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Abstract 

For decades the implementation of Quantitative structure-activity relationship (QSAR) 

methods has successfully aided scientists in predicting properties of new chemical compounds 

with a well-defined structure, based on their molecular descriptors. This approach could be 

extended to predict relevant properties of nanoparticles (NPs), ubiquitous in pharmaceuticals, 

cosmetics and even food products. Due to their nature, NPs exhibit different characteristics than 

bulk materials, which suggest conventional descriptors for QSAR techniques should be expanded 

and adapted. Furthermore, NP quantitation has relied upon imaging, e.g., scanning electron 

microscopy (SEM), generating large sets from which only the most representative records can be 

stored. We propose a framework for extracting morphological information contained in SEM 

images using computer vision algorithms, and converting them into numerical descriptors of 

particles. Furthermore, we supply a set of protocols for selecting optimal SEM images and 

determining the smallest representative image set for each of the morphological features. We 

demonstrate applications of our methodology by investigating tricalcium phosphate Ca3(PO4)2, a 

naturally mineral with a wide range of biomedical applications, such as bone implants.  
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Introduction  

 Nanoparticles (NP) are a form of chemicals or materials that exhibit different 

characteristics than the bulk form or single molecule.1 Organic, inorganic or a composite2, 

nanoparticles can take shapes of atom-thick layers3, spheres4, single- or multi-wall nanotubes5, 

and various others, in which at least one external dimension is under 100nm. Ubiquitous in 

agriculture (e.g. herbicides6), cosmetics (e.g. sunscreen7), and medicine (e.g. drug delivery 

systems8), they present an ever-expanding field of research and development – it is estimated by 

2019 the global market for nanomaterials will have reached $4.2 billion.9 Due to their 

omnipresence, there is a great demand for a comprehensive characterization of the physical, 

chemical and biological properties of NPs, especially in relation to human and environmental 

safety. Similar needs are being already addressed in the field of single molecule research such as 

drug design,10, 11 where e.g. absorption, distribution, metabolism, and excretion and toxicity are of 

special interest.12   

 One of the challenges in characterization of NPs is the difficulty to obtain precise 

structural data. Unlike crystalline materials or single molecules for which atomic positions can be 

determined via crystallography, NMR techniques or ab initio modeling, the NP-based materials 

are typically a distribution of particles (e.g. agglomerates thereof) of various shape, size and 

order.1 Certainly, the experimental determination of some NPs’ properties, e.g. aqueous 

solubility, does not require the knowledge of morphology of a NP sample. However, for 

classification or assessment of more complex qualities, such as structure-property relationships, 

toxicity or mode of action13, this knowledge is sine qua non.  
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 Moreover, the information about structure and/or morphology of a nanoparticle sample 

can open exciting opportunities to computationally model NP characteristics e.g. via quantitative 

structure-property/activity relationships (QSPR/QSAR) approaches. These techniques employ 

combinations of structural descriptors in prediction of physical-chemical and/or biological 

properties of chemical substances, based on statistical models derived from known data.14 

QSPR/QSAR modeling for nanoparticles (“Nano-QSAR”) is an emerging field providing 

protocols to predict complex properties and asses environmental risks for nanoparticle-based 

technologies.15 Without the knowledge of the exact structure of a given NP sample, researchers 

have explored two approaches to calculate structural descriptors:  

(i) approximate the structure with a simple model (e.g. bulk structure or a surface models 

based on the latter), for which some descriptors can be calculated, and  

(ii) (ii) recover partial structural information about a sample of NPs through available 

experimental imaging techniques, e.g. via image analysis of photomicrographs of a NP 

sample.  

 Following the approach (i), Kar and coworkers used hydrophobicity, surface charge and 

topological descriptors to estimate the uptake of magnetofluorescent NPs in human epithelia 

pancreatic cells.16 Similarly, Gajewicz and associates utilized the enthalpy of formation and 

Mulliken’s electronegativity to predict the toxicity of metal oxides to human keratinocyte cell 

line.17  

 The approach (ii) typically involves scanning electron microscopy (SEM) or transmission 

electron microscopy (TEM), which have become standard techniques to investigate micro- and 

nano-sized particle structures in the food industry (e.g. comparing milk treatments18), mechanics 
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(e.g. investigating combustion byproducts19-23), and medicine (e.g. examining wear particles of 

artificial joint fillers)24-28. There are various ways of examining information contained in SEM 

and TEM images. Intuitive approaches follow natural human visual inspection when 

investigating new objects: estimating size, shape, contour and texture. In other words, it is 

possible to characterize the NP samples in terms of length, surface area, circularity etc. 18-29 The 

identified morphology can be later correlated with properties.  For example, Adachi et al. 

examined the relationship between soot (carbon) nanoparticle morphology and their optical 

properties. 30 They found that open, ramified particles absorb sunlight less efficiently than 

compact, spherical ones. Other approaches of extracting particle features from images involve 

additional mathematical transformations, with examples being wavelet 31 and Fourier 

descriptors,32, 33 and fractal dimension.34-36 An interpretation of the latter group of descriptors is 

less intuitive but may be useful in constructing statistical structure-property models.  

