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RESEARCH ARTICLE

Panmictic and Clonal Evolution on a Single
Patchy Resource Produces Polymorphic
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Abstract
We develop a stochastic, agent-based model to study how genetic traits and experiential

changes in the state of agents and available resources influence individuals’ foraging and

movement behaviors. These behaviors are manifest as decisions on when to stay and

exploit a current resource patch or move to a particular neighboring patch, based on infor-

mation of the resource qualities of the patches and the anticipated level of intraspecific com-

petition within patches. We use a genetic algorithm approach and an individual’s biomass

as a fitness surrogate to explore the foraging strategy diversity of evolving guilds under

clonal versus hermaphroditic sexual reproduction. We first present the resource exploitation

processes, movement on cellular arrays, and genetic algorithm components of the model.

We then discuss their implementation on the Nova software platform. This platform seam-

lessly combines the dynamical systems modeling of consumer-resource interactions with

agent-based modeling of individuals moving over a landscapes, using an architecture that

lays transparent the following four hierarchical simulation levels: 1.) within-patch consumer-

resource dynamics, 2.) within-generation movement and competition mitigation processes,

3.) across-generation evolutionary processes, and 4.) multiple runs to generate the statis-

tics needed for comparative analyses. The focus of our analysis is on the question of how

the biomass production efficiency and the diversity of guilds of foraging strategy types,

exploiting resources over a patchy landscape, evolve under clonal versus random her-

maphroditic sexual reproduction. Our results indicate greater biomass production efficiency

under clonal reproduction only at higher population densities, and demonstrate that poly-

morphisms evolve and are maintained under randommating systems. The latter result

questions the notion that some type of associative mating structure is needed to maintain

genetic polymorphisms among individuals exploiting a common patchy resource on an oth-

erwise spatially homogeneous landscape.
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Introduction
Computational modeling of population interactions is a growing research endeavor [1] in the
context of including behavioral, physiological or genetic heterogeneity among individuals liv-
ing in spatiotemporally heterogenous stochastic environments [2]. This endeavor is facilitated
by ever more powerful computational tools, both hardware (easier and more cost effective
access to distributed computing resources) and software (more accessible and user friendly
software interfaces for model prototyping, development and deployment) that overcome the
limits of analytical and dynamical systems modeling frameworks for addressing both theoreti-
cal and applied problems. Access to computational technologies requires either strong coding
fluency and skills, or modeling platforms that minimize the need for such fluency and skills.

The last decade has seen considerable progress in the development of user-friendly model-
ing software. Numerous platforms such as Vensim [3], Stella [3], Simile [3, 4], Insight Maker
[5] and Berkeley Madonna [6] now provide flow-chart-like visual environments for modeling
dynamical systems. Other platforms, such as NetLogo [7], Simile [4], Insight Maker [5], Repast
Simphony [8] and AnyLogic [9] facilitate agent-based modeling (ABM). These platforms, with
varying degrees of success, meet the following principles that have guided the development of
the NOVA platform [10, 11] used in the simulations presented here. Platforms should: 1.) be
accessible to students with noncoding skills when it comes to developing didactic models that
have either or both dynamical systems and ABM capabilities; 2.) emphasize model design prin-
ciples by accessibly organizing and coordinating the details of model implementation; 3.)
incorporate a versatile, “Turing complete” (i.e., computationally universal) language that facili-
tates model sharing online (e.g. as web applications); 4.) be powerful enough to build models
able to address cutting-edge research questions in the basic and applied sciences.

In this paper, we discuss the characteristics of the NOVA platform in the context of principles
1–4 articulated above, through the application of genetic (sometimes referred to as evolution-
ary) algorithms to addressing questions in population biology. Genetic algorithms have been
applied to ecological problems for at least three decades, although it was not referred to as such
or in terms of its alternative evolutionary algorithm designation, in its application by Poethke
and Kaiser in 1985 to the evolution of time-sharing behavior in a Dragonfly mating system
[12]. In the early 1990’s, Stockwell, Nobel and colleagues developed machine-learning meth-
ods, in particular a framework called GARP (Genetic Algorithms for Ruleset Production) [13],
which since then has been frequently used to study species distributions [14–16]. Genetic algo-
rithms have also been used inter alia to study the evolution of female preference as it relates to
male age [17], dispersal in insects [18] including the potential impact of climate change on the
geographical distribution of the Argentine ants [19], insect-plant [20], and prey-predator stud-
ies [21], as well as ecotoxicology [22], landuse change [23] and other challenging questions
[24].

A discussion of genetic algorithms is included in a review by Olden et al. [25], while Holz-
kämper et al. [23] provide an informative diagram on the implementation of genetic algorithms
in their study on managing landscapes to enhance species diversity. Here, for the sake of com-
pleteness, we provide a broad overview of GA terms and methods, focusing on the application
of GAs to models of agents foraging on a patchy landscape. Specifically, following the lead of
earlier work on the application of artificial intelligence methods to movement-related decision
processes of animals in heterogeneous environments [26], we first provide details of the
within-patch, consumer-resource interaction components and movement decisions compo-
nents of our model, and then provide details of the GA component of our model, particularly
as it relates to mutational and reproductive processes. Subsequently, we examine hypotheses
regarding the evolution of movement-type polymorphisms in populations of individuals
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foraging on patchy landscapes and reproducing clonally versus hermaphroditically. Our model
includes the ecological processes of competition among individuals and the dynamical
response of exploited resources. The total biomass production over all individuals is recorded
at the end of each generation, but only the most successful individuals (i.e. those experiencing
the greatest increase in biomass), however, are involved in reproduction.

Methods

Simulation framework
Our simulation model was built using the NOVA platform [10], which is highly modularized in
terms of: 1.) first creating dynamic agent “capsules” that interact with their environments
through input/output interfaces and 2.) the allowing these agents to move over a heterogeneous
resource landscape. Movement can either be on a Cartesian plane or from one cell to another
on a rectangular or hexagonal array of specifiable dimension (Fig 1; see S1 Text for more details
of the platform). Our model moves agents over rectangular arrays of variable and dynamic
resource cells and was designed to address questions regarding the efficiency of behavioral
guilds of foragers. The model itself operates at three time scales: i) a within patch foraging scale
(one tick of the intragenerational clock); ii) an intragenerational patch-to-patch movement

Fig 1. Stock-and-flow icons are used to graphically build systems of difference (lavender-pink square in cell capsule) and differential (lime-green
square in agent capsule) equations that NOVA encapsulates as chips with input output pins (pale blue squares) at higher levels of representation,
through drag and drop construction. Agent and cell capsules respectively dropped onto the clover and purple colored components of an aggregator that
creates an array of agents able to move over either a rectangular or hexagonal cellular array, of specifiable dimensions with toroidal or non-toroidal
topologies.

