UC Irvine
ICS Technical Reports

Title
An introduction to structured Petri nets

Permalink
https://escholarship.org/uc/item/5058p3md

Author
Rose, Marshall T.

Publication Date
1983-10-30

Peer reviewed

eScholarship.org

Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/5058p3md
https://escholarship.org
http://www.cdlib.org/

6
cs
no. 28
~ An Introduction to
Structured Petri Nets
“Marshall T. Rose
Depertment of Information and Computer Science
Univensity of California, Irvine
- SmOx3023541198 Notice: This Material
Computer Mail: MRose, UCI@Rand Relsy may be protected
Technical Report Number 218 by:Gopyright Law
’ ~{Tifle 17 U.S.C.)
Istroduction and Motivation

The protocol—entities used in computer networks form a large class of concurrent
. software systems. Traditional methods of specification, intended primarily for the design of
wqmnﬁﬂwftm,donﬂaddrwthehamdﬁmhgmdfﬂm,wﬁdim&mal
focus of many peralle] applications, and in particular network protocols. As such, software of
this type presents several challenges for a representation language. ‘
' Mmytednﬂquahsvebemq;pﬁedwdzpm&mdqndfyhahbdmviadm
Amﬁﬁu,m@g&mm-m&dmummmmy-m&d
techniques at the other{SCHWR2]. State—encoded techniques tend to simplify the bridge to
hnplanmmﬁm.wﬁleﬁstm-y—mdedmethochtmdwpunﬁtmedepm;:od:d
correctness. Rather than viewing these approaches s alternatives to eech other, we choose to
vicwmmydﬂ:mchniqtnamplanmmmmmﬁmmm
specifications to implementation. Our perspective now narrows on the state—encoded
Wm:pacﬁmﬁm,mdhpuﬁaﬂmhkﬂinﬁmodﬂ[m,wﬁd:hsbemmed
' Munyfawaiﬁnghndwcsynﬂm,hnhuma'pyedw—mhﬁm

design.
M,mmmmem@mmmmmm
. Petri net{MROSES3a]. | is our purpose to explain the notion of structured Petri nets, and to
show how they can be used to represent concurrent software systems. We emphasize the
~ fundamental principles of the structured Petri net technique, rather than dosely examining
how structured Petri nets may be used to specify communications protocols. By using this
mwmwmmmdhmﬁkuimtulm

Philosopky

. The philosophy of structured Petri nets finds its basis in two simple observations: first,
mmmw.mmmmm-mmwﬁa,dom
mmmm-mmmmm;mmmnuim
w,vﬁmmmdm,remﬁkmwm
meaningful handling of data. Structured Petri nets, in response, combine the data—handling
features of programming languageés with the control-logic festures of Petri nets.

Althoughmonglyworded,ﬂmeobscrvanommqmtedcf’b.e Programming
lmguagshaveevolvedﬁmnawquenﬁalbﬂgmmd,mwhdaﬂowofmdhmbem

«..viewed strictly within the context of a given program. As concurrent programming has
- received wider use, programming languages have been augmented with

- ;. concurrency—constructs, Unfortunately, the designers of programming languages have been

unable to introduce powerful methods of indicating concurrency that have simple semantics.
... The rendezvous—construct found in Ada'[ADAS?2], while fully capable of permitting
-~ elaborately staged synchronizations, has an amazingly complex set of rules that are difficult, at
bat to describe straight—forwardly?.