 While the nanoparticle-QSPR/QSAR modeling methodology is an emerging technology, 

a major challenge continues to be to select the optimal source of NP structural data. In this 

contribution, we investigate SEM images as such a source. By applying computer vision 

algorithms, we quantify the content of SEM images using a set of morphological characteristics. 

We ask a fundamental question: how to select the optimal images one needs to properly capture 

both diversity and statistics of the nanoparticles present in a sample set? In the following, we will 

utilize image analysis algorithms in order to extract descriptors and to perform a series of 

statistical tests to address these questions. We will illustrate our considerations using images of 

Tricalcium phosphate (Ca3(PO4)2) nanoparticles.  

Methods 
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 Images 

 Tricalcium phosphate (TCP), a member of the calcium orthophosphate family, is a 

biocompatible and biodegradable compound used both in bulk and nanoparticle form e.g. as a 

component of composite biomaterials37. Herein, we investigate and characterize sub-macro 

orthophosphate particles obtained from Sigma-Aldrich.  

 Using Phenom ProX Desktop Scanning Electron Microscope (accelerating voltage: 5,000 

– 15,000 V), we obtained 15 grayscale (8-bit) .tiff images of TCP grains. At x400 magnification, 

the 2,048 by 2,048 pixels (px) micrographs were scaled to 3.061 px/µm (0.3267 µm/px). The 

number, density and shape of particles varied among the SEM images (Figure 1), and in each 

case, the objects visible in the images correspond to µm size agglomerates of nanoparticles.  

 

Figure 1. SEM grayscale image samples of tricalcium phosphate (TCP): high variability and 

pleomorphism. 

 Image analysis and particle descriptors 
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  Our analysis algorithm was divided into two modules: image processing (preparation) 

and image analysis (numerical transformation). We use an open source Java-based framework 

known as ImageJ software to construct our computer vision methodology.38 ImageJ offers several 

tools for image enhancement, segmentation and feature extraction, including scripting capability 

easing the analysis microscopic images. 

Image processing and analysis 

 Prior to any analysis, the SEM images require appropriate preprocessing, such as border 

improvement and contrast enhancement. In this study, we implemented a workflow with three 

main processing steps: filtering, thresholding and segmentation. The graphical output (result) at 

each stage of the procedure is presented in Figure 2, with a brief description given below: 

1. FILTERING. Reduce noise, (e.g. dust, dirt, artifacts), through smoothing local variations in 

the image. Artifact elimination prevents false particle identification during the segmentation 

stage. Method: anisotropic diffusion39 - a non-linear filter that homogenize areas with similar 

intensity while preserving the edges. 

2. THRESHOLDING. Separate the background and the objects based on their pixel intensity 

(gray-level value, 0-255). Setting an intensity limit aims at eliminating background objects, such 

as artifacts, specks of adhesive glue, stray fragments of coating film and the like, so that the result 

contains the foreground objects (aka regions of interest). Method: intermodes40, which iteratively 

attenuates the pixel intensity (gray-level value) variations from the histogram until there are only 

two maxima, and uses their average as the threshold value for all the pixels in the image .  
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3. SEGMENTATION. Identify the foreground objects out of the thresholding step that are most 

likely to correspond to particles. Method: discarding objects on edges or with size smaller than 

10 µm2 

 

Figure 2. Example of an image processing result throughout the particle identification: colored 

circles offer a magnified view of the image transformations at each processing step. 

Nanoparticle descriptors 

 After identifying and selecting the particles, our algorithm proceeds in extracting 

morphological features, which here are scalar numerical descriptors. We obtained ten shape and 

size descriptors, briefly described in Table 1. The information contained in each image is 

therefore converted into a list of nanoparticles, and their respective ten descriptors. 

Table 1.Calculated morphological particle features: size (orange) and shape (purple) descriptors. 

