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A localized basis that allows fast and accurate

second order Møller-Plesset calculations

Joseph E. Subotnik∗ and Martin Head-Gordon∗†

October 22, 2004

Abstract

We present a method for computing a basis of localized orthonor-
mal orbitals (both occupied and virtual), in whose representation the
Fock matrix is extremely diagonal-dominant. The existence of these
orbitals is shown empirically to be sufficient for achieving highly ac-
curate MP2 energies, calculated according to Kapuy’s method. This
method (which we abbreviate KMP2), which involves a different par-
titioning of the n-electron Hamiltonian, scales at most quadratically
with potential for linearity in the number of electrons. As such, we
believe the KMP2 algorithm presented here could be the basis of a
viable approach to local correlation calculations.
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1 Introduction

Computational chemists have long recognized that in order to efficiently de-
scribe electron correlation for large systems, one must employ local occupied
and virtual orbitals and exploit the predominantly local nature of electronic
excitations. Many past methods have been proposed to do this and much
progress has been made in the last two decades towards designing better and
better local-correlation algorithms. In this paper, we will focus on local MP2
(second order Møller-Plesset) algorithms.

The predominant school of thought today was pioneered by Pulay and co-
workers[1], who suggested focusing only on the “non-negligibly” correlated
pairs of occupied orbitals and truncating the virtual space corresponding
to each such localized occupied pair. This general strategy of Pulay’s was
later combined with pseudo-spectral techniques[2, 3] for computational effi-
ciency. Most recently, Schutz, Werner et al have made further improvements
to yield linear scaling local algorithms for MP2.[4, 5] The Schutz and Werner
algorithms have been very successful at computing LMP2 energies for large
systems and the linear-scaling of the current algorithms is quite impressive.
The only limitation of these Pulay-inspired approaches is that by correlating
only certain chosen domains, one produces non-continuous potential energy
surfaces[6]. This makes geometric minimization and transition-state deter-
mination difficult.

A second school of thought for local correlation limits the allowed sub-
stitutions according to atomic criteria (without any cutoffs), and produces an
energy which is an entirely differentiable function of the nuclear coordinates.[7,
8, 9, 10] However, thus far, this approach has not scaled better than N3,
where N is the size of the basis. The primary obstacle for this technique has
been handling non-orthogonal, redundant functions, which are necessary to
localize all orbitals around atoms.

In considering the achievements and limitations of the local correlation
algorithms above, one concludes that in an ideal world, the perfect local-
correlated approach should satisfy four conditions:

1. The computational time needed by the algorithm should scale linearly
with system.

2. The algorithm should employ only non-redundant, orthonormal basis
functions which have clear quantum mechanical interpretations as one-
electron states and whose use simplifies all future calculations.

3. The local-correlation energy should be a smooth function of the nuclear
coordinates.
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4. The expression for the local correlation energy should not contain any
unphysical constants with values fixed by empirical parametrization.

Currently, no local-correlation method has been able to satisfy all of
the above requirements. However, there is much promise that this will be
achieved in the future, whether by a Pulay-like method, an atom-centered
method, or Laplace-MP2-like method.[11]

In this paper, we offer our own new local-correlation algorithm which
scales at most quadratically and with potential for linear scaling, works only
with localized orthonormal orbitals, is a differentiable function of the nuclear
coordinates, and whose only drawback is two empirically fixed parameters–
albeit these parameters have clear physical meaning.

Our paper revisits the work of Ede Kapuy has experimented over the
last two decades with different partitions of the full n-electron Hamiltonian
in order to introduce locality into many body perturbation theory (MBPT).
[12, 13, 14, 15, 16, 17, 18] In particular, Kapuy’s approach was to consider
the Fock operator in a basis of localized orthonormal occupied and virtual
orbitals, and then set the primary Hamiltonian as the diagonal piece of the
Fock operator in this basis. Kapuy then treated the off-diagonal elements
of the Fock-matrix and the two-electron coulomb term together as the joint
perturbation in MBPT.

The advantage of Kapuy’s approach is that one may compute energies in
a local basis (rather than canonical basis), which allows for better scaling.
Furthermore, by his choice of primary Hamiltonian with known eigenvectors,
Kapuy could write down the second-order perturbation energy explicitly,
without needing to compute any amplitudes recursively (as in the case of
normal Pulay-Saebo LMP2[1]).