".Petri nets have evolved from a theoretical background, and have been used primarily as

: memodfmhardwaredwgn. As such, many of the notions taken completely for—granted in

- software, such as the reference semantics for variables (i.e., scoping rules), are absent from
“thisapproadxtoreprmtaﬁon. Many authors have proposed extensions to the basic Petri net
model, including timingf/MERL76), memory and processors{[BERTS82]. When viewed with
these extensions in mind, Petri nets continue to suffer from some inherent weaknesses as a

. method for representing software systems. For example, most extended Petri net models,

_ such as numerical Petri nets[SYMO80], view memory as global, so that any transition can
~cause any portion of the memory component to be altered. The UCLA Graph Model of
Behavior (GMB)[RAZOS80], which is a particular extension of Petri nets, solves this problem
though the introduction of a data flow graph. The data flow graph dearly defines the

. particular relations between transitions and memory components. While useful, the data flow
graphmambasmncwhmmparedmﬂnmedmnmmedbyprogmnmmglmguagam
deﬁnem&stovanabla . o B)

Tthlh

Sl Wenowconsxd:rthebtﬁldmg—blodnthatmmedmmmmnmedkmm
This discussion is more conversational than formal: thean‘rmtdnﬁmuonafsmxcturedl’cm
* -pets can be found in [MROSES3b].

Asoftwaresystundmm’bedbyﬂ:emmedmmmquusumpowdofmem
.. more structured Petri nets. A Petri net is a directed graph with two types of nodes: places,

. .. which hold tokens; and transitions, which absarb and produce tokens. A structured Petri net is

also a directed graph, but in addition to places and transitions, it is also populated with:

- .. invocations, which represent the instantiation of another net; and named subnets, which

- represent the substitution of another net. . Each net has one or more places designated as entry
. places;-and one or more places designsated as exit places. ,

-~ Arstructured Petri net operates in much the same way as a Petri net: the presence of
tokens on the input places for a transition encbles that transition, which then fires by absorbing
the tokens on the input places and producing tokens on the output places. There are certainly
more formal definitions for enabling and firing, than this terse synopsis, but since our purpose
is to gain an intuitive understanding of the structured Petri net technique, no more time is
spmtomtheﬁmdamezﬂalsofthe%netmodd’

‘Mauauadmarkddz&pmmdlﬁm(mhmmaﬁce)

“ 31t is not our purpose to single—out Ada, or to-unfairly criticize its definition, many other '
programming

. lmsuagsmalsoguﬂtydpwuful .yet non—undesstandable concurrency —constructs.
... +3.This should noc.preseiit any difficulties-for readers With & casual familiarity with Petri nets. Readers
mMmybackmmdwhasoevemndmne[PErEﬂ]bdmmmnng

e ot

" Tokens traverse the net.’ ’Ihetokcnfmmdmasmlctm'edl’emmhmamglcatm'bute,

; .,'1-"1tscolor .All tokens of the same color are indistinguishable from each other, although tokens
+ - of different colors are easily distinguished. .A color may be thought of as representing a

dynamically scoped environment. Colors are mapped to contour—blocks, whldxdenoteap;n

-_-:“:‘;‘{.;;_;ofapnvatemmn‘eespm(ne munorycmnponcnt)forapmtaﬂarpromaeamngmthc

The color attribute of & token has an ordinal valus from the set of all colors, which for

"‘j‘--l';'om'pmpossxsvcry,verylarge Unique to each process is a color—generator, which is a
... machine that produces new colors for the process whenever the generator is incremented. The
.. color—generator has a current color value, which is always equal to the color produced by the

last increment operation. In short, since each process has its own color—generator, a contour
becomes the binding between a particular process and a given color, and as a result, each
process has its own private memory—component.

A contour—block contains bindings for variables and a pointer to the immediately

: scoping contour. This means that by using colorful tokens, structured Petri nets are able to

achieve a dynamic scoping mechanism to determine data access. To search for a variable in
the context of a particular token, that token’s contour—block is first examined. If the variable

- is not present, then the previous contour is examined. This activity continues until either the
. -variable is found, or there is no previous contour. In the former case, the variable found
-~ -references the most recent occurrence of the data represented by that name; in the latter case, -
~*':.“j'ﬂlevmablemmdcﬁmdmﬂwwnmtofthemgmdmkm,(mdatamrepruamdbyﬁm

nmncmﬂmtcontext)

Tomn-oduceancwdontm anopemnonnnﬁlm'toanermgancwblockma '
programmmglanguage a-token passes through a transition, which increments the -

