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I. INTRODUCTION 

Electromagnetic fields interact with the electromagnetic multipo]e moments 

of a particle and may therefore produce changes in its polarization state. The 

magnetic moment interaction will generally be the dominant one. In order to in-

dude possible depolarization effects in high energy accelerators or in a subse-

quent beam handling by lenses or bending fields, it is necessary to discuss the H 

problem relativistically. For particles with spin 1/2 the rate of spin precession 

in homogeneous fields has been investigated (To5l, Me77, Ca78) by explicit use of 

the Dirac equation, where in some cases a Pauli term was included to account for 

an anomalous magnetic moment. No relativistic equation in wave mechanics is 

available to describe particles with a spin larger than 1/2. Bargmann et al. (Ba79) 

did derive from classical relativistic electrodynamics a coväriant classical 

equation of motion for particles withi arbitrary spin which is valid in homogeneous 

electromagnetic fields. These results are expected to be correct quantum mechanically, 

because the expectation value of the vector operator representing the spin will 

(according to a general theorem by Ehrenfest)necessarily have the same time depen 

dence as one obtains from a ciassicelequation of motion. In Sec. II the change 

9f the polarization sta.te in homogeneous electromagnetic fields is discussed on a 

somewhat more elementary basis than us.ing the above mentioned method. In Sec. III 

we consider Lime dependent fields with special emphsis on 'fields that occur in 
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cyclic accelerators. 	In Sec. DT results of depolarization calculations for the 

Berkeley 88" Cyclotron are given. 
S 

II. 	TIME INDEPENDENT HOMOGENOTJS ELECTROMAGNETIC FIELDS 

The polarization state of a beam of particles with arbitrary spins is 

quantitatively described by means of a density matrix P or equivalently by a set 

ofexpectation values t 	of spin-tensor operators T. 	The rank 	K 	is an integerKM  

number in the range between 0 and 2s, while 	M 	takes on the (2K + 1) integer values 

between -IC and +K. 	(Ed54 ). 	This treatment is nonrelativistic and therefore the 

terms vector (T = i) and tensor (T > 2) polarization have an obvious meaning only 

in the rest system of the particles. 	Let us first assume that this rest system is 

not accelerated, then the classicalequation for the spin-motion of a particle in a 

magnetic field 	B 	(measured in the rest system) will have the customary form 

___g  9 
d-r2mc s 

where 	t 	is the time in the rest system and the particle has rest mass m, charge 

• 	q and a magnetic moment 	The factor 	g 	is defined by 

• 	 •-> 	
_•_ •U. 	 2 

 2mc s 

Note that 	g 	is not the normal Lande factor g, but related to it by 

() 

p 
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whee m and e are the rest mass and charge of the proton. According to 

Eq. (1) the spin precesses in an inertial rest frame around the magnetic field 

with an angular velocity 

• 	r) - 	q 	() 	 (u). UL 	- 	nic2 

Equations (1 and 1+)  are no longer correct, if the rest system is accelerated. 

Figure 1 shows a rest system at time t(R) and t + .t(Rt) respectively. The 

coordinate axes of the B and R system are chosen to be parallel to the axis 

of an inertial system ,L (the laboratory system may be considered as an example). 

ClassicàJiy the a*is•of B and B' would ther be parallel, but this is not true 

relativistically. In fact the axis of the rest system rotate with an angular 

ve1o'ciy 	
(r) 

 given by 

- 	-*(r) -3(r) -. 	iT X, a 

v 
(5) 

where v is the velocity of the B frame as measured in the system L. a 	is 

the acceleration of the rest system and y is as usual, an abbreviation for 

-. (v/c) j • 	. One notes that ii = 0 for low velocities (y =. 1) as expected. 