The disadvantage of Kapuy’s method, however, is that the primary Hamil-
tonian is now somewhat farther from the true Hamiltonian, a defect which
slows down and even questions the convergence of a perturbation expansion.
After all, the success of canonical MP2 theory is predicated on the premise
that the Fock matrix is close to the full n-electron Hamiltonian, and that
the two-electron Coulumb terms are small in comparison to the Fock ma-
trix. However, for Kapuy’s method to work well, we must also suppose that
the off-diagonal elements of the Fock matrix in a local basis are small com-
pared to the diagonal elements of the Fock matrix–and this is not generally
true. Though we do expect the Fock matrix to be band diagonal in a local
representation (because electrons should interact primarily locally), we do
not expect the off-diagonal terms to be orders of magnitude smaller than
the diagonal elements. Indeed, nearest neighbors don’t interact neglibily in
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chemistry! Kapuy himself recognized this limitation of his approach from the
very beginning. For good results, Kapuy and those who followed him usually
went to third, fourth, or higher order perturbations (see section 3) to reach
reasonably converged perturbative energies for chemical species.

However, higher order perturbation theory is expensive. In his seminal
paper of 1983, Kapuy recognized that in order for his approach to be widely
applicable and useful, “Cheap localization procedures should be developed
which can satisfy the double requirement: well localized orbitals with small
off-diagonal Fock matrix elements.”[12] To our knowledge, this idea has not
yet been pursued, and is the basic idea behind this paper.

2 Balancing Locality With Diagonality of the

Fock Matrix

Our approach towards constructing an orthonormal basis of occupied and vir-
tual orbitals, which are both local and for which the Fock matrix is diagonal-
dominant, is by construction of a new function designed to intermediate the
Boys’ function and the sum of the squares of the non-diagonal terms of the
Fock matrix. In other words, we construct and minimize the function:

f(η1, . . . , ηn) =
n

∑

i=1

< ηi| (r̂− < ηi|r̂|ηi >)2 |ηi > + λ ·
n

∑

i6=j=1

| < ηi|F̂ |ηj > |2

(1)
or alternatively, using the invariance of the Trace, we maximize

f(η1, . . . , ηn) =
n

∑

i=1

| < ηi|r|ηi > |2 + λ ·
n

∑

i=1

| < ηi|F̂ |ηi > |2 (2)

In equation (2) above, λ is a real parameter designed to weight how much
we stress Boys locality (through the first term) and how much we stress
the near-diagonality of the Fock Matrix (the second term).

√

1/λ has the
units of force. For λ = 0, we recover the Boys’ orbitals; for λ → ∞, we
recover the canonical (delocalized) molecular orbitals. Of course, because we
intend to localize the occupied and virtual spaces separately, we note that
we actually have two parameters to work with: λo and λv. In this paper, we
have performed numerical calculations for different values of λo and λv, and
examined the trade-off between locality and diagonal-dominance of the Fock
matrix. We find that this trade-off is not severe and that both conditions can
be met well enough simultaneously such that MP2 energies can be calculated
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accurately and with a computational time which scales quadratically (or
potentially linearly).

Before offering more details, we note at this point that in all calculations
below involving the occupied space, we worked only with the valence occupied
space. We performed a separate Boys’ localization on the core orbitals.

2.1 Occupied Orbitals

The function described above has been implemented into a development ver-
sion of the Q-Chem program[19]. In Figure 1a, we plot, as a function of λo,
both the sum squared of the variances of the corresponding occupied orbitals
and the sum squared of the off-diagonal elements of the corresponding Fock
matrix (in the occupied-occupied block). The conclusion here is that for mod-
erately sized λo, i.e. λo < 50, the orbitals are not very different from λo = 0,
the Boys orbitals. For that reason, we choose below to focus on λo = 5.0,
giving us just a small correction to the Boys’ orbitals. Future work may focus
on larger values of λo, but we have focused here only on small corrections
to the Boys’ orbitals. Note that the graph in Figure 1a does not approach
the canonical molecular orbitals. In Figure 2, we show three-dimensional
pictures of one occupied orbital for λo = 0, 10, 102, 103, 104, 105,∞. In order
to achieve max

i6=j
|Fij| < 0.01, one must choose λo > 40, 000.