-=+ - -color—generator, andprodumatokcnwhosecolonstheam—colm—valueandwhose
~.+ .- immediately—scoping contour is the color of the original token. New variables may now be

.. .. declared-and initialized in the new context. To terminate the context, an operation similar to -

"~ leaving a block in a programming language, a token passes through a transition, which
-':.v_,_,._:.::pro@mawkmwhosemlmuﬁ:comm&medmdy scoping contour of the

Execution

Anotthcmtyofasmnmedktnnetlsmnn'onedbythctrmnmﬂwnet A

tmuonmaypotmnaﬂypafmmavaymphmadmofnepswhcnnﬁraaﬁubang
- enabled. As with the basic Petri net model, we view the firing of a transition to occur as a

single atomic action, although internally many actions may occur.

For a transition to be enabled, a boolean expression, known as the enabling conditions
of the transition must be satisfied. This expression may reference the number of tokens on
the input places for the transition, along with the value of variables in the context of these

- 2 tokens: hmverynnportammnotethattokmsofﬂwmccolmconabomtetosansfyﬂ)e
..~ , . enabling conditions, tokens of different colors are always considered separately. Hence it is
V"»“posmblefmmoreﬂxmomgxuxpofcolorﬁﬂmkanwsansfythcmhhngmdmom,the
-, actual tokens chosen, known as the eligible tokens, is chosen non—deterministically. It is also

: _,_.'mpm'mmwemphas:uthatthetaungﬁthembhngwndmomthth
side—effects. 4

e ——

- s c———

) mmm:ﬂmmammtpxpmnanmdmom .

ma@mnm&ma[dmmmgoumddnmnmapmw om;oamn&mgnamq

suonrsuen nepp Ag imsss sweqod ou ‘AeonEmoine poumoo Apeae sary Suug ap

30 SUORDE [EONLD X JO [[8 SOUK "Ny ASW SUONISURN 10 ‘Swn sup Suung “ssoerd ndino

I 03 O N0 A WOIF PIACT IR SUIYO} PIONPORIE) J8YY JURISUL AR -

puR ‘B JndiI S WOIJ PIACTIRI AIB SISY0) IQIFHD) JTp JUBISUY A USIAIAQ SIT000 T -
9UIN JO UOREINP A §1 UORISUES & JO Jwn Suuy o ‘smApue sovsuuoad yausd of

a1y 03

Apeax s1 conISURY AP ‘POYSHES I8 STORIPUCS SuqEud Y S8 UOOS S8 (0192 JO Swn Julqeud

UB 9ARY SUONISURN NP Ag '|ISWH se gons son1Anoe juesador o3 sn symurad sy, 'oag 03

uﬂoq&mnmmmnmnammpqpogsm&mnnmmoq;mmnmﬂm[qumap

JEq) SR JO UORBINP Y ST GORISURN B I} Jwm Surqeus a@ axgmmumnepaummap
WMWNPWWWMW‘HWW@@W

‘own Suuy e pue swn Jurqews UB seq Os[e UORISURN {oe? ¢ mg

vonrsuen 8 moq Sumrmsep somu Suuy pue suonzpuoo Sunqeus o3 wonppe U] ‘[e30ZVY]

w1 pozssaxd sidsouoo o Sursn ‘ot fexodms; TERIUO TR 19U A PN, e T

‘SSO[SYLIDAIN PIJO[PASPIIPUN AUILITO §1 I3U WGad PIUTIONNS U1 SWN JO UONOU AL
soopeRpEme) Supyy,

- rorrered ui puB ARAIOAI -

o qquuonmommnmsmo;mwmmdﬂm mu[aasmw mmoopmm&muaqzmm

n[mmﬂmmmmmnmmm‘pmmmnmmﬂmn *INOJUCO’” -

- Jua0dx ysow 3 dod 10 mmnmmmmnmmmpmmmmﬂmmmxm

‘SuaX0} QIR I} S8 IO[OO JES S 95N ISR 01 parmbax a1 SS[MI 95IYL 'BWPOIB
;oSmdooscmaSumpo;smmmdodpmqmd[{}mmmmuagnummmm

