
UC Irvine
ICS Technical Reports

Title
An introduction to structured Petri nets

Permalink
https://escholarship.org/uc/item/5058p3md

Author
Rose, Marshall T.

Publication Date
1983-10-30
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5058p3md
https://escholarship.org
http://www.cdlib.org/


vio

2

^r\
C3
•tm

An IntroductiaB to
Stnictuied Petri Neti

Ma^iaB T. Rote
D^jartmeat Of InfCBSUtian and CoD^Mter Scieaoe

Unver^ d CtMarmt, In^
. am oa 30 22^:41 1983 Noticei TOs Material

Compute MbO: MRoBe.UCI@Raiid-RdHy [jjay protected
l^dmicalRfiportNinnbe2^ ^fSSOpynght LaW

-fi® 17U.S.C.)

IntradiKtloB nd Mullvallu

The protocol-esthies used incompute networks form a lii;^ dasi ofcoDairrent
software systems. Tratfitianal metbodi of yedfication. intmdrid prinu^ fe the dntign of
pqtiMitial software, do not addreu the issues of timing and failure, a^ndi are the ueutial
focus of many parallel appbcatioos, aisd in particular network protocob. As such, software of
this type preseits several dmilenges fe a repreaeitatiop laxtguage.

Many techniques have been applied to the probkms of qiedfying the behavior ofthese
eitities, ranging from state—encoded techniques atone extreme to fatftory—encoded
techniques at die other[9CHW82]. State-encoded tnrhniqtifs ^ to mapBfy the bridge to
ynpiwTiwTtHtifm, wbfle history-encoded methods tend to penmt more rifgaiit proofs of

Rather than viewing these approarhfs m alUauHtrves to eediothc, we dsooae to
vifot tntiy ri tfrfmique* t iraiifitwnwitmg each other in gOPtg fa™ more abstiaia
qwrfOTitiftm to Our peiipo.'tive now narrows on the state—encoded

to ^)eci&atian, and in particular the Pctn net ino<Vl[^iiEr/], which has been used
successfully foe describe^ hardware tyttaai, but has not enjo)^ wkJe^read-use in software

Recently, another extension to the Pstxi net model has been profxaed, the structured
Ftoi nBt[MR0SES3a]. It is our purpose tonpiain the notian ofstructmed Petri nets, and to
show how they can be used to represent concurrent software systems. We emphasize tte
fundamental princqdes ofthe structured Petii net tedmique, rather than dosdy examining
bow structured Petri nets may beused to giedfy communicmians protocols. %asmgdBS
gpprwii^ we hope to an understamfing of the structured Itei net wageneral
qjedScation toed.

Ihe pialaaopfay of structured Petri nets finch i& bans in two oteervaticaa: first,
jnii|[ii«nimtT^ languages, while powerful data—mampilatunn c^Mbtbties, do not

powerful concurrency-tonstructs with dean semantics; and, second, diat Petii net
wUe pamiitii^ el^ant rqproentatkm ofconoinency, are undde to repraent any

mesmii^ handht^ of data. Structured nets, in leqnnse, combine the data-bandling
features ofprogrammiQg lapguagn with the control—Iqgic features ofPstn xiets.



: Aldiou^ Strongly wcoded, ^lese (rfiservatioos are quite dcfemibie. Programming
languages have evolvedfrom a sequentialbackground, in whichflow of control has bera
viewed strictly withinthe context of a givoi program. As concurrentprogramminghas
received widn use, programming languages have been aiigmmtfd with

: concurrency-constructs. IMortunatdy, the designers of programming languages have been
unable to introducepowerful mediods of indicating concurrent that have sinqde semantics.
-The rmdezvous-construct found in Ada^[ADA82], while fuDy CEqnble of permitting
daborately staged syndrronizations, has an amazingly complexset of rules that are difficult, at
best, to describe straight-forwardly^.

