case is 52mm for L12-3v), we can select how deep we want 

for the final display, such as 38mm as shown in figure 3.1f). For comparison, the image generated from 

Verasonics built-in function is also displayed in figure 3.1g). We can see that our reconstructed result 

from the pipeline implementation is almost identical to the Verasonics computed image. In the following 

section, we carefully compare our reconstruction result to the Verasonics reference by computing the 

PSNR and cross-comparing among different numbers of elements for beamforming. 



23 

 

 

Figure 3.1 Step-by-step outputs from B-mode image reconstruction with beamforming: a) Raw data, 

and output from b) beamforming, c) TGC, d) envelope detection, e) log compression, f) scan 

conversion, and g) the reference image from Verasonics 
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3.1.2 Beamforming with Different Number of Elements 

In this section, we examine carefully how numbers of elements for beamforming can affect the 

quality of reconstructed B-mode image. As we are not able to determine the number of elements 

employed in the built in Verasonics image reconstruction method we consider its result to be our 

reference for all the images we obtain from the pipeline. Verasonics provides a simulation mode, which 

shows the reconstruction of a virtual scan over some predefined patterns. For our experiment, we apply 

our implemented method both to the simulation mode and the actual scan on human neck. We examined 

the reconstruction time for one frame and the corresponding PSNR under different settings for 

beamforming (4/8/16/32 elements per sliding window). Under each setting, we take about 50~70 frames 

for 22mm, 30mm and 38mm of depth, respectively. The PSNR and frame rate are obtained by averaging 

among the frames for the same scenario. 

 

 

Figure 3.2 Reconstructed image under simulation mode using different number of elements for beamforming: 

a) reference from Verasonics, and the beamformed image with b) 4, c) 8, d) 16 and e) 32 elements per group. 
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From the simulation mode in figure 3.2 we can clearly see that reconstruction becomes better 

(especially the far field patterns) as we include more elements per group in beamforming. It is slightly 

more difficult to differentiate the differences from the neck images in figure 3.3, since the textures get 

Figure 3.3 Reconstructed image under neck scan using different number of elements for beamforming: a) 

reference from Verasonics, and the beamformed image with b) 4, c) 8, d) 16 and e) 32 elements per group. 

 

Table 3.1: PSNR and frame rate comparison with different number of elements under simulation mode 
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much more complex in the real scan than in simulation. However, we can see the trend from the two 

tables. 

 

 

Table 3.2: PSNR and frame rate comparison with different number of elements under neck scan 

Figure 3.4 Averaged PSNR and frame rate with different number of elements. Frame rate depends on software 

implementation only. Since both simulation and real scan undergo the same computation, time consumption is 

identical. PSNR depends on the complexity of the data including the texture, sampling noise, echoic speckles, 

etc. Therefore, PSNR evaluation diverges between the two scenarios. 
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For both simulation mode and neck scan with same number of elements, image quality improves 

as we increase the acquisition depth, which makes perfect sense since more sample points are required. 

When we include more elements per group for beamforming, the computational cost gets increased as 

well, which explains the decreasing frame rate. The PSNR of the neck scan is not as significantly 

influenced as that of the simulation mode, yet there is still a measurable increase when using 8 elements 

instead of 4. The nominal increase in PSNR for 16 and 32 elements is possibly caused by fewer scan lines 

available from the beamforming, since the total number of elements is fixed, and we are grouping more 

channels for one scan line. Nevertheless, greater element number only result in small gains in PSNR 

fluctuations. In the summary plot shown as figure 3.4, we can clearly see the trade-off between number of 

elements and the reconstruction efficiency (image quality + frame rate).  We aim for a relatively high 

frame rate with fair image quality adequate for use in our CNN. Considering both the simulation and real 

scan, we choose 8 and 16 elements for our main data collection that will eventually be used to train the 

neural network. 8-elements was notable for its low frame rate and minimal decrement in PSNR, and while 

the cost on the PSNR; with 16-elements gives a slightly higher PSNR there is a significantly slower frame 

rate.  In sum, in our efforts for relative real time nerve identification and classification (that take into 

account movement due pulsation); we decreased our frame rate to allow more processing time allotted to 

the neural network for nerve detection. 