doi:10.1371/journal.pone.0133732.g001
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scale (n ticks of the intrageneration clock equal to 1 tick of the intergenerational clock); and iii)
an intergenerational evolutionary scale (G ticks of the epochal clock), as depicted in Fig 2. At
the within-patch and intragenerational scales, a cohort of individuals of specified size is fol-
lowed. During their lifespan, these individuals (i.e. agents) live on a cellular-array landscape
where each cell has a single resource value. The agents consume resources at their current loca-
tion, gain biomass (which serves as a proxy for evolutionary fitness), and make decisions about
movement, based on their local resource environment and locations of neighboring competi-
tors (see details below). Landscape cells grow in resource value when not consumed. At the end
of each cohort’s pre-determined lifespan, intergenerational reproductive and evolutionary pro-
cesses are simulated. The biomass of each individual is tallied as a proxy for fitness, and the
most fit individuals (top half of the cohort) are allowed to reproduce. In our simulations
involving clonal reproduction, a mutational process was included by allowing parameter values
of progeny to be stochastic perturbed from those of their parent, using an approach elaborated
below. In an initial set of ‘quick and dirty’ sexual reproduction simulations used to generate
hypotheses, we allowed the fittest half of the population to choose partners at random and then
set the parameter values of their progeny to be the average of the parameter values of the
parents involved, subject to mutations of these values. In a subsequent set of sexual

Fig 2. Left hand panel: individual level processes controlling the replenishment of resource patches and the growth (biomass) of individuals, through
extraction of resources from these patches, are depicted using graphical NOVA elements. Central panel: ecological level process managed by a NOVA

simworld aggregator are graphically depicted, with consumers either foraging within patches or moving from patch-to-patch during each tick of the
intragenerational clock. The progeny of the fittest individuals (i.e., greatest biomass at t = n) inherit perturbed (mutational process) parameter values from one
(clonal reproduction) or two (sexual reproduction) parents at the end of each generation. Right panel: the evolutionary level process, represented by changes
to the parameter values of individuals (i.e., genotypes and corresponding phenotypes), is monitored by the epochal clock that runs the evolutionary algorithm
forG generations. (See S1 Text for discussion of NOVA platform).

doi:10.1371/journal.pone.0133732.g002
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reproduction simulations, we made the process more realistic by incorporating diploid genetic
structure, random segregation and codominant phenotypic expression of alleles. Once the new
generation of individuals (progeny) was created in all three approaches to reproduction, we
then assigned an initial location on the landscape at random, and the intragenerational simula-
tion cycle began again. This cycle continued for a pre-determined number of generations, as
indicated in Fig 2.

We first carried out a set of exploratory simulations, using parameters specified in S1 Table,
with the interpretations of these parameters provided for clarity. Based on these results, we then
formulated the hypothesis that movement behavioral guilds of foragers evolve to collectively be
more efficient in exploiting resources (in the context of our model) under clonal than under ran-
dom hermaphroditic reproduction. To explore this question, we modified the sexual reproduc-
tion process within our model to be a diploid co-dominant process in which the genotype of
each individual’s parameter values (three parameters in our case) are each specified by two
alleles. These alleles were subjected to mutations during each reproductive cycle, with each indi-
vidual’s parameter phenotype being the average of the two allelic values. The results of this study
are reported in the section following the presentation of the exploratory simulation results.

Genetic algorithms from a biological perspective
In the computer science field of artificial intelligence, a genetic algorithm (GA) is a search heu-
ristic that mimics the process of natural selection [24]. In modeling in the applied sciences, a
GA is a numerical method, mimicking evolution, to select agents (models) with sets of parame-
ter values that optimize some measure associated with the performance of the agents [25]. For
example, in the context developed here, the model deals with the efficiency of individual con-
sumers in exploiting a landscape of patchily distributed resources. Much of the jargon, but not
all, associated with GAs comes from evolutionary theory: some of it is summarized in Table 1.

The seminal text on genetic algorithms (GA), formulated within a general adaptive systems
framework, is Holland’s 1975 book: Adaptation in Natural and Artificial Systems (1992 Edi-
tion: [27]). More recently, the application of GAs is widely spread within the computer science
and artificial intelligence communities, but has only occasionally been applied to economic sys-
tems [28], reviewed for a general audience from a bit-string coding point of view [29], reviewed

Table 1. Terms and definitions used in genetic algorithms (GAs).

Term Definition

Phenotype an agent of a particular behavioral, physiological, or morphological type

Fitness function a measure associated with the agent that will be optimized

Genome a set of parameter values associated with an agent

Genotype a specific genome

Mutation a perturbation of a parameter value in the genome

Simulated annealing* mutational perturbations decrease in size over time

Cloning reproduction duplication of a genotype (with mutations)

Sexual reproduction genotype values generated from two parents (with mutations)

Codominant phenotype is average of parental genotype for gene concerned

Hard selection best group of individuals produce a fixed number of progeny

Soft selection better than worse individuals more likely to reproduce

Generation time the model run time over which fitness is assessed

Epoch the number of generations over which the evolutionary process is assessed

*see Eq 1

doi:10.1371/journal.pone.0133732.t001
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for a chemistry audience [30], applied to evolutionary questions in ecology [20, 31, 32], used to
assess the design of sensory systems in animals [33], and to asses the efficiency of decision pro-
cesses in movement ecology [34, 35].

The essential features of a genetic algorithm is that it consists of at least two temporal frames
(Fig 2): an intragenerational frame in which individuals are governed by processes that affect
their life-time fitness; and an intergenerational frame in which generations of individuals suc-
ceed one another, with the fittest individuals in each generation being the most likely to pass
on the traits promoting that fitness to future generations. The intragenerational frame itself
may be further refined so that the processes determining the life-time fitness of individuals can
be dynamically modeled over the life time of individuals. This integration across time scales is
depicted in Fig 2 in the context of consumer-resource interactions, where our surrogate for a
measure of fitness is individual biomass, as determined by growth processes dependent on
resource extraction over the life time of individual consumers.

The genetic algorithm begins by initializing the system t = 0 (start of the intragenerational
clock) and T = 1 (the first generation). In our exemplar, the initial state of agent Aa, a = 1, . . .,
NA, is its starting biomass Ba(0), and is located at La(0) = Ci,j, where Ci,j are cells on a rasterized
two-dimensional landscape or cellular array (row i and column j). The initial state of each cell is
Ri,j(0) at the start of each intragenerational cycle. In moving the intragenerational clock forward
from t to t + 1, t = 0, . . ., n, we query each agent as to whether it will move or stay to exploit the
resources in its current cell. If it does move, we then determine to which cell it moves. The out-
come of these calculations for agent Aa is represented by the value of itsmovement designator
Ma

pa
, as discussed in the next section, where pa is a set of agent-specific parameter values. After

computation, the state Ba(t) and location La(t) of agent Aa, and the state Ri,j(t) of all cells Ci,j are
updated, as elaborated In the intergenerational updating subsection below.