2.2 Virtual Orbitals

The situation above with occupied orbitals contrasts strongly with the case
of the virtual orbitals. In Figure 1b, we plot, as a function of λv, both the
sum squared of the variances of the corresponding virtual orbitals and the
sum squared of the off-diagonal elements of the corresponding Fock matrix
(in the virtual-virtual block). We see that for relatively small λv, there is a
precipitous drop in the sum of the squares of the off-diagonal elements of the
Fock matrix. In other words, we can relax the Boys orbitals in such a way
that the resulting orbitals, while still local and similar to the Boys orbitals,
are much closer to mean-field solutions of the full Hamiltonian. Hence, these
relaxed orbitals are expected to be far better suited to perturbation theory
(and other local-correlation) calculations. This need for orbital relaxation
when doing local MP2 calculations is made clear below. Again, note that
the graph in Figure 1b does not approach the canonical molecular orbitals.
In Figure 3, we show three-dimensional pictures of one virtual orbital for
λv = 0, 10, 102, 103, 104, 105,∞. In order to achieve max

a 6=b
|Fab| < 0.01, one

must choose λv > 80, 000.
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3 KMP2 Energies of Localized Orbitals

In canonical MP2 theory, one partititions the true n−electron Hamiltonian
(H) as

H = F + α · (H − F) (3)

where F (the Fock operator) is the unperturbed Hamiltonian, H − F is the
perturbation, and α = 1. Standard perturbation theory tells us that the
second-order perturbative (MP2) energy is:

EMP2 =
∑

ijab

|< χiχj||χaχb >|2
Fii + Fjj − Faa − Fbb

(4)

where here we sum over the canonical occupied spin-orbitals χi, χj and the
canonical virtual spin-orbitals χa, χb. The canonical spin-orbitals arise here
because they are the eigenvectors of the Fock matrix.

Of course, the computational problem with canonical MP2 theory is that
it is very slow asymptotically. If o and v are the number of occupied and
virtural orbitals respectively, one must compute o2v2 integrals before com-
puting the MP2 energy. Construction of these integrals scales as N5, where
N is the size of the basis. The price is prohibitive for large systems. The
inherent difficulty is clearly that the canonical orbitals are delocalized and
one must compute all o2v2 integrals for accuracy.

According to the Kapuy formalism, one introduces locality into the equa-
tions and speeds up an MP2 calculation by choosing a different partioning of
the Hamiltonian. One does this by finding a localized set of both occupied
and virtual orbitals {ηi, ηa}, transforming the Fock matrix into this basis,
and then choosing the diagonal pieces of the Fock matrix as the unperturbed
Hamiltonian. More formally, one writes

F = Fd + Fnd

Fd =
∑

i

Fii|ηi >< ηi| +
∑

a

Faa|ηa >< ηa|

Fnd =
∑

i6=j

Fij|ηi >< ηj| +
∑

a 6=b

Fab|ηa >< ηb|

H = Fd + β · Fnd + γ · (H − F)

Now we have two perturbations atop our unperturbed Hamiltonian, and we
label these two perturbations by the parameters β and γ. Again, in the end
we always take β = γ = 1.

The equations for a double pertubation are very simple to compute in
principle. One merely expands the wavefunction in a Taylor series of both
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β and γ, and solves term by term equating coefficients. More formally, one
defines

|Ψ >=
∞

∑

m,n=0

βmγn|Ψ(m,n) > (5)

E =
∞

∑

m,n=0

βmγnE(m,n) (6)

and sets H|Ψ >= E|Ψ >. Here |Ψ(0,0) > and E(0,0) are the unperturbed
eigenvector and eigenvalue of the unperturbed Hamiltonian (i.e. the Hartree-
Fock ground state and Hartree-Fock energy usually).

At high orders (i.e. n,m ≥ 3), these equations become complicated as
the β and γ equations couple. However, the most important correction is the
second-order correction in γ (i.e. H−F), for which there is a simple explicit
expression:

EKMP2 = E(0,2) =
∑

ijab

|< ηiηj||ηaηb >|2
Fii + Fjj − Faa − Fbb

(7)

Henceforward, we shall call this energy the KMP2 correction. We reserve
the term MP2 for the standard perturbative correction using the canonical
MO’s as our basis and the full Fock matrix as the primary Hamiltonian (i.e.
eqn(4)). Note that when ηi, ηa are localized, the KMP2 correction should be
computable in at most quadratic, or potentially linear time, for one need only
consider orbitals close to each other. This will be discussed further below.

As stated in the introduction, past work on Kapuy’s MPBPT theory in
local orbitals have always required the addition of third and higher order
perturbative corrections in order to account for the off-diagonal elements of
the Fock matrix. In other words, Kapuy et al[12, 13, 14, 18] have focused on
computing the quantity

e
(2)
L = E(0,2) + E(1,2) + E(2,2) + · · · + E(L,2)

for large values of L, and comparing the resulting quantity to the standard
MP2 energy correction.