 

3.2 Vagus Nerve Detection from Beamformed Data Using Faster R-CNN 

Our faster R-CNN model was trained using the VGG16 and AlexNet on a Windows server with 

GPU capability (CUDA Device: Tesla K80, 12GB). 1309 images were used for training, and 873 images 

were tested. Given the ground truth provided by the expert medical doctor (Dr. Imanuel Lerman), the 

vagus nerve fibers are hypoechoic surrounded by hyperechoic fascicles and further by tissue within the 

carotid sheath that is easily identified with B-mode ultrasound imaging. In most cases the vagus nerve is 
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located between the carotid and jugular vein which is more ventrolateral and proximal toward the skin 

surface. 

Figure 3.5 a), b), c) show results obtained from the reconstructed B-mode neck scan (left, left and 

right side, respectively). Figure #d), e) and f) are some examples of failed detection, which yield a wrong 

location or fail to find the target at all within the scene. Note that the trained and tested images are 

cropped to 725x725 within the depth of 1cm~2.5cm only. The displayed images in figure # are the view 

from skin (0cm) to 2.5cm, which is the half view of the maximum depth. 

Figure 3.5 Vagus nerve detection results from beamformed data: correct results on the a) b) left side and 

c) right side of the neck; wrong results on the d) e) left side and f) right side of the neck.  
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The performance of the trained vagus nerve detectors are shown in the following table (table 3.3). 

AlexNet has fewer layers, so it requires less time than VGG16 to finish training. It also has a faster frame 

rate of 6.16Hz (162ms per frame), compared to 2.41Hz (415ms) from VGG16. A shorter frame 

processing time is critically needed as we aim to achieve real-time location updates with the detector 

combined with the B-mode reconstruction. However, VGG16 yields a slightly higher accuracy (54%) 

than AlexNet (46%) with a deeper network. The average precision from the tested images is roughly 50%, 

implying that in general this is a weak detector. 

The low accuracy can be caused by the resolution of the B-mode reconstructed images. 

Therefore, we induce the training process with 796 additional images acquired from Philips Healthcare® 

medical imaging ultrasound device CX50 utilizing the 192 element 12-3MHz linear array transducer. 

They provide devices for clinical diagnosis that has much higher resolution. Although the new 796 

images are reconstructed externally, not from the beamformer in this work, they serve only as a substrate 

for the trainer with the aim to improve the performance. We then applied the CX50 derived updated 

detector among the same testing images from our Verasonics 12-3MHz beamforming reconstruction, with 

results are shown in table 3.4. With better training data, the frame rate did not significantly change. 

Table 3.3: Performance of vagus nerve detector with two models 

Figure 3.6: B-mode scan using clinical 

device from Philips Healthcare®. 
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Examining accuracy, VGG16 improved by 9%, which is what we expected, but AlexNet showed a 

decrement in performance. This is understandable considering the development of those nets. AlexNet is 

ecologically an older CNN when compared to VGG16, that contains inherent problems impeding its 

capability to resolve deeper data sets as it was developed for shallow networks. VGG16, as a deeper 

network, updated and fixed some issues for better application. Therefore, at this time VGG16 is a showed 

some promise as an initial model. 

It requires expert medical knowledge to identify the vagus nerve from the surrounding tissue in a 

B-mode scan. The size of the nerve is very small compared to carotid artery, while the vagus nerve is 

likely to have spatial similarity at some other interface of tissues within the image that may mislead the 

detection. In general, it is a much harder problem to detect the vagus nerve in B-mode scan than to detect 

a normal object in an RGB image. Of particular note the current image detection algorithm relies heavily 

on the reconstruction of the beamformed data. Therefore, improvement of the beamforming 

implementation is the logical next step for our future. 

 

  

Table 3.4: Performance of vagus nerve detectors (inducing external training data) 
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Chapter 4 Summary and Future Work 

Conclusion: 

In this work, we achieve the implementation of beamforming and scan conversion for a research-

grade B-mode ultrasound imaging system. We implement a major innovation; in that we are able to detect 

and track the vagus nerve, in real-time, by inserting the Faster R-CNN based nerve detection model into 

the beamforming pipeline. To achieve more efficient real-time tracking of the nerve from B-mode images, 

we need to speed up both the B-mode reconstruction and detection network. Future work will build on 

prior beamforming implementation as well as focus on improved design and validation of the neural 

network. 

