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ABSTRACT OF THE DISSERTATION

Multi-Modal Retinal Image Registration via Deep Neural Networks

by

Junkang Zhang
Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)
University of California San Diego, 2022

Professor Truong Q. Nguyen, Chair

Multi-modal retinal images provide complementary anatomical information at various
resolutions, color wavelengths, and fields of view. Aligning multi-modal images will establish a
comprehensive view of the retina and benefit the screening and diagnosis of eye diseases. However,
the inconsistent anatomical patterns across modalities create outliers in feature matching, and the
lack of retinal boundaries may also fool the intensity-based alignment metrics, both of which will
influence the alignment qualities. Besides, the varying distortion levels across Ultra-Widefield
(UWF) and Narrow-Angle (NA) images, due to different camera parameters, will cause large
alignment errors in global transformation.

In addressing the issue of inconsistent patterns, we use retinal vasculature as a common

X1v



signal for alignment. First, we build a two-step coarse-to-fine registration pipeline fully based on
deep neural networks. The coarse alignment step estimates a global transformation via vessel
segmentation, feature detection and description, and outlier rejection. While the fine alignment
step corrects the remaining misalignment through deformable registration. In addition, we propose
an unsupervised learning scheme based on style transfer to jointly train the networks for vessel
segmentation and deformable registration. Finally, we also introduce Monogenical Phase signal
as an alternative guidance in training the deformable registration network.

Then, to deal with the issue of various distortion levels across UWF and NA modalities,
we propose a distortion correction function to create images with similar distortion levels. Based
on the assumptions of spherical eyeball shape and fixed UWF camera pose, the function reprojects
the UWF pixels by an estimated correction camera with similar parameters as the NA camera.
Besides, we incorporate the function into the coarse alignment networks which will simultaneously
optimize the correction camera pose and refine the global alignment results.

Moreover, to further reduce misalignment from the UWF-to-NA global registration, we
estimate a 3D dense scene for the UWF pixels to represent a more flexible eyeball shape. Both
the scene and the NA camera parameters are iteratively optimized to reduce the alignment error
between the 3D-to-2D reprojected images and the original ones, which is also concatenated with

the coarse alignment networks with distortion correction function.
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1 Introduction

Retinal imaging plays an important role in ophthalmological diagnosis and treatment.
Since modern imaging techniques can image retina in multiple modalities that demonstrate
various levels of anatomical information, aligning multi-modal images can further provide a com-
prehensive view of the retina for more effective screening and grading of eye diseases. However,
there are two main challenges in aligning multi-modal retinal images. First the alignment quality
is influenced by the inconsistent cross-modal retinal patterns which generate ourliers in image
matching, as well as the lack of anatomical boundaries which may fool the intensity-based metrics.
Second, the varying distortion levels across modalities also cause misalignment that cannot be
corrected by conventional global transformations, where the alignment between wide-angle and
narrow-images suffers most due to a special projection model used in the wide-angle imaging
process. In this thesis, we propose registration algorithms to address each of these issues. First,
we use the most prominent and consistent anatomical structure, i.e., retinal vasculature, as the
basis for both global and deformable registration, where we train vessel segmentation networks
by unsupervised style transfer techniques to achieve this purpose. Second, we propose a distortion
correction module to improve global alignment quality, where wide-angle images are remapped
based on the narrow-angle images’ view points before registration. Furthermore, we optimize a
dense 3D scene for the wide-angle images to reflect more details of the eyeball shape, such that

the remapped image can be accurately aligned with the narrow-angle image.
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Figure 1.1: An illustration of eye structure and retinal layers. [1]
1.1 Human Eye Structure and Retinal Imaging Modalities

The human eye structure of Fig. 1.1 [1] presents that the retina is a thin layer lying on
the back of the eye ball, between the vitreous body and choroid. In a more detailed partition, the
retina consists of multiple layers, including the layers of photoreceptor cells (rods and cones),
horizontal and bipolar cells (inner nuclear layer), ganglion cells, and nerve fibers [1]. The layer
of photoreceptors is supported by the pigment epithelium and the choroid [2].

Retina plays a crucial role in human vision, as it converts lights into nerve signals which
are transmitted into the brain to form visions. Since it may also suffer from various diseases
that can damage human vision, including Diabetic Retinopathy (DR), Diabetic Macular Edema
(DME), Age-related Macular Degeneration (AMD), Glaucoma, etc, the diagnosis and treatment
of these eye diseases is important to protect or recover the visions. Specially, various retinal
imaging modalities provide effective approaches for ophthalmologists to detect, recognize, and
measure the diseases. Current imaging modalities for 2D retinal structures include the following

aspects:

1. Fundus camera is a conventional and mostly-used retina imaging instrument. With the

retina illuminated by white light sources, the fundus camera can capture the retina’s image



(a) CF. (b) UWE. (c) MC.

(d) FA. (e) FAF.

Figure 1.2: Multi-modal images of a same eye.

in a single-shot, where reflected lights in different wavelength ranges can be captured by

applying different color filters in front of the sensor.

Color Fundus (CF) modality takes an image in red, green and, blue wavelengths using the
fundus camera. As the most cost-effective way for retinal imaging, CF has been widely
adopted in Diabetic Retinopathy (DR) early screening [3] and Diabetic Macular Edema
(DME) diagnosis. The disadvantages of CF include low contrast in retinal patterns, as well
as the inability of imaging peripheral retina areas using most conventional CF cameras, as

shown in sub-image Fig. 1.2 (a).

. Scanning Laser Ophthalmoscopy (SLO) is an alternative imaging technique which scans

and illuminates the retina by fixed-wavelength laser beams. Consequently, the captured



images suffer less noises from the optic paths and provide higher contrasts. Confocal SLO
(cSLO) technique further includes a confocal aperture in front of the light receiver, which
can image at certain depth in retina by suppressing out-of-focus lights [4,5]. SLO can be

used in several retinal image modalities.

MultiColor (MC) modality in the Heidelberg’s Spectralis system captures pseudo color
retinal images via SLO. It takes advantages of the retinal laser’s varying penetration abilities
at different wavelengths, i.e., , lights of longer wavelengths can reach deeper retinal layers
and even the choroid, while lights of shorter wavelengths are reflected on the superficial
retinal layers [5]. The color channel of MC consists of three retinal images captured at the
wavelengths of near infra-red, green, and blue colors, which enhances the view of retinal

structures and pathologies [5]. An example of a MC image is shown in sub-image Fig. 1.2

(c).

. Ultra-Widefield (UWF) imaging. Conventionally, in order to examine the peripheral retina
areas, multiple narrow-angle images are captured at different positions in retina and then
combined to create a wide-view image. For example, in the protocol of Early Treatment
Diabetic Retinopathy Study (ETDRS) [3], separate CF images are captured at 7 pre-defined
positions on retina, which increases the complexity of the operation. Alternatively, UWF
imaging systems can capture most retina areas in a single shot via specially designed
optics, which is faster and more convenient. Specifically, the Optos’s UWF system uses an
ellipsoidal mirror to create two focal points at the reflection position of laser source and
human eye’s pupil. When combined with the SLO technique, it can easily see the peripheral
retina areas with large angles by simply adjusting the direction of the reflected laser [6].

An example of a UWF pseudo color image is illustrated in sub-image Fig. 1.2 (b).

. Fluorescein Angiography (FA). By injecting fluorescein into blood vessels, the retinal

vasculature can be clearly imaged by either conventional fundus cameras or SLO techniques.



As the fluorescein travels from arteries to veins through capillaries, multi-stage images can
be captured to help localize eye diseases that change the vasculature. The FA modality is
helpful in identifying abnormal vessels as well as leakage areas [7]. An example of a FA

image is shown in sub-image Fig. 1.2 (d).

Indocyanine Green Angiography (ICGA) is an alternative modality to FA. Different from
FA, ICGA uses indocyanine green dye that fluoresces in the wavelength of infra-red lights.

It can help to visualize circulations in deeper retina layers, e.g. the choroidal vasculature [8].

5. Fundus Autofluorescence (FAF). As the retina contains several different fluorophores,
autofluorescence patterns can be obtained using lights at certain wavelengths with the cSLO
technique [5]. The mostly dominant fluorescence indicator in human eyes is lipofuscin in
the Retinal Pigment Epithelium (RPE) which excites on blue lights and emits yellow-green
lights [9]. Thus the FAF modality can help reveal diseases related to RPE and photoreceptor

cells. An example of a FAF image is shown in sub-image Fig. 1.2 (e).

1.2 Multi-Modal Retinal Image Registration

Multi-modal retinal images can capture various appearance of a same anatomical structure,
due to the distinct characteristics of each imaging techniques and modalities. Since aligning
these image can ensemble multi-level information and create a more comprehensive view of the
retina, it helps the detection of diseases and the estimation/grading of their development stages.
For example, early-stage AMD causes drusen (yellow deposits) in the macular area which are
visible in fundus cameras, as well as pigment changes in RPE which can be visualized in FAF
modality [10]. Thus, aligning CF and FAF modalities could contribute to more accurate diagnosis
and gradings of the AMD disease. In another example, CF images can provide true colors and act

as the standard modality for DR screening, while UWF can only capture pseudo color images



(e) ® ® (h)

Figure 1.3: Fluorescein Angiography (FA) image sequence, captured in the order from (a) to

(h).
but screen larger retina areas for diseases outside of CF’s coverage. The aligned CF and UWF
modalities can provide both true color and wide field of view to retina, which may improve the
effectiveness of DR screening.

However, there are two main challenges in multi-modal retinal image registration. First,
the registration accuracies may be limited by the inconsistency in anatomical and disease patterns
in various modalities, as well as the lack of object contours. As mentioned in Section 1.1, a same
retinal structure may appear differently in multiple modalities. For example, (1) the retina shows
low contrasts in fundus cameras (CF) but higher contrasts in SLO images (e.g., UWF and MC)
(Fig. 1.2). (2) Vessels have higher pixel intensities than backgrounds in FA images but lower
intensities in other modalities (Fig. 1.2), as well as varying intensities at different imaging stages
in the FA modality (Fig. 1.3). (3) The AMD lesions (yellow dots) in the macula area appear
more prominently in the MC and CF modalities, but they are hardly visible in the FA or FAF

modalities, as shown in sub-images (a), (c), (d), and (e) of Fig. 1.2. Since the retinal patterns



have varing or unmatched appearances, the keypoints and feature descriptors which are detected
and extracted on these structures may become outliers in feature matching, which will undermine
the registration performance.

In previous researches on multi-modal registration for medical images, multiple metrics
such as Normalized Cross Correlation (NCC) and Normalized Mutual Information (NMI) [11]
have been proved useful in either intensity-based optimization [12] or unsupervised deep neural
network training [13, 14]. The rich anatomical patterns and the 2D boundaries (or 3D surfaces)
belonging to the subjects to be aligned can function as important guidance in the intensity-based
alignment process. However, those methods may fail in multi-modal retinal registration with
large displacements, since there are only sparse and thin structures (vessels) and no boundaries
in retinal images. Moreover, they can even be misled by the edges of the imaging area, as they
will achieve local optima by aligning image contours. An example showing the weakness of
intensity-based methods in aligning retina-like images is provided as Fig. 1 in [15], where the
method aligns two images based on the deliberately created fake contours instead of their sparse
vessel structures.

The second challenge in multi-modal retinal registration is the different levels of perspec-
tive distortions in aligning UWF images with narrow-angle images. The UWF imaging systems
usually adopt a special projection process to represent the 3D surface (retina) with large curvatures
onto a 2D flat array [16]. For example, the Optos UWF system uses stereographic projection to
map the 3D sphere data onto a 2D plane. This mapping function can be considered as a special
perspective projection in geometry, where the camera view point is set on the cornea and the
objects of interest lie on the sphere (eyeball). However, this projection process also leads to large
distortions in peripheral retina areas such that the peripheral patterns are expanded on the 2D
plane. By contrast, other retinal modalities cover narrower view angles and set their view points
more distant from the cornea, such that they contain less distortions than UWF images. This

difference in distortion levels cannot be corrected by a conventional global transformation model



(a) Montaged view. (b) Overlaying of vessels.

Figure 1.4: Illustration of UWF distortions. The UWF and MC images are coarsely aligned
through an affine transformation. (a) Montaged view of UWF and MC images. (b) Overlaying of
the corresponding UWF (red) and MC (green) vessels, where yellow represents their overlapping
areas. Blue circles and arrows indicate misalignments and the distortion’s directions.
(e.g., affine transformation). Besides, the feature descriptors extracted from the same retinal
pattern with different distortions are more likely to be mismatched, which will also undermine
the performance of feature-based alignment algorithms. An example of aligning a UWF image

with a narrow-angle MC image is shown in Fig. 1.4, where the peripheral UWF vessels are

over-expanded while the center UWF vessels are under-expanded.

1.3 Contributions

In this thesis, we address the two main challenges in Section 1.2. To resolve the incon-
sistent patterns in multi-modal retinal images, we propose to extract retinal vascular structures
for both detecting features and training deformable alignment networks. On the other hand, to
deal with the UWF distortions in aligning UWF and narrow-angle modalities, we propose a

distortion correction module which remaps the UWF images based on the camera parameters of



the narrow-angle image. Furthermore, we propose to optimize and reconstruct a free-form 3D

scene to represent the eyeball shape to further reduce the UWF image distortions.

1.3.1 Two-Step Registration on Multi-Modal Retinal Images via Deep Neu-

ral Networks

We observe that the retinal vasculature is the most outstanding indicator for multi-modal
image registration. However, since most existing vessel segmentation datasets are only available
in the CF modalities, the vessel segmentation networks for other modalities (such as MC and FA)
cannot be trained in a fully-supervised manner. To this end, we propose a weakly supervised
training scheme via style transfer [17, 18] to jointly train the vessel segmentation and deformable
registration networks. The learning of the vessel segmentation task is mainly guided by a style
loss [17], and the registration task is guided by the photometric consistency and smoothness loss
in optical flow network training [19]

In addition, we set up a two-step coarse-to-fine registration pipeline fully based on deep
neural networks. First, the coarse alignment network predicts global transformations to correct
large displacements. It consists of the vesssel segmentation networks pre-trained in the fine
alignment step, a pre-trained feature detection and description network [20], and an outlier
rejection network [21] trained in a supervised manner. Afterwards, the deformable registration
network estimates pixel-wise transformations to refine the alignment after the first step, where
the network is trained in conjunction with the segmentation networks. We also investigate an
alternative signal, i.e., the Monogenical Phase Signals [22], as a guidance to train the deformable

registration network.



1.3.2 Multimodal Global Registration between Ultra-Widefield and Nar-

row Angle Retinal Images via Distortion Correction Network

Since the difference in camera pose is the main cause of the peripheral distortions in UWF
images when compared with Narrow-Angle (NA) images, we propose a distortion correction
function for Optos UWF images. We set up pixel-wise correspondence between the original
UWF image and the distortion-corrected UWF image according to stereographic as well as the
more-common perspective projection. The 2D UWF pixels are first connected to 3D spherical
points, which are then reprojected based on a new camera with similar extrinsics as the NA
camera. We use five parameters to describe the NA camera extrinsic parameters (except one
rotation around z-axis), and propose a two-stage iterative searching algorithm to find the optimal
parameters.

Moreover, the distortion correction function and its searching algorithm is incorporated
into the aforementioned coarse alignment network in the testing phase, which will benefit the
feature detection and matching process to improve alignment performance. We also modify the
deformable registration training scheme to train a vessel segmentation network for NA image

when a pre-trained UWF segmentation network is available.

1.3.3 3D Eyeball Shape Estimation for Ultra-Widefield and Narrow-Angle

Retinal Image Alignment

The aforementioned distortion correction function is based on the spherical assumption
for the eyeball shape, while the actual eyeball shape may deviate from a pure sphere which still
cause misalignments. Therefore, we set up a dense 3D mesh to represent the UWF pixels on
the sphere, and update the vertices’ coordinates in the mesh to find a scene which approximates
the actual eyeball shape. The scene and the NA camera parameters are jointly and iteratively

optimized, with the objective to reduce the error between the original UWF/NA vessel maps and
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the reprojected vessel maps from the 3D scene based on UWF/NA camera poses.

Besides, we also concatenate this optimization process with the global alignment results
from the previous distortion correction network. The algorithm first generates a reprojected
UWEF vessel map based on NA camera pose, and then warps the reprojected image by the global
transformation model from the distortion correction network. With this combination, the local
(dense mesh) and global (sparse parameters) alignment process can be concatenated to achieve

the best performance.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 presents the details of the global
and deformable registration networks, including their structures and training process. It also
includes a literature review on multi-modal retinal image registration methods, especially those
based on deep neural networks. Chapter 3 details the UWF distortion correction module, where
the mapping functions are derived and a camera parameter estimation algorithm is set up. Chapter
4 describes the 3D eyeball shape reconstruction method over UWF and NA images, which is also
concatenated with the distortion correction module. Finally, Chapter 5 concludes the thesis and

provides research directions to improve the current method.
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2 Two-Step Registration on Multi-Modal

Retinal Images via Deep Neural Networks

2.1 Introduction

Multi-modal retinal image registration plays an important role in assisting the examination
and diagnosis of retina diseases. In this task, multi-modal retinal images are captured from the
same patient using various retinal imaging instruments, and then aggregated and aligned, so
that complementary information of the retina can be integrated for more accurate and faster
inspection. In order to accurately align retinal image pairs, a two-step coarse-to-fine pipeline has
been adopted (e.g., [23,24]) for coarse (global) alignment and fine (local) alignment, as shown in
Fig. 2.1. In the coarse alignment step, a source (floating) image is warped towards a target (fixed)
image based on an estimated global transformation model (e.g., affine transformation). In the
following fine alignment step, the globally aligned source image is warped again locally based on
a pixel-wise registration field in order to further reduce misalignment errors.