However, in this paper, we focus exclusively on the E(0,2) perturbative
correction, given by eq. (7). We have explored whether one can find a
localized set of orbitals for which E(0,2) ≈ EMP2. Our hypothesis has been
that such orbitals do roughly exist, provided one uses a defining function
of the form given by eqn (2), which simultaneously localizes orbitals and
minimizes their off-diagonal Fock matrix elements.
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We do admit from the outset that our goal is not crystal clear: after all,
how large a fraction of the MP2 energy must be recovered for this method to
be successful? The answer depends on how accurate an energy is required by
the chemist. One notes that canonical MP2 calculations themselves do not
yield the most accurate molecular energies when compared to more complete
correlation treatments, and one should not look to either canonical MP2 or
Kapuy-MP2 for extremely accurate correlation energies. After all, the en-
tire validity of canonical MP2 is predicated on the assumption that the Fock
matrix is a good approximation to the true n−electron Hamiltonian, an as-
sumption which can be valid only to a certain degree. This point is discussed
in more detail in section 3.4. With this reservation, we present below EKMP2

and EMP2 energies from many different localized orbitals, and the reader
may determine for himself whether this method recovers enough of the MP2
energy for his own satisfaction. At the very least, the reader will observe
from our data that one can find localized orbitals which are much better
energetically than standard Boys or Pipek-Mezey orbitals. These orbitals
may well find use as starting guesses in other local-correlation techniques.
At best, the reader may be content with this method as a good and cheap
substitute for local MP2 calculations.

One word should be said at this point about the types of orbitals ana-
lyzed below. Clearly, there are infinitely many sets of localized orbitals, and
one could in principle generate useful orbitals from balancing Fock diagonal-
dominance with any of the Edmiston-Ruedenberg or Pipek-Mezey or Boys
criteria. Future work may well find an advantage to using other types of lo-
calization for KMP2 corrections, but of the three listed above, we have chosen
the Boys orbitals because they have a more sparse set of exchange integrals
than Pipek-Mezey, and they are computationally cheaper than Edmiston-
Ruedenberg orbitals and just as sparse[20]. (Here we focus on sparsity of the
exchange matrix because that is the ultimate criteria for speeding up KMP2
calculations.)

3.1 KMP2 energy as a function of λ

In section 2, we showed that one could reduce the off-diagonal elements of
the Fock matrix (in a localized basis) moderately by allowing a nonzero value
of λo and drastically by allowing a nonzero value of λv. We now show that
this reduction in the size of the off-diagonality of the Fock matrix translates
into a significant improvement in the KMP2 correlation energy. In Tables 1a
and 1b, we list KMP2 energies as a function of λo and λv.

Tables 1a and 1b show that relaxation of the Boys orbitals is crucial
towards attaining accurate KMP2 energies. Interestingly, in the case of pen-
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tane, relaxing the occupied orbitals is not as crucially important as relaxing
the localized virtual orbitals. On the one hand, using the canonical virtual
orbitals, one gains only 2.5% of the MP2 energy by relaxing the Boys oc-
cupied orbitals with increasing values of λo. On the other hand, using the
canonical occupied orbitals, one gains only 25% of the MP2 energy by relax-
ing the Boys virtual orbitals with increasing values of λv. In this paper we
have focused on λv = 40, as we sought the smallest correction to the Boys
virtual orbitals at which relaxation was significant. Again, future work may
focus on larger values of λv.

3.2 Dependence on Basis Set

Regarding the dependence of energies on basis set, Pipek and Bogar showed[18]
that the Boys orbitals give a decent KMP2 correlation energy in a STO-3G
basis (97.7% of the canonical MP2 energy)–however, this energy becomes
worse as the basis set grows to 6-31G*(75%). This result is plausible be-
cause, in a very small basis set, there are very few virtual orbitals, and these
orbitals are forced to be far from each other and not very interacting. Hence,
the Fock matrix does not have big off-diagonals and no relaxation of local-
ization is necessary. However, in a bigger basis set, many virutal orbitals
are located close to each other in space, interacting strongly, and the Fock
matrix in the Boys orbital representation is not very diagonal-dominant. In
Table 2, we show the amount of MP2 energy recovered by our local method
for increasing basis set size. We conclude that, though the Boys orbitals give
worse and worse KMP2 energies as the basis set grows, the (5,40) basis does
not do much worse. In other words, the parameter λv = 40 may be applicable
even beyond the 6-31G* basis. See the discussion below.