Once the updating process is completed, we continue for t = 1, . . ., n − 1, ultimately reach-
ing a final state Ba(n) for each of the agents Aa. The agents Aa are then sorted according to
their final state values Ba(n) from, say, largest to smallest. A number of different reproductive
systems are possible including clonal (apomictic or automictic) versus sexual reproduction
(hermaphroditic or distinct sexes, assortative or disassortative mating or different levels of
inbreeding), as are patterns of inheritance (e.g. using co-dominant versus dominant-recessive
relationships) and processes relating to linkage and genetic crossover. Most of our exploratory
simulations use the following clonal reproduction process.

The NA agents simulated over each generation are ranked by biomass value Ba(n) (the fit-
ness measure) and the fittest half are selected to reproduce. Each of the selected agents is cloned
by creating a copy with the same parameter set pa. Each of the cloned values within pa are then
individually perturbed by differing amounts, each amount drawn at random on the interval
[−μ, μ] for some suitably small value μ> 0. The fittest half of the current generation and their
mutated clones constitute NA individuals used to start the next generation simulation. The
maximum allowable perturbation μ to the values in pa decreases as the generations progress
over T = 1, . . ., G (i.e. simulated annealing) so that μ is regarded as a decreasing function of

T—i.e., μ� μ(T), where dm
dT
� 0: this allows for initial rapid progress towards the emergence of

the fittest individuals, followed by smoother convergence to the fittest group of individuals. We
note that further investigations are needed to evaluate how likely it is that solutions are local or
global maxima. In our simulations, for perturbation parameter values μ0 >> μ1 > 0 and time
parameter values ψ> 0, we expressed μ(T) as

mðTÞ ¼ ðm0 � m1Þ
1þ ðT=cÞ3 þ m1 ð1Þ

Evolution of Foraging Guilds on Patchy Resources
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which satisfies μ(0) = μ0, μ(ψ) = (μ0 − μ1)/2 and limT ! 1 μ(T) = μ1. The intergeneration
computations are then repeated for T = 1,2,. . ., until terminating at T = G, the end of the
Epoch, at which point the genotypes (parameter values) are noted and the performance of the
phenotypes evaluated.

The exploratory simulations were then followed by a comparison of clonal with random
hermaphroditic sexual mating, and under an assumption of diploid genetics under codomi-
nance for the three trait parameters involved. Thus, for the diploid system, the progeny param-
eter values are averages of two alleles: one from each parent segregated at random during
“meiosis.”

Landscape perception and movement computations
General Movement Process Algorithm. The movement process itself, as described in

general terms in Nathan et al. [36], requires an agent to make movement decisions based both
on its internal state and the state of its environment. The sequence of information considered
as part of the general process of making the decision where and when to move, is follows.

Evaluate environment: each agent Aa, a = 1,⋯, NA, computes a state vector Ea(t) associated
with its local environment, as it may pertain to the location of

- resources such as food, water or shelter

- conspecifics for either protection, social or antagonistic interactions, mitigation of compe-
tition, fear, or mating behavior

- location of heterospecifics that may be competitors, predators, prey items, etc.

Initiate movement decision computation: each agent feeds the environmental information
computed above, along with its internal state—such as, degree of hunger, thirst, fear, states
of internal diurnal and seasonal clocks, memory states—into its “brain.”

Complete movement decision computation: based on environmental input Ea(t) and internal
state Ba(t), agent Aa carries out a computation that yields a movement designator
Ma

pa
EaðtÞ;BaðtÞÞð Þ:

Execute action: The designatorMa
pa

EaðtÞ;BaðtÞÞð Þ will either specify that agent a should stay
(i.e., La(t + 1) = La(t)) or move to new location La(t + 1) (identified as a specific cell La(t + 1)
= Ci,j).

The ability of individuals to quantify their local environment will depend on the sensory
machinery they possess. For example, they may have visual capabilities with acuity reduced
with distance and influenced by the local topography of the landscape; or, they may be able to
process olfactory or auditory cues that depend on local wind direction and landscape features.
This information, along with information on their current internal states, is then fed into a
computational module that uses either a mathematical function or a dynamical systems com-
putation to produce an answer to the questions being addressed.

As already mentioned, in the NOVA platform agents can move over a landscape specified by
a rectangular or hexagonal cellular array of any dimension. The two approaches are contrasted
in S2 Text, though we use the Moore Neighborhood approach outlined below, where move-
ment is formulated in terms of eight neighboring cells that occur on rectangular arrays (cf.
Figure in S2 Text).

Moore Neighborhood Movement (resources and competitors). The three-parameter
model, presented here, is but one example of how to set up a movement decision process that

Evolution of Foraging Guilds on Patchy Resources
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considers tradeoffs among the relative values of obtaining resources, avoiding competition, and
investing energy to move.

1. For all cells in the array, using a single index label k (e.g. Ci,j, i = 1, . . ., ni, j = 1, . . ., nj can be
labeled k = i + (j − 1)ni, for k = 1, . . ., ni nj), Rk denotes the resources in cell k and RM

k

denotes the average of the resources across all eight cells in the Moore neighborhood of cell
k. Note that at an individual agent level a local neighbor labeling is more convenient (cf. left
panel of Figure in S2 Text), in which case later translation to a global labeling of cells is
required.

2. Similarly, for all cells in the array, Jk denotes the number of agents in cell k and JMk denotes
the average number of agents in the eight cells of the Moore neighborhood of cell k.

3. For each agent Aa, a = 1, . . ., NA, at time t, identify its current location La(t).

4. Then labeling La(t) as cell 0, for agent generate the environmental vector introduced in the
previous subsection.

EaðtÞ ¼ fR0; J0;R1;R
M
1 ; J1; J

M
1 ; . . . ;R8;R

M
8 ; J8; J

M
8 g;

which is then used to implement (in a series of logical statements) the movement designator
Ma
pa
.