A big challenge in aligning multi-modal retinal images comes from the inconsistent
appearance of anatomical and diseases patterns among modalities since each instrument has
different imaging mechanisms and settings. For example, in the first row of Fig. 2.2, the
vessels show lower intensities than the background in the Color Fundus (CF) image, but higher

intensities in the Fluorescein Angiography (FA) image. In the third example, the CF images
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Figure 2.1: A two-step coarse-to-fine registration framework.

shows choroid patterns beneath the retinal vessels which are not visible in the Infrared Reflectance
(IR) image. As a result, these inconsistent patterns will produce unmatched features and ourliers
in image matching process which affects the registration performance. Furthermore, retinal
images usually have thin and sparse vessels and lack dense anatomical structures, which yields
multiple local maximas when computing commonly used similarities metrics such as Normalized
Cross-Correlation (NCC) and Normalized Mutual Information (NMI), as shown in Fig. 2.2. This
also causes difficulties for intensity-based registration methods in finding the correct alignment.

There has been extensive research on multi-modal retinal image registration. For example,
many methods have used hand-designed algorithms to replace certain steps in a conventional
registration pipeline, including keypoint detection (e.g., UR-SIFT [25]), hand-crafted feature
description (e.g., PIIFD [26], and Step Patterns [27]), and matching and outlier rejection (e.g.,
[28,29]). Meanwhile, some have also tried to utilize the mutual structures in paired images
to aid registration, including vessels [24,30-32], and vessel bifurcations and crossovers [24].
Nevertheless, many of these methods lack robustness in challenging scenarios like poor imaging
qualities.

Recently, with the rapid development of deep learning techniques, some methods have
applied Deep Neural Networks (DNNs) in this task, as summarized in Table 2.1. However,
the restrictions of each method limit its application on general multi-modal retinal datasets as

follows: (1) The authors of [34-36] applied Convolutional Neural Networks (CNNs) for parts
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Figure 2.2: Similarity measurements on multi-modal retinal images with regard to image
translation. First, we coarsely align the source images (a) with the target images (b), which
are overlaid as (c). Then, we translate the source images in both x and y directions by different
number of pixels. At each position, we compute Normalized Cross-Correlation (NCC) (d) and
Normalized Mutual Information (NMI) (e) between the two images, and plot their heatmaps.
We only use the overlapping pixels in the imaging area of both images to compute the similarity
metrics. First row is from the CF-FA dataset. Second and third rows are from the JRC dataset.
In these examples, both NCC and NMI should be the highest at the center (0,0) to correctly
estimate alignment.

or additional modules of a conventional global registration pipeline, whose performance is still
limited by the conventional algorithms. (2) Many methods require massive labeling works
(e.g., pixel-wise alignment or segmentation) for training which is hard to achieve in large-scale
datasets, e.g., [35,37] demand explicit segmentation ground-truths, [36,40] adopt pre-trained
vessel segmentation networks which implicitly demand segmentation labels, and [33] requires
accurately aligned image pairs. Only a few methods [38,39] need coarsely aligned images which
are easy to obtain (i.e., requiring affine matrices by labeling the positions of three corresponding
point pairs). (3) Some methods [36,37] contain camera-specific designs which might restrict
their application in general cases. (4) All the previously proposed methods only handle one
step (coarse only or refinement only), i.e., [34-37,40] only support the global transformation

which limits their registration accuracies, and [33, 38, 39] tackle deformable registration with
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unsupervised training which would fail on images with large displacements. To our knowledge,
there are no DNN methods to support both global and deformable alignment.

To this end, we propose a two-step coarse-to-fine registration algorithm for multi-modal
retinal images as shown in Fig. 2.1. The proposed method only requires easy-to-obtain annotations
(i.e., affine matrix) for training, and is completely built upon DNN which eliminates restrictions
of the conventional methods. In the coarse alignment step, vessels of source and target images are
first extracted via vessel segmentation networks. Then, keypoints and features of the vessels are
derived using a feature detection and description network. Afterwards, a transformation matrix is
estimated by an outlier rejection network where the matrix is used to warp the source image to the
target image for the global alignment. In the next fine alignment step, a deformable registration
network predicts a pixel-wise registration field to warp the source image for a second time to
further reduce misalignment errors. In the learning process, we also propose a high-level structure,
which is named modality transformer, to handle different appearance of modalities and the lack
of pixel-wise ground-truths. The modality transformers can find common structures between
multi-modal images to enable unsupervised training for the deformable registration network. We
set up two kinds of transformers in this chapter, i.e., a non-learnable local phase signal extractor,
as well as the vessel segmentation networks which are trained jointly with the deformable network
using style loss [17, 18]. Meanwhile, the feature detection and description network is trained on
a large-scale synthesized dataset, and the outlier rejection network is trained with ground-truth
transformation matrices on the retinal datasets.

In this chapter, we expand our previous works [39,40] to support both coarse and refine-
ment registration in the following aspects. (1) For the deformable alignment task [39], we set up
an unsupervised learning framework consisting of the deformable registration network and two
modality transformers. During training, the modality transformers convert multi-modal images
into image signals of a common modality to compute photometric consistency loss. (2) We also

propose a Local Phase Modality Transformer that extracts local phase terms in Monogenical
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Signals [22] for the deformable registration task. (3) We enhance the network structures and
training settings from [39], and extend the experiments to show the influences on deformable
registration performance from various factors, including smoothness weights, number of local
phase’s channels, and the choice of style targets. (4) We also include extensive ablation studies
for the global registration network comparing to our previous publication [40]. (5) We combine
the coarse alignment [40] and the deformable registration [39] methods into a complete pipeline,
and train and test it on a newly collected multi-modal retinal dataset.

The chapter is organized as follows. Section 2.2 introduces backgrounds and related
works for multi-modal retinal image registration. Sections 2.3 and 2.4 describe algorithmic details
of the proposed coarse and fine alignment networks. Section 2.5 presents experimental results

and ablation studies on our methods.

2.2 Backgrounds and Related Works

2.2.1 2D Image Registration

2D image registration algorithms can be categorized into feature-based and intensity-based
methods. For feature-based methods, most conventional algorithms follow a fixed non-iterative
routine which consists of keypoint detection (e.g., Harris corner detector [41]), feature description
(e.g., SIFT [42]), feature matching, and outlier rejection (e.g., RANSAC [43]). In intensity-based
methods, a correlation metric (e.g., Mutual Information) is designated to evaluate the alignment
quality between an image pair, and an iterative optimization algorithm helps search for a set of
warping parameters that achieves the best quality of alignment. Usually, the latter approaches are
much more time-consuming, because the searching process could not be done in parallel.

There are mainly two types of transformation models that describe the warping process
on the source image: global and deformable. In global transformation, the movement of all pixels

are determined by a set of global parameters such as scaling, translating, rotation, and skewing of
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the affine transformation. In deformable transformation, the pixel-wise registration fields (optical
flows) are estimated, and each pixel of a source image is warped to the target pixel using its own
optical flow that describes the direction and the distance.

In this chapter, the proposed two-step framework adopts an affine transformation for coarse
alignment and a deformable transformation for fine alignment. Both steps are accomplished

through non-iterative processes.

2.2.2 Global Registration for Natural Images

Recently, much effort has been made in adapting deep neural networks for the global
registration tasks. Most methods comply with the feature-based registration pipeline explicitly or
implicitly. Some have trained networks to replace certain steps in the registration pipeline, e.g.,
descriptors [44,45], outlier rejection [46,47], descriptors with matching metrics [48], detectors
with descriptors [20, 21,49, 50]. Moreover, other methods (e.g., CNN-Geometric [51, 52])
proposed to replace the complete pipeline with an end-to-end network. Nevertheless, in order
to achieve good registration results on cross-modality tasks, these methods require large-scale
labeled data for training, or need pre-trained network-based descriptors which can extract robust
features from multi-modal images.

In our proposed coarse alignment method, SuperPoint [20] is adopted as the keypoint
detector and descriptor, and the outlier rejection network [47] is trained to estimate the transfor-
mation matrix. Especially, two vessel segmentation networks help translate multi-modal retinal
images into single-modal vessel images as SuperPoint’s input, so that SuperPoint only needs

training on synthesized single-modal data instead of labeled multi-modal data.

2.2.3 Optical Flow Estimation for Deformable Registration

Optical flow estimation computes a dense registration field between the source and target

images of a same modality. It is built on the assumption of brightness consistency between the
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two images. Conventional algorithms (e.g., [53]) often involve an iterative searching process
over a loss function which optimizes photometric consistency and smoothness constraints in
deformable alignment.

Recently, multiple CNN-based methods have been proposed to learn a set of parameters
on training data and to eliminate the iterative optimization process during testing. The network
can be trained by a supervised scheme or an unsupervised scheme. Some methods [54-56]
adopt the supervised training on large-scale synthesized datasets with ground-truth flows, which
enables them to handle larger displacements. Meanwhile, others [19,57] adopt the photometric
consistency and smoothness loss for the unsupervised training (i.e., without ground-truth labels),
which are limited to predict small displacements. Spatial Transformer Networks (STN) [58] is
often used as a differentiable image warper in the unsupervised learning scheme.

In this chapter, we adopt the unsupervised training method for the fine alignment step of
our framework with the help of modality transformers (i.e., vessel segmentation networks or local

phase signals).

2.2.4 Medical Image Registration

In contrast to aligning natural images, the intensity-based techniques form the vast majority
of conventional registration methods on medical images [12]. Widely-used similarity metrics
include NCC, Mutual Information (MI), and NMI [11], etc, which can be applied to both mono-
and multi-modal registration.

Recently, multiple CNN-based methods [13, 14, 59-62] have also been proposed for
medical image registration in one shot, i.e., non-iteratively. These methods adapts the unsuper-
vised learning scheme in Section 2.2.3 by replacing the photometric consistency loss with other
aforementioned similarity metrics. Furthermore, anatomical structures within the images can also
be extracted and compared during training [60] to boost performance. Among these methods,

the networks proposed in [13,59,60] only perform one-time registration, which are limited to
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predicting small displacements. Instead of using only one network, de Vos et al. [14] proposed
a coarse-to-fine registration framework which concatenates an affine registration network and
multiple deformable networks. Zhao et al. [61,62] also proposed a recursive cascaded network
where the floating image is warped progressively by multiple cascades, which enables predictions
for large displacements.

It should be noted that, due to the nature of the similarity metrics, these methods achieved
success by correlating the dense anatomical structures between images. In addition, when aligning
subjects with large displacements, they rely on the subjects’ surfaces/contours to find the initial
warping direction. However, they are not suitable for retinal images which have sparse and thin
vessels and lack subject boundaries (e.g., [63]), because they will be trapped at local maximas
in the searching space of similarity measurements during optimization. Fig. 2.2 shows simple
examples of NCC and NMI measurements when aligning retinal images by 2D translation. In
the first row, there are two local maxima areas in the NMI heatmap, in which the right one
corresponds to the wrong alignment based on the imaging circles. In the second and thrid rows,
the local maximas in the center (i.e., the correct alignment position) become much less obvious
(the second row) or even invisible (the third row), which will mislead the algorithms into wrong

warping directions. Lee et al. [15] also shared a similar observation in their work.

2.2.5 Multi-Modal Retinal Image Registration

Table 2.1 summarizes multi-modal registration methods based on deep learning, and none
of them addresses the complete coarse-to-fine registration pipeline. Lee et al. [34] proposed
a feature filtering CNN to detect and remove unreliable step features for multi-modal retinal
image registration. Specifically, their network is trained with image patches as inputs and their
corresponding step patterns [27] as outputs. During testing, unreliable patches are removed if
their predicted patterns from the network deviate from any possible patterns. Arikan et al. [35]

proposed to align multi-modal retinal images based on vessel segmentations and bifurcations
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using two CNNs. However, the networks are trained with segmentation and bifurcation ground-
truths which are difficult to obtain in most cases. Luo et al. [37] proposed a CNN to estimate
affine transformation matrix for IndoCyanine Green Angiography (ICGA) and Multi-Color (MC)
images. However, it requires optic disc segmentations and dataset-specific scaling parameters for
training, which limits its application on other datasets. Tian et al. [38] proposed a deformable
retinal registration network, which adopts image gradients of two images as alignment signals
for unsupervised training. Mahapatra et al. [33] proposed a deformable registration model based
on unsupervised CycleGAN [64]. Instead of predicting a registration flow field, their network
directly synthesizes a warped floating image, which cannot be used for diagnose purpose since the
results might include non-existing patterns and lose critical lesion diseases. They also attached an
additional branch to the network to predict registration fields which requires accurately aligned
images for training, which is not applicable in most cases.

Particularly, Ding et al. [36] proposed to train a vessel segmentation network for Ultra-
Wide Field (UWF) CF images through a joint segmentation and registration scheme, which bears
similarities to the fine alignment network of our previous publication [39] and the second step of
the proposed framework in section 2.4.2. In brief, with paired UWF CF and FA images as well as
a pre-trained vessel segmentation network for FA, the vessel ground-truths for CF are obtained
from the vessel predictions on FA images by aligning FA vessels with CF vessel predictions.
The vessel segmentation network for CF and the alignment process are trained and optimized
iteratively. However, their method mainly focuses on vessel segmentation instead of multi-modal
registration, and is designed for UWF images from a same optic system which have similar scales
and resolutions. It relies on a good initialization (i.e., a pre-trained segmentation network for one
modality) which is hard to obtain in general cases. Besides, it adopts a global transformation
model (with 12 parameters) which is insufficient for images bearing larger distortions (e.g.,
images from different instruments). In comparison, our proposed method does not require good

initialization for segmentation and adopts a two-step coarse-to-fine structure, which is a more
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Figure 2.3: The coarse alignment step of the proposed two-step framework.

flexible and general solution for multi-modal retinal registration.

2.3 Two-Step Framework: Coarse Alignment

The proposed coarse alignment algorithm consists of three sequentially concatenated
networks for vessel segmentation, feature detection and description, and outlier rejection as is
shown in Fig. 2.3. First, the vessel segmentation network transforms multi-modal images into
a common modality (i.e., grayscale vessel maps). Next, the feature detection and description
network finds sparse keypoints from the vessel maps and extracts features on all keypoints. Then,
features from source and target images are matched against each other based on their similarities.
Finally, the outlier rejection network finds the correct matches (inliers) and removes the incorrect

ones (outliers) such that an accurate affine matrix can be estimated from the inliers.

2.3.1 Vessel Segmentation

Vessel extraction has become the basis of multiple retinal registration algorithms [24, 30—
32,35], because vessels are usually the most prominent and useful patterns in multi-modal retinal
images. Even though DNN has achieved great performance on retinal vessel segmentation with
supervised training, its performance is not guaranteed on test data of other modalities unseen
during training. Besides, we can hardly find any segmentation datasets on modalities other
than CF, while it is labor-intensive to label the vessel segmentation for new datasets. Therefore,

we propose an unsupervised scheme to train two vessel segmentation networks for each input
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(b) Outlier rejection network [47]

Figure 2.4: The feature detection and description network and the outlier rejection network of
the coarse alignment step.

modality without segmentation ground-truths. Specifically, the segmentation networks are trained
jointly with a deformable registration network in Section 2.4. Style loss [17, 18] is used as a

guidance for the segmentation task. Details on network structures and loss functions are presented

in Section 2.4.2.

2.3.2 Feature Detection and Description

SuperPoint [20] network is adopted as our feature detector and descriptor, whose structure
is shown in Fig. 2.4 (a). The network consists of an encoder which takes the grayscale vessel map
from the previous segmentation network, and two decoders which predict a keypoint probability
map and a descriptor tensor respectively. Accordingly, two loss functions are designed to train
the network, including a keypoint loss and a descriptor loss. The keypoint loss penalizes missed
or wrong keypoint predictions through a cross-entropy loss. Meanwhile, the descriptor loss
maximizes the similarities between features of matching points or vice versa through a hinge loss.

Readers could refer to [20] for more details.
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Since ground-truth keypoints for our retinal images are not available, we directly use a
SuperPoint model which is pre-trained on a large-scale synthesized dataset [20]. Specifically,
the training dataset consists of rendered images with grayscale shapes and their ground-truth
corners, which bear much similarity with our vessel maps. Therefore, the trained model can
be directly applied to extract keypoints and features from the vessel segmentation results. As
a post-processing step, non-maximum suppression thresholded at 5 pixels is applied over the
keypoint probability maps, and pixels with confidence larger than 0.015 are denoted as keypoints.
Afterwards, the corresponding feature vectors of the keypoints from both images are matched
against each other based on minimum euclidean distances through a bi-directional search, e.g.
feature A from the source should be the best match for feature B from the target, and vice versa.
Finally, the corresponding coordinates of the matched keypoint pairs are forwarded to the next

outlier rejection network.

2.3.3 Outlier Rejection Network

To obtain an accurate transformation matrix, we adopt and train an outlier rejection
network [47] to detect and eliminate outliers from the matching pairs. First, the network takes the
coordinates of the matched keypoint pairs from the feature detection and description network, and
outputs their probabilities of being inliers. Then, the affine matrix is computed from the weighted
coordinates. During training, in addition to the classification loss on the predicted weights and
the regression loss on the estimated matrix, we also propose a Dice loss which evaluates the
alignment quality based on the estimated matrix.

The structure of the network is shown in Fig. 2.4 (b). The network has 12 consecutive
residual blocks. In each block, there are 2 fully connected layers with shared weights among
N different entries, where N is the number of correspondences. Each fully connect layer is
followed by a context normalization layer [47] and a batch normalization layer. Specifically, the

weight-sharing design ensures that each correspondence will be processed independent of its
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input order. Meanwhile, the context normalization layers enable the sharing of global context
among all correspondences.

In the forward process, the network takes a matrix [qy,q2, ...,qy]7 € RY x4

as input, where
q: = [p!,p/"]", and p; = [x;,y;]” and p; = [},!]” are the source and target keypoint coordinates
respectively for the i-th correspondence. The network’s output is a vector [01,02,...,05]7 €
RV*1 which is further translated into a weight vector w = [wi,w2,...,wy]T, with each element
w; = tanh(ReLU(0;)) € [0,1) being a weight for its input correspondence. Larger weights
indicate more importance in estimating the affine matrix, and zero weights indicate outliers.