3.3 Scaling With Alkanes of Increasing Size

The most important requirement that we require of our basis of localized
orbitals and KMP2 calculations are that they scale correctly with increazing
size. After all, the strength of working in a local basis should be that one can
work with ever bigger systems. In this paper, for concreteness, we worked
with alkanes of increasing length. Our essential requirements were:

1. As the length of the alkane chain grew, our method should capture a
constant percentage of the MP2 energy.

2. Because the KMP2 calculations are sped up by the sparsity of the
matrix elements (ia|ia), where i is an occupied orbital and a is a virtual
orbital, we required that the number of significant ia pairs, i.e. those
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pairs with (ia|ia) > 1.2 × 10−7, should be proportional to the size of
the system. Without locality, i.e. for canonical orbitals, the number of
significant (ia|ia) pairs scale as the square of the size of the system.

In Tables 3a and 3b, we show that our KMP2 method does indeed capture
a constant percentage of MP2 correlation energy for increasing system sizes;
furthermore, the number of significant ia pairs grows linearly, as we wanted.
For comparison, we also show in Table 3b that the sparsity of the (ia|ia)
matrix for the Boys orbitals is not much more than the sparsity for the
(5,40) orbitals. Thus, for the large systems, we should be able to calculate
accurate MP2 energies quickly with orbitals almost as localized as the Boys
orbitals.

3.4 Atomization Energies for G2 data

As the benchmark for measuring the accuracy of our method, we calculated
the atomization energies per bond for the 148 molecules in the neutral G2-1
data set[21]. All calculations were done using a 6-31G* basis set and an MP2
perturbative correction on top of an unrestricted HF solution. We always set
λv,↑ = λv,↓ and λo,↑ = λo,↓. The results are in Table (4). Empirically, we
find that for larger atoms (e.g. Cl, Si), higher values of λo are necessary to
correctly match MP2 energy calculations. This result can be rationalized
by observing that the lone pairs on bigger atoms are more diffuse, and their
centroids can be separated more than those lone pairs on a smaller atom.
Hence, the Boys function value is bigger, and we need to provide a larger λo

value. For this reason, we list energies for λo = 0, 5, 40 and we divide the G2
data set into molecules with large and small atoms (Table 4a and Table 4b).

From the data in the third column of Table 4, we conclude again that
relaxation of the Boys orbitals is crucial towards using local orbitals effi-
ciently in an MP2 setting. Furthermore, the atomization energies per bond
recorded here show the strength and potential of the KMP2 approach. For
the molecules in the G2 set, KMP2 usually captures 90-100% of the MP2 at-
omization energy. Although the atomization energies of this set of molecules
can be computed at best to within an accuracy of 1.25-3.00 kcal/mol using
our choice of finite parameters, we should recall that canonical MP2 itself
cannot compute truly accurate atomization energies to within 3 kcal/mol
either. Jung et al[22] have recently computed EMP2 and EQCISD(T ) for 77
molecules drawn mostly from the G2 data set. From this data set, one com-

putes

√
(EMP2−EQCISDT )2

Number of Bonds
= 5.1 kcal/mol, implying that our (EKMP2−EMP2)

error is smaller than the error inherent in MP2. Hence, while our KMP2 ap-
proach does suffer clear systematic error relative to MP2, this error is small
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enough that KMP2 may find direct use in future calculations. Or at the very
least, as we have stressed above, the KMP2 orbitals will also likely be used
as initial guesses for more accurate iterative correlation energies.

4 The Hylleraas Function and Higher-Order

Corrections

One may improve upon the EKMP2 energy by invoking the Hyllerass function[23],
which is a variational function for the MP2 energy defined in terms of scat-
tering amplitudes tijab. The Hylleraas function has the form:

L(t) =
1

4
(t · A · t + 2t · I)

where

Aijab,klcd = (Facδbd + Fbdδac) δikδjl − (Fikδjl + Fjlδik) δacδbd

Iijab = < ηiηj||ηaηb >

Clearly, then, we must solve the equation

A · t = −I

The strength of the Hylleraas approach is that, when the guess amplitudes
are of order ǫ from the correct MP2 amplitudes, the guess energy is of order
ǫ2 from the correct MP2 energy. Now because A is diagonal dominant in the
(5,40) basis, we take for our guess amplitudes

t
(0)
ijab =

< ηiηj||ηaηb >

Fii + Fjj − Faa − Fbb

(8)

using the Kapuy orbitals defined here for various values of λo, λv. In other
words, we write A = Adiag + Anondiag and we guess t(0) = A−1

diag · I. We then
immediately plug these amplitudes into the Hylleraas function L(t). Given

the sparsity of the t
(0)
ijab amplitudes, this computation should still scale with

order N2 or even N . The only disadvantage of computing the Hylleraas
energy is that one must make and store all of the < ηiηj|ηaηb > integrals
(which is not necessary to compute EKMP2.