-Petrinets have evolved from a fiteoretical background, and have beat used primarily as
method for hardware design. As such, many of die notions taken completdy for-granted in
software, suchas die referencesemantics for variables 0.e., scoping rules), are absent from
dus qiproach to representation. Many authors have proposed extoisions to die ba^ Petri net
modd, including timing[MERL76], memory and processars[BERTS2]. When viewedwidi
diese extensions in mind, Petri nets contimie to suffer from sane inhoent weaknesses as a
method for rqiresenting software systems. For exanqde, most extmded Petri net modds,
such as numerical Petri nets[SYMG^], view memory as global, so diat any transition can
cause any portion of die memory conqionent to be altered. The UCLA Ck^qdi Modd of
Behavior (GMB)[RAZD80], which is a particular extamon of Petri nets, sdves dns problem
diou^ die introduction of a data flow grq^ Ihe data flow grqA dearly definn the
particular rdations between transitions and memory oonqxments. While useful, die data flow
grqA is cumbersome when conqiared to the mechanism used by programminglanguages to

, define access to variables.

/ IheBadci,

Wenow consider die building-blocks diat are iBedto constructstructured Petri nets.
This discussion is more conversafional dian fonnal: die current definition of structured Petri

nets can be foundin [MROSE83b].

A softw^ system described by the structured Petri net technique is of one or
more structured Pdri nets. A Petri nd is a directed gnqih with two types of nodes:places,
wfakfa told toJbenj; and tnzRjiri^, viucfa abscrti and produce tokens. A structured Petri net is
also a directed grsfh, but in addition to places and tnmshions, it is also populated with:
invocations, •wbkb rqnesent die instantiation of anodier net; and named sidmets, whkh
represoit the substitution of anotfao' net. Each net has one or more places designated as entry
places, and one or more places dfsignatrd as exit jdaces.

A structured Petri net operates in much the same way as a Petri net: die presence of
tokms on the input placesfor a transition enables that tranation, whichIbenfires by absorbing
the tokens anthe in^t places and producing tokens on the ou^jut places. There are certainly
more formal d^nitions for enabling and firiitg, dian this terse synopsis, but mtk*our purpose
is to gain an intuitive unrterstandhig of the structuredPetri net technique, no more time is
qient cm thefundamentals of thePetri netmodd'.

^ Ala isa tradffliaTk ofdieDqiaitment d Oefose (Ada Jciat Pogram Office).
. * It is not cur pmpcse to sio^-our Ala, or to unf^y oitidze its definiticn, many odier preyaiming

languages are.also guilty,cf powerful,ya non-underttnnclaMe ccocurreocy-caostiuca.

.. (' This should ixx present any difficulties for readen with a casiud fandiarity with Petri nets. Readers
without anybackground whatsoever should rxmrinf [FEIETT] before enrtimring



"Acce«lnfDirt» '

Tokens traverse tfic i^. The token foin^ in a structured Bctriiiet has a stn^e attribute,
its color. An tokens of the same color are indistinguishable from eachotho', ahfaough tokens

:of diffnent colors are easily cEstinguished. A odor may be dKxi^ of as representing a
rtynmriifany serried mvironmept. Colors arem^sped to conftwr—Uodti, wiucfa denote a part
ofaprivate mcmrce space (i.e., memory component) for a particular process fxrniting inthe
system.

The color attribute of a tnirm has an ortfinal value from die set of all colors, wbidh for
ourpurposes is very, very large. Unique to each process is a color—generator, wfaicfa is a
marfiiTtft that produces new colors for the process whcacvcr the generator is incremented. The
color—generator has a current color value, isdiicfa is always equal to die color jaoduoed by the
last increment operation. In diort, since each process has its own color—generator, a contour

the binding between a particular process and a given cdcr, andm a result, each
process has its own private memory—component.