Feature Description Unit 

Area area of selection μm2 

Perimeter length of the outside boundary of the selection μm 

(Ellipse) Major axis primary axis of the best fitting ellipse; Sellipse = Sparticle μm 
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(Ellipse) Minor axis secondary axis of the best fitting ellipse; Sellipse = Sparticle μm 

Feret's diameter [Max] maximum distance between the two parallel lines restricting the 
object perpendicular to a specific direction; maximum caliper μm 

Feret's diameter [Min] minimum distance between the two parallel lines restricting the 
object perpendicular to a specific direction; minimum caliper μm 

(Ellipse) Aspect ratio the ratio of Major Axis to Minor Axis — 

Circularity comparison of the surface area of a particle to that of a circle 
with a perimeter of an equal length; lparticle = lcircle 

— 

Roundness 
comparison of the surface area of a particle to that of a circle 
with a major axis (diameter) of an equal length; MjrAxparticle = 
MjrAxcircle 

— 

Solidity ratio of the particle Area and Convex area; compactness — 

 

Image representativeness and nanoparticle statistics 

Distributions of nanoparticles and their morphology can be significantly different between 

SEM images. These differences reflect both sample inhomogeneity and deficiencies of sample 

preparation methods. Therefore, before an image can be used as a source of descriptors for 

QSAR/QSPR modeling, we must first establish its representativeness, i.e. the level of 

(morphological) feature diversity expected. A micrograph containing fewer but more diverse 

particles may be more valuable than one with a large number of particles differing very little 

from each other. In some cases, it might be necessary to use more than one SEM image in order 

to incorporate all the possible variations of a descriptor value (particle feature). The challenge is 

two-fold: (i) to determine a finite number of images, often smaller than the whole set, that will be 

recorded for later references; (ii) if the visual inspection is mandatory, how to rank the images 

based on the NP properties?  
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 We developed quantitative protocols for assessing the morphological information about 

NP carried in SEM images. Employing particle statistics, we designed a series of analytical steps, 

and implemented algorithms using the R statistical software. The main steps are described as it 

follows: 

 STEP 1: Calculating the probability density for each descriptor. The probability 

density function (PDF), describing the relative likelihood for a variable to take on a specific 

value, is a tool for assessing the range and frequency of descriptor values. The probability density 

was calculated using a kernel density estimation (KDE) method implemented in R's stats 

package. These kernels assume a Gaussian function to approximate the data distribution locally, 

following the equation below:  

𝐺(𝑥; 	𝜎) = 	
1

𝜎√2𝜋
	𝑒.

/0
120 

where 𝐺 is the Gaussian kernel, 𝑥 is a data point and 𝜎 stands for standard deviation of the data.  

 A set of fifteen SEM images are input to create a reference curve, such that the probability 

density for each descriptor was estimated on all the particles from the set. In this context, we 

assume that the available set of images well represent the diversity of the particle sample. In 

order to estimate PDFs, we assume that the descriptors value range between zero and the 

respective maximum descriptor value. Within those set boundaries, 1024 evenly spaced points 

compose the density estimation. The PDF for all the particles in terms of each descriptor serves 

as reference curve in our convergence analysis. 

 STEP 2: Determining all the possible image combinations (subsets). In order to 

investigate potential procedures for optimal image selection, we took all possible image 

combinations (subsets) under consideration. When listing all possibilities, we started with one-
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image subsets, taking into account only one image at a time. Following that, we found all two-

image combinations, then all three-image combinations (subsets) and so on – up to 14-image 

subsets. In total, we found 32,766 possible combinations (subsets) of 15 images. 

 STEP 3: Calculating subset PDF for each descriptor. Implementing the method 

described in STEP 1, we calculated the PDF of each descriptor for each subset. We used the 

previously established descriptor bounds (lower and upper range limits) in the subset probability 

density estimations, thereby ensuring the 1024 sampling point intervals were comparable each 

time. Additionally, the PDFs here also follow the default implementation, similarly to the 

smoothing bandwidths for the full set PDF.  

 STEP 4: Calculating the similarity score. In order to find the difference between the 

overall (yi) and subset (fi) descriptor probability distributions at the i-th sample point, we 

calculated the absolute error (AE): 

𝐴𝐸 =	 |𝑓7 − 𝑦7| = |𝑒7| 

We obtained 10 AE vectors per subset, each for the respective descriptor. Each AE vector 

contained 1024 values, corresponding to a PDF curve over the sampling intervals. Using the 

trapezoidal rule41 we approximated the area under the curve (An) in each AEn vector: 

𝐴 = : 𝐴𝐸
/;<=

/;>?

(𝑥7)	𝑑𝑥 ≈ (𝑥BC/ − 𝑥DEF	) G
𝑓(𝑥DEF	) + 𝑓(𝑥DIJ	)

2
K	 

As the integral of the probability density function over the entire space is equal to 1, the 

maximum difference between two PDF curves is equal to 2. Therefore, we normalized all the A 

values and calculated the similarity score (SS), whereby: 

𝑆𝑆	 = 	1	–	
(𝐴)
2  
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The similarity score ranges between 0 and 1. The higher the SS value, the greater the similarity 

between the overall probability density curve for a specific descriptor and the probability density 

curve of a given subset. 