In Table 4 below, in the fourth column, we present the results of Hylleraas
calculations. As we expected, the error in the atomization energies is much
smaller for the Hylleraas function than for EKMP2. Thus, the Hylleraas
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energy is certainly a viable alternative and improvement to EKMP2. We plan
to investigate the computational scaling in more detail in the future.

Besides the Hylleraas function, one can calculate the third order E(1,2)

correction in order to more accurately compute the correlation energy. This
piece was often measured in the past by Kapuy and coworkers both as a
correction and as a means to assess convergence of the pertubative expansion.
The E(1,2) correction can written in many different forms, including:

E(1,2) =
∑

ijab

∑

klcd

< ΨHF |H − F|Ψab
ij >< Ψab

ij |Fnd|Ψcd
kl >< Ψcd

kl |H − F|ΨHF >

(EHF − Eijab) (EHF − Eklcd)

This correction can also be written down as the natural result after one
round of Pulay-Saebo amplitude iteration, as follows:

1. Set t(0) according to equation 8.

2. Construct t(1) = A
(−1)
diag

(

−I − Anondiagt
(0)

)

.

3. E(1,2) =
(

t(1) − t(0)
)

· I. We may define e
(2)
1 = E(0,2) + E(1,2) = t(1) · I.

This method presumably has a higher cost than evaluating the Hylleraas
energy for it requires an iteration that scales formally as N5 before sparsity.
The computational cost of this iteration will surely be reduced given the
sparsity of the tijab amplitudes. However, it appears more difficult to make
this algorithm quadratic or linear scaling than it is for the Hylleraas function;
in particular, this algorithm should be more sensitive to the decay of the
Fock matrix with distance. Regarding energy accuracy, we expected both
the Hylleraas energy and the e

(2)
1 energy to perform well given our optimized

orbitals. On the one hand, the e
(2)
1 energy is correct to third order and thus

should be more accurate than the Hylleraas energy; on the other hand, of
the two methods discussed here, only the Hylleraas energy is variational and
this also has advantages. For a good comparison of these methods, we show
in Table 4 the size of the E(0,2) correction and the accuracy of e

(2)
1 energy.

One notes that the E(1,2) correction is in general small in a good basis. We
conclude that the KMP2 energy is generally not far from the MP2 energy,
that one may improve significantly upon the EKMP2 energy by calculating
E(1,2), but that the Hylleraas function is probably the fastest and easiest
method for calculating a cheap and more accurate perturbative correlation
energy.
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5 Discussion

The results in this paper are the natural continuation of the proposal made
by Kapuy in 1983. The orbitals constructed here seemingly satisfy locality
and Fock diagonal-dominance, the double criteria called for by Kapuy more
than twenty years ago. Furthermore, the results of this paper suggest that an
attractive trade-off between accuracy and speed may exist within the KMP2
framework. However, we caution the reader that more numerical testing is
needed to confirm the wide applicability of this method. Furthermore, we
certainly do not claim here that (λo = 5,λv = 40) is the optimal choice
of parametrization. We have demonstrated this choice is satisfactory in a
6-31G* basis in certain cases, e.g. alkane chains, but future work may well
decide on a different optimal set of parameters. Likely, this choice will depend
on the atoms involved. As stated previously, larger atoms seem to require
larger values of λo. Certainly, in the future, more work is needed to determine
more rigorously how λv should change with basis size.

Regarding the optimal defining function for the Kapuy orbitals, we repeat
that we have not made an exhaustive study of all the different localization
criteria. In fact, it is plausible that future work may even decide not to use the
Boys’ criteria at all, instead using the Pipek-Mezey or Edmiston-Ruedenberg
or other functional forms. On a philosophical level, there is the deep question
of how can we characterize all of the different sets of localized orbitals, such
that we can search through them, looking for those with smallest off-diagonal
Fock elements? On a practical level, if we believe that our final function will
be the sum of a localizing term and a Fock-diagonalizing term, as is eqn
(2), then our goal should be to find the localization criteria which gives the
orbitals (occupied and virtual) with the most sparse exchange integrals, for
this is the critera used to enhance the scaling of most algorithms.