L. W. Thomas (Th27) first pointed out that such a rotation takes place, if the 

coordinate system is accelerated. The Thomas precession can be derived without 

reference to the cause of this acceleration (Mo60, P. 73), (Ja62, p.364).  The 

B' system is connected with the L system by a Lorentz' 'transformation wi.th  the 

velocity -( + E) and the L with the B system correspondingly by one with velo-

city V . Performing these two. successive transformations one sees thatthe 

transformation from R to B' can be made by a single Lorentz transformation plus 

a rotation. The rotation is just 'Ii . t. In our case the acceleratIon is pro-

duced by the electric field in the rest system 



-9(r) = g 	(r) 	 (6) 

Generally we are interested in the spin precession frequency in a rest frame 

rotating with an angular velocity () such, that one of the coordinate axis 

is always éoincident with the direction of motion of the particle. Because the, 

time rate of change of any vector in a coordinate system rotating with angular 

velocity W is the sum.. of - x a and the time rate of change in a non-rotating 

system, we receive for such a iotating rest frame 

() 

with 	
(r) 	 (8) 

The well known eressions (see for example (Mo60, P. 12)) 

	

r) 	
( 	(l - i) - 

	

r) 	
i)+ } 

allow us to replace the rest frame fields with those measured in the laboratory 

system. We can also express the rest frame time -r through the laboratory time 

t by 

d-r=dt 	 (10) 
-y 
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(r) 	
(r) . Even 

	

For example r) = 
	

where we use the notation o = dr 	 dt 

though u is now written without the superscript (r), one should keep in mind,. 

that the angle is measured in the rest system. Spin directions deduced from the 

precession frequency ?J are therefore given in a rest frame, which as one axis 

(for---exaruple the z-axis) parallel to the velocity of the particles. Table I 

shows the direction and magnitude of the spin precession frequencies for several 

cases of practical interest deduced from the above equations. These results 

were first obtained by Bargmann et al. (Ba59) with a covariant four vector 

description of the spin. This method is more general than the one given here 

and the reader will find a lucid representation in the lecture notes "Relativistic 

Kinematics TI 
 by'R. Hagedorn (Ha6, P. 124). Whenever w is perpendicular to v, 

an initially longitudinal polarization will be converted to a transverse one and 

.vice versa (remember angles are measured in the rest frame). This is the case 

for the examples a) c) and e) in Table I. At very high velocities the precession 

rate becomes zero for the velocity filter (e), and it depends only on the anom- 
g 

alous part (-- - 1) of the magnetic moment in the cases a) and c). At low 

velocities this is still true for the deflection in a magnetic field but an 

electric field will not influence the direction of the spin any more and we find 

--4 , 	-4 	 g5 
therefore u = - 	. Deuterons do have a low anomalous magnetic moment, s 	e 	 2 

- 1/7. If the purpose of the electromagnetic field is to change the polari-

zation state of a polarized deuteron beam it is therefore more convenient at low 

energies to use an electric or a crossed electric and magnetic field, where the 

precession angula 

where o is only 
.5 

with a rate which 

r velocity is - and 6/7 c  repectively,tha'n•a magnetic deflection 

- 1/7. In example b) the spin precesses around the - -elocity 

is independent of y. This arrangement was first used by Hillmañ 

. et al. (Hi56) to measure ' Tleft-right" or "up-doim" asmetrics in scattering 

experiments with fixed counter positions. The definition of g 
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by Eq. (2) would seem to indicate that the above treatment would be correct only 

for charged particles, but it is easy to see that the precession frequencies are 

also valid for lim q = 0. 