Afterwards, an affine matrix M € R?*3 can be solved via weighted least square method based on

the correspondences’ coordinates and their weights w, i.e., solving

argmin (b — AVec(M))” W (b — AVec(M)) 2.1)
M

where Vec(M) is the vectorized M, b = [x],y},...,xy, Yy]T

e RZVx1 A ¢ R2N*6 ig constructed as

X1 V1 1 0 0 0
0 0 0 x yr 1
) 2.2)

[S—

XN VN 0 0 0

0 0 0 xy yw 1

and W = diag([wy,wi, ...,wy, wy]) € RZV¥2N

is a diagonal matrix. The solution to Eq. (2.1) is

Vec(M) = (ATWA) ™' (A7Wb). 2.3)

It should be noted that we adopt the simpler affine transformation instead of the perspective
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transformation in [40], because the misalignment errors can be corrected by the following fine
alignment step.

In order to train the network, three loss functions are combined, including a classification
loss, a regression loss and a Dice loss. The classification loss is defined as
1N
Le= i:ZIYiBCE(yi, o(0:)) (24)

where BCE(+) is binary cross entropy loss, 6(-) is sigmoid function, y; € {0,1} is the inlier
ground-truth, and v; is a weight to balance positive and negative samples. The inlier ground-truth

is obtained based on the ground-truth affine matrix My, as

1, ||T(pi,My) —pi]| < 5Spixels
Yi= (2.5)

0, otherwise

where T (p;, M) calculates the corresponding coordinate in target image for the source point p;
based on My, i.e., a keypoint pair with distance no more than 5 pixels in the target image after
warping are denoted as inliers.

In addition to the loss on the predicted weights, the regression loss penalizes the mean
squared error (MSE) of the estimated affine matrix M from the ground-truth M,, which is defined
as

L, = MSE(My —M). (2.6)

Moreover, a Dice loss is proposed to check the alignment quality of the target and source vessel

map after warping based on the estimated matrix. The Dice coefficient is defined as

2|h N b

DICE(I},1,) = TFSTAR

2.7)

where 11 and I, must be binary images in this function. Since our vessel maps are grayscale
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images, we define a Soft Dice function by relieving the binary constraint over /; and I, as

2-Y (elemin(ly, 1))
Yh+Yh

DICE, (I}, 1) = (2.8)

where ele_min(-,-) takes the element-wise minimum values across the two images, and I}, I, are
vessel probability maps. The Dice loss is defined as

Lp =1 —DICE(STN(I; , M), I ) (2.9)

src

where STN(-, -) is the non-parametric differentiable image warping function [58], I5;¢ and I,y
are vessel segmentation maps of source and target images respectively, as denoted in Fig. 2.3.

Finally, the total loss is written as
L=A.L.+MNL,+ApLp (2.10)

where A., A, and Ap are weighting factors.

2.4 Two-Step Framework: Fine Alignment

Due to lack of accuracy in the estimated matrices, image distortion from imaging instru-
ments, and various field of view, there are still registration errors between the warped source
image and the target image after the coarse alignment step. Many of these errors are minor
and exist in local areas, which are hard to be corrected by global transformation. Since a fine
alignment step using deformable transformation is necessary to further reduce these misalignment,
we propose an unsupervised learning framework to train a deformable registration network and

introduce modality transformers to aid the training process for multi-modal retinal images.
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Figure 2.5: Training and testing phase for fine alignment framework.
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2.4.1 Unsupervised Learning Framework

The proposed learning framework of Fig. 2.5 for training consists of a deformable
registration network and two modality transformers for the source image I = STN(Ic, M)
and the target image I;¢;. The deformable registration network takes the multi-modal retinal
image pairs as input, and predicts a pixel-wise registration field F. This is similar to optical flow
networks [19] except that two input images fail to meet the brightness consistency assumption for
optical flow estimation. Therefore, the photometric consistency loss cannot be directly applied
on the inputs for unsupervised training. However, the proposed modality transformers change

muti-modal inputs into common modality images, I.,... and I/

ler> t € {seg, phase}, which can

maintain pixel-wise correspondence as illustrated in Fig. 2.5. This helps to satisfy the brightness
consistency constraint on input images like the optical flow estimation since the photometric
consistency loss needs to be evaluated over their transformed modality during training. In this
chapter, two different modality transformers are proposed, i.e., vessel segmentation networks in
Section 2.4.2, and Monogenical Phase Signal extractors in Section 2.4.3. The training process for
the registration network does not require ground-truth flows for supervision, which is similar to
the methods in [19, 57].

Two loss functions are used to train the registration network, i.e., photometric consistency
loss and smoothness loss. The photometric consistency loss is defined as

Lpc(Liye o1 1g, F) = MSE(STN(LL o, F), Iy, ) - (2.11)

src-crtgts sre-co
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In brief, it takes the difference between the common structures extracted from the warped source
image and the target image as the supervision for training. Meanwhile, the smoothness loss is

defined as

Lgn(F) = mean ((Fiij— Fiiv1j)?) + mean ((Feij— Frij+1)?) (2.12)
where F has dimension 2 X h X w, and k, i, j are indices in F. It forces neighboring pixels in
an estimated registration field to share similar warping directions and magnitudes. Therefore,
displacement vectors for areas lacking details (e.g., non-vessel areas in a vessel segmentation
map) can be estimated from their neighboring areas (e.g., areas containing vessels). In the case
of using non-learnable modality transformers (e.g., local phase signals), the total loss of the

deformable registration network is written as
LDef = kchpc + 7\'smLsm7 (2.13)

where A, and Ay, are weighting factors. In this chapter, we adopt a modified U-Net [65] as
our fine registration network as illustrated in Fig. 2.6 (a). In brief, the network first extracts
multi-scale features from a concatenation of two multi-modal images, where convolutional layers
with stride 2 are used as downsampling layers. Then, it gradually upsamples the features at each
scale and concatenates them with features from a higher scale, where transposed convolutional
layers are used for upsampling. Finally, it estimates the registration field F which has the same

spatial size as the input images.

2.4.2 Modality Transformer: Vessel Segmentation Network

In this section, we adopt segmentation networks as the modality transformers to guide
registration and propose an unsupervised learning scheme, which is based on style transfer [17,18],

to train the segmentation networks jointly with the registration network without segmentation
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Figure 2.6: Network structures for fine alignment.

ground-truths. Specifically, the segmentation network is trained through a style loss [18] which
penalizes the style difference between the network output and a style target. First, a pre-trained
VGG-16 [66] network ¢ takes an image I and computes a feature tensor from its j-th layer as
¢;(I) with shape ¢ x hj x w;. Then, ¢;(I) is reshaped into a matrix ¢;(7) with shape c; x (h;w;).
Next, the style feature of / is represented by a ¢; x ¢; Gram matrix G;(I) as

1

G.(I) =
i) cjhjw;

0;(NOT(I) (2.14)

where the spatial information in ¢;(/) is removed and only the information on global style

distributions (e.g., vessel-like structures) are preserved. Finally, the style loss is derived by
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(a) HRF-12h [67] (b) DRIVE-23 [68] (c) DRIVE-28 [68]

Figure 2.7: Style target images /. taken from publicly available datasets.

minimizing the difference of two style distributions as
Lyy(h,1) = G;(h) = G, ()| (2.15)

where || - ||r computes Frobenius norm over a matrix. In our case, /; is a segmentation network’s
prediction (1358 . or Its;f), and I is a style target Iy, i.e., one of the vessel images in Fig.
2.7. Therefore, the segmentation network should produce an output which also demonstrates
vessel-like appearance but no pixel-wise correspondence with the style target.

In addition to the style loss, we propose a self-comparison loss to enforce rotation invari-
ance on the vessel segmentation results. Since image edge filters show directional dependency,
it is necessary to enforce the learning of edge filter pairs with inverse directions when train-
ing without ground-truths such that both edges of the vessels can be extracted. Therefore, the

self-comparison loss is defined as
Leom(I) = MSE (rot (H (rot([))) H (1)) (2.16)

where H(-) is the segmentation network, and rot(/) rotates the input image by 180°. When we
jointly train the segmentation networks and the registration network, we include the style loss

Ly and the self-comparison 1oss L, to the total loss Lp.y. As a result, the total loss function is
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defined as

LDef—Seg = LDef + )\fcom ZLcam (Ix) + xsty ZLgty (I;:eg 5 Istyle) (2 17)
x X,J
where j € {relul 2,relu2_2,relu3_3,relu4 3} are VGG-16 layers and x € {src,tgt}. Through the

joint training, the segmentation networks can achieve better performance, as the segmentation

prediction I;,&. is supervised by both the style constraints L{:ty and another segmentation map I,: ,

and vice versa. We adopt a modified network structure based on DRIU [69] for the segmentation
network as shown in Fig. 2.6 (b). The network first extracts multi-scale features using a pre-
trained VGG-16 network. Then it upsamples all features via transposed convolutional layers, and
concatenates them for final prediction.

Comparing with the original implementation in [39], we set up a unified parallel structure
for segmentation and registration, which enables more choices of transformed modalities other
than the vessel maps. Besides, we replace the /1 norm in the smoothness loss L, with £2 norm
to generate smoother registration fields, and remove the SSIM loss since it does not help in

improving the registration performance.

2.4.3 Modality Transformer: Local Phase Signals

Instead of the vessel segmentation modality, we can also use the multi-scale local phase
images, which is based on Monogenic signal [22], as a common modality to improve the registra-
tion performance in non-vessel areas. Previously, Li ef al. [23] have shown the effectiveness of
Monogenic local phase signals in a conventional multi-modal retinal registration pipeline.

In brief, the Monogenic signal is a multi-dimensional generalization of analytic signal. It
can be computed by applying Riesz transformation on an input image [22], and the local phase
term of the signal can be seen as the gradients of the image [70]. In order to extract image

gradients in a certain range of scales (i.e., frequencies), the input image is filtered with a 2D
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Figure 2.8: The phase signals of a multi-modal image pair are extracted with the Log-Gabor
filters in Eq. (2.18) where 6o = 0.55 and wp = 1/(5 x 1.5%), k € {0,1,...,7}.

log-Gabor band-pass filters prior to the Riesz transformation. The log-Gabor filter is given in

frequency domain as

B (log(|o]|/00))
G((x))—exp(— 2(l0g(00))? ) (2.18)

where g and 6 are center frequency and width of the filter which control the range of passed

frequencies. After Riesz transformer, the 2-D local phase signal of the image I can be obtained as

1/2

(for(1)? + fo2(1)?)
fe(D)

o) = arctan( ) (2.19)

where f,1(I), fo2(I), and f,(I) are two odd parts and one even part of the Riesz transformation
output from an filtered image.

In this chapter, we use K log-Gabor filters with 69 = 0.55 and @y = 1/(5 x 1.5%),k =
0,1,...,K — 1 respectively to extract local phase maps at multiple scales. Fig. 2.8 shows an
example of extracted local phase maps from multi-modal retinal images using the above log-
Gabor filter settings. Filters with higher center frequencies mg help extract finer details throughout
the whole images, and results from lower frequency filters tends to focus on larger-scale patterns.
Moreover, patterns in non-vessel areas are also extracted which can help increase their weights in
the photometric consistency loss. Therefore, the alignment quality of the deformable registration

network can be improved in the non-vessel areas.
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2.5 Experiments

2.5.1 Settings
Dataset

We use two datasets, i.e., CF-FA and JRC, for our experiments. CF-FA [71] is a public
dataset captured in the modalities of CF and FA. It contains 59 pairs of retinal images of shape
720 x 576, 29 pairs of which are from healthy eyes and the rest show diseases. We take 30 pairs
with odd index in the file names as the training set, and the remaining 29 for testing. The JRC
dataset is collected by the Jacobs Retinal Center (JRC) at Shirley Eye Institute. It consists pairs
of CF images of shape 3000 x 2672 and Infrared Reflectance (IR) images of shape 768 x 768
or 1536 x 1536. It has 530 pairs for training, 90 pairs for validation, and 253 pairs for testing.
Especially, each image is graded by ophthalmologists as {high / medium / low} according to its
imaging quality, and as {yes / no} based on the appearance of diseases.

Compared with the JRC dataset, the CF-FA dataset is less challenging since it shows
crispy retinal patterns, and contains denser vessels and less diseases. An example of CF-FA
images is shown in the first row of Fig. 2.2. However, the JRC dataset is more challenging, as its
images often show sparser vessels, more diseases and unmatched structures. For example, in Fig.
2.2, the second example is considered as good quality, and the third example is graded as low
quality due to the unwanted choroidal patterns and unfocused vessels in the CF image.

As an image preprocessing step, the images of the CF-FA dataset are expanded with zeros
to 768 x 576, and the images of the JRC dataset are padded with zeros to the square shape and
then resized to 768 x 768. To obtain the coarse alignment ground-truths for each image pair, we
manually label three pairs of matching points and derive the ground-truth affine matrix My, based
on the points’ coordinates. In this chapter, we set CF as a source modality and FA/IR as a target,

i.e., CF images are warped towards a target modality.
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Training and Testing Settings

For the outlier rejection network in the coarse alignment step, we set its input dimension as
N <128. We set A, = 1 and A, = Ap = 0.1 in the loss function Eq. (2.10). Adam [72] optimizer
is used for training with learning rate as le-4. All the image coordinates are normalized into
-1,1], and the ground-truth matrices My, are modified accordingly. The network is trained for
1000 epoches with batch size 32 on the JRC dataset. Due to small size of the CF-FA dataset, we
take the model which is pre-trained on the JRC dataset and finetune it on the CF-FA dataset for
1000 epoches with batch size 30. The best checkpoint is selected based on the minimum Dice
loss Lp on training set (CF-FA) or validation set (JRC).

For the fine alignment step, the networks are trained with Adam optimizer with learning
rate as le-3. We set A, = le-3, Agp = 5e-4, Aeom = le-3, and Ay, = 1.0 in Eq. (2.13) and (2.17).
During training, two images of original size without any cropping are fed into the networks
due to the requirement of style transfer loss, which takes up huge amount of GPU memory.
Therefore, we set batch size to 1, and apply the same setting when training with local phase
signals. The deformable networks are trained with 5000 (CF-FA) or 1500 (JRC) epoches, and
the checkpoints with best Dice; value on the training set (CF-FA) or validation set (JRC) are
selected for final evaluation. Two vessel segmentation images, i.e., HRF-12h [67] in Fig. 2.7 (a)
and DRIVE-28 [68] in Fig. 2.7 (¢) from publicly available datasets, are selected as style targets
for the CF-FA and JRC datasets respectively.

In addition, we employ data augmentation to train the fine alignment networks. First,
training image pairs are set up based on My,. For both datasets, coarsely aligned image pairs
(STN(Lsre,My),I;g) are used for training. For the CF-FA dataset, inversely aligned pairs
(Igye, STN(Itgt,M;tl» are also included in the training set, which increases its size to 60. Next,
the training pairs are augmented by random flipping (for both datasets) and rotation (for JRC
only). Finally, random warping is applied on each image, i.e., 2 X 4 x 3 (for CF-FA) or 2 x 4 x 4

(for JRC) arrays are first sampled from a normal distribution (mean 0, standard deviation 5 pixels),
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then expanded to the image’s resolution, and finally used to warp the image.

For evaluation on the JRC dataset, we separate the 253 test image pairs into 4 categories
based on the gradings of imaging qualities and existence of diseases. In detail, the images are
first categorized into two groups as High & Medium Quality and Low Quality. Then, the High &
Medium Quality group is further divided into three sub-groups based on the number of images
with diseases in each pair as in Table 2.2.

All networks are implemented in PyTorch and trained on GTX 1080 Ti GPU cards. During
testing, all methods are tested on a desktop with a Intel 17-7700K CPU and a GTX 1080 Ti GPU

card.

Evaluation Metrics

We adopt three evaluation metrics for registration quality assessment:
(a) Dice € [0,1] is defined as the Dice coefficient of Eq. (2.7) which takes binary vessel segmen-
tations from B-COSFIRE [73] as its inputs. The Dice coefficient is often used to evaluate retinal
alignment quality (e.g., [23]) when registration ground-truths are not available. It calculates the
ratio of overlapping binary vessel areas to the sum of total vessel areas from both images. Larger
Dice coefficients represent more overlapping area of vessels, which indicates better alignment
quality. To extract binary vessels, we adopt B-COSFIRE [73] as the segmentation method. We
keep the default settings in B-COSFIRE’s codes except its segmentation threshold which is
determined as follows. For the CF-FA dataset which shows better image qualities, two global
thresholds are determined for each modality which maximizes the difference of Dice before and
after warping based on the Phase + MIND [74] method in Section 2.5.3. For the JRC dataset,
global thresholds lead to worse segmentation results (i.e., too sparse or too dense vessels) due to
the huge variance of image qualities, which impacts the alignment evaluation process. To ensure
more reasonable segmentation results on the JRC test set, we estimate an individual threshold

for each image which minimizes the style loss of Eq. (2.15) by comparing the thresholded result
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with the style target DRIVE-28.

(b) Dice, € [0,1] is defined as the Soft Dice of Eq. (2.8) which takes vessel probabilities from
Frangi’s [75] method as its inputs. Soft Dice is extended from the Dice coefficient and takes
vessel probability maps. Similarly, it computes the ratio of vessel intersection to the sum of
two vessel maps, and larger values indicate better alignment results. Frangi’s [75] algorithm is
used to extract vessel probabilities from retinal images. We first enhance a retinal image with
CLAHE [76], then compute its vesselness map using Frangi’s method, and finally rescale the
vesselness map into [0, 1] based on its min & max values.