o —opms

mmmanummopsapﬂmmqum ‘AermisN *,9zA[eum 0} I915ed oq 1q3M@

muanmgxdaxmmm;ammq;ua;mum‘nmn&unmmmﬂmdmaﬁmaﬂmm
Aq possnpe oq ueo AIqrEap swes siL “saoeqd ndino Auew pue uonrsuen S[3uls 8 Sursn 4q
mwwmmmmap—m—pmmmﬁopdmpmﬁmmmamnd
‘o[Tu woRPs gL "simued poqiow Fuuy SIp JEQ SOUBTU JO JXWNY B I8 I3,
Buuy
PSYSIUY seq uonsuen A ‘pnod sup 1y mldmdmoomxdmmq;nopmtdam

mmnm‘mmmmp@mmmma[qﬁqaap ,{[Ium_gu (V) o

*SUSY0} POTPONE pUB JqINe P JO -

o mmammmmmpxmppomnﬂmuﬁam[mmnMemm-ﬁ',.:’."—‘-; e LI
- mmnmnﬂwgamommmanmmmdmmmmwmmmm € -

sore mdino -
mﬂmmdm“mm"mmmm mqnu‘

P39U SR N ‘SUSA0Y QIR G $8 O[O0 ITWES P AABY SUIY0} AP ‘APUION VO IYE
mmmmmmmwmuo;mmmmmmmw»(z),

"SI0} 9SO} FAROAI 0} B 018 N0 YmM puUB ‘150 AR 0T paIMposUT 3 OF 7

IR 1B SUAYO) JO JOQUINU U SIUTILISISP (PIYM PIIEN[RAD 1 I uopoapas . ‘o ndoy.. - .= ~
Wmmmmmmﬂmdmzmmqpmmwmzmﬂmm (D

:20uznbos W waddey sonIAROe [BXAS JuI0d SHR) Y - g;gucpam“mnmnmﬁ?_;;:,,.,..

i rese D p e -

e

.. . Akey attribute of the structured Petri net technique is the ability to summarize control
amformauonbyhavmgseveralmmnuahonsofanetwuveatthesamcume Smm:redPem

i+~ nets have a simple method of achieving this powerful representational ability.

Anmvocahonmanctureprmezﬁedwxﬂusquaremteedofamde A transition

= ":. which outputs to an invocation is known as an entry transition, while the invocation which -

- - receives tokens from an invocation is known as &n exit transition. There are special semantics

~ .7 essociated with these two types of transitions. Briefly stated, when an entry transition fires, it
. produces exactly one token with a new context. If parameters are to be passed to the

invocation, new variables can be created and initialized by the transition’s construction rules.
When the token is ready to be moved from the output arc leading to an invocation, it is
placed on the entry place for the net representing this invocation.

. 'The net must be designed in such a way that it can now begin to execute with this new

- ‘token. Normally, the first action is to introduce another contour and load it with variables

‘local to the net. At some point in the future, this token reaches the net’s exit place. When it
moves here, it appears instead in the original net, at the exit transition for the invocation.
The exit—transition typically performs the actions thought of as dean—up after a subroutine
~~call, and produces a token with the same color as the eligible token of the corresponding entry

4 transition. Theongmalnetcannowmhmmtoalongthatpamaﬂarpathofexewhon.

" Although this method sounds tricky, it is really quite simple: the entry and exit . = -
"tmsnauﬁkeptmhmdpopoperatomonastad:,savmgandmanmm

" ..;'.,"‘flnsmta&sungtoconsnderﬂmtﬂnsreaﬂydoeshmﬁlereamonandwnamcmexeamon
- -, -+ properly. -Even though one path of execution is suspended when an invocation is instantiated,
- . other paths in that same net and in other nets are still running. It is now easy to see how a -

single structured Petri net.may be used to represent many instantiations of an object, by

having tokens of different contexts traversing it.