At this point, we should mention that one problem with the current
defining function for the optimized Kapuy orbitals in this paper is that, as λ
grows very large, the defining function takes on multiple maxima. In other
words, the contours of the defining function are rugged for 0 ≪ λ ≪ ∞. Of
course, the uniqueness of the Kapuy orbitals as the unique stationary point
of a defining function is not crucial at all for our purposes. Our only concern
is that we different researchers should be able to reliably and consistenly
determine the same Kapuy orbitals for different calculations. To ensure that
is the case, in this paper, we have always chosen the global maxima of the
defining function, but we expect that a better and more stable algorithm to
be found in the future for quickly and precisely determining either the local
or global maximum of our defining function (and hence the optimized Kapuy
orbitals).
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The main result of this paper, namely that one can relax the Boys orbitals
to minimize the off-diagonal Fock elements while maintaining locality, should
have implications for other local correlation methods. After all, the (5,40)
orbitals represent local one-electron states which are “not far” from canonical
solutions. Might these orbitals find use as good initial guesses for other local
correlation techniques, including local coupled-cluster approaches? We are
currently investigating this point.

In summary, much work still remains both to find the optimum orbitals
for this method and to resolve all of the implications of a λ 6= 0 relaxation.
Moreover, in the future, a low-scaling version of this algorithm needs to
be implemented for others to use. Notwithstanding these limitations, the
Kapuy-MP2 method should scale quadratically or even linearly, uses only
orthonormal orbitals, smoothly varies with nuclear coordinates, and has ex-
actly two or four paramters. These attributes make it an attractive starting
point for future local correlation work.

6 Conclusion

In this paper, we have presented an elementary approach towards localizing
molecular orbitals while keeping the Fock-matrix close to diagonal. We have
further demonstrated the utility of these orbitals in calculating near accurate
and fast KMP2 energies. Furthermore, our algorithm is a smooth function
of nuclear coordinates, and hence can be used in geometric optimizations.
We expect that, in the future, either this procedure should find direct use
in quantum mechanical calculations of large molecules or that our simple
method should be a benchmark algorithm which other, more sophisticated
algorithms need to out-perform.
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8 Figures
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Figure 1a: The sum of the variances squared (Å2) and the sum of the off-
diagonal Fock matrix elements squared (Hartrees2) versus λo for the occupied
space of C5H12. For the canonical molecular orbitals, these numbers are
∑

i

v2
i = 302Å2 and

∑

i6=j

F 2
ij < 1.0 × 10−14 Hartrees2 respectively. The basis is

6-31G*.
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Figure 1b: The sum of the variances squared (Å2) and the sum of the off-
diagonal Fock matrix elements squared (Hartrees2) versus λv for the virtual
space of C5H12. For the canonical molecular orbitals, these numbers are
∑

i

v2
i = 1585Å2 and

∑

i6=j

F 2
ij < 1.0 × 10−14 Hartrees2 respectively. Note the

precipitous drop in the Fock off-diagonal term for λv > 0. The basis is
6-31G*.

18



Figure 2a:

Figure 2b:

Figure 2c:

Figure 2d:

Figure 2e:

Figure 2f:

Figure 2g:

Figure 2: One occupied orbital of C5H12 in a 6-31G* basis.
λo = (a) 0, (b) 10, (c) 102, (d) 103, (e) 104, (f) 105, (g) ∞.
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Figure 3a:

Figure 3b:

Figure 3c:

Figure 3d:

Figure 3e:

Figure 3f:

Figure 3g:

Figure 3: One virtual orbital of C5H12 in a 6-31G* basis.
λv = (a) 0, (b) 10, (c) 102, (d) 103, (e) 104, (f) 105, (g) ∞.
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9 Tables

λo KMP2/MP2
0 97.5%
10 97.5%
20 97.5%
30 97.4%
40 97.7%
50 98.0%
60 98.7%
70 98.7%
80 99.8%
90 99.8%

Table 1a: The percentage of the MP2 correlation energy for C5H12 captured
by our KMP2 method versus the size of λo. Here, λv = ∞. The relaxation
is noticeable here, but not drastic as in Table 1b. The basis is 6-31G*.