5. Given parameters α� 0 and δ� 0, which we will respectively refer to as the neighbor-dis-
count and competition-tradeoff parameters, assign the following values to each of the eight
cells neighboring Ck:

V‘ ¼ R‘ � dJ‘ þ aðRM
‘ � dJM‘ Þ ‘ ¼ 0; . . . ; 8

6. Given parameter ρ� 0, which we refer to as themovement-threshold parameter, apply the
movement rule

If V0 > 0 and
V‘

V0

< r i ¼ 1; . . . ; 6 Then Stay

ElseMove to cell i; where i ¼ argmaxfV‘j‘ ¼ 0; . . . ; 8g
Note, in this algorithm, if the element V0 in the list is the largest, then theMove is to stay in
the current cell, but the cost calculated in the updating section will be as though the individ-
ual moved. Of course, this can be modified in anyway we think appropriate. Also, note that

the movement parameter vector pa = (α, δ, ρ)0 is agent specific.

Intragenerational updating
At the start of each generation, T = 1, . . ., G, the simworld aggregator (central green/purple
chip in the middle panel in Fig 2) is initialized by assigning to each cell an initial resource value
Rk(0), k = 1, . . ., ni nj (i.e., using the single index convention mentioned in point 1 in the sub-
section above), that is chosen at random to be in the range [Rmin, Rmax]. Of course, more
sophisticated approaches can assign the resource values in some aggregated or contagious way.
The new group of agents Aa, a = 1, . . ., NA, whose genotypes have been determined by the
reproductive process outlined earlier, are then assigned to cells (the simplest is a random
assignment), as well as assigned a set of initial state values Ba(0), a = 1, . . ., NA, which in the
simplest case may all be the same. Once these assignments have been made, the

Evolution of Foraging Guilds on Patchy Resources

PLOS ONE | DOI:10.1371/journal.pone.0133732 August 14, 2015 8 / 23



intragenerational ecological dynamics, in which cell resource values Rk(t) and agent locations
and values (La(t), Ba(t)) are updated, can be applied.

In formulating our updating equations, we confine ourselves to separately identifying the
agent Aa’s internal state Ba(t) (i.e., its biomass) and location La(t) at time t as scalar values.
Also, in referring to the movement designatorMa(t), we have dropped reference to the move-
ment parameters pa; since, although they are agent specific, they are unchanging over each
intragenerational simulation. For notational convenience, we use AGENTk to represent the set of
Nk(t) agents remaining in cell Ck after movement has been implemented at time t, and similarly
use Na(t) to represent the number of agents occupying cell La(t) at time t, after movement has
occurred. We also consider the state of cell k only in terms of a scalar resource value Rk(t), fully
recognizing that a more general approach requires a vector description.

Since we are focusing on consumer-resource interactions [37–39], the key to specifying our
updating equations at time t + 1 is first to evaluate the movement designatorsMa(t) for each
agent, then to formulate the resources acquired by agent Aa, if it stays within a cell to extract
resources, and the resources extracted from cell Ck by those agents that do not move during the
interval [t, t + 1]. With these conventions the following equations are used.

Intragenerational Updating Equations. After the initial agent state values Ba(0), and agent cell
locations La(0) = Ck (the initial cell k that agent a is placed in), for some k = 1, . . ., ni nj,
have been selected for a + 1, . . ., NA, then for t = 1, . . ., n the following updating procedure
is followed, employing the following parameters (which in more advanced applications can
be made agent specific): the maximum resource extraction rate u, the extraction-efficiency
parameter h, the competition parameter q, the biomass-conversion-rate parameter κ, the
metabolic-loss-rate parameter c, the resource-intrinsic-growth-rate parameter r, reservoir
parameter g and saturation parameter s:

Calculate Laðt þ 1Þ; a ¼ 1; . . . ;NA; using rules specified above

Identify agents remaining in Ck to obtain sets Agentk; size NkðtÞ

Calculate Aa extraction in Ck: FkðtÞ ¼ min
RkðtÞ
NkðtÞ

;
uRkðtÞ

hþ RkðtÞ þ qNkðtÞ
� �

If agent Aa Stays; then : Baðt þ 1Þ ¼ BaðtÞ þ kFkðtÞ
If agent Aa Moves; then : Baðt þ 1Þ ¼ ð1� cÞBaðtÞ

Calc: Ck extraction by Agentk: R�
kðtÞ ¼ RkðtÞ � NkðtÞFkðtÞ

Update Ck: Rkðt þ 1Þ ¼ R�
kðtÞ þ r 1� R�

kðtÞ
s

� �
R�
kðtÞ þ g

� �

We note that resource growth equation for Rk(t + 1) is the same for each cell: that is, r, s and
g, in the last equation above, are not cell specific. A thorough examination of the impacts of
resource heterogeneity on the evolutionary ecology processes considered in this paper, requires
these parameters to depend on k; and, also, u, h and q could be made patch specific. Consider-
ing this level of heterogeneity requires elaboration beyond the detail of this presentation.

Epochal implementation
At the completion of each intergenerational cycle, after implementation of the reproductive
process, the clock T is advanced, and the cycle is repeated (cf. the right-hand panel of Fig 2).
During each reproductive cycle, the progeny of the fittest agents’ parameters are mutated, so it
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might be useful to monitor the reproducing-population average of this fitness measure (i.e. bio-
mass of an agent at the end of its intragenerational cycle), as the population evolves.

It is useful during the simulation to keep track of the values of selected parameters to see
how they evolve, since analyses of these values provide insight into the evolving movement
decision tradeoffs in response to resource heterogeneity levels, intensity of competition, and
other ecological parameters in the model. In our illustrative simulation results presented in the
next section, we focus on the evolution of the average final biomass �BðtÞ of the upper 50th per-
centile of the agents (i.e., those that reproduce) in each generation. We also follow the evolving
values of the neighbor-discount parameter α, the competition-tradeoff parameter δ and the
movement-threshold parameter ρ in determining the movement decision making process of the
fittest individuals, as the population evolves.

Exploratory Analysis
A primary source of heterogeneity in our model is the initial resource value of each patch.
Since this initial patch heterogeneity, compounded with stochastic aspects of the model, creates
considerable variability in the output, we explored the behavior of the model with this hetero-
geneity removed: viz. we made the initial resource conditions near homogeneous by setting the
baseline initial range of patch values to [2.99,3.00] (Table 2: note the 0.01 difference between
the lower and upper values creates a small amount of stochasticity that renders initial move-
ments of agents stochastic rather than deterministic). We carried out a number of runs where
the initial resource patch values were random, uniformly distributed on [0,5.99] (i.e., the same
mean as above); and found that all our results were qualitatively the same as those presented
below.

In our first set of simulations, we considered the simplest case of two agents (NA = 2) and
executed three separate runs. The evolved parameter values and the average fitness values for
the two agents at the final time T = 200 are provided in Table 3. The results suggest that the

Table 2. Baseline Parameter Values.