A contour-block contains hindingn for variables and a pointer to the immediatdy
scoping contour. This meam diat by"sbtg cdorful tokois, structured Petri nets are able to
achieve a dynamic scoping merhHnism to determine dataaccess. To search for a variable in
die context of a particular token, diat token'scontour-blodc is first examined. K the variable
is not present, dienthe preview contour is examined. This activity continues until either die
variableis found, or dnre is no previcais contour. In die forma case, die variable found
references the most recent occurrenoe of die data rqnesented by diat name; in the latter case,
die variable is undefined in die context of die original tokoi, (no data is rqiresented by diat
name in diat context).

To introduce a newcontext, an operation similar to entoing a new block in a
prf^rammmg language, a token passes dirou^ a tramition, which incremoits the
color-generatori and produces a token wlmse color isdiecurrent-ador-value and whose
immediately-scoping contour is die color of die original token. New variables may now be
dedared ami initialized in die new context. To terminate the context, an operation similar to
leaving a block in a prt^ramming lartguQge, a token passes dmxi^ a transition, which
produces a token wfM»e color is die onedenoting the inunediatdy-sooping contour of die
originBl tokoL

AD of die activity of a structuredPetri net is controiOed by the trai^ons in die net. A
transition may potenti^ perform avoy complicated set of stq» when h fires after being

As with die basic Petri net modd, we view the firing of a transition to occur as a
MTiglft atcmic action, aldiou^ internally many actions may occur.

For a transition to be a booleanexpression, knownas the eiabling conditions
of the transition must be satisfied. This eqiression may referoice the numba of tokois on
the tnpit places for die tramition, along with the value of variables in the context of diese
tnki>ns Tt k very important to note that tokens of the samecdor CoDaborate to satisfy die
imahiing comfitions, tokens of different odorsarealways considered sqiaratdy. Hence it is
possible for more one groiqi of colorful tokens to satisfy die enabling coitions, the
actual tnVftns choseri, known as the eligible tckms, is chosennon-detoministicaDy. It is also
imjOTTtimt to emphasize diatdie testing^ die endding conditions must notcause
si^-efiects.

— 2 —



\iWvmirtnimitifYninem^dcd,hfins.AttUspointseveralactivitieshqipeainsequeaioe:

(1)Hiceligibletokensareronoved£romtheii^placesandmovetotfieirCQir^xniding
inputans.Aselectionruleisevaluatedwliicfadeterminesthemimheroftokensthatare

:tobeintroducedintodienet,aridwincfaou^arcsaretoreceivethosetokens.
(2)AsetofconstructionrulesarefcdlowedvidditeQcolorsdieseintroducedtokens

takeon.Normally,thetnVwMhavethesamecolorasdiedigibletokens,butthisneed
:notbethecase.tokemarethen"constructed"andplacedontheqjpropriate

outputarcs.

(3)iheintroducedtokensaredienmanqailatedindiecontextofdiefiringtransition.Has
mpgmthatasequentialcodesegmentisexecuteddiatreferenoesvariablesinthecontext

'ofthedigiblea^introducedtokens.
(4)Ftnally,theeligibletokensareronovedfromdieiqiutarcs,anddieintroducedtokens

areplaodontheirre^iecdveou^places.Atdaspoint,thetransidonhasfinished
firing.

Thereareanumberof"'"mnpgdiatthisfiringmediodpomits.Thesdecdonrule,
permitsustoeasilybuildtopologiesdiatrepresentif-then-elseorswitdidecisionstructures
byiiM^EaMngif,transitionandmanyoutputplaces.Thissameflexibilitycanbeachievedby
ngingawngif-inpiitptnrp.anymanytraiBitiom,butitisfeltthatdieformerrqiresentadon
mightbeeasiertoanalyze^.Naturally,evaluatingdieselectionrulemustnotcause
si^—effects.

Theconstructorrulesallowustoeasilypushandpopcontourstochangethescofxngof
thedata.Theserulesarerequiredtoeidiausetlttsamecolormdiedigibletdcms,
incremeitthecolcngeneratoranddienusediecurrentcolorvalue,orpopthemostrecent
contour.Ifdiegoieratorisincronented,thendiecanstructdrrulesmayintroducevariables
intotl^newlycreatedcontext.Asweseelata,thispermitsustoinstantiateinvocadonsbodi
recursivelyandinparallel.

