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Abstract
One of the guiding principles of memory research in the preceding decades
is multiple memory systems theory, which links specific task demands to
specific anatomical structures and circuits that are thought to act
orthogonally with respect to each other. We argue that this view does not
capture the nature of learning and memory when any degree of complexity
is introduced. In most situations, memory requires interactions between
these circuits and they can act in a facilitative manner to generate adaptive
behavior.
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Introduction
There is no doubt that most animal species depend on the abil-
ity to learn for survival. Learning and the behaviors through 
which learning is expressed require interactions between large-
scale brain networks. In mammals, simple forms of learning, 
such as when X perfectly predicts Y, often can be handled by  
subcortical networks. Take, for example, basic Pavlovian fear 
conditioning in which a tone signals aversive shock 100% 
of the time and shock never occurs in the absence of tone. In 
this case, projections from auditory thalamus to amygdala 
to midbrain periaqueductal gray are sufficient for learning1.  
However, as learning becomes more complex, memory and 
recall depend on interactions between the cortex and hippoc-
ampus and through those interactions these structures modulate 
the subcortical circuits that support simple learning. Healthy 
behavior depends on these interactions and abnormal structure  
and function in these regions are associated with a variety 
of neuropathology and psychopathology, including anxiety  
disorders, schizophrenia, and Alzheimer’s dementia2–4. Although 
the roles of both the hippocampus and frontal cortex in regu-
lating complex behavior have been studied extensively, much 
has been learned recently about how the interactions between  
these regions impact learning and memory-related functions.

When are hippocampal–cortical interactions 
necessary for memory?
Traditionally, the relationship between brain structures and forms 
of memory has been conceptualized under a multiple memory 
systems taxonomy, in which specific structures are linked to 
specific classes of learned behavior5. In this taxonomy, the  
hippocampus is associated with episodic memory, the striatum 
with skill learning, the neocortex with perceptual learning, and  
the amygdala with emotional memory. Although this  
taxonomy has been a major impetus to memory research and 
spurred considerable advancement in our understanding of 
learning, it fosters the idea that there is a simple one-to-one  
correspondence between a single structure and a type of 
memory and that these separate systems act in an orthogonal  
manner6. Such a view fails to capture the fact that even mod-
estly complex memory emerges from a network of interactions  
between these structures.

Complex versus simple stimuli
Above we described fear conditioning, in which a tone per-
fectly predicts shock, as an example of simple learning that can 
be carried out by a subcortical circuit. However, when experi-
encing fear conditioning, the subject simultaneously learns that 
the context or place where this learning occurs is also associated  
with shock, enabling that context to trigger fear and avoid-
ance7. Contexts are complex stimuli made of many features, 
all of which may lack the salience of the sudden onset of a  
simple auditory stimulus such as a tone8. The context is 
also less precisely paired with the stimulus that reinforces  
learning (in this case, the shock). This modest increase in com-
plexity cannot be handled by the simple subcortical circuit  
and instead requires an orchestrated dance between hippocampus, 
prefrontal cortex, and amygdala9.

Consistent with their role in spatial memory, dorsal hippocam-
pal neurons appear to encode the details of the context support-
ing recognition of the trained environment. Two groups of rats 
were placed in a novel chamber for 5 min where they received 
shock. One group received the shock in a manner that promoted 
fear learning (at the end of the session) and the other in a  
manner that did not promote fear learning (at the beginning of 
the session). When these rats were returned to the same cham-
ber neurons that were active during the initial exposure tended 
to reactivate during the second exposure indicating that the  
hippocampus recognized the chamber as familiar. Interest-
ingly, the same number of neurons reactivated in both groups 
even though they showed large differences in fear expression, 
suggesting that hippocampus is not essential for the coding of 
affective features of the context9. On the other hand, basolateral  
amygdala neurons reactivate only if the animal has learned 
fear of the context, indicating that the amygdala is involved  
in the affective component of memory.

These two sources of information appear to come together 
in the prelimbic portion of the prefrontal cortex as activ-
ity in that region reflects a sum of that found in hippocampus 
and amygdala9. In support of this, coordinated 4-Hz rhythmic 
activity between the prelimbic and amygdala regions accu-
rately predicts freezing, a behavioral manifestation of fear10.  
Coordinated oscillatory activity between hippocampus and pre-
limbic regions may be the method by which the hippocampus  
provides spatial information to the prelimbic cortex11.