(c) #success is defined as the number of successfully aligned image pairs in each category. This

metric is only used for the coarse alignment evaluation. The alignment success is achieved when

max ) ‘T (T(p,Mg;'),M> ‘ ’ < Threshold (2.20)
peP 2

where 7'(-,-) warps a coordinate p based on a transformation matrix, and P is a set of 6 correspon-
dences for each image pair which is labeled by human. We empirically set Threshold = 10 pixels,
i.e., if all the source coordinates fall within the range of 10 pixels from their corresponding target
coordinates after transformation, it is considered a success.

Fig. 2.9 shows an example of Dice and Dice, calculation. The overlapping maps of their
extracted vessel binaries or probabilities are plotted before and after registration. In the left
column, some tiny vessels and non-vessel structures from the source image (red) are missed in
Dice due to the binary thresholding. But those structures are preserved as probabilities in Dice;
(right column), and can be included in the registration quality evaluation. Therefore, Dice mainly
assesses the alignment quality of prominent vessels, while Dice; pays attention to both major and

tiny retinal structures.
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Before Registration

After Registration

Figure 2.9: A comparison of Dice and Dices over a same pair of input images before and after
registration. Red and green areas indicate extracted vessel binaries or probabilities from source
and target image respectively, and yellow areas indicate their overlapping parts. White circles
point to tiny vessels which are missed in Dice but maintained in Dice,. Pixel intensities in red
boxes are enhanced for visual inspection.

2.5.2 Results on Two-Step Coarse-to-Fine Registration

For comparison, four groups of methods/results are set up for coarse-to-fine registration
evaluation for the quantitative and qualitative comparison in Table 2.2 and Fig. 2.10, respectively.

The groups are:
(a): Input images without any warping.

(b): An improved version of a conventional two-step registration pipeline [23], where the
time-consuming matching algorithm is replaced by a much faster one [42]. Specifically, local
phase signal is adopted to help its feature-based coarse alignment step (denoted as Phase [22] -

HoG [77] - RANSAC [43]), and then MIND! [74] is used for fine alignment.

(c): A state-of-the-art optical flow network IRR-PWC [56] with supervised training. Since

'Only its deformable registration part is used in this chapter.
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coarse-to-fine registration pipelines based on fully CNN are unavailable, a pre-trained IRR-PWC
is adopted and finetuned on multi-modal retinal images. The network takes an image pair as input
and estimates a registration field map which warps the source image in one step. Specifically,
two types of inputs are fed into IRR-PWC, i.e., original retinal images, or predicted vessel maps
from our segmentation networks which mimics the optical flow estimation process. For each type
of input, two models are trained on different optical flow ground-truths, and the better one is
used for evaluation. The ground-truth optical flows are generated based on either M, only, or a

combination of My, and our best deformable alignment result (i.e., results in Section 2.5.3).

(d): Our proposed pipeline, where we denote the coarse alignment network as CoarseNet,
the fine alignment network with the modality transformer for the vessel segmentation as Seg-
DeformNet, and the fine alignment network with the modality transformer for the local phase

signals as Phase-DeformNet.

Table 2.2 shows the quantitative evaluation results for the JRC (blue columns) and CF-FA
(red column) datasets. On the JRC dataset, the proposed two-step methods in group (d) achieve
the best performance in both Dice and Dice; metrics. Moreover, the conventional two-step method
(b2) outperforms the single-step networks with supervised training in group (c), which shows
that two-step approaches are more effective for multi-modal registration. When we compare
DicelDice; of the proposed two-step networks in group (d) with the conventional method (b2) for
each category from left to right, the advantage of our method gradually increases as the images
become more challenging. For example, the gains of row (d3) over (b2) from left to right are
0.0941/0.0529 for No Disease, 0.1093/0.0618 for 1 Disease, 0.1249/0.0658 for 2 Diseases, and
0.1724/0.0903 for Low Quality images. This result demonstrates that our two-step methods are
more robust to multi-modal images with more disease lesions and lower image qualities.

The last column in Table 2.2 shows the results for the CF-FA dataset. The rankings of
DicelDiceg values of groups remain similar with that on the JRC dataset. The advantage of our

networks (d) over the conventional method (b2) (i.e., difference between row (d3) and (b2)) is
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reduced to 0.0389/0.0121 since the CF-FA dataset contains fewer challenge cases than the JRC
dataset. Nevertheless, the single-step optical flow networks with supervised training in group (c)
have the lowest performance.

In Fig. 2.10, we compare qualitative results on two image pairs from JRC dataset where
a normal pair and a diseases pair are shown in example 1 and 2 respectively. In both examples,
our methods can correctly and accurately align most vessels and disease patterns. In contrast,
the other methods fail in at least one of the examples, e.g., Phase - HoG - RANSAC + MIND of
(b2) fails in the example 2 to align vague vessels (box 2) and lesions (box 3) and the IRR-PWC’s
results contain obvious misalignment errors in all examples, as indicated by red arrows.

Apart from the above comparison, within each group (b) and (d) in Table 2.2, the additional
fine alignment steps of (b2)/(d2)/(d3) are able to improve the registration performance over coarse
alignment results of (b1)/(d1). This is also demonstrated in red circles of Fig. 2.10, where
misalignments from CoarseNet of (d1) are corrected by fine alignment networks in (d2)/(d3).
This result presents clearly that the refinement step can help to correct errors from the first step
and thus increase the robustness of the registration pipeline. Therefore, two-step coarse-to-fine

structures achieve better results comparing to single-step ones for multi-modal retinal registration.

2.5.3 Ablation Study on Deformable Registration Networks

In this section, we investigate the performance of the proposed fine alignment networks
on both datasets by comparing it with other methods. Moreover, we further analyze several
factors that influence its registration quality. Testing image pairs aligned by My, are adopted for
evaluation. All the testing images are preprocessed by the identical augmentation procedure in
fine alignment network training which is described in Section 2.5.1. Therefore, the size of the
CF-FA test set is doubled to 58 in this section. The random warping flows applied on the input

images are fixed for all methods.
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Fine Alignment Evaluation

Table 2.3 shows the deformable registration results for the JRC and CF-FA datasets. The
proposed deformable networks outperform the conventional method Phase + MIND in all cases,
showing the advantages of CNN in this task. In addition, our proposed networks achieve better
performance than another unsupervised network, VoxelMorph [60], which uses local NCC as
the similarity metric in training. This shows the advantages of transformed modalities (vessel
maps and phase signals) over conventional image-based similarity metrics in the deformable
registration task on multi-modal retinal images.

When comparing Phase-DeformNet and Seg-DeformNet on the JRC dataset in the blue
columns, Phase-DeformNet ranks highest in Diceg in most categories except the low quality
images, while Seg-DeformNet performs best in Dice across all groups. However, on the CF-FA
dataset in the red column, Seg-DeformNet achieves the best performance in both Dice; and Dice,
although its advantage in Dice, is marginal (i.e., +0.0007). Similar relations of two methods are
also observed in Table 2.2, where the gap of Dice, values between Seg-DeformNet and Phase-
DeformNet is smaller on the CF-FA dataset (i.e., -0.0018) than that on the JRC dataset (0.0118 in
the Overall column). It might result from the different supervision signals in the content loss (Eq.
(2.11)) and different characteristics of the datasets. Specifically, Seg-DeformNet is trained by
optimizing the alignment of extracted vessels, and cannot directly align non-vessel areas if their
segmentation predictions are zero. Thus, it tends to get higher values in Dice (i.e., the overlapping
degree of prominent vessels) but lower values in Dices (which puts more emphasis on non-vessel
areas). Since Phase-DeformNet is trained by aligning local phase patterns which distribute over
the whole images, it tends to achieve better performance in non-vessel areas, i.e., higher Dice;.
On the other hand, images in the CF-FA dataset have denser vessels and less non-vessel patterns
(e.g., diseases) than those in the JRC dataset. Therefore, it is possible for Seg-DeformNet to have

minor margin over Phase-DeformNet on the CF-FA dataset by only aligning vessel patterns.
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Figure 2.11: Deformable registration performance on the CF-FA dataset for networks trained
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We analyze the influence of different smoothness factor Ay, in Eq. (2.13) and (2.17)
on the registration results. Theoretically, higher Ay, makes it more difficult to correct abrupt
misalignments in small areas and reduces alignment quality because of competitions between
photometric consistency loss L,. (Eq. (2.11)) and smoothness loss Ly, (Eq. 2.12). In this
experiment, we set Ay, € {5e-3,2¢-3,1e-3,5¢-4,2¢-4,1e-4,5¢-5} for both Seg-DeformNet and
Phase-DeformNet and train them on the CF-FA dataset where other settings remain unchanged.
The evaluation results on the test set are displayed in Fig. 2.11 as the relations between Dice/Dice;
values and Ly, (Eq. (2.12)). As can be seen from Fig. 2.11 (b), Dice; of two methods keep
increasing as Agy,, decreases, which complies with the theoretical analysis. Moreover, from Fig.
2.11 (a), the trend of increase in Dice for Phase-DeformNet stops below A, = 5e-4, which implies
that the network cannot make improvement in aligning vessels by reducing Ag,,. Therefore, we
choose Ay, = 5e-4 as our setting in Section 2.5.2.

Fig. 2.11 also plots the results of the conventional method (i.e., Phase + MIND) and our

previous network [39]. The proposed Seg-DeformNet (the blue point at Ay, = le-3) has better
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alignment quality than our previous network [39] (the orange point) at a similar smoothness level.
Besides, both the proposed Seg-DeformNet and Phase-DeformNet achieve higher Dice/Dice;
values than the conventional method (the purple star), which shows the strengths of DNN on this

task.

Diffeomorphic Property of Deformation Fields

Diffeomorphic registration is another research topic in medical image registration and has
been incorporated in recently proposed networks [78—80]. It aims to obtain a topology-preserving
and invertible transformation that enforces one-to-one mapping. Nevertheless, it is not a major
concern or contribution in this work. Therefore, we only measure the diffeomorphic property of
our predicted registration fields during testing.

The diffeomorphic property of a registration field can be analyzed by the determinant of

Jacobian matrix, which is defined on each pixel (x,y) as

aFO",’.(xv.V) aF()?.ﬁ.(xvy)

o ox dy
e = an ") o o |7 221)
ox Jy

where Fp .. and Fj .. are the maps of displacement vectors in two directions. If |Jr(x,y)| <O,
the deformation at (x,y) fails to preserve the same warping orientation as its neighbors, which
is unfavored. In this work, we compute |Jz(x,y)| for all predicted registration fields on the test
sets, and count the number of pixels with negative determinant values. On the CF-FA dataset,
the percentage of pixels with negative determinant values are 0.0002% for Seg-DeformNet and
0% for Phase-DeformNet. On the JRC dataset, the values become 0.0044% for Seg-DeformNet
and 0% for Phase-DeformNet. These numbers show that only a small portion of pixels in the
predicted registration fields have negative values. Therefore, the diffeomorphic property is mostly

preserved by our proposed deformable networks.
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Figure 2.12: Registration performance of Phase-DeformNet on the CF-FA dataset when trained
with different number of local phase channels K.

Number of Local Phase Image Channels

The relation of Phase-DeformNet’s performance with regard to the number of channels K
in local phase signal is shown in Fig. 2.12. In theory, networks trained with small K can only
see detailed information (high-frequency patterns) in alignment. Increasing K includes more
low-frequency information for registration. As shown in Fig. 2.12, Dice peaks on both K = 3 and
K =4 and start to decrease sharply from K = 6. Dice, keeps increasing from K =2 to K = 6 and
decrease afterwards. In order to achieve a balance between Dice and Dice,, we select K = 4 for

Phase-DeformNet in our experiments.

Style Target Choices

The influences over Seg-DeformNet’s performance from different style targets are demon-
strated in Table 2.4. In details, three different segmentation maps are selected from HRF [67] and
DRIVE [68] datasets, as shown in Fig. 2.7 where the vessel density of HRF-12h, DRIVE-23, and
DRIVE-28 is dense, sparse, and in-between, respectively. On the CF-FA dataset, the network
trained with HRF-12h achieves the best performance. On the JCR dataset, DRIVE-28 helps the
network to obtain the highest Dice/Dice; values. We attribute this performance’s variations of
a certain style target to the similarities between the style target and the datasets’ images. Since

images in the CF-FA dataset generally have good quality and dense vessel structures, a style
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Table 2.4: Average Dice/Dice; Values of Seg-DeformNet on the JRC and CF-FA Datasets
Trained with Different Style Targets

Style Target Image JRC CF-FA

HRF-12h [67] 0.5088/0.5056 | 0.6692 /0.5442
DRIVE-23 [68] 0.5290/0.4963 | 0.6345/0.5353
DRIVE-28 [68] 0.5497 /0.5082 | 0.6559/0.5416

target with denser vessels (e.g., HRF-12h) might achieve better vessel segmentation, and thus
leads to better alignment results. However, the images in the JRC dataset has relatively sparse
vessel densities and also show lower image quality. Therefore, the best result is achieved with the

sparser vessel style image DRIVE-28 instead of HRF-12h.

2.5.4 Ablation Study on Coarse Alignment

In this section, we investigate the performance of the coarse alignment step on the JRC

dataset. We set up additional groups of methods and training settings in Table 2.5 as follows:

(e): DRMIME [81] and the AffineNet in DLIR [14] adopt image-based similarity metrics.
DRMIME is an iterative optimization method for multi-modal registration based on the MI
metric. Specifically, it computes approximate MI values via MIME (mutual information neural
estimation) [83], and sets up input image pyramids for registration. In our experiments, we
use five pyramid layers and 20% random sampling for registration, and keep the other settings
unchanged. In order to remove most contours in CF and reduce initial scale differences between
both modalities, we use a different image preprocessing step, i.e., a CF images i1s downsampled

by 1/3 from its original resolution, and then its center 768 x 768 area is cropped for optimization.

DLIR is a coarse-to-fine cascade pipeline that connects an affine registration network and
multiple deformable networks. The deformable networks are trained based on the outputs of
previous networks. Negative NCC is used as the loss function for unsupervised training. We only

implement the affine network instead of the full pipeline.

(f) and (g): We investigate the influences on the registration performance from different com-
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binations of input image modalities and features. We set up four types of mono-modal inputs,
i.e. IR images, B-Cosfire [73] vessel segmentation maps, averaged local phase maps (K = 4),
and the vessel maps from our segmentation network (SegNet). Especially, we trained a MU-
NIT [82] model on the training set to translate all CF images into the IR modality. We do not
use the opposite translation path (i.e., IR to CF) because of lower quality in the synthesized CF
images. Besides, we use two feature detectors and descriptors, i.e., SIFT [42] and the pre-trained

SuperPoint [20] network.

(h): We retrain the outlier rejection network in three additional settings, with each ignoring one

loss term in Eq. (2.10).

Groups (a), (b) and (d) are from Table 2.2.

Coarse Alignment Evaluation

In Table 2.5, we compare our proposed network (d1) with three other methods, i.e., (bl) a
feature based conventional registration pipeline [23], (e1) an iterative optimization method [81]
based on MI, and (e2) an unsupervised affine network [14] based on NCC. As observed, our
proposed network has a large advantages in Dice/Diceg values over the compared methods.
Moreover, the methods (el) and (e2) which use image-based similarity metrics fail in most cases,
i.e., only 1 and O successful alignment respectively, which has been implied in Fig. 2.2. This
indicates that multi-modal retinal image registration is a very challenging task for intensity-based

methods.

Choice of Input Modalities and Features

When combined with SIFT features (Group (f) in Table 2.5), the overall registration per-
formance remains at lower levels, with B-Cosfire (f2) achieving the best performance. However,

the SuperPoint network (Group (g)) boosts the registration performance over SIFT by a large
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margin, especially for the modalities of Phase maps (g3) and the vessel maps by our segmentation
networks (g4). Finally, the overall optimal performance is achieved by (g4) SegNet + SuperPoint,

which is also adopted in our coarse alignment step.

Loss Terms for Outlier Rejection Network

In Table 2.5 Group (h), we investigate the influences of different loss terms in Eq. (2.10)
on the outlier rejection performance. By comparing the various settings in (h) with (d1) which is
trained with the complete loss function, it shows that the largest performance drop is triggered
by removing the classification loss, while ignoring the other two terms has less impact on the
alignment quality. This demonstrates the major contribution from the classification loss in training
the outlier rejection network for our task.

In Table 2.6, we further investigate the value of the proposed Dice loss Lp in the cases of
training with uncleaned ground-truths. We adjust each element in the ground-truth matrices My,
by random percentages sampled in [—5%,5%]| or [—10%, 10%] to simulate polluted labels. Then
we train the outlier rejection network on these labels under various settings. As observed, when
trained with uncleaned labels, the settings using Lp show better alignment results than the ones

without Lp. Besides, increasing the weight Ap for Dice loss can further improve the performance.

2.5.5 Runtime Analysis

A disadvantage of our proposed network is that, the segmentation networks take more time
and large GPU memory in training. This is mainly the result of the style loss computation, which
compares style features between two complete segmentation maps, and thus requires the inputs
of the complete retinal images. When training Seg-DeformNet on the JRC dataset, the network
takes 7.9 GB in GPU memory and 9 days for training. In the other hand, the Phase-DeformNet
takes 1.8 GB of GPU memory and 4 days for training, since it does not perform segmentation. In

addition, the outlier rejection network takes 4.5 GB GPU memory and 7 hours for training.
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Table 2.7: Testing Runtime of Each Method on the JRC Dataset

Registration Time/ GPU

Step Platform —py; Memory

DRMIME (500 iters) Coarse  PyTorch  49.5s 1.2GB
Phase-HoG-RANSAC  Coarse Matlab 1.51s

Method

Phase+MIND Fine Matlab 41.9s
IRR-PWC Two-Step PyTorch 0.264s 1.3 GB
Ours Two-Step PyTorch 0.705s 7.8 GB
—Segmentation 0.525s
—Feature Detection & Description 0.141s
—Outlier Rejection 0.0277s
—Deformable Registration 0.0117s

There are 0.26M trainable parameters in each segmentation network (in addition to the
pre-trained VGG-16 layers with 14.7M parameters). Besides, the networks for feature detection
and description, outlier rejection, and deformable registration have 1.30M, 1.58M and 1.53M
parameters respectively. Table 2.7 shows the per-pair testing time of our network on the 768 x 768
images pairs from the JRC dataset. Our proposed two-step pipeline takes less than one second for

prediction, which is much faster than the conventional methods.