To describe the polarization state of a beam of particles with arbitary 

spins, we have to specify the magnitude of all the tensor components tKQ  up to 

rank K = 2s. Let us assume that this set of numbers is given at time t = 0 in 

the rest frame R of the particles. Again it is convenient to assume that the 

z-axis of R is along the velocity of the particles. We have then to determine 

the new tensor components t Q  after time t in a rest frame system P, which. 

shall have the same relative oriënthtion to thebeani as H. According to the 

foregoingconsiderations we will find at tim..t still the CbniPOflfltStKQ  (t=o) 

in a coordinate, system .R",which.is turned by an angle 

=j.s.t 	 .. 	 (12) 

against H'. In the examples considered (Table I) w is independent of the time 

and is simply 	The tensor components t in B' are given by 

tKQ 	, KQ' D
QQ  () 	 . 	 ( i). 

where (acy) are the Euler angles producing a rotation and the'D 	are the ele- 

ments of the rotation matrix (Ed54, p 74) The usual definitions of spin-one 

tensor operators tranforming like spherical harmonics (see Eq (13)) are (La75) 

T00  = 1 	T10 =J S 
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Z, 

Here S1 . are the spin one angular momentum operators. In order to simplify the 

14 	geometry we will consider only the twocases where 	is either parallel or 

perpendicular to the velocity of the particles. All cases given in Table I ful-

fill this condition.. (The problem of finding the Euler angles in a general case 

is solved for example in (G050) p. 107). In the first case whIch corresponds to 

example b) .in Table I a =Q Y 	 and Eq. (13) gives 

tKQ = tKQ e 	 (1) 

In the second case let us specify the direction of by the polar angles e = /2 

and O,then the Euler angles are a = 37T/2 f. 	 = ci 	= a . For spin 1 

particles Eq. (13) has with.the abbreviations s 	sinci 	C 	cosçl the following 

explicit form 	 . 	 . 

til= t1 	(l+c) - t11 . 	(1-c) + it10  e 

	

- 	 i 	. i 
t' 	

i 	1 
=it e 	—s+ it 	e 	— s+t c 

10 	ii 	
.f2 	 T2 	

10 
 

t i 	1 	2 	i1 	2 
22 = t

22  .(i+c) + t22  e. 	-(l-c) 

il. 	 i31 	 . 	. 
+ it21  e 	 i 

	

-s(c±1) + t21  e 	-s(c -l) 

i2 	[2 	..... 	 . 
-t20e 	

,. 
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il 	 31 
= it22  e 	s(c+1, + it22  e 	s(c-l) 

+ t21  (2c-1)(c+l) + t 	
i2 1 

21  e 	(2c+1)(c-1) 

+ it20 e \/j sc 

ti = - t22 	 - t22 	s2 	 (15) 

+ it21  e Asc + it21  esc 

+ t20  (3c2 -i) 

- I_Q t1 * 
K-Q' 1 	KQ 	 H 

It is seen as expected that the first pair of equations and the one for 

which follows from the last equation, describe the rotation of the polari-

zation vector expressed in terms of a rank one tensor. In most cases of 

practical interest the above formulas are still further simplified. Let us 

first consider the problem of generating with electromagnetic fields those tensor 

components which are zero in an incoming beam. For example a deuteron beam ex-

tractedparailel to the magnetic field of the ionizer in a polarized source can 

have only t10  and t20  different from zero. Let us now pass this beam through a 

velocity filter (see case e of Table I). We can adjust the electromagnetic 

fields such, that the magnitude of any of the components of tj 0  will be a 

maximum. It follows from Eq. (15) that !t 2 l has a maximum value of j7..t20  

• 	for = 1i/2. This Q creates also a maximal transverse poiarization (Maximum 

for It11J). The component t 1 J reaches the same maximum value as 	but 

at Q = 7r/4. A rotation of the velocity filter around the beam axis has the same 

effect as a subsequent longitudinal rnagnetic field would have (see Eq. (iii.)). The 

defiectlOfl of the beam through a fixed angle by a magnel4c or electric field would 
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give a fixed magnitude of Q. For the purpose of changing the polarization state 

such an arrangement is therefore quite inferior to one with a velocity filter. 