In addition to the invocation, there is a second control mechanism requiring mention: A
- named subnet is represented as a dashed square, and denotes the substitution of another net.

- . Named subnets are often used as an alternative to tail— recursion in a net.

&xpposeeadxtop—lcvdnetmymsystemrepresmedapwmﬂnrstate To denote

- flmovmgﬁ‘omonestatetoanothm' you could use reference these nets as invocations.

.- Unfortunately, nuoonwpmﬂynmdwastowhatstateymrsystunwmreaﬂym,meady

l"-'mvocatxon\:w;ntuallyrt.-,turnstoxtsexnplmt.-. In contrast, named subnets do not save or

restore context. Rather, when a token is ready to be moved from an output arc leading to a
named subnet, it appears on the entry place for that subnet and continues in its present
context. This allows you to easily represent the state of your system.

Synchronization

SRR ,.Snmmk:mofdiﬁamtmlmmpaehndomtw—opémwmuandﬁom,
-andﬁnccmanmyisdnmgedmlyinﬂncommdﬂreﬁgiblemmwuwdmkanma

mfoxmanon. Twospeaaltrmuan(ﬁsaphns the boundary and split transitions

———

- .27 Aboundary transition is used to-permit fixed entities to communicate with each other.
.. 'The firing rules for a boundary. transition dearly specify which variables are to be

-. .-communicated. These are copied into the context of a blank token. Each blank token is
* "unique, and easily distinguished from other types of colorful tokens. - Conceptually, the

- - information communicated is fully copied to the context of the blank token, so that the

. information can indeed be viewed as “traveling” from one process to another. When the

‘blank token is removed from the output arc, it is placed on the corresponding input arc of

anotha‘bomdarytransmon. At this point, the other process can retrieve the information - = =~ - - -

' ﬁ‘omﬂ;cwntextoftheblanktokm,copymgntmtomownamemm The boundary
CL ._.._Vtransmon,whilcmorengxdmmapphcahonthansphttrmnons,hasaverydearconcapnml

" basis. B}
Asphtuansmonnusedmpermltmhtmryennnesmmmnnmmtemﬂwadnoﬂmand

: ‘:Ttosyndromzz Split transitions have the same number of input arcs as output arcs’, each pair

of arcs correspond to a token of a potentially different color. The enabling conditions require
that each input place have at least one token, and the selector rules produce exactly one token
_for each output arc. Each introduced token has the same color as its corresponding eligible
~ ‘token. During the manipulative part of firing, variables may be considered in the context of
~ - any of the eligible tokens. This permits a simple rendezvous and information exchange
mechanism. Sphttransmonsareallowedtowolateakeytmetofﬂzdatamnﬂufor
'tokcns hndosomaconu'olledfaslnon.

An Example

.- .. Finally, let us view an examiple of a-.concurrent system which is: described by structured

Petnncts Thcsohmantoﬂnsnmpleproblunchnomtratuafcwofthefmdammtal ’
- Conmptually thesystangmatespxmemnnbmbysfungasequmofasmding ‘ L
. _,,_namralmnnbusthroughaﬁhaofprm Each process in the filter has associated with it) S
* a prime number. When it receives a number to consider, the process sees if that number is o |
. evenly divisible by the prime number assodated with the process. X so, the number can not

be a prime number, and is filtered out. If not, then the process passes the number to.the next
.. ..process-in the filter. If there isn’t another process, then the number has successfully passed
tln'oughallpmnemnnbershaowntoﬁ:csystanandnmstﬂ)erefmwebeapmnz6 Smtedmom
predisely, the composition of the system is:

‘ o ~-(1) 'lhcrearctwotypmprmamﬂnsystan, adnverprom andmanygmator

systun. Ead:gencratorpxmrepxuentsapm‘haﬂnrpmncmnnba

(2) A driver process begins by starting the first of the generator processes, with the prime
number 2. Then, the driver perpetually iterates, by incrementing the number and
communicating it to its child, 80 as to enumerate 3, 4, ..., and 50 on.