HmfaifCoBslderatlooa

ThenodonoftimeinstructuredPetri^tsiscurrentlyunderdevdoped.Nevod^ess,
structuredPetiinetscancontaintenqxiraldemoits,usingdieconceptspresoitedin
[RA2X)S3l.Inaddidontomablingcondidonsandfiriqgrulesdetennininghowatransidon
fireSieachtransidonalsohasaniwihHn£timeandafiringtime.

.Althoughthewmhttngcondidons,consideredinthecontextofdieeligibletokds,
rdetermineifatran^oncanfire,thewiahtfn£timeforatransidonisthedurationofdmediat
die*^nViim£condidonsmustbecontinuouslysatisfiedbdorethetranadoncanactuallyb^in
tofire.Ttdspermitsustorepresentactividessuchastimers.^default,transidonshavean
wiahiin£timeofzero:assoonasdieenahTm£condidonsaresatisfied,dietransitionisready
tofire.

Topermitperformanoeanalysis,thefiripgdmeofatransitionisdiedurationoftime
thatoccursbetweendieinstantthm^eligibletokensareremovedfromtheh^wtarcs,and
dKinstantdiatdieintroducedtokensaremovedfromdieoutputarcstotheirreflective
tnrtpitplacm.Duringdnstime,odiertransitionsmayfire.Sncedlofthecriticalactionsof
diefiringhavealreadyoccurredautmnatically,noproblemsresult.By(Mauh,transidons
haveafiringthneofzero:assuch,dietransitionfipearstofirecompletelyinasingleatomk

*TinsCQQjectureiscotirdyintuitiveatdnspointintime.



acbOQ.

Omtrpl Benrc^

. A attribute of die structured Pctri net tedmique b Ae abOhy to summarize oantrol
informBtian by having several instantiations of a net active at die same time. Structured Fetri
nets have a ample methodof achieving dds powerful representatianal ability.

An invocadon in a net is reprnoited widi a square instead of a drde. A transidon
whichoutputs to an invocadonis kmiwn u an enoy transidon, vriiQe the invocadonwhkh
receives tokens frmn an invocadon is known as an exit tranadon. There are qiedal semandcs
associated widi diese two types of transtdmn. Bridly stated, wfaa an entry transidon fires, it
produces exactly one token with a new context. If parameters are tobe p^sed todie
invocadon, nowvariablescan be created and initialized by the transidon's canstrucdon rules.
When the token is ready to be moved from die ouqwt arc leading to an invocadon, it is
placedon the entry plaa for the net rqnesenting this invocadon.

. The net must be designed in such a way that it can now beginto execute widi dns new
tokoi. Normally, the first acdon is to introduceanodier contourand load it widi variables
local to the net. At smne point in the future, das toksi readies the nefs exit place. When it
nioveshere, it sf^iears insteadin the original net, at die exit tramidon for die invocadoiL
The exit-transidon typically performs the acdons diou^ of as dean-iqi afts a subroutiitt
can, ami produces a token with die same color as the digible token of the corresponding entry
transidon. The original imt can now continue to along that particularpath of cxecndon.

Ahhou^ this method soun& tricky, it is really quite smqile: the entry and exit
tranridons act like pudi and pop operators on a sta^ saving and restoring execudon context.
It is into^ting to consider ftat dds ready does Imndle recursion and concurrent execution
propsly. Even dioughone path of execudonis suqioided vdien m invocadon is instantiated,
odiCT [Mdis in diat same net and in other nets are still running, h isnow easy to see how a
single structuredPetri netmay be used to rqiresent many instantiadjSDS of an cbjpd, by
having tokos of different contexts traversmg it

hi addition to d» invocation, diere is a second contrd mechanism requirmg mention: A
named subnet is rqiresented as a dashrd square, and denote die substitudon of another net
Nmned subnets are often used as an alternative to taO—recuison in a net.