If a polarized deuteron beam is accelerated in a cyclotron the polarization state 

is rotationally symmetric about the magnetic field of the accelerator. Let us 

choose this direction as the y axis and again z parallel to the velocity of the 

déuterons. The polarization state is now given by t 20 , t22 = ;3/2 t20  and a 

pure imaginary t 11 . In a coordinate system where the z-axis would be the sym- 

nietry axis we would find the components t 20  = - 2t2 , t10  = i 12 t 11  and all other 

components zero, see Eqs. (15). Igain one can produce a Jt 1 l = j7t20  with 

in the x-direction and magnitude ?rI/)--. Longitudinal vector polarization and a 

= - 2t 	will be produced with ç = r/2. 

The formulation of spin motion as used in this section allows us to treat 

approximately cases where the electromagnetic fields in the laboratory system 

are no longer homogeneous. In such fields the particles in a beam with finite 

cross section will experience different precession angles 0. This results in a 

ttdepolarization? of the beam. To be more specific let us consider the influence 

of a quadrupole lens pair on abeam of particles having only a longitudinal 

polarization. The action of the pair on the beam trajectory shall be considered 

as equivalent to a ' Tthin lens TT  action (see Fig. 2(a)). The spin of those particles 

• which enter the lens with an angle a will be turned by q toward the optic axis 

of the quadrupole. It follows from Fig. 2(a) and Table I that 

= 

with 
g 

e = 1 7( 	-1) 
	

(for a magnetic lens) 
	

(16) 

C = 1 ± y( 	-i) - 
	

(for an electric lens). 
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If our beam of particles has a symmetric intensity distribution about the 

optical axis, then the average over all rays will give only a longitudinal 

polarization. The relative decrease of the longitudinal spin component can 

therefore be called the udepolarization  D. If we assume the lens enhance as 

uniformly illuminated up to an apgle a = 0 
' then 

D = [a(l)e1 2 
	

(17) 

With a = ± !I° and a = b the depolarization D is )i%  for a nonrelativistic proton 

beam passing through a magnetic quadrupole lens pair. Under the same conditions 

the depolarization for tritons vould be 35% and for deutérons O. )+%. For a 

polarized triton beam it would be advisable to use electric quadrupole lenses. 

Evidently the depolarization can be smaller in a succession of lenses. This is 

thecase for trajectories like the ones drawrt by full lines in Fig.. 2(b). In 

fact D would be zero at the point P 3  using the above approximation. The dotted 

trajectories of Fig. 2(b). would give at P3  depolarization again given by Eq. (17). 

This behavior is clearly demonstrated in the work of Cohen et al. (Co59) whb 

investigated the depolarization of protons during acceleration in a 50 MeV injector 

linac,. This linac is strong focusing by means of quadrupole magnets enclosed 

within each of the 124 drift tubes. Cohen et al. integrated Eq. (11) numerically 

with a computer, following several proton trajectories. The calculation showed, 

that the proton moment never deviated more than 100  from the direction at injection. 
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III. TIME DEPENDENT ELECTROMAGNETIC FIELDS 

We will describe the polarization state of the particles in a frame of 

reference which is attached to one particle and.which has one of the coordinate 

axes always pointing in the direction of motion. In this rest system we can 

have time dependent fields 
.(i') 

 and B 	 if the particles are moving through 

inhomogeneous laboratory fields or if the laboratory fields are themselves time 

dependent. In addition to introducing a time dependence the inhomogenity would 

give us interaction terms with the electric quadrupole mpmnt and still higher 

moments of the particles. Good (Go62) derived classical 	equations 

of motion for the spin (in the rest system) including the effects of first order 

field gradients On the quadrupile moment. Inmost prctica1 cases it is not 

necessarr to consider these effects. To see this, let us make a rough estimate 

of the frequencycu resulting from the interaction of the electric quadrupole mo- 

OE 
ment Q with an electric field gradient -. We have u 

1 
 Qe - which amounts 

to co 	 for deuterons in a field gradient of 2 10 5  Vci. Such a low 

frequency will introduce new resonances very close to magnetic moment resonances 

or will merely broaden or shift them by small amounts. In the rest system of 

•the particles the effects of time dependent fields may therefore again be treated 

by solving the equation of motion, Eq. (7). In the case where the electric field 

in the laboratory frame is zero, Cohen (Co62) did solve the corresponding Eq. (ii) 

directly with a computer. In some special cases, the change of the spin state 

can be given in a closed analytic form. The results were obtained for low 

velocities of the particles and can be used in the present considerations if we 

replace all quantities by the corresponding ones measured in the rest system. 