2.6 Conclusion

In this chapter, we set up a two-step coarse-to-fine CNN-based registration algorithm for
multi-modal retinal images. In the coarse registration step, an accurate transformation matrix is
estimated for an image pair through extracting vessels, finding features and eliminating outlier
matchings with three consecutive networks. The fine alignment step further improves alignment
quality by estimating a pixel-wise registration map using a deformable registration network. To
train the deformable networks, we propose to transform multi-modal images into a common
modality to fulfill the color consistency requirements in the unsupervised training scheme. We
propose to train vessel segmentation networks via style loss, which can benefit both coarse
and fine alignment steps. Experiment results show that our method achieve the state-of-the-art

registration result in both quantitative and quality measurements.
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In the future, we would like exploit the potential of our proposed method on aligning
more challenging retinal images e.g., multi-phase images, images with large scale variations, ultra
wide field images, etc. In addition, Generative Adversarial Networks (GAN) that disentangle
image content and styles, e.g., [82], have shown feasibilities in aligning [84] multi-modal medical
images. By incorporating GAN as modality transformers into our unsupervised joint learning
scheme may further unveil the potentials of both methods.

Chapter 2, in full, is a reprint of the material as it appears in IEEE Transactions on Image
Processing, 2021. Junkang Zhang; Yigian Wang; Ji Dai; Melina Cavichini-Cordeiro; Dirk-Uwe G.
Bartsch; William R. Freeman; Truong Q. Nguyen; Cheolhong An, IEEE, 2021. The dissertation

author was the primary investigator and author of this material.
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3 Multimodal Global Registration
between Ultra-Widefield and Narrow
Angle Retinal Images via Distortion

Correction Network

3.1 Introduction

Retinal image alignment plays an important role in the screening and diagnosis of retinal
diseases as well as management of patient information. Conventional Narrow Angle (NA) fundus
cameras can capture high-resolution details in a small retinal area. However, it is demanding for
patients and doctors to image larger retinal fields, because it takes much more time to capture
multiple images to cover peripheral retina and requires more skills for doctors to manipulate
the fundus instrument. Recently, Ultra Wide Field (UWF) cameras have also become popular
choices for retinal imaging, because they can capture a much larger view of retina in a single fast
shot, which makes them more convenient alternatives for disease screening. With the alignment
of UWF and NA images, doctors can acquire a larger view of the retina as well as detailed
information in disease areas, which will ease burdens for both doctors and patients. Furthermore,

by overlaying multi-modal retinal images captured under lights of multiple wavelengths, doctors
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Figure 3.1: Simplified illustrations of UWF and NA retinal cameras. Blue and green arrows
show the projection paths of 3D spherical points onto 2D UWF and NA imaging planes
respectively.

can also obtain more comprehensive information and detailed analysis for the same lesions, as
the retinal structures have different appearance in multiple modalities.

There has been extensive research on multi-modal retinal image registration [24-35, 38,
39,85, 86]. However, the alignment of UWF and NA retinal images remains unexploited. Most
proposed methods were designed for NA-to-NA image alignment via 2D-to-2D transformations,
which have yet to be tested on UWF image alignment. Meanwhile, there remains an unsolved
challenge in the UWF-to-NA alignment process, i.e., misalignment due to nonlinear distortions in
the UWF images. In detail, in order to achieve a wider field of view through the pupil, the UWF
camera sets its view point closer to the eye ball than most NA cameras, as shown in Fig. 3.1. This
design leads to larger perspective distortions in peripheral areas due to the 3D spherical shape of
eyeball, where retinal structures closer to the camera appear larger in scale than those distant ones.
Therefore, the UWF-to-NA alignment performance will be degraded in two aspects. On one hand,
it is challenging to model these distortions by a global 2D-to-2D transformation process, which
will have many misalignments when overlaying NA images onto the UWF peripheral areas. On
the other hand, in feature-based alignment methods, it will be more difficult to correctly match
the extracted features from the heavily-distorted UWF and less-distorted NA images, which will
further reduce the alignment accuracies.

To solve this challenge, the eyeball’s 3D shape prior must be considered in the retinal
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Figure 3.2: Comparison of UWF-to-NA and NA-to-NA alignment via perspective transforma-
tion. Left side shows the alignment of an Optos UWF ColorMap (floating) and a Spectralis
MultiColor (NA, fixed) images. Right side shows the alignment of a Color Fundus (NA, floating)
and a Spectralis Infrared (NA, fixed) images. The results are shown as the overlapping vessel
maps of both images. Red and green vessels are from floating and fixed images respectively,
and yellow areas indicate their overlapping parts.

image alignment process. Multiple eyeball shape assumptions have been incorporated into NA-to-
NA retinal image alignment, including spherical [87,88], quadratic [88], and ellipsoidal priors [89],
etc. In these cases, the alignment task can be handled as a pose estimation problem. Nevertheless,
existing methods only align NA images which is a easier task, because the distortions between
neighboring images are much less critical due to their smaller retinal coverage and thus the images
have more similar camera poses e.g., the NA-to-NA alignment of Color Fundus and Infrared
retinal images shown on the right side of Fig. 3.2. On the other hand, between NA and UWF
images, the distortions could be a critical issue in alignment if the NA’s camera pose departs
sharply from the camera pose of UWE, e.g., on the left side of Fig. 3.2, the UWF-to-NA alignment
quality is heavily degraded by various levels of image distortions.

In this paper, we propose a distortion correction algorithm on UWF images which incorpo-
rates the 3D spherical prior for the UWF-to-NA multi-modal image alignment. First, we assume
that the eyeball is a pure sphere, and the optical axis of the UWF camera goes from the pupil
center to the fovea center, i.e., an ideal 3D eyeball shape and a fixed pose for the UWF camera.
Then, we set up reprojection functions to remap the UWF image based on a similar camera pose
of the NA image to be aligned. The NA camera pose is described by 5 parameters, i.e., two sets
of 2D coordinates on a pair of fixed parallel planes respectively which define NA’s optical axis,
and a remaining parameter that defines the distance of the NA camera to the eyeball. Finally, we

use a two-stage iterative searching process to find the best NA camera pose parameters for each
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image pair which achieves the best alignment quality.

Moreover, we set up a registration pipeline based on deep Convolutional Neural Networks
(CNNs) which can make more robust prediction by learning from data. The pipeline consists
of two vessel segmentation networks which extract vessel structures from both modalities re-
spectively, a feature detection and description network to find correspondence between the two
images, and an ourlier rejection network to filter out the outliers and keep the inliers among
the correspondence. After training the networks, the UWF distortion correction model and the
iterative searching algorithm are also integrated into the pipeline, to ensure that the UWF images
have minimum distortions for feature extraction and alignment.

This paper extends our previous work [90] where deep CNNs and a distortion correction
module with one global parameter are combined to align UWF with NA retinal images. In partic-
ular, the following extensions are considered in this paper: (1) We set up a more comprehensive
correction function which is more capable of handling the complex distortion in UWF-to-NA
alignment. Four more parameters are included to model the NA camera pose, so that the corrected
UWF images will better match the NA image. (2) In conjunction with the new correction model,
we set up an iterative searching process to find the best parameters. Moreover, we optimize the
parameters for each image pair independently instead of finding a global parameter for the whole
dataset, so that optimal results can be achieved for each case. (3) We collect a new dataset of UWF
and NA images that contains more image pairs. Especially, we include more NA images covering
the peripheral retinal areas to examine the effectiveness of our proposed distortion correction
method.

The remaining of the paper is organized as follows. Section 3.2 provides backgrounds
of UWF imaging and reviews related works of retinal image alignment. Section 3.3 sets up our
proposed distortion correction functions. Section 3.4 presents the structures and training criteria
of our alignment networks, and the searching algorithm of the distortion correction parameters in

the testing phase. Section 3.5 provides experimental results of our methods.
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3.2 Backgrounds

3.2.1 UWF Retinal Imaging

Optos UWF instrument follows the DICOM standard [16] in imaging and storing 3D
retina data in 2D arrays with stereographic projection, as shown in Fig. 3.1. The eyeball is
modeled as a pure sphere with its two poles located at the cornea and fovea respectively. As a
special case of projective pinhole camera model, the UWF camera has its view point at cornea, its
optical axis through cornea and fovea, and its imaging plane at the equator of the sphere.

The Optos UWF instrument uses an ellipsoidal mirror which has two focal points for this
projection. It emits laser beams in varying angles at one of the focal points, which converge at
the other focal point after being reflected by the mirror. Once the patients manage to locate their

cornea at the second focal point, an UWF image can be captured.

3.2.2 Multi-Modal Retinal Image Alignment

Extensive works have been done for multi-modal retinal image registration. In feature-
based alignment methods, multiple methods have been proposed to improve keypoint detection
[25], feature description [26,27], and matching and outlier rejection [28,29]. The anatomical
structures of retina can also help the alignment task, including vessels [24,30-32], and vessel
bifurcations and crossovers [24].

Recently, several CNN-based multi-modal retinal image registration algorithms have
been proposed, which can be grouped into two categories. Some methods focus on estimating
global transformation models, where CNN is usually adopted as alternative steps in feature-
based registration pipelines. Lee et al. [34] proposed to filter extracted features based on their
reliabilities predicted from their corresponding image patches with a CNN. Arikan et al. [35]
proposed to use CNN for vessel segmentation and bifurcation detection. Wang et al. [85] set

up fully CNN-based registration pipeline consisting of vessel segmentation, feature detection
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and outlier rejection. Other methods mainly focus on deformable registration which is similar
to optical flow estimation networks, whose capabilities are usually limited to aligning small
displacements. The deformable alignment networks can be trained with weak supervision, e.g.,
extracted vessels [39] from style transfer [18], monogenic phase signals [22], pixel gradients [38],
or even synthesized images [33] via Generative Adversarial Networks [64]. Nevertheless, none of

these methods is designated for the UWF-to-NA alignment task.

3.2.3 UWF /3D Retinal Image Alignment

There exists very few works on image registration methods for UWF images. Ding et
al. [36] proposed to align two retinal modalities of Optos UWF ColorMap and Fluorescein
Angiography (FA) by 2nd order polynomial transformation model whose parameters are jointly
optimized with a vessel segmentation network. However, there is no special consideration on the
effects of UWF’s peripheral distortions. Recently, they also proposed a two-stage registration
method to align UWF FA image pairs [91]. In the first stage, an improved RANSAC method
repeatedly estimates transformation matrices from the random parts of a high-confidence cor-
respondence set, and then verify them on another noisier correspondence set. The matrix that
achieves the most number of inliers during verification is considered optimal. Then, in the second
stage, local chamfer alignment is adopted to reduce misalignments.

Nevertheless, several NA-to-NA retinal image registration methods incorporate 3D infor-
mation to provide guidance to handle the UWF distortion. Hernandez-Matas et al. [87] proposed
to align NA retinal image pairs via camera pose estimation with the assumption of spherical
eyeball shape. Their objective function aims to minimize the errors between the back-projected
3D keypoint correspondence via ray tracing from both 2D images, which is optimized by Particle
Swarm Optimization. Recently, they also adopt the assumption of ellipsoidal eyeball shape,
whose parameters are jointly optimized with the extrinsic camera matrix [89]. Ataer-Cansizoglu

et al. [88] also proposed to reconstruct 3D retina from multiple NA image via pose estimation
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Figure 3.3: Illustration of the ideal UWF imaging process with a spherical eyeball shape
assumption, as well as the correction camera model for perspective distortion correction process.
Black, blue and green symbols represent coordinate systems for the world (xyz), UWF camera
(XYZ) and correction camera (X'Y’Z’) respectively. In the world coordinate, the UWF camera
is located at (0,0, —1) and the correction camera is at X.4,. A same point can be represented
as x in the world coordinate, X in the UWF camera coordinate, or X’ in the correction camera
coordinate. (m,n) and (m’,n") are 2D pixel coordinate systems for the UWF and corrected
images respectively.
with spherical or quadratic eyeball shapes. They optimize the camera matrices and the shape

parameters via bundle adjustment, which minimizes the overall 2D reprojection errors among all

image pairs.

3.3 Proposed Distortion Correction in Ultra Widefield Images

3.3.1 Setups for UWF Imaging

We make the assumption of spherical eyeball. Based on UWF’s imaging procedure, we
set up a 3D coordinate system (i.e., world coordinate) as shown in Fig. 3.3. We set the radius
of sphere as r = 1 and the sphere center, fovea and cornea at the origin (0,0,0), (0,0, 1) and

(0,0,-1) respectively. The UWF camera is placed at cornea with its direction towards -z and
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its imaging plane perpendicular to the z axis. So the conversion between the UWF camera and
world coordinate only involves a translation of [0,0,-1]7. For simplicity, we also assume that the
principle point of the pixel coordinate overlaps with the image plane center in each camera, and
there is no skewing between the them.

In the UWF camera, given a position (m,n), m,n € R in the UWF pixel coordinate, its

camera coordinate (blue circle) can be written as

X=[X.Yf]" =m/v.n/v.f]" (3.1)

where f is focal length and 7y is a scaling factor between the pixel and image coordinates. Its

corresponding 3D position on the eyeball (red circle) is the intersection of projection ray
X, =1tX (3.2)
and the sphere
IXs— 0> =1 (33)

where O, = [0,0, 1]7 is the eyeball center in UWF camera coordinate. ¢ is solved as

2f

s (3.4)

where another solution ¢ = 0 is the camera origin and thus not used. Therefore, its corresponding

3D point x; in the world coordinate is

-1 T (2fX72fY7f2'X2'Y2>
o= Py () =X 0,017 === == (3.5)

On the other hand, a 3D point x = [x,y,z]” in the world coordinate can be converted into

the UWF camera coordinate X < [x,y,z -+ 1]7, and then projected onto the UWF imaging plane
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as

xoret - () 36)

In this work, we set f = 2, i.e., the UWF imaging plane is located at the back of the

eyeball.

3.3.2 Correction Camera

In order to reduce UWF image’s peripheral distortions during alignment, we set up a new
correction camera (green star) that shares the same extrinsic parameters as the NA camera. The
corrected UWF image from the correction camera will bear similar distortions as the NA image,
which will improve the alignment quality. We use the following five parameters (in three sets) to

define the correction/NA camera pose, which are illustrated in Fig. 3.3.

(1) We assume that the NA’s image center is at Xcep = [Xcen, Yeen, f]T (blue diamond) after being
aligned with the UWF modality, since both cameras might centered on different retinal areas. So,

its corresponding 3D point on the eyeball (red diamond) is X¢e, = F;L(Xcen).

(2) The camera’s optical axis (green dashed line) goes through the X, as well as X.,, =
[Xcors Yeor -I]T (orange diamond), because the pupil’s aperture allows more flexible adjustment of

the optical axis.

(3) We define d > 0 as the distance on the z axis from the correction camera’s origin (green star)
to the pupil’s plane z = -1, since the NA camera looks from a more distant position than the UWF

camera.

Therefore, the orientation of the correction camera is by 1 = [ri,, 7iy, ii.]T = normalize (Xcen-Xcor )
and the camera origin is at

. (3.7

Xcam = Xcor —

F
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We also set up rigid transformation (i.e., rotation and translation) between the world
coordinate and the correction camera coordinator. Based on right-hand rule, R, is denoted as a
rotation matrix which rotates an object point x around x axis by 8, = -tan”! (i1y/ \/W) and
R, as the rotation around y by 6, = tan™! (7i,/ii;). Therefore, R = RyR, represents the rotation
between the two coordinates, while the translation between them is represented by X.4,-

We set the correction camera’s focal length as f = f + ||Xcam-Xcor|| and its pixel-to-image
scaling factor as Y = 7. Therefore, the UWF image’s center area will not change in scale after

correction with X, = [0,0, f]” and x.,, = [0,0,-1]T.

3.3.3 Keypoint Remapping

Given a point X = [X,Y, f]7 (blue circle) on the UWF imaging plane, we would like to
find its projected position X' = [X’,Y’, f']|T (green circle) in the correction camera coordinate.
The corresponding 3D position of X on the eyeball (red circle) is x; = Fsé(X) Then we derive its
coordinate in the correction camera as

X! =[xy, 2" = R (xy — Xeam)- (3.8)

§ITSsITS

Its position on the correction camera’s imaging plane is

X'+ =X (3.9
z

This process computes the keypoint (m’,n’), m',n’ € R in the corrected image which
correspond to a UWF keypoint (m,n) detected in the original image. The complete process is

summarized in Algorithm 1.
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Algorithm 1: UWF keypoint correction from the correction camera view point.

Inputs: (m,n) (e.g., UWF’s keypoints), given 5 parameters (Xcen, Xcor, d);
Outputs: (m',n’) (e.g., corrected keypoints);

(0) Compute correction camera pose X¢q, and R;

(1) Switch to UWF camera coordinate: X < [m/y,n/y, f]T;

(2) Obtain 3D point in world coordinate: X <— F;;(X);

(3) Switch to correction camera coordinate: X’ < R™! (X5 — Xcam);

(4) Correction camera projection: [X',Y’, f'|T « f'X!/Z!;

(5) Switch to pixel coordinate: (m',n’) <Y (X', Y").