Parameter Description Value

[Rmin, Rmax] patch initial resource range each generation [2.99,3.00]

s resource saturation in a patch 20

g resource reservoir level 0.1

r resource intrinsic growth rate 0.1

u maximum extraction rate 10

h half-saturation efficiency 20

q intraspecific competition 0.5

c cost of moving 0.1

κ consumer biomass conversion 0.1

μ0 initial maximum mutation size* 0.1

μ1 asymptotic maximum mutation size* 0.001

ψ mutation-scaling* 50

n length of intragenerational cycle 100

G number of generations in epochal cycle 200

α neighbor-discount evolution

δ competition-tradeoff evolution

ρ movement-threshold evolution

*see Eq 1

doi:10.1371/journal.pone.0133732.t002
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optimalmovement-threshold value for parameter ρ is around the low 0.70s, while different
combinations of values for the neighbor-discount and competition-tradeoff parameters α and δ
respectively are possible. Some variation in fitness across runs occurs because the probability
that two individuals get close to one another at any time during the simulation has a stochastic
component, which then impacts individuals through competitive processes included in the
resource extraction process and movement to patches previously visited by other consumers.

In our second set of simulations, we considered the low-density case of ten agents (ten
agents on 400 patches is a density of 0.025 individuals per patch). In two different runs, the
population evolved to a particular movement type rather than to a coalition or guild of move-
ment types (i.e., a movement-type monomorphism versus a polymorphism); but, again, the
types differed from run to run, as illustrated in Fig 3 (note: fitness is on the horizontal axis in
this figure but on the vertical axes in subsequent figures). In these two cases, the average fitness
values were 31.0 and 28.5 respectively, which is around 6 to 14% less than in the two-agent
case, the difference being explained by the stochastic variations in the cost of avoiding competi-
tion and the slightly lower availability of resources when individuals have 9 rather than just
one other agent to avoid (as discussed below).

In our third set of simulations, we increased the density of agents to 50 agents and in a
fourth set of runs to 100 agents (i.e., densities of 0.125 and 0.25 individuals per patch respec-
tively). Now the evolved outcomes after 200 generations become more interesting and struc-
tured than the low density 10-agent case. In two runs of 50 agents, the populations evolved into
a 2–3 movement type polymorphism. For example, in Run 1 of the 50 agent case (top panel of
Fig 4), we see a phenotype around ρ = 0.5 that actually appears to be two phenotypes with

Table 3. Results for two agents.

Run α δ ρ Fitness Value
competition tradeoff neighbor discount movement threshold

1 0.73 0.14 0.75 32.6

2 0.33 0.22 0.76 32.8

3 0.46 0.54 0.72 33.1

doi:10.1371/journal.pone.0133732.t003

Fig 3. Evolved values of parameters (introduced in the Moore neighborhoodmovement section
above). The left and right panels are the result from two different 10-agent runs using the same baseline data
(Table 2). Parameter values for each of the ten agents in the final generation (T = 200) are plotted as a
function of their fitnesses (ranging from 30 to 33). The evolved neighbor-discount parameter α (green
triangles), competition-tradeoff parameter δ (red squares), andmovement-threshold parameter ρ (blue
diamonds), across the 10 agents differ, in the two runs; but yield similar fitness distributions, although the left
panel shows a little more chance variance than the right.

doi:10.1371/journal.pone.0133732.g003
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similar ρ values, and a phenotype with ρ = 0.7. In two runs of 100 agents, the populations
evolved into around six different phenotypes in each case, (bottom two panels of Fig 4), though
a couple of these phenotypes appear to have very similar ρ values.

Of course, evolution is an ongoing process, so we cannot be sure how the movement poly-
morphisms, illustrated in Fig 4, may continue to evolve after T = 200. To investigate this ques-
tion, we took a detailed look at the evolutionary process over time by conducting a third run of
the 100-agent case and taking snapshots of the evolving values of ρ at times T = 1, 50, 100, 150
and 200 (Fig 5). In this case, we see in the top left panel of Fig 5 that initially (T = 1) all values
of ρ 2 [0, 1] are evident (due to distributed selection of initial values of ρ), with low values of ρ
(on the interval [0,0.25]) and values around 1 exhibiting low or even zero fitness. By the 50th

generation, the value of ρ for most agents lies between 0.3 and 0.8, with the upper threshold
dropping below 0.7 by the 100th generation. Beyond generation 100, a polymorphism of several
movement types begins to emerge with all values of ρ roughly between 0.25, and 0.6. The het-
erogeneity in fitness across each morph (i.e., the vertical spread for each of the ρ values) is due
primarily to chance events in which some individuals find themselves initially distributed
over the landscape in denser areas than others. We note for the lowest panel in Fig 5, which
depicts the average fitness plus/minus one standard deviation, in the value of ρ over the full
200-generation evolutionary epoch. We see that, initially, the high level of variance settles

Fig 4. Evolved values of the movement-threshold parameter ρ. The four panels provide snapshots of the
final values of ρ (T = 200), which range between just under 0.3 and just over 0.70 for the two 50-agent (two
upper panels) and two 100-agent (two lower panels) runs, using the same baseline parameter values listed in
Table 2.

doi:10.1371/journal.pone.0133732.g004

Evolution of Foraging Guilds on Patchy Resources

PLOS ONE | DOI:10.1371/journal.pone.0133732 August 14, 2015 12 / 23



down and reaches a minimum around T = 70, when all the unfit individuals (i.e., those possess-
ing low (< 0.25) and high (> 0.65) values of ρ) have been purged from the population. After
that the variance begins to rise as the population organizes itself in polymorphism of around a
half-dozen movement types on the interval ρ 2 [0.25,0.65].

The trend of increasing diversity in movement-type polymorphisms that evolves with
increasing numbers of individuals is seen in a simulation with 150-agents. In Fig 6, we see that
eight movement types emerge, as indicated by the 8 different colored arrows pointing to
parameter triplets, (α, δ, ρ), where each color represents the parameter values associated with
one type. These eight types are clearly indicated with regard to parameters ρ and δ, but three of
the types that all have small ρ values (i.e., resist moving unless their current patch has relatively
few resources) also have α values that are close to zero. This latter situation indicates an indif-
ference to the resource and competitor values of second-tier neighbors (cells that are distance
one removed for each individual’s immediate neighbors). For those individuals that are most
likely to move out of their current cells (i.e., the green arrow, which corresponds to ρ� 0.5),
second-tier neighbors are relatively important (i.e., α = 0.9 for the green arrow type: see
extreme left of upper left panel of Fig 6). We note that δ values can be both below and above 1,
with the former weighting resources over competition and the latter associated with highly
competition averse movement types. It is not surprising to see a high degree of polymorphism
in the competition avoidance parameter δ since, if some individuals avoid competitors others
can be more lax about avoiding competitors; in the extreme situation of all but one individual

Fig 5. Evolution of the movement-threshold value ρ. The five scatter graphs (top two rows) represents
snapshots over a particular 200-generation (T), 100-agent run of the parameter values ρ at times
T = 1,50,100,150 and 200. The lower panel depicts the mean plus/minus the standard deviation of the values
of ρ for the 100 agents over the interval 0� T� 200.

doi:10.1371/journal.pone.0133732.g005
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avoiding competitors, this individual can ignore the competition issue that is being taken care
of by the others.