Future Work: 

In beamforming, time shift and summation using loops can be replaced by a simple matrix 

manipulation using linear algebra to reduce computational complexity. Variable number of elements 

controlled by directivity should also be considered, since beam directivity provides additional weights 

that determine how much the echoes contribute at each angle of the elements (i.e. the one that’s 

perpendicular weighs more than the one at the far side). Moreover, the current work only applies to use of 

a linear probe, while future work will focus on curved array, phased array and other configurations. 

As is evident from our current detection rate of 50-63% we will need to re-design the nerve 

detection network for higher accuracy. Instead of having the filters to extract the common features such as 

edges, the layers should be re-organized and modified to approach the identification of the vagus nerve in 

a B-mode image. First, we plan to identify where the carotid artery is, and then search edges of the carotid 

with built in search algorithm aimed to ventrolateral surface of the carotid (i.e., known location of vagus 

nerve) and not the medial or dorsal in a deeper view. With a more reasonable architecture to detect the 

nerve, we anticipate that we will improve the CNN accuracy as well as computational efficiency. 

Moreover, the current well-organized layers are functionable, with some redundant layers noted that can 
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subsequently be discarded to avoid detouring computations and thus saves processing time. As is well 

established: 1) expansion of training dataset including more scans from multiple other subjects and 2) 

injecting redundant artificial noise will make the detector more robust. 

The main thrust of this thesis was to obtain real time vagus nerve detection as it moves in sync 

with the carotid pulsation.   Further future work will also focus on location updates for movement 

compensation due to patient and or equipment movement. As mentioned in the introduction, from the 

detector we have the nerve coordinates to guide the focused ultrasound stimulus, but there are 

unavoidable movements that can shift the target away from the stimulus beam which is unsafe. Therefore, 

we need to look at the difference of the nerve coordinates between frames and consider macro and micro 

movements as we update the location to the system. A micro movement comes from the periodic 

pulsation of carotid artery, and it can be compensated by the beam steering capability of the stimulating 

transducer. The custom designed multi-element random array from Sonic Concept Inc. can steer the beam 

focus to a certain distance away from the original center. A macro movement, instead, is possibly caused 

by the patient or displacement of the imaging probe. This information will be sent to robotic arm that 

holds the transducer for macro-movement position correction. The UR3 programmable robotic arm from 

Universal Robotics can take serial control through python codes and adjust the end position in x, y and z 

directions. We’ve already proved this idea to be working by sending a sequence of moving coordinates in 

Figure 4.1 Beam steering capability to compensate 

movements from carotid pulsation 



33 

 

a demo video to control the position of the arm. We are planning to purchase a higher version, UR3e, that 

has frame rate of 500Hz (UR3 125Hz) so that it is sufficient for movement updates on millisecond scale. 

Therefore, the future work will include having this system attach to the end of the B-mode reconstruction 

and detection pipeline so that the nerve location will be used to determine movements so as to control for 

either beam steering or robotic arm positioning. 

 

 

  

Figure 4.2 Robotic arm programming to compensate large-scale movements 



34 

 

References 

 

[1]  I. Lerman, R. Hauger, L. Sorkin, J. Proudfoot, B. Davis, A. Huang, K. Lam, B. Simon and D. G. 

Baker, "Noninvasive transcutaneous vagus nerve stimulation decreases whole blood culture‐derived 

cytokines and chemokines: a randomized, blinded, healthy control pilot trial," Neuromodulation: 

Technology at the Neural Interface, pp. 283-290, 2016.  

[2]  A. P. Mourdoukoutas, D. Q. Truong, D. K. Adair, B. J. Simon and M. Bilkson, "High‐Resolution 

Multi‐Scale Computational Model for Non‐Invasive Cervical Vagus Nerve Stimulation," 

Neuromodulation: Technology at the Neural Interface, pp. 261-268, 2018.  

[3]  M. Ter Laan, J. M. C. Van Dijk, J. W. J. Elting, M. J. Staal and A. R. Absalom , "Sympathetic 

regulation of cerebral blood flow in humans: a review," British journal of anaesthesia, vol. 111, no. 