 STEP 5: Performing a two-sample Kolmogorov-Smirnov test (K-S test).42 This 

nonparametric test is used for determining whether two sample distributions are statistically 

significantly different. It is based on the empirical cumulative distribution function (ECDF)43. 

ECDF assigns a probability of 1/n to each data point, orders the data from smallest to largest in 

value, and calculates the sum of the assigned probabilities up to and including each data point, 

hence the term cumulative.  The result is a step function, showing increasing probability of 

obtaining a value smaller than or to equal each given data point in turn: 

𝐸𝐶𝐷𝐹(𝑥) =
1
𝑛R 𝐼(𝑥7 ≤ 𝑥)

U

UVW

 

where xi is a single data point, I is the indicator function (I = 1 for xi ≤ x and I=0 for xi > x). The 

maximum ECDF value in as always 1 the probability of obtaining the complete set of values.  

In order to compare the ECDFs of two samples, a maximum distance (Dn) statistic is calculated: 

𝐷U = max
7
|𝐸𝐶𝐷𝐹W(𝑥7) − 𝐸𝐶𝐷𝐹1(𝑥7)| 

The distributions are considered to be different if  Dn exceeds a critical value Dcrit, which can be 

calculated based on the sample size and significance level α (lowest acceptable probability that 

the result is an error). 

 Additionally to Dn, the p-value is estimated. It's an alternative way of evaluating the 

similarity between two ECDFs – assuming that the two samples were taken from the same 

population, the p-value is the probability that the two empirical cumulative distributions would be 
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as far apart (different) as observed. In other words, the p-value is the probability that the 

maximum distance between the two ECDFs would be greater than or equal to Dn. Small p-value, 

less than or equal to a certain threshold (limit) means that the assumption about the similarity of 

the two distributions is false. This p-value limit is the above-mentioned significance level α. 

 For ease of comparison, we chose to examine the subset in terms of their p-values rather 

than maximum difference Dn. We chose the standard significance level, α=0.05, meaning we 

accepted that the results were within a 5% margin of error. When comparing the overall ECDF1 

(for the complete 15-maige set) with the ECDF2 of a subset, if  p ≤ 0.05 we concluded that the 

ECDFs are significantly different, therefore the subset in question is not representative. We 

applied this p-value-based approach to assessing the representatives of all image subsets. 

Results 

Particle features 

 Particle number per image ranged with from 414 particles in Image 12 to 951 particles in 

Image 3, with the average of 635 particles per image; Figure 3 provides a histogram representing 

distribution of particles in each image.  
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Figure 3. Particle count per image. Bars representing individual images colored from lowest (red) 

to highest particle count (green). 

The majority of the particles are small, under 100 µm2 (Figure 4: Area) and short, under 10 µm 

(Figure 4: Ferret's diameter [Max]). The typical shape was close to circular (Figure 4: Circularity) 

and mostly compact (Figure 4:  Solidity). The full set of descriptor value distribution can be 

found in the Supporting Information. 

 

Figure 4. Descriptor value distributions for all images 

 The section of Image 1 presented in Figure 5 shows how calculated descriptor values 

correspond to actual particle features. We chose to illustrate the physical representation of two 

most intuitively interpretable descriptors, one from each of the descriptor groups: the outlines of 

particles in Figure 5 were colored by Circularity (shape descriptor) and particle fills were colored 

by Area (size descriptor). As we can see, Circularity values up to 0.5 correspond to elongated 

particle shapes (Figure 5A, outlined in green and yellow hues) while particles with shapes closer 

to a perfect circle (Figure 5A, outlined in shades of blue and purple), have higher Circularity 
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values – between 0.5 and 1. An additional example of particle shapes and corresponding 

Circularity values (0.25, 0.5, 0.75 and 1) is shown on the left-hand side of Figure 5.  

The interpretation of Area descriptor is quite instinctive: the greater the Area value, the larger 

the actual particle size (Figure 5, smallest particles filled with pink and red, largest particles filled 

with blue hues). 

 

Figure 5. Section of image 1 with particles colored accordingly to their descriptor values: outline 

representing Circularity, fill representing Area. Polygons on the left-hand side are examples of 

particle shape (outline) for corresponding Circularity values of: 1.0, 0.75, 0.5 and 0.25.   
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Figure 6. Overall particle count (all images) for Area vs. Circularity. Each hexagon is a two-

dimensional bin representing particle count for both descriptors simultaneously. 