We will summarize the results for two asses. We consider the situation, where 

the magnetic field in the rest system can he represented as the vector sum of a 
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static magnetic field 
O') 

and a sufficiently weak oscillating perturbing 

field. We consider first the case where the frequency n 
(r) of the perturbing 

field is constant. The transition probability of a particle with spin 1/2 from 

the state m = 1/2 to m 	1/2 or vice versa in the time interval 'r (Ra%) 

(r)12 
b' 	.21 (r) 

- 	
= 	

i 	a(' 	
51fl 	a 	 (18) 

2 2 	22 

with 

B(r) 
b(r) = (r) 	

r) 	
(19) 

a(r) 	1((r)(r))2 + (b)2}1I2 	 (20) 

Here 	r) and 	spin precession frequencies (see Eqs. (, 8) and Table I). 

3(r) is the amplitude of the perturbing magnetic field component perpendicular 

to B 	and rotating in the same sense as the magnetic moment. The fields in 

the rest system are given by Eq. (9) in terms of laboratory fields. In the 

second case W (r) - (r) may vary linearly with time: 

	

CO 
(r) - (r) =T 	 . 	 (21) 

The equation of motion for the spin is in this case a confluent hy-pergeometric 

equation, as has been shown by Froissart (Fr60) and by Kim (Ki6). If m5  = 1/2 

at time 't = - the probability P1 1 of finding in = - 1/2 at the time 'r co 

. 	 . 
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is obtained from the proper asymptotic solution to this equation. 

(r) 2 
/T(r) 

p1 1 =p 11 =1-e2 	 , 	 (22) 

22 	22 

Here b(r)  is defined as in Eq. (19). For small transition probabiiitie P 1  

ib(r)j2 	
22 

The time nsT needed to cross the resonance can be estimated from 
2 1T' 

Eq. (18). Ninety percent of the above transition probability stems from the time 

interval between -L'r to L,,t given by 

• 7rb 
(r) 	

(23) 
2T 	/P 	.j 

V 22 

or for small transition amplitudes by t 	 T(r) 	Eq. (22) can therefore 

be used approximately w 	Ihere cn(r) 
	(r) 

- 	is a linear function of time only in 

a time interval of 

The probability Ppq  for a transition of a particle with arbitrary spin s 

from .a state m= p to one with m = q can be expressed in terms of the transition 

probability of a particle with spin 1/2. This is done by taking advantage of the 

fact, that s can be considered as composed of 2s angular momenta of spin 1/2 

(see for example B147 or Ra76). The following expressions together.with the 

• symmetry relations 

PpqPqpP 	 • 	(24) 
-p-q 

give all transition probabilities needed for particles with spin 1 and 3/2 respectively 
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p11 	(i-P) 2 
	

P01  = 2P(1-P) 

 

p1 _l =p2 
	

p00  = (2P-l) 

= (1-p) 3 	p 	= (l-p)p2  - (i.-p) 2p +( l-p) 3  

= 3P(1-P) 2  p1 	1 = (i-p) 2P - (i-p)p2  + P3  

 

P 	= 3P2 (1-P) -  

P is an abbreviation for. P1 
1  as calculated respectively from Eq. (18) or 

22 

Eq. (22) depending on the actual experimental condition. For P. = 1 it is seen 

that P= 8 . This leads therefore to the complete reversal of the spin pq 	p-q 

direction relative to the static magnetic field. An application of this result; 

known in nuclear induction as adiabatic fast passage was suggested by Ahragam et al. 