3, pp. 361-367, 2013.  

[4]  M. Swissa, S. Zhou, I. Gonzalez-Gomez, C.-M. Chang, A. C. Lai, A. W. Cates, M. C. Fishbein, H. 

S. Karagueuzian, P.-S. Chen and L. S. Chen, "Long-term subthreshold electrical stimulation of the 

left stellate ganglion and a canine model of sudden cardiac death," Journal of the American College 

of Cardiology, vol. 43, no. 5, pp. 858-864, 2004.  

[5]  W. J. Tyler, S. W. Lani and G. M. Hwang, "Ultrasonic modulation of neural circuit activity," 

Current opinion in neurobiology, pp. 222-231, 2018.  

[6]  L. R. Gavrilov, G. V. Gersuni, O. B. Ilyinsky, M. G. Sirotyuk, E. M. Tsirulnikov and E. E. 

Shchekanov, "The effect of focused ultrasound on the skin and deep nerve structures of man and 

animal," In Progress in brain research, vol. 43, no. Elsevier, pp. 279-292, 1976.  

[7]  W. Legon, T. F. Sato, A. Opitz, J. Mueller, A. Barbour, A. Williams and W. J. Tyler, "Transcranial 

focused ultrasound modulates the activity of primary somatosensory cortex in humans," Nature 

neuroscience, p. 322, 2014.  

[8]  L. J. Noble, I. J. Gonzalez, V. B. Meruva, K. A. Callahan, B. D. Belfort, K. R. Ramanathan, E. 

Meyers, M. P. Kilgard, R. L. Rennaker and C. K. McIntyre, "Effects of vagus nerve stimulation on 

extinction of conditioned fear and post-traumatic stress disorder symptoms in rats," Translational 

psychiatry, vol. 7, no. 8, p. e1217, 2017.  

[9]  F. A. Koopman, S. S. Chavan, S. Miljko, S. Grazio, S. Sokolovic, P. R. Schuurman, A. D. Mehta, 

Y. A. Levine, M. Faltys, R. Zitnik and K. J. Tracey, "Vagus nerve stimulation inhibits cytokine 

production and attenuates disease severity in rheumatoid arthritis," National Academy of Sciences, 

vol. 113, no. 29, pp. 8284-8289, 2016.  

[10]  J. W. Salatino, K. A. Ludwig, T. D. Kozai and E. K. Purcell, "Glial responses to implanted 

electrodes in the brain," Nature biomedical engineering, vol. 1, no. 11, p. 862, 2017.  

[11]  W. R. Hedrick, D. L. Hykes and D. E. Starchman, Ultrasound physics and instrumentation, 2005.  



35 

 

[12]  T. Wagner, A. Valero-Cabre and A. Pascual-Leone, "Noninvasive human brain stimulation.," Annu. 

Rev. Biomed. Eng, vol. 9, pp. 527-565, 2007.  

[13]  W. J. Tyler, Y. Tufail, M. Finsterwald, M. L. Tauchmann, E. J. Olson and C. Majestic, "Remote 

excitation of neuronal circuits using low-intensity, low-frequency ultrasound," PloS one, vol. 3, no. 

10, p. e3511, 2008.  

[14]  Y. Tufail, A. Matyushov, N. Baldwin, M. L. Tauchmann, J. Georges, A. Yoshihiro and S. I. H. 

Tillery, "Transcranial pulsed ultrasound stimulates intact brain circuits," Neuron, vol. 66, no. 5, pp. 

681-694, 2010.  

[15]  R. L. King, J. R. Brown, W. T. Newsome and K. B. Pauly, "Effective parameters for ultrasound-

induced in vivo neurostimulation," Ultrasound in medicine & biology, vol. 39, no. 2, pp. 312-331, 

2013.  

[16]  A. Liu, L. Song, L. Li, X. Wang, H. Lin and Y. Wang, "A controlled trial of transcutaneous vagus 

nerve stimulation for the treatment of pharmacoresistant epilepsy," Epilepsy & Behavior, vol. 39, 

pp. 105-110, 2014.  

[17]  J. Redgrave, D. Day, H. Leung, P. J. Laud, A. Ali, R. Lindert and A. Majid, "Safety and tolerability 

of Transcutaneous Vagus Nerve stimulation in humans; a systematic review," Brain stimulation, 

vol. 11, no. 6, pp. 1225-1238, 2018.  