, .Siqipose each top^levd net in your system rqnesented a particular state. To doiote
moring frmn (ate state to another, you could use refermce diese nets es invocations.
Unfartunatdy, it u conceptually imdear as to «hat state your system was really in, since each
invocadon eventually returns to its exit place. Incontrast, nami^ subnets do not save or
restore context. Ratho:, vdien a tokoi is ready to be moved from an output arcleadmg to a
named subnet, it ^jpears on die entry place for that subnet and erwitimi#* in its present
context. This aDows you to easily represent the state of your system.

Snoe tokens of different colors cooqiete but do not co-operate to enable transidoDs,
and since manory is changed only in die context of the digible and introduced tokens for a
firing transition, we nowconads how tokens of (fiffneat colorscan communicate and
exchange infonnadoiL Two qiedal tranadon cfiscqdines, the boundary and ^lUttransitions
he^ to permit dus cqnbility.



A bcn£iK]ary traiisitioQ is used to entities to communicate with each other.
The firing rules fen a boundary transition dearly qwdfy ixiocfa variables are to be
communicated These are ccped into tiie contextof a UonJt token. Each blanktoken is
unique, and eerilydistinguished from other types of colorful tokrais. Concqrtually, tiie
information communicated is fully copied to^ context ofthe blank token, so thm the

. information can indeed be viewed as "travding" from one process to another. When tiie
blank token is removed from the ouqnit arc, it is placed on tiie corresponding nqxit arc of
another boundary transition. At tius point, tiie otiier process can retrieve tiie information
from the context of the blank token, copying it into its own curroit context. The boundary
tranritiour ^vhOe more rigid in its rqipliration than qplit transitions, has a very dear conceptual
basis. _

A ^Ht transition is used to permit arbitrary entities to communicatewith each otter and
to synchronize. %)lit transitions have tiiesame number of irput arcs as ouqiut arcs^, each pair
of arcs correspond to a token of a potentially different color. The enabling conditions require
that each input place have at le^ one token, and the selector rules produce exactlyone token
for each output arc. Each introduced token has the same color as hs oorreqxincfing digiUe
token. During the manqnilativepart of firing, variables m^ be conridoed in tiie context of
any of the digible tokens. lUs permits a simple rendezvous and information exdiange
mechanism. Split transitions are allowedto vicdate a key ter^ of the data access rules for
tokeifi, but do so in a controlled fashioiL

An

. Finally, let us view an exan^e of a concurrent system wiocfa is describedby structured
Fetrinets. The solution to tins simple problem demomtrates a few of tiie fundamental
conceits of tiie structuredPetri net technique.

: Concqitually, ti» system genoates prime numbers by siftirig a sequenceof ascBncSng
natural numbers tinough a filter of processes. Each process in tiie filter has associated with h
a prime number. When it receives a number to comider, the process sees if tiiat number is
evenly divisible by ti» prime numbra associated witii tiie process. If so, tiie number can not
be a prime numba, and is filtered out. If not, thai tiie process passes the number to the next
process in the filter. If tiiere isn't anotter .process, then the number has successfully passed
tinougfa an priine numbers known to the system andmust timeforebe a primed. Stated more
predsdy, the comporitionof the systemis:

(1) ; There are two t)^ prbcKses in tiiesystem, a driver process, andmany goioator
: c ^ The driva process is tiie t^-levd process that is instantiated to guide the

system. Each genoator process represoits a pftrticularprime numter.

(2) A driver process begins by starting tiie first of the generator processes, with the prime
number 2. Ihen, tiie drim perpetuaDy iterates, by incrementing the mimhw and
rmTttnimimtTng h to its chfld, SO Bs to enumerate 3,4 and so oil

(3) Each genaator process b^ins printing out tiie number that h was invoked witii. It
tiien enters an popetual loop. Ite loop b^ins by receiving a numberfrom the parent
of the process, ff this number is evelDly divisible by tiie process'invocation number,
tiien ti^ new number is not aprime a^ may be discarded. Otherwise, iftiie generator

* At least tWD-cf each. •

! * Thi^ dndiisioD is true since ascendmg nunben, ttartiiig at 3, are given to the filter vhieh initially con
tains only one process, whichis associated with the phme number2.