Our final simulation in our exploratory series of clonally reproducing agent guilds was for
the high density case of 200 agents. We then plotted the average 200-generation fitness trajec-
tory obtain from this simulation along with representative runs for 2, 10, 50, 100, and
150-agent cases, as well as an exploratory run (see Figure in S3 Text) of 100 sexually reproduc-
ing hermaphroditic agents. In all cases, except the 2-agent case, the population rises within a
few generations to reach the highest average fitness levels (Fig 7), with selection over time then
having little effect on average fitness and, in some cases, even declining slightly (notice the
slight downward trend in the 50, 100, and 150 agent cases in Fig 7). The reason for this slight
downward trend is that as agents evolve to behave optimally so competition for resources stiff-
ens to compensate for more effective movement decisions evolving at the individual level. Also
losing diversity over time, as selection produces just a few movement types, leads to less effi-
cient exploitation of resources from a population point of view—a phenomenon that is accen-
tuated under sexual reproduction, as explored further in the study reported in the next section.
The reason for the drop in biomass as the population evolved over time is that, from a popula-
tion point of view, it is more efficient to have several different behavioral morphs exploiting a
heterogeneous landscape, than just one type. Sexual reproduction, under the unrealistic
assumption that we can ignore allelic structure when determining phenotype (i.e. by just
assuming progeny are an average of their parents phenotype), results in a “fittest” behavioral
type that may have locally maximized individual fitness in each generation, but has not maxi-
mized the collective biomass production rates of the evolved guild. This result suggests that it
might be useful to undertake, as reported in the next section, a more detailed study of differ-
ences between the evolution of foraging guilds under clonal versus sexual reproduction, using a
more realistic model of sexual reproduction that accounts for allelic structure in diploid organ-
isms. This increase in realism leads to dramatically different conclusions regarding the emer-
gent phenotypic structure of the evolved guild, thereby providing a cautionary tail against
oversimplification.

Fig 6. Evolved parameter values of different movement types in the 150-agent case. The final values
(T = 200) of the three parameters ρ (blue diamonds), α (green triangles) and δ (red squares) are plotted for
150 individuals agents in the simulation, which we see have self-organized into eight different movement
types (movement polymorphism), identified by the eight variously colored arrows: same colored arrows
identify three parameter values that define each of the eight movement types.

doi:10.1371/journal.pone.0133732.g006
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Clonal versus Sexual Reproduction
Our exploratory results support the hypothesis that the evolving collective biomass production
efficiencies of clonally and sexually reproducing guilds of foragers, exploiting resources over
patchy landscapes, are likely to differ considerably over time. To further address this hypothe-
sis, we modified the sexual component of the simulation model discussed above to incorporate
diploid genetics in which the behavioral phenotype of individuals (i.e. the expressed values of
the trait parameters α, δ and ρ) is computed by averaging across two allelic values for each of
the three phenotypic traits (i.e. codominent genes), where one allelic value for each trait is
inherited from each parent following Mendelian rules for diploid genetic systems (random
mating, random assortment of alleles, no linkage among traits). We did not assign a sex to
agents, so the interpretation is that we are dealing with hermaphroditic (or monoecious)
systems.

We compared simulations (i.e. runs) using our hermaphroditic mating version of our
model with the clonal version used in the exploratory phase for the cases of 60, 100 and 140
agents (note: we selected agent numbers divisible by four since each pair of parents produces 4
progeny). Output from initial simulations suggested that we should extend the 200 generation
simulation interval used in our exploratory studies to 250 generations to obtain a better per-
spective on the long term behavior of our system. We repeated each simulation 50 times for the
two reproduction modes (clonal and random) and the three agent densities (60, 100, 140). The
total biomass produced (i.e. accumulated by each individual and summed across all individu-
als) each generation by each guild of agents for each of the different cases, was averaged over
all the runs undertaken. The means and standard deviations over these fifty runs are plotted in
Fig 8.

Fig 7. Time course of average fitness. (i.e., final biomass Ba(n) among NA agents). The average fitness is
plotted over T = 1,. . .,200 generations for illustrative runs with the following number of clonal reproducing
individuals, except for one sexually reproducing group, as indicated: 2 (blue), 10 (red), 50 (green), 100
(purple), 100 with sexual reproduction (turquoise), 150 (orange) and 200 (grey) agents.

doi:10.1371/journal.pone.0133732.g007
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As expected, based on our exploratory results, the total amount of biomass produced by
each guild of foragers in each generation was highly compensatory in terms of the number of
agents, with both clonally and sexually reproducing guilds of 60 agents able to collectively pro-
duce almost as much each generation as guilds of 100 agents. As the number of agents
increases, though, biomass production is hindered by competition, which we see in terms of a
noticeable drop in total biomass produced by the 140-agent guild compareds with the corre-
sponding (with regard to reproductive system) 100-agent guilds. Thus, guild exploitation is,
in fact, overcompensatory. To formally test the significance of our results, we divided our
simulations into two phases: an initial 125-generation “burn in” phase, and the subsequent
125-generation “approach to equilibrium” phase. From Fig 8 though, it appears in some cases
that an equilibrium has been reached, while in others (e.g. the 60 agent random and 100 agent
clonal cases) the amount produced over generations 126 to 250 appears to be declining slightly
over time. The results of this analysis are tabulated in Table 4, where we see clonally evolving
guilds of foragers produce more biomass in total over both phases of the evolutionary process
than randomly mating guilds of foragers. We also expected greater levels of variation associated
with the randomly mating guilds, but this was only true (i.e. highly significant) for the
100-agent and 140-agent cases. In the 60-agent case, the reverse was true, with randomly

Fig 8. Evolving biomass production efficiency of guilds. Total biomass produced per generation (solid
lines are averages over n runs, dotted lines are plus and minus one standard deviation) under clonal
reproduction (red) and randommating (blue), by evolving guilds over 250 generations of, respectively from
left to right, 60 (n = 50), 100 (n = 50), and 140 agent (n = 50) guilds of foragers. For a reference to these data
see S4 Text.

doi:10.1371/journal.pone.0133732.g008

Table 4. Foraging guild biomass extraction efficiency: total produced over the two labeled 125-generation periods.