3.3.4 Image Distortion Correction

On the other hand, when given a point in the correction camera X' = [X',Y’, ]I =
[ /Y, 1 /Y, f]T where (m',n’) is its position in the correction camera pixel coordinate, we want
to find its corresponding position X = [X,Y, f]” in the UWF camera. We convert X’ into the
world coordinate as

x = RX' +Xcam. (3.10)

The corresponding 3D point X; is located at the intersection of the correction camera’s projection
ray (in world coordinate)

Xy = X+1 (Xeam — X). (3.11)

and the unit sphere

x> =1, (3.12)

which leads to a 2nd-order equation

| Xeam — x[|22% + 2xXT (Xeam —X)t + ||x||> — 1 = 0. (3.13)
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Algorithm 2: Image generation from the correction camera view point (UWF
image correction).

Inputs: (mjp, n;,) (pixel grid of the correction image), and the uncorrected UWF
image I, ¢, given 5 parameters (Xcen, Xcor, d);

Outputs: (m,n) (e.g., resampling positions in ,,, ), corrected image I/ £

(0) Compute correction camera pose X¢q, and R;

(1) Switch to correction camera coordinate: X' < [m), /Y ,n), /Y, ']

(2) Switch to world coordinate: X < RX + X 4m;

(3) Get 3D intersection position: Xg <— X+ - (Xcqm — X), Where ¢ is got from Eq.
(3.14);

(4) Switch to UWF coordinate and projection: X «— F,(Xy);

(5) Switch to pixel coordinate: (m,n) < y(X,Y);

(6) Interpolating UWF image: I, - <= STN(Luz, (m,n) — (m},,n},)).

We only keep the smaller  when there are real value solutions, since we only need the intersection
point closer to the back of the eyeball, i.e.,
—b—Vb*—4ac

= 14
t P ; (3.14)

where a = ||Xcam-X||?, b = 2x! (Xcam-X), and ¢ = ||x||>-1. Finally, the corresponding position in
the UWF imaging plane can be obtained as X = F,g(Xy).

This inverse mapping process is used to generate the corrected image by interpolation. We
set (m;,, ”fn)’ m;,, n;, € Z as pixel grid positions in the correction image, and find their sampling

positions (m,n) in the original UWF image. The complete process is listed in Algorithm 2.

3.3.5 Pixel Scaling Factor

The scaling factors between pixel and image/camera coordinates Y, and Y, are derived
through the UWF center pixel view angles o and f3 in the DICOM files of Optos UWF images. As
illustrated in Fig. 3.4, the width of the center pixel is 2 ftan(o./4) in the X axis of UWF camera
coordinate, which corresponds to width of 1 in the m axis of the pixel coordinate. Therefore, we

set Yy = 1/(2ftan(a/4)). Optos UWF ColorMap has oo = B = 0.08596515°, so we set a same
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Figure 3.4: Illustration of scaling conversion between UWF pixel coordinate mn and camera
coordinate XY Z. It only shows the projection on X — Z plane and m axis, where o is the view
angle of UWF image’s center pixel in X direction.

scaling factor for both X and Y directions as Y=, = 7y, and we set Y = 7 as described in Section

3.3.2.

3.4 Ultra Widefield and Narrow Angle Image Alignment

The design of our registration pipeline mainly follows the global alignment networks in
our previously proposed multi-modal retinal image registration networks [85], which consists
of three parts. First, both UWF and NA retinal images are fed into two vessel segmentation
networks respectively to extract vessel maps. Then, a feature detection and description network
finds keypoints from the vessel maps, and obtains their corresponding features as well. The
keypoints from both images are matched with each other based on their feature similarities to
obtain a set of correspondences. Finally, an outlier rejection network predicts inliers among the
correspondences, based on which the transformation matrix can be estimated.

Furthermore, our proposed registration pipeline is differentiated from the previous work
in the following aspects. On one hand, we adopt a segmentation network [36] specially pre-
trained on the UWF modality which will ensure better segmentation quality, and propose to
train the segmentation network for NA modality through a joint segmentation and deformable
alignment scheme. On the other hand, our proposed distortion correction function in Algorithm 2

is incorporated into the pipeline, and the five extrinsic parameters for the correction camera model
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Figure 3.5: Our proposed registration pipeline: the networks.

are estimated through iterative alignment algorithms with the goal to achieve the best registration

accuracy.

3.4.1 Vessel Segmentation Network

For the UWF modality, a pre-trained vessel segmentation network [36] is adopted to
extract UWF vessel maps, because it has shown better segmentation performance on UWF images
than our previously proposed network. Moreover, the knowledge stored in the UWF segmentation
network can be migrated into the network for NA vessel segmentation, since both images are
captured from the same eye and therefore should share a similar vessel structure. However,
due to the severe distortions, the vessel structures are not accurately aligned even after global
transformations, which will affect the efficiency in transferring vessel knowledge. In order to
achieve this goal, we set up a training method which trains the NA’s vessel segmentation network
along with a deformable alignment network. During training, the predicted NA vessel map should
be able to align with the UWF vessel map extracted from the pre-trained network, such that the
vessel knowledge can be accurately transferred from the UWF segmentation network into the
NA’s network.

The detailed training scheme is shown in Fig. 3.6. Both NA image /,,, and UWF images
L,y are sent into their corresponding vessel segmentation networks to obtain vessel maps,
Ly y-s and Iy, respectively. Meanwhile, both images are also concatenated and fed into the

deformable alignment network to obtain a dense registration field F', which is similar to optical
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Figure 3.6: Training scheme for NA vessel segmentation network.

flow estimation [19]. Afterwards, a Spatial Transformation Network STN [58] (i.e., an image
warper which can back-propagate) warps the NA’s vessel map according to the registration field.
Finally, a loss function examines the alignment quality between the warped NA and UWF vessel
maps, which helps transfer the UWF’s vessel knowledge (i.e., ”ground-truth”) into the NA vessel
segmentation task.

The training loss is designed as
Lseg = ApeLpe + AL 4 Aror Lror (3.15)

where L. and Ly, are photometric consistency and smoothness losses in optical flow estimation
networks [19], Ly, is rotation invariant loss [86], and A, and Ay, are their corresponding weights.
L 1s defined as

ch(luwf-S7[na-S7F) - MSE(STN(Ina-SaF)Juwf-s) (3-16)

where MSE (Mean Square Error) aims to minimize the difference of the vessel segmentation

results from both networks. Besides, Lg,, is defined as

Lgyu(F) =mean ((Fc.,x,y — Fc7x+17y)2) -+ mean ((Fc,x,y — Fexyt1 )2) (3.17)

X,y C.X,y

where F has two channels (i.e., ¢ € {0,1}) of maps with the same spatial resolution as the
NA image, and ¢, x and y are indices in F for the channel, horizontal, and vertical positions

respectively. It ensures that neighboring pixels are warped in similar directions and distances

67



when the NA image is being warped, so that non-vessel areas can also be aligned correctly. L, is

defined as
Lor (Ina) = MSE (rot (H (rot(lna))> H(la )) (3.18)

where rot(I) rotates its input image by 180°, to ensure that the extracted vessels match the actual
vessel positions.

For NA vessel segmentation and deformable alignment, we adopt the same network
structures as those in our previously proposed fine alignment network [86], i.e., Deep Retinal
Image Understanding (DRIU) network [69] for NA vessel segmentation, and a modified structure
based on U-Net [65] for deformable alignment. Readers can refer to [86] for detailed network
structures. These networks are trained on roughly aligned NA and UWF images, since the
deformable alignment network could not handle large displacements. The UWF images for
training are warped by affine matrices estimated from manually labeled keypoints. After training,
only the vessel segmentation networks are used in the following steps, while the deformable

alignment network is not used.

3.4.2 Feature Detection and Description

In this paper, SuperPoint [20] is adopted to extract features from both vessel segmentation
maps. The network consists of an encoder and two decoders for keypoint prediction and feature
description respectively. The encoder first takes as input a vessel segmentation map (/-5 Or
L4-s), whose output is sent into both decoders. Afterwards, the keypoint decoder outputs a
keypoint probability map where keypoints are then located through Non-Maximun Suppression.
The keypoint coordinates for UWF and NA images are denoted as (m,n) and (u,v) respectively.
In parallel, the feature description decoder outputs a feature tensor, where the feature descriptor
at each keypoint can be extracted.

Two loss functions, i.e., keypoint loss and descriptor loss, are involved in training the
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network. The keypoint loss is a cross-entropy loss to supervise the multi-class classification
of keypoint and non-keypoints in a small image area. While the descriptor loss minimizes the
feature differences at the corresponding positions between synthetically warped image pairs. In
this paper, we adopt a pre-trained SuperPoint model in prediction, because complete keypoint
positions and accurate transformation matrices for our data are not available. The model was first
trained with both loss functions on a synthetic dataset [20] which consists of synthesized images
of corners and edges as well as their keypoint position ground-truths. Furthermore, the feature
description decoder was finetuned with only the descriptor loss on retinal vessel maps extracted
from a NA-to-NA alignment dataset [85]. Readers can refer to [20, 85] for more details on the
training data and process.

Following the SuperPoint network, a bi-directional matching process finds initial corre-
spondence p = ..., (m;, n;,u;,v;), ...] € RV** by matching the features from both images. More
specifically, in (m;,n;,u;,v;), the UWF feature at (m;,n;) should be a best match for the NA

feature at (u;,v;) among all UWF features based on minimum euclidean distance, and vice versa.

3.4.3 Outlier Rejection Network

The initial correspondence might be noisy due to the large view angle differences of
the two modalities. The UWF’s features in peripheral areas could be matched incorrectly with
the NA’s features, which will affect the accuracies of the estimated transformation matrices.
Therefore, an outlier rejection network [47] is adopted to predict the inliers and outliers among
all correspondences, and the transformation parameters are estimated based on the inliers.

The outlier rejection network takes p as its input, and outputs scores s € RV*! for every
correspondence. Then, the scores are thresholded by 0, and transformed into weights w in range
[0,1), i.e., w = tanh(ReLU (s)) The keypoint pairs with w; > 0 are inliers, while those with
w; = 0 are considered as outliers which will have no effect on the following steps. Afterwards,

the matrices M; of most transformations can be estimated by Weighted Least Square (WLS)
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algorithm from p and w. For a transformation
(uivvi) :T((mi7ni)7MZ)7 (319)

the matrix can be solved by

M; = argmin || WA, Vec(M)||, (3.20)
M

where t € {poly, pers, DLT } represents transformation types, W = diag([wy, w1, ...,wy,wn]) €

R2N*2N 5 a diagonal matrix, Vec(M) is vectorized M, and A, is constructed according to ¢. The
solution to Eq. (3.20) is the eigenvector that corresponds to the smallest eigenvalue of AT W7 WA.,

For 2nd-order polynomial transformation (¢ = poly)
[ui, vi] " = Mpopy[mi,ni,m?, nf ,mini, 17 (3.21)

where

aplr aiz a3 a4 ais die
poly — )
ax; ax axz ax4 axs ax

M (3.22)

the matrix A ,,;, € R*2V*13 is constructed as

Apoly = i i . (3.23)
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For perspective transformation (t = pers)

uiq al aiz a3 m;
vig | = | a21 ax a3 ni | (3.24)
q asz; azz asz 1

the matrix A s € R2V*? is constructed as

m; n; 1 0 0 O -nmiu;  -niy U
A pers = , (3.25)

0 0 O nm; n; 1 -m;v; -njv; -v;

For Direct Linear Transformation (DLT)

Xi

uq ail arz aiz a4
Vi

vig | — | a21 a2 a3z ax ) (3.26)
Zj

q as] asp asz ds4 .

where (x;,y;,z;) is the 3D world coordinate of the UWF keypoint (m;,n;) calculated by Eq. (3.1)

and (3.5), the matrix Ap;r € R2V*12 i5 constructed as

xiyviozi 1l 00 0 0 -xu -yiuj -ziui -u;
Apir = . (3.27)
0 000 x yizm 1 -xivi -yvi -zvi -vi

While for affine transformation M, s, readers can refer to [86] for its solution.
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The loss function for network training consists of three parts, i.e., classification loss L.
and regression loss L, which are based on ground-truths matrix My, as well as an unsupervised

Dice loss L; based on alignment quality of the two vessel maps. First, L. is defined as

1 N
Le(p,s,Mg) = N Y viBCE(yi,0(s:)) (3.28)
i=1

where BCE(+, -) is Binary Cross Entropy function, 6(-) is a sigmoid function, and v; is a balancing

weight for two classes. y; € {0, 1} is the inlier label for the i-th correspondence

1, ||T ((mi,ni),Mg) — (ui,vi)|| <5 pixels
Vi = (3.29)

0, otherwise

where T'(-) translates the UWF keypoint (m;,n;) into NA’s coordinate based on My, i.e., a
keypoint pair is labeled as an inlier if their distance is less than 5 pixels after warping. Next, L,

aims to minimize the difference between Mg, and the estimated My, i.e.,
L = MSE(Mg, - Maff). (3.30)

Finally, L; aims to further improve the alignment quality by comparing the vessel maps of NA
and UWF after warping, which is useful when the ground-truths labels lack accuracies [86] or the

supervised loss values are enlarged by the huge non-linear distortions. L, is defined as
Ly = 1—Dice (STN(Iqu_S, Mpoly),lna_s> , (3.31)

where Dice is an evaluation metric on image alignment quality

2-Y (ele_min(ly, 1))

Dice(I,I,) = R

(3.32)
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Figure 3.7: Our proposed registration pipeline: the iterative searching process for distortion
correction. The magenta arrows indicates the iterative searching loop, where the solid arrows
represent the networks’ computations with the corrected I,’Mf and the dashed arrows indicate
alignment error computation and camera pose update.

Therefore, the total loss for the outlier rejection network is

Lowtier =AeLe + ALy +AgLy. (3.33)

Readers can also refer to [85] for more details. Different from [85], we use M, for L, because
higher order polynomial transformation can better describe the non-linear distortions in our task,
which is aimed to reduce the ground-truths’ misalignment errors during training. Meanwhile we

still use affine transformation for Mg, L. and L, due to its stability.

3.4.4 Iterative Alignment Algorithm

Even with the aforementioned learnable methods, the UWF-to-NA alignment performance
is still affected by the perspective distortion in two aspects. On one hand, the adopted 2D-to-2D
global transformation models may not be able to handle the nonlinear distortions stemming from
the sphere-to-plane projection, especially when aligning NA images with the UWF’s peripheral
areas. On the other hand, in the network forward paths, the keypoint features are extracted from
the heavily distorted UWF images and the less distorted NA images. As a result, the feature
descriptors on a same vessel structure from the two images will bear larger variations, leading to
more errors in the following matching and outlier rejection process.

In order to further reduce alignment error, we incorporate the aforementioned distortion
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Algorithm 3: Global searching for initial d.
Result: Optimal d;,;; =d.
Initialization: N
(1) {(Ilgfv)f_s,l,gf,zs), ...} of whole training set, and NA’s keypoints {[(ul(]),vl(j))], )
Q) d=1,Xcen = (0707f)7xcor = (0705‘1);
(3) A dictionary D to store results;
(4) Searching range [be, en], step, ext, and loops;
for loops do
for d. = (dstep*2) : (step) : (d+stepx2) do
for j-th image pair do
Algorithm 2: JASAN U

uwf-s uwf-s’
Feature Detection & Description Network: I,Efv)f_s — [(ml(j ) ,ngj ) )]s
Outlier Rejection Network & WLS: [(ml(j)/, nl(j)/, ugj) , vl(j))] — MU,

D[d,][j] = Dice(STN(IY, _ MU)), 1))

uwf-s’

end

Dld.] = Average ; (Dld:][J]);
end

d « argmax, D[d,];

step = step/2;

end

correction process into our registration pipeline in the testing phase, such that the transformation
models are estimated based on the corrected UWF images with less distortions. Meanwhile, we
set up two algorithms to search for the optimal distortion correction parameters that yield the best
alignment quality according to Dice scores. The searching process consists of two steps, i.e., a
global searching process on the whole training dataset to find an initial d;,;;, and a local searching
process to find the optimal parameters on each image pair to be aligned.

Algorithm 3 lists the first global searching process for d;,;;, which remains the same as
our previous work [90]. Here, we set X.., = (0,0, f) and x., = (0,0,-1), i.e., we assume the
average optical axis of all training NA images overlaps with the z axis. For each d candidate
to be evaluated, Algorithm 2 first remaps all UWF images in the training set based on current

correction camera pose. Then, new UWF keypoints are detected by the feature detection and
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Algorithm 4: Iterative local searching and alignment.

Result: Registered image / ;fff.

Initialization:

(1) A'set of Ly g, Ina, Luwf-s and I, g in test set;
(2) p and w from initial alignment;

(3) Xeen = (anaf)’ Xcor = (070;‘1)’ d = dinir;
(4) A dictionary D to store Dice values.
Function NetworkForward () :

Algorithm 2: Ly, r, Ly f-s — I/WfJ,/mf-s;

u

Feature Detection & Description Network: 1, - - — [(mj, n;)];
Outlier Rejection Network & WLS: [(m},n}, u;,v;)] — M,
End Function
Obtain X, by NA-to-UWF transformation: Eq. (3.34);
while True do

while True do
for d. = (d —step*2) : (step) : (d+step*2) do
NetworkForward () — I;Wj-_S,M;
Dld:, Xcen,Xcor| = Dice(STN(IL'th_S,M),Ina_s)
end
d < argmax, D[d.,...|;
if d not updated in this loop then
‘ break;
end
end
while True do
for x.,. € 8 neighbors around x., do
NetworkForward () — Ipltwf-va;
Dld, X en,Xcor-c] = Dice(STN(IL’th_S,M),Ina_s)
end
Xcor <= argmaxy  Dl[...,Xcorc);
if X, not updated in this loop then
‘ break;
end
end
if both d & x.,, not updated in this loop then
‘ break;
end
end
NetworkForward () — I,/Mf,M;
Get final image: 1,5 = STN(1,,, , M).
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description network which are then matched with the NA images’ keypoints as correspondences.
Afterwards, the transformation matrices are updated, and the corrected UWF images are warped
again based on their respective matrices which are compared with the NA images to compute
Dice scores. The d with the highest average Dice value on the training set is selected as the djy;s
for the next step. The searching settings in Algorithm 3 are empirically set as be = 1, en = 3,
step =1/2, ext =4, and loop = 4 at the beginning.