λv KMP2/MP2
0 75.1%
10 93.9%
20 97.2%
30 98.6%
40 99.5%
50 99.8%
60 100%
70 100%
80 100%
90 100%

Table 1b: The percentage of the MP2 correlation energy for C5H12 captured
by our KMP2 method versus the size of λv. Here, λ0 = ∞. Note the
importance of relaxation here. Furthermore, note that we are close to the
infinite limit for λv = 40. The basis is 6-31G*.
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Basis Dimension λo = 0 λo = 5
Set λv = 0 λv = 40

KMP2/MP2 KMP2/MP2
sto-3g 37 97.7% 97.7%
6-31G* 99 74.0% 97.0%
6-31G** 135 66.3% 96.9%
6-311G** 162 63.5% 94.1%

6-311+G** 182 63.6% 94.3%
6-311++G** 194 64.2% 94.5%

cc-pVTZ 318 53.8% 94.4%
Table 2: The percentage of the MP2 correlation energy for C5H12 captured
by our KMP2 method versus basis set size. Here, we provide data for the
Boys orbitals λv = λo = 0 and the (5,40) orbitals. Note that the Boys orbitals
get worse and worse as the basis set increases, while the (5,40) set has a near
constant effectiveness.
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n True MP2 Correlation (5,40) KMP2 Percent of MP2
energy (Hartrees) energy (Hartrees) energy captured

10 -1.31755 -1.27377 96.7%
20 -2.63159 -2.53890 96.5%
30 -3.94563 -3.80133 96.3%
40 -5.25967 -5.07004 96.3%

Table 3a: The percentage of the MP2 correlation energy captured by our
KMP2 method versus alkane size. Here, n stands for CnH2n+2. The basis is
6-31G*.

n Total number Number of Percent Number of Percent
of ia pairs significant significant significant significant

ia pairs ia pairs ia pairs ia pairs
Boys Orbs. Boys Orbs. (5,40) Orbs. (5,40) Orbs

10 4743 3581 75.5% 3711 78.2%
20 18483 8362 45.2% 8662 46.9%
30 41223 13101 31.8% 13623 33.1%
40 72963 17907 24.5% 18435 25.3%

Table 3b: The number of significant ia pairs, where here i is an occu-
pied orbital and a is a virtual orbitals. We define ia to be significant if
(ia|ia) > 1.2 × 10−7. Here, n stands for CnH2n+2. The basis is 6-31G*.
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λo λv RMSD RMSD RMSD RMSD

(Eat
KMP2 − Eat

MP2) (Eat
Hyl − Eat

MP2) E
(1,2)
mol − E

(1,2)
atoms e

(2),at
1 − e

(2),at
1

0 0 17.08 9.84 10.17 7.08
5 40 2.43 0.64 2.11 0.35
40 40 1.26 0.47 1.03 0.26
0 ∞ 4.38 1.54 3.55 0.85
5 ∞ 2.10 0.53 1.84 0.28
40 ∞ 0.87 0.29 0.72 0.14

Table 4a: The errors in atomization energy per bond of the neutral G2 data
set calculated in a 6-31G* basis for different values of λo, λv. Here we con-
sidered only those chemical species of the G2 data set without any atoms
in the third row of the Periodic Table. This includes 98 molecules of the
148 total. All atom-atom interactions are treated as one bond each. For
instance, CH4 has four bonds in these calculations, and CO2 has two bonds.
Here Eat stands for atomization energy. We report the RMS difference in
atomization energy per bond for the KMP2 expression (column 3), for the

Hylleraas energy (column 4), and for the third order once-iterated e
(2)
1 expres-

sion (column 6). Column 5 contains the RMSD for the third order correction
E(1,2) calculated per bond. See text for more details. Energies are given in
kcal/mol.

λo λv RMSD RMSD RMSD RMSD

(Eat
KMP2 − Eat

MP2) (Eat
Hyl − Eat

MP2) E
(1,2)
mol − E

(1,2)
atoms e

(2),at
1 − e

(2),at
1

0 0 17.73 10.14 10.56 7.32
5 40 4.97 1.65 4.14 0.89
40 40 3.00 1.23 2.43 0.65
0 ∞ 4.97 1.65 4.18 0.81
5 ∞ 3.53 1.05 3.09 0.49
40 ∞ 1.44 0.54 1.26 0.21

Table 4b: The error in atomization energy per bond of the neutral G2 data
set calculated in a 6-31G* basis for different values of λo, λv. Here we con-
sidered only those chemical species of the G2 data set with at least one atom
in the third row of the Periodic Table. This includes 50 molecules of the
148 total. All atom-atom interactions are treated as one bond each. For in-
stance, CCl4 has four bonds in these calculations, and OCS has two bonds.
Here Eat stands for atomization energy. We report the RMS difference in
atomization energy per bond for the KMP2 expression (column 3), for the

Hylleraas energy (column 4), and for the third order once-iterated e
(2)
1 expres-

sion (column 6). Column 5 contains the RMSD for the third order correction
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E(1,2) calculated per bond. See text for more details. Energies are given in
kcal/mol.
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