Further investigation of the relationship between particle's Circularity and their Area revealed 

an inverse correlation between the two descriptors, illustrated the two-dimensional histogram in 

Figure 6. Smaller the particles tend have more circular shapes (top-left corner, Figure 6). 

Conversely, large particles are usually more elongated (bottom-right corner, Figure 6). As 

descriptor interaction are not the main subject of this work, a full descriptor scatter matrix can be  

found in the Supporting Information.  
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Figure 7. Probability density of descriptor values per image for Circularity. Black line denotes the 

overall probability density curve (all images at once) 

 Images vary not only in particle number but also in descriptor value distribution (Figure 

7). The overall probability density function (PDF) curve representing all images (black line), and 

the respective probability density curves for each of the images (various colors) differ 

significantly. The PDF estimate for Image 7 (turquoise polygon) almost completely overlaps with 

the overall PDF curve, meaning Image 7 is the most representative in terms of Circularity. 

Conversely, the PDF curve for Image 3 (yellow polygon) visibly differs from the overall, 

signifying that image 3 is the least representative of all 15 SEM images. This inter-image 

variation holds true for other descriptors as well. An overview of the differences in the per-image 

value distribution for all descriptors can be found in the Supporting Information. 

 

Similarity score 
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As outlined in the previous section, distributions of particle descriptors differ between images. 

In this section, we broaden our investigation to include image groups (subsets) and quantify the 

inter-subset differences with the help of the similarity score. 

We observed the same trend for all descriptors: the similarity score values increases with 

increasing subset size (Figure 8). There is noticeable rise in similarity score: from low values for 

1-image subset size group (leftmost, peach-colored bars) to high SS values for 14-image subset 

size group (rightmost, pink-colored bar). The SS value ranges differ depending on descriptor 

type: with narrower ranges for size descriptors: 0.8645-0.9968 (Figure 8, panels: 1-6) and wider 

ranges for shape descriptors: 0.8177-0.9972 (Figure 8, panels 7-10).  

 
 

Figure 8. Similarity score ranges per subset size group for all descriptors. Differently colored bars 

represent  SS values ranges for all image subsets of a given size. 

 We noticed that certain subsets have higher SS values than others of equal size (i.e. 

containing the same number of images). In the case of Circularity (Error! Reference source not 
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found.), for example, 10-image subsets, represented by blue dots, are spread out vertically - 

meaning some have lower SS values then others, despite the equal number of images. This 

difference arises from the fact that these equally sized subsets contain different images, which in 

turn comprise particles with varying shapes (Circularity). Amongst equally-sized subsets, the 

ones including certain specific images will be more representative of the whole population 

(complete image set) than others.  

 

Figure 9. Similarity score of all subsets for Circularity; each dot represents a subset, colored by 

its size 

To further investigate subset quality versus image quantity, we identified the 10-image subset 

with lowest SS value for Circularity, SS10
min = 0.9228. This subset included Images 4 thru 10, 12, 

14, and 15. Following that, we compared this SS10
min with SS values for all smaller subsets 

(containing 1 through 9 images). We found that subsets as small as three images had SS values 

higher than 0.9288. One of the 3-image subsets we found, with SS3 = 0.9365, included only 

Images 4, 5 and 9. This implies that Images 6, 7, 8, 10, 12, 14 and 15 from the above mentioned 
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10-image set were in fact redundant – they didn't bring any information that would improve the 

representatives of the bigger, 10-image, subset. What we can infer from this is that, contrary to 

our expectations, a larger number of images does not always make a subset more representative. 

The selection of specific images is equally, if not more, important.  

 It is worth noting that certain subsets of different sizes have the same SS values - as 

shown in Error! Reference source not found., there are groups of differently-colors dots with 

the same SS value. All the dots situated on the red, dashed line represent subsets with SS = 

0.9804. This phenomenon occurs in all descriptors. This is further proof that not only the number 

but also the choice of images has significant influences on a subset's representativeness. 

The Kolmogorov-Smirnov test 

As mentioned in Section 0, the statistical significance of the differences between the overall 

and subset's ECDFs can be assessed by comparing the p-value against the significance level, 

α=0.05. The number of subsets with p ≤ α (i.e. significantly different from the complete image 

set) for all descriptors is shown in Table 2, sorted by subset size group. There are fewer 

significantly different subsets for each of the size descriptors (Table 2, cols. 2 thru 7), e.g. in case 

of Area, only 22 out of possible 105 2-image subsets are significantly different from the overall 

set. Whereas in the case of shape descriptors (Table 2, cols. 8 thru 11), there is a significant 

number of image subset differencing from the complete image set.; e.g. for Solidity, over half of 

the possible 2-image subsets, that is 60, differ significantly from the complete, 15–image set. 