Then, in the second step, Algorithm 4 is proposed to find the locally optimal 5 parameters
on each testing image pair individually. In brief, we first estimate the X, which is obtained
by warping NA’s center pixel coordinate (ug,vp) = (0,0) to the UWF image space (i.e., inverse
transformation)

[mcenancen]T =M [l/t(), Vo, M%; V%? Upvo, 1]T7 (334)

-1
poly

and then scaled into the UWF camera coordinate via Eq. (3.1). M}}o Iy is an inverse transformation
which is estimated from uncorrected p and w through WLS by swapping [u;,v;] and [m;,n;] in
Eq. (3.23). Then, we optimize d and X, sequentially and iteratively in a big loop as shown
in Fig. 3.7, until none of the parameters are updated in a loop. Both the feature detection and
description and outlier rejection networks are involved in this optimization process, so that they
can benefit from the distortion-corrected UWF images in feature description, matching and inlier
predictions. When searching for d, we set step = 1/16 which is the minimum step used in

Algorithm 3. Besides, when optimizing X, we evaluate the 8-neighbors of the current best

value, i.e., AX;or, AY;or € {—step,0,step} where step = 1/20.

3.4.5 Alignment Process

We set up several alignment methods that use various transformation models or distortion
correction algorithms, which are summarized in Fig. 3.8. On one hand, all networks are evaluated

on the uncorrected images with perspective, polynomial and DLT transformations, which are

76



Initial Alignment Algorithm 4

w/o Correction Local Searching & Alignment
- (training & for Each Testing Image Pair
|Vesse| Segmentation | testing)
_}Iuwf-s Ina-s& P w
Feature Detection e e e e =
I WLS (inverse) !
| Outlier Rejection I T 77T “Updated
_________ " Xcen

r
'L WLS & STN ) d=dinit, Xcen, Xcor=(0,0,-1)

- __-I——J --------- "

Iuwf-S Ina-s Aligned Images i
(F1)-(£3) Algorithm 2: —
p wio DC Image Correction [ E
Algorithm 3 L |
Global Searching for d . uwfsl ; |
on the Training Dataset Feature Detection Update!
|
d=1, Xcen=(0,0,f), Xcor=(0,0,-1) | Outiier Rejection | 4
- — | o0 0ooc |
Algorithm 2: | | WLS,STN 1 |
Image Correction e [
o

I ’uwf-s J,

r q
I Alignment Error ===

<
|
|
I | . -—-— - -
Feature Detection | Update I Updated
I d d
| Outlier Rejection | | Algorithm 2: ¢
_________ | . -———
; WLS, STN 1 Im?ge Correction I
SIS Iuwf-s,L :
I Alignment Error k=< i
M o I ————a Feature Detection Update!
dinit I Outlier Rejection I Xcor
PO oo 9 |
1 WLS, STN | |
S55558555 [
I Alignment Error b = = =4
——rT——---
| Updated Loop until
| Xcor no change
| I o

Aligned Images
w/ DC (5 parameters)

Figure 3.8: The complete registration and distortion correction process of our proposed method.

denoted as (f1)-(f3) respectively. On the other hand, we search for the best five parameters for
each testing case individually by Algorithm 3 and 4, and corrects the UWF image for alignment
with polynomial transformation, which is denoted as (f5) w/ DC (5 parameters).

In addition, in our ablation study, we set up alternative schemes with different network
involvements in searching for best parameters in Algorithm 3 and 4. Scheme (f7) sends the
corrected UWF keypoint positions into the outlier rejection network to re-estimate the weights
for inliers, i.e., feature detection and description network is not used in searching. It relies on the

initial correspondence detected from the uncorrected vessel maps. Scheme (f6) only re-estimates
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the transformation matrix with corrected UWF keypoints (by Algorithm 1) and uncorrected inlier
weights without using any networks, whose alignment performance should suffer most from

distortions.

3.5 Experiments

3.5.1 Dataset

We experiment on two datasets that consist of UWF and NA image pairs collected
by Jacobs Retinal Center of University of California San Diego. In both datasets, the UWF
images are stored in DICOM format in the Optos ColorMap with 4000 x 4000 resolutions, where
o =B =0.08596515° for coordinate conversion are specified in the files. The NA images are
captured in the 55° MultiColor (MC) modality from the Heidelburg Spetrallis system with image
resolutions of 768 x 768 or 1536 x 1536. For convenience, we resize all MC images to 768 x 768
before alignment. In addition, we only use the center 2000 x 2000 areas of UWF images in our
experiments, because only a few effective UWF pixels appear outside this region and most MC
images fall in this area after alignment.

The first dataset, which we denote as UW, contains 116 pairs of images from 59 patients
(i.e., 2 patients with one eye, 57 patients with both eyes). The majority of the MC images locate
around the fovea, i.e., X, is close to (0,0). We divide the dataset into two equal-sized sets, UW 1
and UW2. We denote UW1-2 as the scheme of training on UW1 and testing on UW2, and vice
versa.

Furthermore, we also collect a new dataset, i.e., UWc, in this paper. The dataset contains
images on 56 eyes from 29 patients (i.e., 2 patients with one eye, 27 patients with both eyes).
However, on each eye, the doctors captured multiple MC images centered on various retinal
positions by manipulating the Spetrallis camera. As a result, there are 56 UWF images and

505 MC images, where each UWF image has 8 to 10 corresponding MC images. A plot that
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summarizes the MC’s center position after NA-to-UWF alignment based on ground-truths is
shown in Fig. 3.10. We divide this dataset into UWc1 (250 pairs) and UWc2 (255 pairs). Similarly,
we denote UWc1-2 as the scheme of training on UWc1 and testing on UWc2, and vice versa.

In order to provide ground-truths for training and testing, we manually labeled correspond-
ing keypoint positions for all image pairs. The average numbers (standard deviation) of keypoint
pairs among all images are 43.7 (18.6) for UW and 14.3 (4.2) for UWc. Depending on the image
quality, we ensure to label at least 6 pairs of non-collinear correspondence for each image pair,
which is verified by estimating polynomial transformation or Direct Linear Transformation (DLT)

matrices.

3.5.2 Settings

In training the vessel segmentation networks for MC images, we initialize the networks
with weights pre-trained on Color Fundus Images [86], and then finetune them on MC images
in the UW1 or UW2 datasets. The networks are trained for 2000 epoches on both datasets,
with learning rate as le-3, batch size as 1, Ay, = 2e-3, and A = A,y = le-3. For the outlier
rejection networks, we also initialize the networks with a model pre-trained on a NA-to-NA
retinal image alignment task [85], and then finetune them on UW1 or UW?2 datasets respectively.
The networks are trained for 1000 epoches, with learning rate as 1e-4, batch size as 8, A, = 1,
and A, = A; = 0.1. The models that achieve the highest average Dice scores on the training sets
are used for evaluation. All networks are trained by Adam optimizer [72]. When evaluating our
method on the UWcl & UWc2 dataset, we directly use the networks trained on UW1, as well
as the dj,;; estimated on UW1 as the input for Algorithm 4, i.e., there is no network training or
fine-tuning and Algorithm 3 is not executed.

In testing phase, 2nd-order polynomial transformation is adopted for all methods unless
noted. We adopt two evaluation metrics for the alignment quality, i.e., Dice of Eq. (2.8), and

alignment success rate. For Dice, the vessel maps from the vessel segmentation networks in the
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proposed pipeline are used in the computation. When computing success rates, the ground-truth
keypoint coordinates in each UWF images are first corrected by Algorithm 1, and then warped
based on their respective transformation matrices. Next, the pixel distances between the warped
UWEF keypoints and their corresponding NA keypoints are calculated, among which the maximum
distance d,y 1s recorded. An image pair is considered as success in alignment if its dy,qy 1S
smaller than a threshold € {10,20,50}.

Our method is implemented in Python and PyTorch. The networks are trained on desktops
and servers with GTX 1080 Ti. It takes about 18 hours to train a segmentation network and
about 10 hours for the outlier rejection network. All the evaluations are performed on a Windows

desktop with a GTX 1080 Ti and an Intel 17-7700K CPU.

3.5.3 Registration Results

For comparison, we set up 4 groups of registration methods in evaluation, as listed in

Table 3.1. The methods are:

(a-b) Keypoint-matching based methods.

For (al) Phase + HoG+ + RANSAC based on the global registration step in [23], dense
HoG features are extracted from the local phase maps of both images, and then matched with each
other. On UW datasets, we only use the center 1000 x 1000 area of UWF images as most NA
images fall in this region after alignment. We do not report it on UWc dataset due to excessive

memory cost in dense-HoG feature matching.

For (b1)-(b3), we set up the global registration method in [91]. SIFT [42] or SuperPoint
features are detected on vessel segmentation maps. RANSAC and RANSAC-CS (RANSAC with
Consensus and Sample sets) [91] are used to estimate inliers. In RANSAC-CS which is designed
to align two UWF images, the optimal threshold for creating the Sample set is searched on UWc2

dataset at step 0.1 based on average Dice value, which is determined to be 0.7 and then applied
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for all other datasets.

(c-d) Optimization based methods.

(c1) REMPE [89] assumes the eyeball as an ellipsoid. It first back-projects the 2D retinal
correspondences onto the 3D eyeball, and then finds the optimal registration by minimizing the
3D distances of the correspondences. Particle Swarm Optimization is used to find the optimal
relative camera pose, and the eyeball’s shape and rotation. We use an executable program from the
authors, where we have no knowledge on how to correctly warp the manually labeled keypoints.

Therefore, its success rates are not reported.

(d1)-(d2) DRMIME [81] is an iterative-searching based method multi-modal images
registration. Edges are detected on the image pyramids created from the input images, and the
optimal transformation parameters are determined based on Mutual Information (MI) metric.
We set five-layer image pyramids and 20% sampling rate in our experiments. In addition to the
original scheme (d1) that use images as inputs, we also replace the edge detection step with our

vessel segmentation maps as (d2) which yields better results.

(e) Fully network based method.

(el) DILR [14] pipeline consists of global- and deformable-alignment networks for
medical image registration. The networks are trained with negative Normalized Cross Correlation
(NCC) loss on the input images. We only implement the affine-alignment network in our

experiments.

(f) Our proposed method.

(f1)-(f3) and (f5) are as described in Section 3.4.5. (f4) is based on our previous distortion

correction method [90] with only one global parameter d.

Table 3.1 shows the Dice values and success rates on all datasets. Overall, our proposed

registration pipeline (f5) which has complete distortion correction achieves the highest Dice
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values and success rates across all datasets.

In detail, when comparing our network (f2) with the keypoint-based methods (bl) & (b3),
our method shows advantages on the majority of the metrics, except that our success rates with
threshold = 10 on UWc datasets is lower than RANSAC-CS. This demonstrates the benefits
of the deep neural networks on the outlier rejection task. Next, if comparing (b2) which uses
SIFT feature with (b3) which uses SuperPoint Network, it can be observed that (d3) achieve
slightly better Dice values but much better success rates, especially on UWc¢ dataset which need
to align NA images with the heavily distorted UWF peripheral areas. This shows the advantages
of the feature detection and description network in finding more robust features for matching
and transformation estimation. Besides, the methods (d1) & (el) which use retinal images as
inputs basically fails on this task, while using vessel segmentation maps as input (d2) can greatly
improve the registration performance. This shows that the conventional solutions for multi-modal
registration (i.e., applying alignment metrics, e.g., NCC and M1, on the original images) are not
suitable for multi-modal retinal image registration, but the anatomical structure from retina (i.e.,
vessels) can greatly alleviate this problem.

When comparing different transformation models of (f1)-(f3), 2nd-order polynomial
transformation (f2) achieves the best Dice values. The 3D-involved DLT (f3) produces much more
successful alignment with threshold = 10 but also has more failure cases i.e., with threshold = 50.
This shows the importance of adopting 3D prior information in aligning UWF with NA retinal
images. Nevertheless, DLT might be inappropriate for this task when the actual eyeball shape
deviates from the pure-sphere assumption. Finally, by incorporating the proposed distortion
correction method in the testing phase (f4) & (f5), the registration performance is boosted in most
aspects compared with (f2), which demonstrates the importance of 3D shape prior in accurately
aligning UWF with NA images. Our best method (f5) also surpass the DLT model (f3), indicating
that we have proposed a more appropriate adoption of 3D information.

When comparing across the UW and UWc datasets, the S-parameter correction model
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(f5) achieves about 0.014 increase in Dice and similar success rates compared to 1-parameter
model (f4) on the UW datasets. This indicates that the newly-proposed correction model is able to
improve the alignment accuracy for NA image centered on fovea when the alignment is successful,
but cannot correct the errors in the failure cases (threshold > 50). However, on the UWc¢ datasets
which contain more NA images capturing the peripheral retina, the increase in Dice advances to
about 0.05, and the success rates also have larger improvements. Partial of the failed alignments
by (f4) might be caused by the peripheral distortions instead of wrong estimation of inliers, as
they can be improved by incorporating more parameters. This shows that our 5-parameter method
can find better alignment in peripheral retina with more severe distortions.

Fig. 3.9 shows alignment results on two image pairs from UWc dataset. In the center
area alignment, most methods are able to find roughly correct alignments. Nevertheless, the
methods using linear transformation (d2, f1) or without distortion correction (b1, b3, f2) have
more misalignment. Furthermore, in the example of peripheral area alignment, our method
(f5) achieves the best alignment quality. The distortion correction method with only one global
parameter (f4) suffers more misalignment in this example, indicating that more parameters are

necessary in correcting peripheral distortions.

3.5.4 Ablation Study

Performance Improvement w.r.t. NA Image Position

Fig. 3.10 illustrates the improvements of the S-parameter correction method (f5) over the
1-parameter method (f4) w.r.t. the NA image’s position on retina. Most points show green or
cyan colors, indicating improvements on alignment qualities for most cases. Furthermore, when
comparing the points around the origin (i.e., NA images centered on fovea) and those peripheral
ones (i.e., NA images capturing peripheral retina), the peripheral points show higher saturation

than the centered points. This shows that the 5-parameter method is more capable at handling
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Figure 3.10: Plot of increased values of Dice and d,,,,, on UWc dataset w.r.t. the NA image’s
position in the UWF image, when comparing our proposed 5-parameter correction algorithm
(f5) over the 1-parameter method (f4) [90]. The origin (0,0) is the UWF’s image center and
assumed to be fovea. Each circle indicate an image pair. Its location indicates the NA image’s
center coordinate on retina (in UWF’s pixel coordinate) which is derived by warping the NA
image center towards UWF modality through affine transformation based on manual labels.
Its color legend is shown on the right side. Green color indicates improvements in both Dice
(increased) and d,,,, (decreased). Purple points generally indicates lower alignment quality,
especially due to increased d;;4y.

peripheral images with larger distortions.

In addition, Fig. 3.11 also plots the increased Dice and d,,q, of (f5) over (f4) w.r.t. the
distance between the fovea and the NA image’s center. The majority of image pairs show
improvement in Dice, while most pairs show similar or lower d,,,,,. This can also be verified by

the blue lines estimated via robust linear regression, where Dice increases and d,,,,, decreases as

the NA camera looks further away from the fovea.

Network Involvement in Distortion Correction

We compare the performance of distortion correction schemes (f5)-(f7) as summarized in

Table 3.2. These schemes involve different number of networks in the searching and correction
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Figure 3.11: Changes of Dice and d,,,,, w.r.t. the NA image’s center distance to the fovea when

comparing (f5) over (f4.). The blue lines are estimated on the points by robust linear regression

(robustfit function in Matlab) to reduce the influences from outlier points.
process, as described in Section 3.4.5. As observed, with more networks involved, both the
success rates and Dice values show improvements. In the method using outlier rejection network
(f7), the corrected keypoint positions might have helped the network to find more true inliers
and exclude false inliers, which therefore achieves better performance than (f6). Furthermore, if
feature detection is involved (f5), the network would be able to extract features from two images
with similar distortions, which might have further benefited the following steps and improved
the performance. Meanwhile, even though the computation time per iteration increases as more
networks are involved, the average computation time for each image pair decreases, because

much fewer iterations are needed to reach the optimal point.

Performance Improvement with Corrected Input Maps

Table 3.2 also compares the registration performance when using the original or distortion-
corrected vessel segmentation maps as input for feature detection and image warping. The
corrected maps are based on the optimal 5 parameters estimated by our proposed method.
RANSAC and RANSAC-CS (b1)-(b3) as well as DRMIME (d2) are included in this experiment.

As observed, when using the corrected input maps, all methods shows obvious improvements
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in registration quality. Especially, the RANSAC method (bl) rivals or exceeds RANSAC-CS
(b3) in most evaluation metrics after adopting the corrected segmentation maps, which proves the
effectiveness of distortion correction for alignment performance improvement.

It should also be noted that, the dramatic boost of DRMIME’s performance (d2) is not
only caused by the reduction of peripheral distortions, but also resulted from the the knowledge
of the NA’s image center X, from Algorithm 4 where the initial translation between two images

are reduced and DRMIME can find the optimal transformation more easily.

3.6 Conclusion

In this paper, we propose a distortion correction method to reduce the peripheral distortions
in UWF images for UWF-to-NA retinal image alignment. The correction model functions by
remapping the UWF image based on a similar camera pose as the NA image which is described
by 5 parameters. Along with the correction function, we set up a registration pipeline consisting
of CNN, and incorporate the distortion correction method into the pipeline during testing phase.
A two-step searching algorithm first finds the globally optimal distance on the training images
between the NA camera and the eyeball. Then, it iteratively optimizes the NA camera pose for
each image pairs to achieve the best alignment performance. Experimental results show that the
proposed method achieves the best alignment quality, as well as the capability of the distortion
correction function in improving UWF-to-NA registration performance.