(Ah58) as an efficient method of changing the polarization state of.the atomic 

beam in polarized ion sources. The treatment in terms of transition probabilities 

gives all the required information for a beam of particles with a rotationally 

symmetric polarization state about the magnetic field 11 	If we designate the 

- 

	

	new polarization state (symmetrical about the z-axis) by a prime, it follows 

from Eq (25) that for spin 1 particles 
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tio= (1-2P)t10 

(27) 

t o  = ( 1-6P(1-P))t20  

We do not treat here the case where the polarization that is not symmetrical, 

but it may be worthwhile to pointout briefly where changes would have to be 

made. The spin state ?/J . amls,m) will be changed through the transition to 

a state ' 	a Cs1p). }owledge of the transition alitudes C 	instead
Mp  

of the above used transition probabilities P mp = Icisp 
1 2  will allow the calculation 

of the new density matrix P'. The Cpq  have to be calculated only for a spin of. 

1/2. The ones for a gene±al spin s are given  in tei'ms of spin 1/2 amplitudes 

by Ramsay (Ra76, p. 429). The next section will show the practical application 

ôf•the above equations in the case of cyclic accelerators. 

IV. DEPOLARIZATION IN CYCLIC ACCELERATORS 

We.will discuss first. the proposed schemes of injecting polarized particles 

into cyclotrons and discuss in more detail the depolarization of particles during 

the acceleration process. At the end of the section we summarize the results 

obtained by different authors for the depolarization in synchrocyclotrons and 

synchrotrons. Particles from polarized ion sources are injected into cyclotrons 

either as an atomic beam or as ionized particles. In the first method as used 

by Keller et al. (Ke6l) and Beurtey et al. (Be6) the atomic beam is sent toward 

the center of the cyclotron in the median plane between the magnetic poles. The 

symmetry axis of the polarization state is parallel to the magnetic guide field 	
4 

,of the accelerator. Ionization with electron bombardment takes place in the strong 
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magnetic field at the center. To achieve a reasonable current and to prevent 

a too large contamination of the beam with unpolarized ions formed in the 

ionization region from the residual gas, \ the atomic beam should have a small 

divergence and the partial pressure in the cyclotron of gases likely to con-

taminate the beam should be low. The last condition is evidently easier to 

fulfill for deuterons than for protons. The second method is used successfully 

in the Birmingham sector focused cyclotron (Po65, Po66). The ionization of the 

atomic beam takes place outside the cyclotron where the contamination with un-

polarized particles is easier to control. After acceleration to about 10 keV 

the beam is injected through an axial hole of the cyclotron magnet into the 

central region where the particles are deflected by an electric field toward 

their orbit. About 3.5% of the injected (unpulsed) beam is successfully accel- 

erated. Experiments are being done in Saclay (Be65) to inject a charged polarized 

beam in the median plane of the cyclotron by compensating the magnetic force. at 

each point of the trajectory with an electric field. 

We will now consider in more detail the possible depolarization during 

the acceleration. The details of the calculation will depend on the type of 

accelerator, but the underlying ideas which were mainly developed by Froissart 

et al. (Fr60) and Kim et al. (K163) are equally applicable to other types of 

• cyclic accelerators as well as to the calculation of the depolarization during 

• the injection or extractiion. For the numerical illustrations the University of 

California 88-inch cyclotron in the Lawrence Radiation Laboratory, Berkeley will 

be used (Ke62). Figure 3:showsthe magnet pole arrangement of this three sector 

isochronous cyclotron. A typical equilibrium orbit of particles with a constant 

energy is also shown in this figure. The motion of the particles can be deter -

mined by the knowledge of the magnetic field (r, , z = a) in the median plane. 
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We write for the fourier-expansion of this field along a circle with radius r 

	

B(r, , 0)= 	A(r) cos [n(-(flj 	 (28) 