(3) Each generator process begins by printing out the number that it was invoked with. It

. then enters an perpetual loop. The loop begins by receiving a number from the parent

"+ of the process.- If this number is evenly divisible by the process’ invocation number, =~ -

- -.. then this new number is not a prime and may be discarded. Otherwise, if the generator

. % At least two_of each. - -
: ‘m;mdmmummmm stamngntS mgvmmtheﬁlmwhdumuauycm-

0 taims mlymep'ocss wh:chnsassouatedmthdrmm:mbu

- has not started a successor, the number is a prime, so the generator starts another
generatorprommthﬂwnewmnnber Otherwise, the process simply communicates
- /this number. to its child. =

Threestructmed%nctsmusedtospeafythesystan. The MAIN net (figure 1) is

- ""ﬂxednverprom ‘'When instantiated, it begins by creating a contour for local variables: x,
,wlndnsﬂzemzmhermrrenﬂybangemnnemted,sndn,wlnd:winbcusedma
¢ 7+ - synchronization identifier. Control then forks. One fork instantiates the PNF net, which is
- .~ made with parameters p and n. Note that since instantiating an invocation requires the
. - creation of a new contour, the n parameter is not the n variable in MAIN’s local contour.
- V;'Ihscparametcrsarennnahzed and the PNF net is invoked. Since PNF is believed to never
- .. -~ 'terminate, there is no exit transition associated with the invocation. Considered from a
. s+ . rigorous perspective, this is incorrect, but in order to emphasize the nature of PNF (and keep
.. the figures used in this example simple), MAIN was purposely constructed in this fashion.

lhcothcrforkbcglmtheenumcranonloop,xumemmted,mﬂﬂmtthnetu
instantiated at the C entry point, with parameters n and x.
.- The PNF net (figure-2) is the specification for the generator process. When instantiated,

.;.J.ﬁbegmbycrcanngamtmnfmlocalmnblm 1, which indicates if a child has been created
-~ for this process, and x, which is used to hold communicated numbers. As a part of the firing

C ;nﬂm,mestatunentprtnt(p)nscalled. This procedure prints cut the value of the variable p in
: ._.ﬂnmcmwmm(recanthmvaoked,PNmengentwopmamctm p and n).

'IheSnetnsnownmtanﬁatedattheru'ypcnn When the invocation returns, the

o aixablexmwpxedﬁ'omﬂ:ccomanusedtomsmmﬁmmvocahonmtotheam

- execution context’. This roughly corrésponds to a value—result parameter passing
- . . mechanism. The variable x is compared against p. If x is evenly divisible by p, then control
- loops back. Otherwise, if 1 is FALSE, then control forks. .One fork instantiates the- PNF net,
’ -wh:dmoplesxmtopandmcranemsm'Iheoﬂmforksetslto'l‘RUEandloopsbad:. If1
is TRUE, then the S net is instantiated at the C entry point.

“The S net (figure 3) is the net that synchronizes the processes. 'Ithnethastwomtry

. pamsP(syndxromumthparmt)andC(syndnmnnmﬂ:dﬂd),mdmmofanngle

transition, a split transition. The enabling conditions for this transition specify that the value

of the variable n in the context of a token from arc t, must be equal to 1 more than the value
* - of the variable n in the context of a token from arc t,, When the transition fires, the value of
" the variable x in the context of the eligible token from arc t, is set to the value of the variable

xmtlmcontcxtofﬂ:cehgiblctokcnfrommt, Afwﬂnsmmpdanon,eadxmkmrmdm

| . an exit place.

Dmm’bedsnnply,tthmtsyndn'omzuapamnmdmdﬁld, and copies x from the

' context of the parent to the context of the child.