Period Clonal Random mating Two-sided T-test*

Biomass
ffiffiffiffiffiffiffiffiffiffi
Var1

p
Biomass

ffiffiffiffiffiffiffiffiffiffi
Var2

p
Significance Var1 6¼ Var2

60 Agents n = 50

1–125 122829 1769 116409 1067 p < 0.0001 p � 0.0006

126–250 122286 41272 115044 2644 p < 0.000 p � 0.0022

100 Agents n = 50

1–125 131857 1739 112606 3440 p < 0.0001 p < 0.0001

126–250 136228 2958 124074 10136 p < 0.0001 p < 0.0001

140 Agents n = 50

1–125 116017 1764 96895 7645 p < 0.0001 p < 0.0001

126–250 119859 3129 101711 10854 p < 0.0001 p < 0.0001

* Tests run at URL: http://www.quantitativeskills.com/sisa/statistics/t-test.htm

doi:10.1371/journal.pone.0133732.t004

Evolution of Foraging Guilds on Patchy Resources

PLOS ONE | DOI:10.1371/journal.pone.0133732 August 14, 2015 16 / 23

http://www.quantitativeskills.com/sisa/statistics/t-test.htm


mating guilds showing significantly less variation than clonally mating guilds. The major dif-
ference between the 60-agent versus the 100 and 140-agent cases is that in the latter two inter-
specific competition becomes a much more important factor, as seen from the compensatory
behavior of the total biomass produced by the guild in the 60-agent, 100-agent, and 140-agent
comparisons (Fig 8).

To understand in more detail the genetic structure of the foraging guilds that evolve under
random mating, we plotted the parameter values that emerged in the first two runs of our
50-run, 140-agent simulations (Fig 9), and tabulated (Table 5) the allelic aspects of the first of
these runs (left panel in Fig 9). For comparative purposes, we also tabulated (Table 5) the phe-
notypic trait values for the first of our 50-run, 140-agent clonal reproduction simulations. In
Table 5, we see for the clonal case that seven foraging phenotypes evolved from a random mat-
ing configuration during the 250-generation evolutionary epoch. The neighbor-discount
parameter α exhibits the widest range of variation (around 0.06 to 1.52, noting that the values

Fig 9. Evolved values of parameters under randommating. Parameter phenotype values for each of the
140 agents in the final generation (T = 250) of the first two of 50 simulations are plotted as a function of their
fitnesses (ranging from 0 to 12). The evolved neighbor-discount parameter α (green triangles), competition-
tradeoff parameter δ (red squares), andmovement-threshold parameter ρ (blue diamonds), across the 140
agents differ in the two runs and show different degrees of dispersion, but reflect both heterogeneous and
homogeneous phenotypes: viz. in Run 1 we see six α phenotypes that arise from the emergence of three
alleles, as discussed in Table 5.

doi:10.1371/journal.pone.0133732.g009
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in Table 5 are the evolved values multiplied by 103), while the competition-tradeoff δ and
movement-threshold parameter ρ exhibit considerably less variation (around -0.03 to 0.04, and
0.12 to 0.21, respectively). For the random mating case, the phenotypic trait values can be
unpacked according to underlying diploid genotypes. In Run 1 (left panel of Fig 9), as with the
first clonal run, we see that the neighbor-discount parameter α exhibits the widest range of var-
iation compared with competition-tradeoff δ and movement-threshold ρ parameter values.
The results of Run 2 (right panel of Fig 9) are different, though, in that the movement-thresh-
old parameter ρ now exhibits the widest range of variation, but noticeable variation in the
other two parameters is still evident. In Run 1, the underlying genetic basis of the the six neigh-
bor-discount α phenotypes are three distinct alleles (also the values of the homozygote pheno-
types because of codominant averaging), as indicated in the Table 5, that have the approximate
(because of mutational variation) values 0.045, 0.645 and 1.03 respectively, with the three pos-
sible heterozygote phenotypes being the intermediate to these values. In Run 2, we see a num-
ber of phenotypes that have evolved, with the underlying genetic structure, as evident in the
right panel of Fig 9 that the phenotypes are based on two alleles (one close to 0.7 and one to
0.8) for the competition-tradeoff trait, three alleles (all three relatively close in value, lying
between 0.40 and 0.55) for the neighbor-discount trait, and three alleles (more spread out in
value between 0.1 and 0.8) for the movement-threshold trait. We note in Table 5 that the
140-agents are in Hardy-Weinberg equilibrium, which is expected since this equilibrium arises
in the progeny due to random mating and random segregation of alleles. Selection only acts at
the end of each generation, when individuals are sorted according to how much biomass they
have produced. We hypothesize that evolved random mating guilds are less efficient than
evolved clonally reproducing guilds, as evident in Fig 9, because heterozygotes are constrained

Table 5. Foraging guild phenotypes at the end of 140 agent exemplar runs.

Clonal reproduction Parameter phenotype values

Type Number α × 103 δ × 103 ρ × 103 Biomass

1 52 67 ± 3 23 ± 2 192 ± 5 6.3 ± 2.2

2 12 209 ± 2 37 ± 1 206 ± 2 6.8 ± 1.2

3 18 240 ± 1 9 ± 5 204 ± 3 7.0 ± 2.0

4 22 758 ± 2 7 ± 2 156 ± 5 7.3 ± 2.5

5 4 808 ± 1 42 ± 1 180 ± 3 7.1 ± 1.6

6 20 1191 ± 2 26 ± 3 157 ± 2 6.8 ± 2.7

7 12 1520 ± 01 −31 ± 1 124 ± 2 5.8 ± 3.7

Total 140 6.6 ± 2.4

Random mating Parameter phenotype values

Type Obs (Exp‡) α × 103 δ × 103 ρ × 103 Biomass

Genotypes †

α1 α1 δδρρ 22 (20.8) 45 ± 5 9 ± 13 188 ± 9 7.3 ± 1.8

α1 α2 δδρρ 38 (37.0) 345 ± 5 18 ± 14 189 ± 9 7.1 ± 1.5

α2 α2 δδρρ 18 (16.5) 645 ± 4 18 ± 9 188 ± 8 7.2 ± 2.1

α2 α3 δδρρ 22 (26.1) 864 ± 3 19 ± 11 187 ± 7 5.9 ± 2.4

α3 α3 δδρρ 14 (10.3) 1031 ± 4 18 ± 15 188 ± 7 7.05 ± 2.5

α1 α3 δδρρ 26 (29.3) 562 ± 5 19 ± 8 1928 ± 8 6.8 ± 2.4

Total 140 6.9 ± 2.1

† Although more than one allele is evident for δ and ρ that variation is low (cf. left panel in Fig 9): so we only sort on α
‡ Hardy-Weinberg equilibrium theory: differences between observed and expected not significant

doi:10.1371/journal.pone.0133732.t005
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to be intermediate to homozygotes in the random mating case, while clonal phenotype strategy
guilds are not under such constraints, allowing them to be optimally spaced by the evolutionary
process. Such an analysis, however, is beyond the scope of this paper, particularly since other
factors in our model (such as hard versus soft selection) need to be modified to make our simu-
lations more realistic, as discussed in the next section.