A. cyclotron with perfect N-fold symmetry (N is the number of sectors) has only 

nonvanishing coefficients An  for n = 1cJ, k = 1,2, etc. Figure showtheseco-

efficients and the phase angles 0 for a typical magnetic field of the Berkeley 

88-cyclotron. Particles of a constant energy will make oscillatory deviations 

from the equilibrium orbit. The total deviation of an actual orbit from a circle 

in the median plane can therefore be written approximately (Sm59 or Ha62) as 

z=z cos(v.. 
z 
 wt+8) 

m 	c 	z 

(29) 
A. 

r 	n 	 / = 	- cos Nu•t ± & cosivu) t + 5 

	

N2_lAo 	c 	m 	rc 	r 

The first term inthe equation for r represents the deviation of the equilibrium 

orbit from a circle. The other terms describe the vertical and horizontal betatron 

oscillations. Their amplitudes z and Lr and phases 8' 5 depend on the initial 

conditions of.the particle. The angular frequencies v z c r c a and v u of the betatron 

oscillations can be calculated from the magnetic field coefficients A (sm59). 

Figure 7 shows examples of their magnitude for a proton and a deuteron beam as 

functions of radius.. 

To be able to calculate the depolarization of the particles, we need the 

frequencies and amplitudes of the magnetic fields which the particle experiences 

in its orbit and which are perpendicular to the main magnetic field. In the 

.:,. 
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median plane the magnetic field has no such components, but particles which are 

above or below this plane will experience B and B field components. 

B =z + 
2 
 z + 

r Or 	Or 
(30) 

B = 	+ r66r zr +.. 

These Taylor expansions follow from curl = 0 and from the above mentioned 

vanishing of Br  and B in the median plane. All derivatives in Eq. (30) are 

understood to be taken at z = 0, 0 = cct. Inserting the expressions (28) and 

(29) for z, tr and B into the above equations we see that the particles experience 

horiontal perturbing fields with angular frequencies °m2 given by 

nm R = cc (n+mv +2v ) 	n, . 	,- m, = 	+1 +2,. 	 (31) 
- c 	r z 

where an expansion of Eq. (30) to higher powers in z will give rise to the 

values of m and I larger than one. It is convenient to introduce 6r nnLas the 

deviation of 	from the spin precession angular velocity in units of cc 

g 
Lv 2  = n + mvr + 2v - 	- 1 	 (32) 

ich choice of (n,m,) will give rise to resonant depolarization (vL= 0) 
g 

can be judged easily from Figs. 4 and 7 and from the value of y 	- 11. of the 
- 	 g 

particle. For nonrelativistic protons 	- 	= 1.8, we expect possible 

resonances to occur for (1,l,-l), (2 1 0,1), (3,-1,-l) etc. The transition 

probability depends (see Eq. (18) or (22)) on the amplitude of the perturbing 

/ 
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field B 
r)

(ca ) and on the time spent near the resonance. p 	ninE 

= 	nm + rnm2 	 (33) 

In a three sector accelerator the largest amplitudes are present for n = 0 or 3 

(see Fig. )4).  We expect therefore that the contribution from the (3,-1,-l) - 

resonances are the most important ones for the depolarization of protons in a 

three sector accelerator. The following explicit expressions for these fourier-

components are obtained from Eqs. (28) to (30) 

B(
) = 1 zm in. 9A3 

Or + 
i3Or 

1 	r02A 	
eq 2 

Br (m3 , i , i) = 	zm m 	- 9A3() 	 . 	() 

I 0 3 9 3 	e 	I 
- i6--- + 

3A3 r2)j 

A. similar consideration shows that (0,0,-l) - resonances give the most iortant 

contribution to the depolarization of deuterons. The perturbing field in this 

case is 

() 
 OA 

Br (U)0,0,1) 	YZmJ_0 1 

 r 	 (35) 