For all but one descriptor, Solidity, is it possible to find a saturation point, a specific subset 

size that, no matter which images are chosen, their combination will never differ significantly 

from the complete image set. In order to get a representative set of random images for the Area 
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descriptor for example, we need to use at least 11 out of all 15 images at hand, because at that 

image number, none of the subsets will differ from the whole set.  

Table 2. KS test results: number of significantly different subsets  (p-value ≤ 0.05) for all 

descriptors, sorted by subset size group.  

Subset 
size 

group 

Number of significantly different subsets (p-value ≤ 0.05) 
No. of 

possible 
subsets 

A
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a 

Pe
rim

et
er

 

Fe
re

t's
 

di
am

et
er

 
M

ax
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t's
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s 

A
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tio

 

Ci
rc

ul
ar

ity
 

Ro
un

dn
es

s 

So
lid

ity
 

1 3 1 1 5 1 8 9 5 9 6 15 

2 22 5 5 31 8 50 58 39 56 60 105 

3 78 25 13 122 28 195 243 186 236 260 455 

4 187 49 15 311 48 540 651 559 642 791 1 365 

5 299 50 11 537 54 1 028 1 293 1 106 1 270 1 645 3 003 

6 338 31 3 705 35 1 424 1 894 1 621 1 876 2 560 5 005 

7 254 10 0 638 11 1 484 2 088 1 753 2 057 3 028 6 435 

8 119 0 0 416 2 1 127 1 728 1 343 1 706 2 667 6 435 

9 30 0 0 190 0 604 1 051 762 1 033 1 692 5 005 

10 3 0 0 49 0 224 441 296 429 774 3 003 

11 0 0 0 3 0 46 123 75 117 221 1 365 

12 0 0 0 0 0 3 18 13 17 44 455 

13 0 0 0 0 0 0 2 0 2 5 105 

14 0 0 0 0 0 0 0 0 0 1 15 

Total 1333 171 48 3007 187 6733 9599 7758 9450 13754 32 766 
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An example of the differences in ECDF curves between 1-images subsets (i.e. single images) 

and the overall ECDF curve (black line) for Circularity is presented in Figure 10. We can see that 

for some of the images (e.g. Images 7 thru 12, teal thru purple hues), the ECDF curves are quite 

close the overall ECDF (black line) – these are the images with a p-value greater than α=0.05 (not 

significantly different form overall). Whereas the ECDFs of other images, such as Image 3 

(yellow line) or Image 6 (green line), are further away from the overall ECDF curve. The p-value 

for those images is smaller than 0.05 and they are considered to be significantly different from 

the complete image set in terms of Circularity value distribution. The per-image differences in 

ECDFs for the remaining descriptors have been can be found in the Supporting Information. 

 

Figure 10. Empirical cumulative distribution function (ECDF) per Image for Circularity. Black 

line denotes the overall ECDF for the complete image set.  

 Discussion 

Representative image selection 



This is a preprint: the final version is only available at Journal of Microscopy 
 

23 

 

 

  We developed an approach for selecting the most representative images and multi-image 

sets out of all available images (complete image set) by using the similarity score value a 

benchmark. For a given image subset size group, the highest SS value will signify the most 

representative image combination in this group.  

 In the case of 1-image subsets (i.e. single images), the highest SS score will simply 

indicate the most representative image (Table 3, highlighted in green) for each descriptor. What 

is interesting, is that even though some of the images are the most representative for more than 

one descriptor, e.g. Image 1 (optimal representation of Area and Perimeter) or Image 8 (optimal 

representation of both Maximum and Minimum Feret's diameter as well as the Minor Axis), there 

is no single, "globally optimal" image, one that would best represent all of the descriptors at the 

same time. 

Table 3. Similarity score for each of the 15 images from the complete image set and  for all 

descriptors. Highest SS values for each descriptor highlighted in green, lowest values for each 

descriptor highlighted in red. 
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1 0.9218 0.9477 0.9344 0.9266 0.9285 0.9145 0.9137 0.9353 0.9248 0.9026 

2 0.9097 0.9351 0.9305 0.9259 0.9207 0.9122 0.9097 0.9409 0.9169 0.9162 

3 0.9059 0.9351 0.9278 0.9016 0.9147 0.8840 0.8820 0.8709 0.8858 0.8177 

4 0.9126 0.9134 0.9160 0.9238 0.9157 0.9144 0.9033 0.9354 0.9071 0.9145 

5 0.9108 0.9235 0.9288 0.9298 0.9325 0.9303 0.9352 0.9442 0.9396 0.9229 
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6 0.9188 0.8999 0.9215 0.9369 0.9277 0.9295 0.9030 0.8878 0.9048 0.8656 