.:has aot started a successor, the number is a prime, so the generator starts another
generator process with thenew number. Odaerwise, theprocess singly communicates
this number, to hs cfafld.

. Threestructured Petrinets are usedto ^)edfy tte system. The MAIN net (figure 1) is
driver process. Wten instantiated, it b^ins creating acontour for local vori^es: i,

which is die number currently being enumerated, andn, vhkfa wiD be used as a
: synchronizatioQ idendfiear. Control then forks. One fork instantiates dieFNF net, vhkfa is

fnnrt». widi parameters p and n. Note that rince instantiating aninvocation requires die
creation of a new contour, die o parameter is not die n variable in MAIN'S local contour.

.These parameters are"wtiaiiyj-Hj and dieFNF net is invoked. Since FNF is bdieved to nevs
terminate, there is m> exh transition associated widi die invocation. Considered froma
rigorous perspective, this isincorrect, but inorder to emphasize the nature ofFNF (and ke^
the figures used in ^ wrample sicqde), MAIN was purposely constnicted in this fashion.

Theother fork begins die enumeration loop, z is incremented, anddienthe S net is
instantiated at the C entry pdnt, withparameters n and z.

TheFNF net (figure 2) is die qiedfication fordie generator process. When instantiated,
it begins by creatii^ a contmr for local variables: 1, which indicates if a chfld has becm created
for this process, and z, uriuch is used to hold communicated numbers. As a partof diefiring
rules, die statement p^t(p) is called. This procedure prints out die value of the variable p in
die current context (recaD thatwhen invoked, FNF was given two parameters, p andn).

The S net is now instantiated at the P entry point. When the invocation returns, the
variable z iscopied from thecontour used to instantiate theinvocation into thecurrent
execution context^. This roughly carresponds to a vahie-resuh parameter pasting
tnpghimism. The vaiiaUe z is compared against p. ffz is evenly divisible ^ p, dirai contrd
lo(^ bade. Othowise, if.l isFALSE, then ccntrd forks. One fmk instantiates dieR4Fnet,
winch cx^es z into p mid increments n.. The other fork s^ i to TRUE and loops back, ff I
is TRUE, dien die S net is instantiated at the C entry point.

S nettfigure 3) is die diat synchronizes die processes. TheS net hastwo mtry
pninK p (synchronize with parent) ami C (synchronize widi chQd), and oomists ofa tingle
transition, aspBt trantition. The enabling conditions for dns transition ^lecxfy diat die value
of the variable n in the ofa tnVm from arc t| must beequal to 1 more dian dievalue
of the variable n in the context of a tnten from arctj. When the transition fires, die vahie of
the variable z in die context of die digible tntrwn from arc is set to die value of the variable
z in the context,of.dieetigihle tnicffn from arc tj. After dns manqzilation, each tdcen reactes
an exit place.

Described timply, the Snet synchromzes a parent andits chQd, andcopies z fromdie
context of the parent to the context of the child.

This CTBinplft demonstrates an interesting property of structured Petri nets, die ability to
perform horizontal— votical—multqilexing. Aldiough several FNF processes will be
executing, only one structured Petri netis reqitired to rqiresait diem, since die colorful
tniri'ns fwntnin all of die State information. Thisb an example of horizontal—multiplexing.
Hmre areseveral advantages to dns type of cqiability. Forexample, when ^lecifying a
syston, you needn't know before—hand thenumber ofprocesses that win berunning indie
system, TmtMtH you must qwdfy thestructure ofeach type ofsystem exactly once.

^Thex-pdcis (x') nocaticD is used to denote du.