Discussion and Conclusion
Analyses of hierarchical, multi-scale ecological systems have long been of concern to ecologists
[40]. It is only in the last decade, however, that it has become reasonable to simulate such sys-
tems in terms of access to adequate, inexpensive computational power. Methodologies for eval-
uating the output of complex systems have been discussed for nearly two decades [41–43], but
our ability to communicate the structure of complex ecological models remains hampered by
the lack of facility to visually understand the structure of modules at different hierarchical lev-
els (but see Fig 2). Frameworks have been proposed for modeling complex systems (e.g. com-
plex adaptive landscape (CAL) framework for modeling complex adaptive systems occurring
on heterogeneously structured landscapes [44]), particularly across multiples scales when spa-
tial structure is included (cf. [45] in the context of epidemiological systems). Increasingly, sci-
entists are making their code available to others to build upon; but this code typically does not
help in visualizing the underlying model structure. For example, a recent, agent-based model-
ing study to assess the impact of landscape fragmentation on diseases transmission [46],
included details of the model written in Java; but, as such, the code is only accessible to experi-
enced Java programmers as a basis for building more elaborate models.

In the model developed here, we have endeavored to make the underlying architecture of
our code as transparent as possible, by providing figures of the NOVA model components at
each hierarchical level of the four nested computational clocks employed in our analysis (indi-
viduals in cells, intragenerational, evolutionary epoch, repeated simulations to obtain statistical
data). This level of visualization of model design is a departure from our previous agent-based
studies, written in MATLAB [47]. These earlier MATLAB models were used to address ques-
tions regarding the evolution of specialization among individuals exploiting a mix of resource
types (the leitmotif being insects selecting different plant types on which to lay their eggs—see
[20]), and provide insight into the emergence of Batesian mimicry among vulnerable
“resource-individuals” trying to mimic the aposematic signals of individuals protected from
exploitation [32]. In the first of these earlier studies, we modeled a mix of generalists and spe-
cialist exploiters, in terms of how these exploiters use several versus only one type of plant. In
these systems, a guild of exploiter types typically emerged, much as in our results reported
here. These new results reveal the following characteristics that we could not a priori infer or
anticipate: i) the number of foraging strategy types emerging as a result of clonal reproduction
varied and increased with the density of agents per unit cell; ii) the foraging strategy types that
constituted an emerging polymorphism under clonal reproduction varied with runs, but
showed some repeatable and some variable characteristics (e.g. at the very low densities of 2 to
10 agents, the movement-threshold parameter ρ evolved each time to a value in the range 0.7
to 0.8, though the other two parameters could vary greatly, as in the neighbor-discount param-
eter α evolving to 0 or to 1); iii.) under random mating, foraging strategy polymorphisms
evolve and create several distinct alleles per trait.

The existence of polymorphisms is a necessary but not sufficient precursor for the occur-
rence of sympatric speciation ([31, 48, 49]). Holmgren and colleagues studied the process of
speciation among individuals specializing in exploiting particular resource types by, first,
replacing clonal reproduction with sexual reproduction and then studying the divergence of
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specialists in the context of assortative mating within particular exploiter types [32]. In the
study reported here, we found that it was not necessary to have assortative mating for the
maintenance of strategy polymorphisms or, more surprisingly, even more than one resource
type. Such polymorphisms are a precursor for the occurrence of sympatric speciation on pat-
chy landscapes: i.e. a precursor for heteropatric speciation, as defined by Getz and Kaitala [50].
The inclusion of assortative mating in future studies, facilitated say through the inclusion of
metapopulation structures or genes for mate selection linked to genes for strategy type (as dis-
cussed by Norrstrom et al. in the context of habitat selection [31]), is likely to enhance the
emergence and maintenance of diverse foraging strategy guilds and, ultimately, sympatric
speciation.

Computational methods have been used to address questions relating to the behavior of
populations in the context of complex systems theory, with the emergence of collective behav-
ior of biological populations being a case in point. In the past, such questions have typically
been of a rather general or theoretical nature [51–53], as are the questions addressed here
regarding the emergence of polymorphisms of foraging strategy types and how such polymor-
phisms may be affected by sexual reproduction. This work could easily be extended by, say,
including a more sophisticated treatment of patch heterogeneity in terms of growth and recov-
ery rates of resources within patches, the effects of patch aggregation and landscape structure
on movement behavior [54], and the effects of assortative or disassortative mating structures
on the emergence of behavioral (forging strategy in our case) polymorphisms (e.g. see [31,
55]). Also, the assumption of hard selection (i.e. a fixed number of progeny are produced each
generation) could be replaced with a soft selection assumption (i.e. the fecundity of individuals
depends on the amount of biomass they produce each generation) to make the models ecolog-
ically more realistic [56]. Within such an extended framework, a host of interesting evolution-
ary questions can be investigated as they may relate to the emergence or existence of
dominant/recessive allelic relationships, recognition systems, sex-ratio dynamics, sexual selec-
tion and so on. Since the options appear to be innumerable, beyond purely theoretical ques-
tions the development and application of models is best executed with specific systems in
mind. Cases in point are computationally intensive models used to investigate the carrion find-
ing strategies of griffon vultures [57] or predict the movement of banana stem weevils in the
banana plantations [58].

Although it has been easier in the past to use agent-based models to address general rather
than specific-systems questions, because the latter generally have “many more moving parts”
and involve landscape specific data handled by GIS software, we have no doubt that the field of
systems-specific computational biology will burgeon, as the capabilities of software grow to
easily code and handle such models. We have demonstrated here that the Nova platform is
moving us towards these desired software capabilities. As a result of reducing the considerable
burden of coding complex agent-based models and casting them within a genetic algorithmic
framework that now is easily implemented using the Nova platform, in the future we should be
able to study evolutionary process with much greater ease. We anticipate that such studies will
lead to a plethora of now insights, with the study reported here providing a taste of things to
come. In particular, we provide incontrovertible evidence here that a population of randomly
mating foragers, exploiting a single, randomly-distributed set of resource patches can (and may
well be likely to) evolve into and be maintained as a polymorphic foraging-strategy guild.
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