This example demonstrates an interesting property of structured Petri nets, the ability to
perform horizontal— and vertical—multiplexing. Although several PNF processes will be
executing, onlyonesmmredPemwureqmedtorepresunﬂnn,mﬂnwlorfm
tokens contain all of the state information. 'Ihxsnane:ampleofhonzmml multiplexing.
There are several advantages to this type of capability. For example, when specifying a

__system, you needn’t know. before—hand the number of processes that will be running in the
_.-system, . Insteadymmustspeafyﬂmmdead:typeofsystemmwym

. "7 The x-prime (x’) nocation:is. used to denoee this.

_ -

| :
o {
i")
i p
‘ .
? i
o ;‘
‘ |
| l
‘ N 4, ' sC B
- (1) params: (R .;

‘ ‘ et
‘ - p'=n+1
| T (2) x=x+1
| ’ pan‘!ms:
- x'=x
n'=n

Figure 1. MAIN

—_— - ‘

. —t— x'=x

N Gmdp =0

i == TRUE

(1). i=TRUE , \
© (2) params: ' o

p'=x T ' " o |
Cop'=p+l : J
\
|

- .(1) tln == 2n+l

2)tlx=x
Figure 3. §
References
[ADA82] - AdaTEC, "ReferenceManualfortheADAProgrammmg Language
- © Spedial Publication, (July, 1982).
G. Berthelot, R. Terrat, "PemNetMyfortheCorrectnmofprotowls

: ongmallyappearmgm.?rmdmgs Second International Workshop on

Protocol Specification, Testing, and Verification, C.A. Sunshine, editor,

- North~Holland Publishing Company, pages 325342, (May, 1982); also

in: IEEE Transactions on Communications, volume 30, mnnba'

. .. 12, pages 24762505, (December, 1982). . T ;
S WL7Q

P.M. Merlin, D.J. Farber, "Recoverability of Communication Protocols ——

~ Implications of a Theoretical Study”, originally appearing in: IEEE _. 'j

Transactions on Communications, Volume COM~—24, Pages 1036—1043,

- .-(September, 1976); also appearing in: Communication Protocol Modehng,

S :‘[MR:';E .E>i!]

.C.A. Sunshine, editor, Artech House, (1981).

M.T. Rose, (l:servauonsonﬂnknlan-sbetwemNummmlPemNets

.angd Algorithmic Representations Depamnnnoflnformauondeanpm::

o “»'“‘Sumce,UmvemtyofCahfoxma,Irvmc (May, 1983).

mbsassb]

M.T. Rose, "Structured Petri Nets”, Working Paper (constantly updated),
of Information and Computer Science, University of California,

Irvine, (Octobez, 1983).

I.L. Peterson, "Petri Nets", Gmptmng&nveys,vohnne9 number 3, pages

. 224-252, (September, 1977).

R.R. Razouk and G. Estrin, "Modeling and‘meicanon of Communication

- . < Protocols in SARA: The X.21 Interface”, IEEE Transactions on
-~ +~Volume C-29, Number 12, Pages 1038—-1052, (December, 1980).

R.R. Razouk, C.V. Phelps, "Performance Analysis Using Timed Petri Nets",

'*,'TedlmcalRapmNmnhaZOG Department of Information and Computer

T ¢ I

- »-Science, University of California, Irvine, (August, 1983).

R.L. Schwartz, P.M. Melliar—Smith, "From State Machines to Temporal -

L Lognc: Speuﬁcanon Methods for Protocol Standards”, ariginally appearing in:

, Second International Workshop on Protocol Specification,

i " Testing, and Verification, C.A. Sunshirie, editor, North—Holland Publishing

- [sYmos0]

Company, pages 3—20, (May, 1982); also appearing in: IEEE Transactions -
-+ _.on Communications, volume 30, number 12, pages 2486—2496 (Decunba
‘ _1982)

F.J.W. Symons, "Inu'odtmomtoNummmchtnNm aGmeralGraplnm] .‘

- Model of Concurrent Processing Systems”, originally appearing in: Australian

" Telecommunication Research, Volume 14, Number 1, Pages 28—32, (1980);
.. - .also appearing in: Communication Protocol Modeling, C.A. Sunshine, editor,
" Artech House, (1981).