— 6 —



O entry
pu^

newx-2

newn"l

(2)

&c

n'-n-t-l

(2) x-x+1

Figure 1. MAIN

— 7 —

:. l4

r:

r-^V:-i
;• "••• •.'

r:.

•: ••;•-•'

!••• 'V-



O entry
' push

new i-FALSE

new*

print(p)

"

SP

modp)!" 0

" TRUE

(1)
(2)

PNF

(1), i-TRUE
(2) params:

p'-x
n'-n+l

&C

X -X

n'"n

Figure 2. IW

— 8 —



(^S.P 0 \s.c

'

.. ^ ^iHl: ec:(l),fr:(2)

/^)erit ^ Jexit

(1) tl.n-- t2.n+l
(2) tl.x - t2.x

Figure 3. S

[APAS2] , .AdaTEC, "Reference Manual fnr tha ADA Pmgrmriming Tjinginigft", ACM
%xda] PubUcatiQn, (July, 1982).

[BER'182] G. Berdidot, R. Terrat, "Petri Net Tbeoryfor die Correctness of protoods",
origmaDy appeaiiitg in: ftocMdings, Seccmd Intematianal Workshop on
Protocol ^le^cation. Testing, and Verification, CA. Sunshine, editor.
North-HoIlaiKl Publishing Company, pages 325-342, (May, 1982); al^
appwarmg fn- IKKH Trt^mnt^nrnt nrn rnmmiinirafinrw^ vnhmn* mnnhtir
12, pages 2476-2505, (December, 1982).

[MERLT^ P.M. Merlin, D.J. Farber, "Recovoability of Communication Protocols —
Inqilications ofa Theoretical &udy", orif^naDy sppeaiing in: ikkk
Transactions on Communications, Volume C^^-24, Pages 1036—1043,

. (Sqjtonber, 1976);also ^^)eariitg in: Communicatian Protocol Modeling,
C.A. Sunshine, ecfitor, Artkh House, (1981).

[MROSE83a] M.T. Rose, "Observations on the Relations between Numokal Petri Nets
and-AlgorithmkRepresentations", Department of Information and Computer
Science, University of California, Irvine, (May, 1983).

[MRQSE83b] M.T. Rose, "Structu^ Petri Nets", Working I^xr (constantly qxlated).
Department of Information and Conqxiter Sdenoe, University of California,
Irvine, (October, IS^).

[FEIETT] J.L. Peterson, "Petri Nets", Computing Surveys, volume 9, number 3, pages
224-252, (Sqrtember, 1977).

.[RAZO60] ; . RR. Razouk and G. Estrin, T^loddiitg and Verification of Communimtion
: Potocols in SARA: The X.21 hiterfaoe", IEEE Transactions on Con^juters,
; VolumeC-29, Number 12, Pages1038-1QS2, (December, 1980).

[RA2^C63] J , RR Razouk, CV. Fh^, T^ormance Analysis Usiog TimedPetri Nets",
Technical R^mtNuniber 206, Dq»rtment of Mcnmation and Computer

9 —



M Califamia, frvine, (August, 1983).

[SCHW82] R.L. Schwartz, F.M. MdKar-Smith, Trom State Machines to Teoaparal
Logic ^jedfication Methods for Protocol Standanh", originally qjpearing in:

. Proceedings, Second International Workdiop on Prot^ Sjpecification,
TKting, and Voification, C.A. Sunshine, edtor. North-Holland Publishing
Company, pages 3-20, (May, 1982); also ^^)earing in: IEEE Trarfiactions
.on rnminiinicatinns, vohime 30, number 12, pages2486—2496, (Decranber,

. 1982).

[SYMCeO] F.J.W. Symons, "Lrtroduction to Nianaical Petri Nets, a Goieral Gn^cal
Model of Concurrent Processing ^tems", Qriginally eppearing in: Australian
Tdecommunication Research, Volume 14, Number 1, Pages28—^, (1980);
also ^)pearing in:Communication Protocol Moddipg, C.A. Sunshine, editor,
Artech House, (1981).

—^^10 —

, -]

I