[18]  E. J. Juan, R. González, G. Albors, M. P. Ward and P. Irazoqui, "Vagus nerve modulation using 

focused pulsed ultrasound: potential applications and preliminary observations in a rat," 

International journal of imaging systems and technology, vol. 24, no. 1, pp. 67-71, 2014.  

[19]  K. M. Wasilczuk, K. C. Bayer, J. P. Somann, G. O. Albors, J. Sturgis, L. T. Lyle, J. P. Robinson 

and P. P. Irazoqui, "Modulating the Inflammatory Reflex in Rats Using Low-Intensity Focused 

Ultrasound Stimulation of the Vagus Nerve," Ultrasound in medicine & biology, vol. 45, no. 2, pp. 

481-489, 2019.  

[20]  T. Y. Wu, N. Guo, C. Y. Teh and J. X. Hay, "Theory and fundamentals of ultrasound," in Advances 

in ultrasound technology for environmental remediation, 2013, pp. 5-12. 

[21]  O. Hadjerci, A. Hafiane, P. Makris, D. Conte, P. Vieyres and A. Delbos, "Nerve detection in 

ultrasound images using median gabor binary pattern," International Conference Image Analysis 

and Recognition, pp. 132-140, 2014.  

[22]  C. N. Ta, "Computer-Aided Diagnosis of Tumors with Contrast-Enhanced Ultrasound," Doctoral 

dissertation, UC San Diego, 2015.  

[23]  O. Hadjerci, A. Hafiane, D. Conte, P. Makris, P. Vieyres and A. Delbos, "Computer-aided detection 

system for nerve identification using ultrasound images: A comparative study," Informatics in 

Medicine Unlocked, vol. 3, pp. 29-43, 2016.  

[24]  Y. LeCun, K. Kavukcuoglu and C. Farabet, "Convolutional networks and applications in vision," 

IEEE International Symposium on Circuits and Systems, pp. 253-256, 2010.  



36 

 

[25]  Y. Bar, I. Diamant, L. Wolf and H. Greenspan, "Deep learning with non-medical training used for 

chest pathology identification," Medical Imaging 2015: Computer-Aided Diagnosis, vol. 9414, no. 

International Society for Optics and Photonics, p. 94140V, 2015.  

[26]  M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe and S. Mougiakakou, "Lung pattern 

classification for interstitial lung diseases using a deep convolutional neural network," IEEE 

transactions on medical imaging, vol. 35, no. 5, pp. 1207-1216, 2016.  

[27]  E. Smistad and L. Løvstakken, "Vessel detection in ultrasound images using deep convolutional 

neural networks," Deep Learning and Data Labeling for Medical Applications, pp. 30-38, 2016.  

[28]  K. Lekadir, A. Galimzianova, À. Betriu, M. del Mar Vila, L. Igual, D. L. Rubin, E. Fernández, P. 

Radeva and S. Napel, "A convolutional neural network for automatic characterization of plaque 

composition in carotid ultrasound," IEEE journal of biomedical and health informatics, vol. 21, no. 

1, pp. 48-55, 2016.  

[29]  B. E. Treeby and B. T. Cox, "k-Wave: MATLAB toolbox for the simulation and reconstruction of 

photoacoustic wave fields," Journal of biomedical optics, vol. 15, no. 2, p. 021314, 2010.  

[30]  S. Ren, K. He, R. Girshick and J. Sun, "Faster r-cnn: Towards real-time object detection with region 

proposal networks," Advances in neural information processing systems, pp. 91-99, 2015.  

[31]  A. Krizhevsky, I. Sutskever and G. E. Hinton, "Imagenet classification with deep convolutional 

neural networks," Advances in neural information processing systems, pp. 1097-1105, 2012.  

[32]  K. Simonyan and A. Zisserman, "Very deep convolutional networks for large-scale image 

recognition," arXiv preprint arXiv:1409.1556.  

[33]  H. Kataoka, K. Iwata and Y. Satoh, "Feature evaluation of deep convolutional neural networks for 

object recognition and detection," arXiv preprint arXiv:1509.07627, 2015.  

 

 

 