7 0.8988 0.9120 0.9316 0.9099 0.9300 0.9127 0.9269 0.9499 0.9361 0.9218 

8 0.9157 0.9186 0.9457 0.9444 0.9259 0.9387 0.9244 0.9267 0.9376 0.9268 

9 0.9132 0.9295 0.9235 0.9355 0.9313 0.9179 0.9417 0.9290 0.9537 0.9211 

10 0.8954 0.9165 0.9309 0.9148 0.9294 0.9097 0.9177 0.9469 0.9252 0.9366 

11 0.9187 0.9091 0.9214 0.9071 0.9169 0.9040 0.9259 0.9483 0.9348 0.9327 

12 0.8954 0.9118 0.9214 0.8841 0.8972 0.8645 0.8851 0.9305 0.8898 0.9332 

13 0.8835 0.8847 0.8981 0.8906 0.9001 0.8861 0.9264 0.9175 0.9303 0.9268 

14 0.9117 0.9196 0.9318 0.9225 0.9209 0.9074 0.9130 0.9253 0.9204 0.9345 

15 0.8926 0.9184 0.9246 0.9136 0.9208 0.8993 0.8717 0.9239 0.8767 0.9088 

  

Another noteworthy fact is, that despite containing the largest number of particles, Image 3 was 

not the most representative of any descriptor (Table 3), proving that particle count is not 

indicative of feature representation and should not be used as a factor during the image selection 

process. 

 When selecting representative image (sub)sets, going beyond single images given an 

opportunity to better represent the entire sample, we can also the use the similarity score value as 

an indicator. 

Table 4. List of Images included in the most representative image combinations of particular size 

– based on Circularity. Each Image was assigned a unique color for clarity. 

Subset 
size 

Max 
SS Images included in subset 

1 0.9499 7 - - - - - - - - - - - - - 

2 0.9665 2 15 - - - - - - - - - - - - 
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3 0.9801 1 4 9 - - - - - - - - - - - 

4 0.9853 9 10 13 14 - - - - - - - - - - 

5 0.9869 9 10 11 13 14 - - - - - - - - - 

6 0.9882 2 9 10 13 14 15 - - - - - - - - 

7 0.9905 2 3 6 7 13 14 15 - - - - - - - 

8 0.9918 1 3 5 6 7 8 11 15 - - - - - - 

9 0.9928 2 3 6 7 9 10 13 14 15 - - - - - 

10 0.9945 1 2 3 4 5 6 7 8 12 15 - - - - 

11 0.9953 1 2 3 4 5 6 7 8 11 12 15 - - - 

12 0.9955 1 2 3 4 6 7 8 9 10 13 14 15 - - 

13 0.9960 1 2 3 4 5 6 7 8 9 11 13 14 15 - 

14 0.9971 1 2 3 4 5 6 7 8 9 10 12 13 14 15 

  

As an illustration, we examine image subsets in terms of how representative they are of particle 

Circularity. Starting with the smallest subset size group (single images), we observe that Image 7 

had the highest similarity score value (Table 4) meaning it is the most representative of the group. 

When examining the 2-images sets, we find that the combination of Image 2 and Image 15 is the 

most representative, as this pair had the highest SS value out of all 2-image subsets. When 

looking for three most representative Images we should combine Images 1, 4, and 9, etc. 

 

Table 5. List of Images included in the most representative image combinations of particular size 

– based on Area. Each Image was assigned a unique color for clarity. 

Subset 
size 

Max 
SS Images included in subset 
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1 0.9218 1 - - - - - - - - - - - - - 

2 0.9499 3 13 - - - - - - - - - - - - 

3 0.9637 3 6 15 - - - - - - - - - - - 

4 0.9725 1 3 7 15 - - - - - - - - - - 

5 0.9783 1 3 6 7 15 - - - - - - - - - 

6 0.9809 1 3 4 7 12 15 - - - - - - - - 

7 0.9830 1 3 5 6 9 12 15 - - - - - - - 

8 0.9842 1 3 5 6 7 9 14 15 - - - - - - 

9 0.9867 1 2 3 5 6 9 11 13 15 - - - - - 

10 0.9885 1 2 3 6 7 8 11 13 14 15 - - - - 

11 0.9898 1 2 3 5 6 8 9 10 12 13 15 - - - 

12 0.9918 1 2 3 5 6 8 9 10 11 12 13 15 - - 

13 0.9929 1 2 3 4 5 6 8 9 10 11 12 13 15 - 

14 0.9955 1 2 3 4 5 6 7 8 9 10 12 13 14 15 

  

To assess whether these image combinations would be universally representative, we identified 

the image subsets with highest SS values in relation to particle Area (Table 5). Interestingly, we 

found that the best image combinations, those with the highest SS value, we different from the 

subsets in corresponding size groups for Circularity. Here, Image 1 was most representative of 

the whole set, whereas for Circularity it had been Image 7. The two most representative image 

combination was Images 3 and 13, not 2 and 15, as had been the case with Circularity. The three 

most representative Images in terms of particle Area were 3, 6 and 15 instead of 1, 4, 9 and so on. 