Figure 6 shows Ar 
31-1 

 1 for two proton energies and:Ar0 0 	
for one dedteron 

,- 	 . , ,- 

energy as function of radius. In all examples the particles have to cross de-

polarization resonances at least twice. The transition probability IF . given 

by Eq. (22) can be written for an isochronous cyclotron in the following form 
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I  B (r) 	\ 2 	2 	(R)+l f 	 U 	(l-K(r)) 	(36) 
A(R) 	2/ 	(v) B2 	r 

with 	 P<<l 

U 	average number of turns until extra Otion 

R 	extraëtion radius 

r 	resonance radius 
rA (r) 2 

:2(r) =1 

The transition takes place (see Eq. (23)) in the interval 

)g 

nm •= 	A(r 	 (37' 

Table II shows that the magnitudes of the depolarizations of protons and deuterons 

accelerated in the Berkeley 88-inch cyclotronare small. An average energy gain 

of 100 keV per turn was assured and 1 cm for the amplitudes of the betatron 

oscillations. The resonance width (Eq. (37)) is also shown in Table II. It is 

seen that for most resonances Eq. (21) is fulfilled over the region given by 

Eq. (24). At small radii this condition is more marginal. The contributions to 

the depolarization from regions where the resonance condition is not fulfilled 

can be estimated from Eq. (18). For protons with 55 MeV final energy F is 

approximately 5 x 10 in the interval from r = inch to r = 18 inch Small 	= 

values for the calculated depolarization were found by Kim et al. (Ki63) for 

deuterons accelerated in the Birmingham sector focussed cyclotron and by Khoe 

• 	et :r.. (Kh63) for protons acce1erted. in the cyclotron at Washington University 

i:rI 	]ou.1 ;. 	 (e 	aLso 	)o)f.) . 	.I!xpn:ri.m.nl;:,:Li:y po:Lari V((J. lfe 	Lf.rori5 
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successfully accelerated in a conventional cyclotron up to 22 MeV in Saclay 

(Be63). 

• 	 In synchrocyclotrons the depolarizations are generally more severe, mainly 

• 	because of the large nuinber.of turns during acceleration. Indeed the calculated 

depolarization of protons is substantial for the Rochester 130 inch synchro-

cyclotron (Lo62). For the Dubna synchrocyclotron small proton but large 

deuteron depolarizations are predicted (P164). Because the magnitude of the 

depolarization depends quadratically on the amplitude of the vertical betatron, 

oscillation (see Eqs. (36) and (30))  a reduction of this amplitude possibly by 

a careful injection of a good quality: beam in the median plane may avoid too 

large effects. 

Protons depolarize generally completely during acceleration in synchrotrons 

(Fr60, Co62, Ze64). Cohen (Co62) proposes a method using pulsed quadrupole 

magnets to traverse the dangerous resonances quickly enough to avoid excessive 

depolarizations. 
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FIGtJPE CAPTIONS 

Fig 1. A partical traje?tory (shown as full line) and two rest frames 

(H and H') as seen from an inertial system (L). 

Fig. 2. Depolarization in electromagnetic lenses. 

Fig. 3. Schematic of the Berkeley 88" cyclotron, showing the spiral ridges, 

and equilibrium orbit, and the deflector. 

Fig. i-(a) Amplitudes of the first three harmonics of the magnetic field of 

the Berkeley 88-inch cyclotron. The field shape corresponds approximately 

to 55 MeV protons extracted at a radius of 38.8". (b) Phase angle of the 

harmonics Forother energies the magnitude of A. will be different, but 
A 

the relevant ratio 	will be approximately the same Data from (C166) 

Fig. 5. Calculated radial (v) and vertical (v) betatron frequencies for the 

Berkeley 88-inch cyclotron. (Data from c166) 

55 MeV protons 	o-o-o and •-•-. 

65 MeV deuterons 	i-- 

Fig. 6. Deviation Lvnm2  of the perturbing field frequencies from the spin 

precession frequencies, measured in units of the cyclotron frequency, for 

the Berkeley 88-inch cyclotron. 

o-o-o 	zlw 	, 75 MeV protons 311: 

•-•-• 	v 	, 10 MeV protons 3,1,1 

65 MeV deuterons 
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