In the future, we would like to further exploit the alignment between multiple NA and
single UWF images, as well as the joint alignment of over three modalities. 3D information will
likely play a crucial role in these tasks.

Chapter 3, in full, has been submitted for publication of the material as it may appear
in IEEE Transactions on Image Processing, 2022, Junkang Zhang; Yigian Wang; Fritz Gerald

P. Kalaw; Melina Cavichini-Cordeiro; Dirk-Uwe G. Bartsch; William R. Freeman; Truong Q.
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Nguyen; Cheolhong An, IEEE, 2022. The dissertation author was the primary investigator and

author of this material.
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4 3D Eyeball Shape Estimation for
Ultra-Widefield and Narrow-Angle Retinal

Image Alignment

4.1 Introduction

As shown in Chapter 3, the alignment performance between Ultra-Widefield (UWF) and
Narrow-Angle (NA) images achieves large improvements when 3D eyeball shape information is
incorporated into the alignment process. The spherical assumption of the eyeball shape helps to
reduce the non-linear 2D distortions in UWF images which cannot be solved by simple 2D-to-2D
global transformation models. However, this approximation still deviates from the actual eyeball
shape which is more complex than a sphere. Therefore, there will still exist misalignments even if
we have estimated accurate NA camera poses and very complex 2D-to-2D transformation models.
In this chapter, we aim to recover a more accurate eyeball shape from the UWF and NA image
pair, in order to achieve the best alignment quality between the two images.

There have been several works on the 3D estimation of eyeball curvatures and shapes.
However, most of them are based on simple shape functions for the eyeball which are described
by only a few global parameters, e.g., spherical, quadratic, or ellipsodial functions. As mentioned

in Chapter 3, Ataer-Cansizoglu et al. [88] estimate the eyeball shape from multiple NA images
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based on planar, spherical and quadratic assumptions, and optimize the shape parameters and
multiple camera poses via bundle adjustment. Hernandez-Matas et al. [87,89] jointly estimate
the relative camera pose between two retinal images along with the spherical and ellipsodial
parameters of the eyeball model via particle swarm optimization. Besides, Chanwimaluang et
al. [92] estimate retinal curvature from NA image sequences through Structure From Motion
which incorporates constraints on ellipsoid surface and lens distortions.

In this chapter, instead of estimating the parameters of a simple 3D functions to describe
the eyeball shape, we reconstruct a dense and more accurate scene for the eyeball. Starting from
the spherical shape and the estimated NA camera extrinsic parameters by the distortion correction
networks in Chapter 3, we first set up an initial 3D mesh with dense vertices over the UWF image.
Then, the coordinates of the vertices and the NA camera parameters are jointly and iteratively
optimized, with the objective that the reprojected images from the scene based on UWF/NA
cameras can exactly match the original 2D input images. In addition, we propose a searching
scheme where the iterative optimization process is combined with the distortion correction results
from Chapter 3, such that the 3D-to-2D scene projection and 2D-to-2D global alignment can be

concatenated to achieve the best alignment quality.

4.2 Proposed Method

4.2.1 Model Setup

Our objective is to reconstruct a dense 3D scene (eyeball shape) for the UWF image, as
well as estimate the NA camera’s parameters, such that the reprojected 2D images from the scene
based on the cameras can be accurately matched with the original input images.

At the starting point, we set up an initial ideal eyeball model in the world coordinate
based on stereographic projection, as shown in Fig. 4.1. The eyeball is a pure sphere of radius 1

centered at (0,0,0). The UWF camera is located at (0,0,-1) with its viewing direction towards
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Figure 4.1: 3D eyeball model based on spherical assumption and stereographic projection.

z = -1. We define an initial mesh with vertices V= {v € R3|||v|2 = 1} for UWF imaging area
on the eyeball. The vertices V are arranged in the shape [W /s+ 1,W /s+ 1,3] as shown in Fig.
4.2, where W is the pixel width of the UWF image (assumed to have square shape), and s € Z™ is

the sampling step of the mesh grid. A vertex v is located on the pure sphere at

(2fX,2fY, f2-X2-Y?)
NS CNE Z A @D

where f =2 is the focal length of the UWF camera. [X,Y] is the vertex’s 2D location in the UWF

image obtained by

X, v, /1" = [m/v.n/y. f]", (4.2)

where v is a known scaling factor between the pixel coordinate and image coordinate, and [m, n]
is the corresponding location in the UWF pixel coordinate. Readers can refer to Section 3.3.1 for
detailed math derivations.

Then, the UWF mesh reflecting the actual eyeball shape is defined on vertices V+ AV =
{v+Av}, where Av € R? is the movement of the vertex v and can have either one or three

degrees of freedom which will be discussed later. The NA camera pose is defined by 6 extrinsic
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Figure 4.2: An example of a mesh defined on a square UWF image. The image width is
W = 4000 pixels. The mesh vertices’s (orange circles) sampling step is s = 400 pixels. The
faces (triangles) of the mesh are represented by blue lines.
parameters, i.e., camera position X, € R3 and orientation 6 = [y, 0y, 0.]. In addition, we include
an intrinsic parameter for the NA camera definition to describe the range of projection (assuming

the scene is projected onto a square image), i.e., NA camera field of view a. We can write the

reprojected UWF image based on NA camera as
Ly = project(luf, V+ AV, {Xeam, 0, 0L}), 4.3)

where project(+) reprojects the 3D scene to the 2D imaging plane defined by the camera, which is
implemented in Pytorch3D and able to back-propagate. Finally, in order to achieve our objective,

we will jointly optimize both the eyeball shape AV and the 6 +- 1 NA camera parameters.

4.2.2 Optimization with Hard Constraint on UWF Reconstruction

An intuition here is that, when the scene is being altered during optimization, we hope
that the reprojected UWF image by the UWF camera still remains identical to the original UWF
image. To achieve this goal, the movement of a vertex Av should be restricted on the UWF

camera’s projection ray of the corresponding pixel. The viewing direction of the ray is

i, = norm(v — [0,0, —1]7). (4.4)

93



Therefore, the vertex’s movement is defined as
Av = Av-n,, 4.5)

where Av € R has one degree of freedom, and all movements AV = {Av} is an array with shape
W/s+1,W/s+1].

The optimization process for AV and NA camera parameters 1s based on two loss terms,
i.e., photometric consistency loss and smoothness loss. On one hand, the reprojected UWF image
by the NA camera should match the NA image. To this end, we extract vessel maps from both
retinal modalities, reproject the UWF vessel map instead of its color pixels, and measure the
alignment quality between the reprojected UWF vessel map with the NA vessel map. We use

photometric consistency loss to evaluate the alignment quality which is defined as
L, = MSE(project(Lyt-s, V+ AV, {Xcam, 0, 0t} ), Lnass)- (4.6)

On the other hand, the estimated scene V + AV should be smooth without abrupt changes such as

sharp edges or corners. Therefore, we apply the smoothness on the estimated scene as

Lon(AV) =mean ((AVij = AV 1,7)?) +mean ((AVi; = AV j11)?), (4.7)

where i and j are indices in the array of AV. Finally, the total loss is defined as

Lyara = ch + }\fsmLsm- (4-8)

4.2.3 Optimization with Soft Constraint on UWF Reconstruction

However, we find that it is difficult for the optimization process with the hard constraint

to achieve the best alignment, which is likely due to the limited direction of vertex’s movement.
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Therefore, we lift the hard constraint on identical UWF image reconstruction, and add a soft
constraint for it instead during optimization. Meanwhile, we allow the vertex to be adjusted in all
orientations (i.e., three degrees of freedom) instead of in a restricted direction. In other words, we
directly optimize the array of AV = {Av} with shape [W/s+1,W /s+1,3].

The loss terms for the optimization process consist of three parts. First, we use the same
photometric consistency loss from Eq. (4.6) between the reprojected and the original vessel maps.

Second, the smoothness loss is defined as

Ln(AV) = mean ((AVijx—AViey j)?) + mean ((AV: 1 — AV, j14)%), (4.9)
where i, j and k are indices in the array of AV. Next, we define a direction deviation loss to
penalize the inconsistent moving direction of Av from the direction of the ideal projection ray 1,
in the UWF camera

Lgir = mean ||Av — (Av, ii,) - i, |3 (4.10)
VAv

which acts as the soft constraint for UWF reconstruction. A smaller L ;- value indicates that the
reprojected UWF image based on UWF camera is more similar with the original input. Finally,
the total loss is defined as

Lyara = ch + 7\fsmLsm + }\fdirLdir- (4.11)

4.2.4 Optimization Process

Assume that a set of sparse correspondence p = [..., (m;,n;, u;,vi),...] € RN*4 between
the two images as well as their weights w € RV*! are available (e.g., those estimated by the
SuperPoint and outlier rejection networks in Chapter 3), we first need to find the initial estimate
of the 6+ 1 NA camera parameters before optimizing AV which will otherwise move in the
wrong direction. A simple method to achieve this is to optimize the NA camera parameters by

minimizing the average weighted distance between NA keypoints [u;, v;] and reprojected UWF
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Figure 4.3: Incorporating the proposed scene optimization process into existing methods.
keypoints

2
[ui, vi] — project ([m;, ni], V,{Xcam, 0, oL} H2 (4.12)

Linit-cam = meanw;
i

where the project(+) is similar to Algorithm 1 in Chapter 3. Afterwards, both AV and NA camera

parameters can be jointly and iteratively optimized by minimizing Eq. (4.11) or (4.8).

4.2.5 Incorporation into Distortion Correction Network

A better option to apply our proposed algorithm is to incorporate it into the Distortion
Correction process of Chapter 3, since it uses the more complex 2nd-order polynomial transfor-
mation and has already achieved good alignment quality. The incorporated optimization process
is illustrated in Fig. 4.3. The initial inputs are the estimated transformation matrix M, and the
5 correction camera parameters. With the inputs, we can derive the initial estimates of X, and

8 = [6y,0,,0] according to Section 3.3.2, while the camera field of view is initialized as

an-tan_l%sz;). (4.13)

During iterative optimization, we first output a reprojected UWF vessel map based on the current
estimate of the scene and the NA camera parameters. Then the reprojected UWF vessel map is
warped by M,,;,. Finally, we compute the loss using the warped UWF vessel map and the NA

vessel map, and update AV and NA camera parameters.
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Table 4.1: Average Dice Values (Standard Deviation) on UWc¢ Datasets

Method UWcl-2 (255) UWc2-1 (250)
Input (Distortion Correction Network) 0.5674 (0.1062) 0.5176 (0.1298)
Deformable Alignment Network (Section 3.4.1) 0.6125 (0.1209) 0.5707 (0.1454)
Scene Reconstruction (Soft Constraint) 0.6850 (0.1248) 0.6281 (0.1582)

4.3 Experiments

4.3.1 Settings

We use the UWc dataset in our experiment which has been introduced in Chapter 3. We
only use the center 2000 x 2000 area of the UWF image (i.e., W = 2000). The rasterization
size in the image projection is 1000 x 1000, and the MC images are expanded to the same size.
For each image pair, we set up a mesh with s = 8, i.e., 126 x 126 vertices in V and AV, and
initialize the NA camera parameters by the estimation results of the distortion correction model
from Chapter 3. The vessel segmentation map as well as the polynomial transformation matrix
are pre-computed and kept unchanged during optimization.

During optimization, we use Adam optimizer [72] to update the AV (learning rate 1e-2)
and 6+1 NA camera parameters (learning rate le-4). The weights for each loss terms are
Asm = le5 and Ag; = 1e2 under soft constraint. Under soft constraint, the parameters are updated
by 200 iterations, and the optimization process will terminate earlier if the increased amount
of current Dice value over the one of 20 iterations ago is smaller than le — 3. Dice values are
computed between the NA and the warped UWF vessel maps to evaluate the alignment quality.
The algorithm is implemented in Pytorch and Pytorch3D, and tested on a server with GTX 1080

Ti graphics cards.

4.3.2 Results

Table 4.1 shows the Dice values between the NA and the warped UWF vessel maps.

We use the deformable alignment network trained in Section 3.4.1 as the comparison method
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Figure 4.4: Qualitative alignment results on two pair of input images. In each example, the
top row shows the interlaced view of the two aligned images, while the bottom row shows the
alignment of their vessels (red and green are from UWF and NA images respectively). (a) Input
image aligned with the global transformation by the distortion correction network of Chapter 3.
(b) Fine alignment by the deformable alignment network. (c1)-(c3) Alignment by our proposed
eyeball shape estimation method with soft constraint on UWF reconstruction, where Ay, = 1¢6,
1e5 and 1e4 respectively.

which makes one-time predictions of optical flow fields for 2D-to-2D warping. As observed, the
proposed eyeball scene reconstruction method using the soft constraint has advantages over the
deformable network with over 0.05 increase in Dice values.

Figure 4.4 shows qualitative results from different methods, as well as the scene recon-
struction method with different settings. The proposed method (c2) shows better alignment quality

than the deformable network (b) in details indicated by blue circles. Besides, in (c1)-(c3), we

compare the results optimized under different weights Ay, for the smoothness loss term. When
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Figure 4.5: Comparison of soft (Ay,, = 1e5) and hard (A, = le4, 1€3 & 1€2) constraints for
UWF image reconstruction during scene optimization. (a) Plot of Dice w.r.t. optimization
iterations. (b) Reconstructed eyeball shapes under various optimization settings, from a same
view. In the images, the white or blue surfaces represent the pure sphere (i.e., initial estimation
of the shape), while the UWF image act as the UV map which is painted on the estimated scenes.

using a smaller weight of 1e4 in (c3), the unmatched UWF vessels are reduced in width, which
indicates unfavorable abrupt local changes in the estimated scene. On the other hand, when using
a larger weight of 1e6 in (c1), the alignment performance becomes less competitive. Finally, the
setting of Ay, = 1e5 achieves the balance between the best alignment quality and smooth shape
of the reconstructed scene, which is therefore adopted for our experiment.

Figure 4.5 shows a comparison of using soft and hard constraint when optimizing on one
image pair. As can be seen, the scheme using soft constraint is able to reach the highest Dice
score in fewer iterations while keeping the reconstructed eyeball shape smooth. By contrast, the
schemes adopting hard constraint need much more iterations before achieving high Dice scores.
Moreover, achieving higher Dice scores by reducing smoothness weight A, leads to more uneven
eyeball shapes. Therefore, with regard to improving retinal image alignment quality, the scheme

using soft constraint is a better choice.

4.4 Conclusion

In this chapter, in order to achieve higher performance for UWF-to-NA retinal image

alignment, we set up an iterative optimization algorithm to estimate finer eyeball shape defined
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on a dense 3D mesh, such that the reprojected UWF image can be accurately matched with the
NA image. The objective for the optimization process is to generate reprojected UWF vessel
structures based on UWF/NA cameras which remain identical to the original UWF/NA images,
while the estimated eyeball shape maintains smoothness. We incorporate the constraint on UWF
vessel map reconstruction as either a soft or a hard constraint in the algorithm. Besides, the
proposed iterative optimization process is concatenated with the global alignment results from
the distortion correction networks of Chapter 3, so it becomes similar to a fine alignment process
which reduces the misalignment. Through our experiments, we demonstrate the effectiveness of
the proposed algorithm, and discuss the usage of the soft and hard constraints.

Chapter 4, in part, is currently being prepared for submission for publication of the
material. Junkang Zhang; Yigian Wang; Fritz Gerald P. Kalaw; Melina Cavichini-Cordeiro;
Dirk-Uwe G. Bartsch; William R. Freeman; Truong Q. Nguyen; Cheolhong An. The dissertation

author was the primary investigator and author of this material.
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5 Conclusion

In this thesis, we present two pipelines to handle the main challenges in multi-modal
retinal image registration.

To solve the inconsistency of multi-modal anatomical retinal structures, we proposed to
extract the retinal vasculature as a consistent signal between multi-modal retinal images. The
vasculature maps can function as the inputs for feature detection and description in the global
alignment, as well as the guidance for training the deformable registration network. In addition,
to the best of our knowledge, we first proposed the two-step coarse-to-fine registration pipeline
completely based on deep neural networks for multi-modal retinal image registration. The coarse
alignment network consists of networks of vessel segmentation, feature detection and description,
and outlier rejection. In the learning process, the vessel segmentation networks are trained
in conjunction with the deformable registration network, without the needs for segmentation
ground-truths.

We also proposed a distortion correction module to reduce the misalignment caused by
the stereographic projection in UWE, where the correction module remaps the UWF image to a
new camera which shares similar extrinsic parameters with the Narrow-Angle (NA) camera. The
remapping functions is based on the assumptions of a spherical eyeball shape and a fixed UWF
camera pose. The new camera pose is defined by five parameters which are iteratively optimized
by minimizing the alignment error. Moreover, the distortion correction module is incorporated

into a global registration network to benefit the feature detection and matching process which
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will lead to better alignment performance.

Following the distortion correction module, we further remove the restriction of spherical
shape assumption, and represent the eyeball shape with a dense 3D mesh which is to be optimized.
The objective is to estimate a smooth 3D scene along with the NA camera parameters, such that
the reprojected 2D images from the 3D scene based on either UWF/NA camera can be accurately
matched with the original input images. In addition, the optimization process is concatenated
with the global alignment results from the distortion correction network, so it can work as a fine
alignment step to further reduce alignment errors in UWF-to-NA retinal image registration.

In the future, we will further improve and extend our work in the following aspects. First,
in recent advancements of general image registration, transformers [93] have been proved effective
in image matching in various scenarios, and thus could be introduced into the multi-modal retinal
image registration task to help in estimating more accurate correspondence. Second, we will
explore the possibilities of finding analytical solutions of the 3D eyeball shape information
from dense/sparse correspondence, so that the iterative optimization process can be removed or
accelerated. Next, we can align multiple NA images to the UWF image simultaneously which
will introduce more constraints and lead to more accurate estimate of the 3D scene. Finally, we
will take into consideration other types of distortions introduced in the retinal imaging process,

e.g., refractions, eyeball movements.
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