At each subset size level (form 1-maige subset up to 14-image subset), different sets of Images 

were representative for either those descriptors. 
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We further investigated this matter by identifying the most representative (highest SS values) 

image combinations at each subset size level for eight of the remaining descriptors. We found 

that the representative image subsets differed from one descriptor to another. While there was 

some overlap – some subsets were found to have highest SS values for more than descriptor – we  

did not identify a "universally representative" image combination. For the sake of brevity, we 

limited the presentation of our findings to the Area and Circularity only. 

 

Minimum representative number of images 

Our main goal was to determine the smallest number of images necessary for a representative 

subset. While the similarity score allows us to identify the most representative images in subset 

of a given size, it does tell us what the minimum size could be.  

 As outlined in Section 0, it is possible to find a saturation point of a sorts – a subset size 

that, no matter which images it contains, the subset will always be similar in terms of the specific 

descriptor distribution to the complete image set. Identifying this saturation point for each 

descriptor will in essence mean finding the smallest representative image set. Each descriptor has 

a different representative image number, as shown Figure 11. When choosing a set of images 

representative in terms of Area, we should select at least 11 of them to create a set large enough 

that even when selecting images as random, we will pick a sufficiently diverse and representative 

combination. Analogically, in order to obtain a set of random images representative in terms of 

particle Perimeter, we should use at least 8 of them.  
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Figure 11. Minimum number of images for a representative image set for each descriptor. 

Solidity marked I brown as the only representative set is the full set. 

This logic applies to all descriptors, with exception of Solidity, for which even among 14-

image sets there was still at least one significantly different. This fact signifies that, while our 

original 15 image set was exhaustive in terms of feature representation for the first nine 

descriptors (the convergence to the smallest representative image number was always happened 

under 15 images),  the same cannot be said for Solidity. As the minimum representative image set 

was never found, we cannot be certain that the initial 15 image constituted the de facto exhaustive 

set of images – a larger number might be need to fully represent the diversity in particle Solidity. 

 

Conclusions 

 We provided a computational framework for extracting morphological features of 

microparticles from SEM images. Using this framework, we have analyzed 15 SEM images of 
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tricalcium phosphate TCP material, and investigated their particle distributions in terms of size 

descriptors: Area, Perimeter, Major and Minor Axes, Maximum and Minimum Feret's diameter, 

as well as shape descriptors: Aspect ratio, Circularity, Roundness, and Solidity. 

 We have developed a statistics-based approach for image comparison (similarity score, 

SS), enabling the selection of most representative images and image sets. We have demonstrated 

that when choosing a representative set of SEM images, one should make the selection separately 

for each descriptor. We have proven that information quality (feature diversity) is independent of 

the number of particles in an image, and the most populated images are not always the optimal 

choice. We observed an inverse correlation between particle shape and size: smaller are usually 

circular in shape, while larger particles tend to have more evolved, irregular shapes. 

 We proposed a method of determining the minimal number of images necessary for a 

random representative set, with the help of the two-sample Kolmogorov-Smirnov test. Based on 

the difference in empirical cumulative distribution function (ECDFs) between image subset and 

the complete image set, we calculated p-values. Subsets with p-values ≤ 0.05 we classified as 

significantly different from the complete image set. For every descriptor there is an image 

number (subset size) large enough, that no matter which random images are combined, the 

resulting subset will always be representative in terms of that descriptor.  Each of the descriptors 

has a different minimum representative subset size. 

    To sum up, our algorithms provide a framework for analyzing images of nanoparticle-

form materials and selecting minimal sets of images to correctly represent material samples. Our 

framework is general and could be applied to various materials, using diverse descriptors 

corresponding to key features, relevant to specific applications. Our methodology could also be 
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integrated with commercial imaging software, providing immediate, “live” feedback during the 

image acquisition process. 

The next stage of our research will focus on devising a measure of information content for 

SEM images, based on the distribution of particle features. Following that, we will compare the 

morphological information obtained by means of computer vision for different biomaterials and 

group them accordingly to those features, looking for natural clusters. Afterwards, we will 

investigate relationships between particle morphology and their biological properties. 

 

Supporting Information 

Additional figures as well as the set of 15 SEM images are available in the supporting 

information file.  
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