The dynamics between the hippocampus, cortex, and amy-
gdala depend on the length of memory retention7,12. Shortly 
after learning, the memory is dependent on the hippocam-
pus and there is more hippocampal activity during memory  
retrieval13. However, at later time points (weeks to months), the 
prefrontal cortex takes on the larger role. A recent study indi-
cated that the development of this prefrontal representation of 
contextual memory is dependent on inputs from the entorhi-
nal cortex, hippocampus, and basolateral amygdala during  
learning14. The changes that occur over these long time periods  
are referred to as systems consolidation.

This coordination of regions during systems consolidation may 
occur off-line during the replay of events that occurs during 
sleep15. The integration of spatial information with emotional 
memory may also occur during non-REM sleep when there is a  
coordinated replay of the amygdala and hippocampal activity  
that occurred during learning16.

Interestingly, the prefrontal cortex can compensate for loss 
of hippocampal function to a certain degree, but the resulting 
memories differ from those formed using an intact hippocam-
pus. Following damage to the dorsal hippocampus, contextual 
fear memories can be formed after extensive training but these 
memories lack the permanence of those formed using an intact  
hippocampus17,18. This compensation depends on communication 
between the infralimbic and prelimbic regions of the prefrontal 
cortex. Damage to and disconnection between these two  
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adjacent prefrontal regions abolish contextual fear learning  
entirely when combined with dorsal hippocampal damage18.

Certain versus uncertain predictors
While learning that an auditory stimulus consistently signals 
shock can be accomplished by a subcortical circuit, this changes 
when the relationship between the tone and shock becomes 
ambiguous. The simplest and most translationally relevant exam-
ple of this is fear extinction, in which a stimulus that previously 
received consistent reinforcement is now presented without 
reinforcement. Because of this inconsistent reinforcement, the  
animal treats the tone as ambiguous and uses context to resolve 
the decision of whether or not to respond19. This decision also 
relies on interactions between hippocampus, prefrontal cor-
tex, and amygdala. When communication between the ventral  
hippocampus and prelimbic cortex or between the ventral hippoc-
ampus and amygdala is prevented, the subject treats the tone as  
safe regardless of context20,21. If these connections are intact 
but communication between the hippocampus and infralimbic 
cortex or between the amygdala and infralimbic cortex is pre-
vented, the animal treats the tone as consistently dangerous22,23.  
Additionally, infralimbic lesions lead to greater generalization 
between two contexts and simultaneously reduce the context’s 
ability to modulate responses to an extinguished stimulus18.  
Recent evidence suggests that the hippocampus may help solve 
the problem by encoding two distinct contextual memories 
of the same context: one where the tone is dangerous and one 
where it is safe24. This may allow the rapid switching that rats  
can accomplish between reacting to the tone as dangerous or  
safe on the basis of the current context25.

Such a role for the prefrontal cortex in resolving ambiguity has 
also been shown in contextual biconditional discrimination pro-
cedures, which require subjects to use contextual information to 
resolve the meaning of ambiguous stimuli. In these procedures, 

two different stimuli are presented in two different contexts; 
one stimulus is predictive of an outcome in one context whereas 
the second stimulus is predictive of that outcome in the second  
context26–28. Lesions of the prelimbic cortex impair the ability 
of subjects to use contextual stimuli to determine which of 
two auditory stimuli predicts footshock, instead producing  
an intermediate level of fear to both stimuli28.

Conclusions
Learning is often conceptualized as occurring in distinct and 
independently acting brain regions. However, to navigate a com-
plex and ever-changing environment, animals must be able to 
learn about complex stimuli and complex relationships between 
stimuli. In these instances, mammals use environmental cues 
to resolve the meaning of ambiguous stimuli. Rather than  
being dependent on any one brain region, this ability arises from 
a network of cortical and subcortical structures and their inter-
actions. Here, we focused on Pavlovian conditioning because 
it is often thought of as a simple form of learning. However, 
introducing even slight complexities in this learning, such  
as those that occur when contexts are used as stimuli or  
following the change in meaning that occurs during extinction,  
recruits and requires long-range interactions between 
regions that are often thought to serve distinct domains of  
memory.
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