
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Constraining ACT-R Models of Decision Strategies: An Experimental Paradigm

Permalink
https://escholarship.org/uc/item/5027x4cf

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 35(35)

ISSN
1069-7977

Authors
Dimov, Cvetomir
Marewski, Julian
Schooler, Lael

Publication Date
2013
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5027x4cf
https://escholarship.org
http://www.cdlib.org/


Constraining ACT-R Models of Decision Strategies: An Experimental Paradigm  
 

Cvetomir M. Dimov (cvetomir.dimov@unil.ch) and Julian N. Marewski (julian.marewski@unil.ch) 
Department of Organizational Behavior, Université de Lausanne, 

Quartier UNIL-Dorigny, Bâtiment Internef, 1015 Lausanne, Switzerland  
 

Lael J. Schooler (schooler@mpib-berlin.mpg.de) 
Max Planck Institute for Human Development, Lentzeallee 94 

14195 Berlin, Germany 

 

 

Abstract 

It has been repeatedly debated which strategies people rely on 
in inference. These debates have been difficult to resolve, 
partially because hypotheses about the decision processes 
assumed by these strategies have typically been formulated 
qualitatively, making it hard to test precise quantitative 
predictions about response times and other behavioral data. 
One way to increase the precision of strategies is to 
implement them in cognitive architectures such as ACT-R. 
Often, however, a given strategy can be implemented in 
several ways, with each implementation yielding different 
behavioral predictions. We present and report a study with an 
experimental paradigm that can help to identify the correct 
implementations of classic compensatory and non-
compensatory strategies such as the take-the-best and tallying 
heuristics, and the weighted-linear model.   

Keywords:  Take-the-best, tallying, weighted-linear model, 
process models, ACT-R 

Introduction 

One important characteristic of well-developed scientific 

theories is precision. In psychology, theoretical precision 

can be achieved by complementing verbally formulated 

theories with formal models. Typically, formal models are 

specified in terms of mathematical equations or computer 

code. The goals, level of detail, and level of description of 

such models vary as a function of the psychological 

subdiscipline, research questions being asked, or the 

available technology, to name only a few factors. 

Computational models have become both increasingly 

popular and powerful, and have aided cognitive scientists in 

their endeavor to shed light into the behaviorist’s black box. 

Computer models allow one to specify, on an algorithmic 

level, the cognitive processes psychological mechanisms are 

assumed to draw on. 

    Such process models predict not only what decision a 

person will make, but also how the information used to 

make the decision will be processed. The predictions made 

by these models can thus be tested not only on outcome data 

(e.g., what item is chosen) but also on process data, 

including on patterns of information search, response times, 

or neural activation. Such predictions can eventually 

differentiate among competing theories that make identical 

outcome predictions. In particular in the cognitive and 

decision sciences, describing cognitive processes represents 

a central goal of theorizing on its own. In fact, the past 

decades have seen repeated calls to develop process models. 

Yet, surprisingly there are relatively few theories of 

decision making that yield detailed quantitative predictions 

about process data. Instead, typically qualitative predictions 

about response times and other process data are tested in 

experiments. This theoretical and methodological weakness 

contributes to fuelling important scholarly debates about 

which decisional processes describe behavior best: simple 

non-compensatory ones, for which decisions based on some 

predictors cannot be overturned by others, or complex 

compensatory integration processes, for which various 

predictors can neutralize each-other’s influence (cf. Bröder 

& Schiffer, 2003; Glöckner & Betsch, 2008; Marewski et 

al., 2010). 

One way to increase the precision of theories of decision 

making is to implement them in detailed cognitive 

architectures such as the ACT-R theory of cognition (e.g., 

Anderson, 2007).  ACT-R is a quantitative framework that 

applies to a broad array of behaviors and tasks, formally 

integrating theories of memory, perception, action, and 

other aspects of cognition. ACT-R also allows modeling 

decision processes. When models of decision making are 

implemented in ACT-R, quantitative predictions about 

response time distributions at the millisecond level and 

other process data can be made and compared to 

experimental studies. Marewski and Mehlhorn (2011), for 

instance, implemented several compensatory and non-

compensatory decision strategies in ACT-R. In doing so, 

they modeled for each of the strategies how decisional 

processes interplay with memory, perceptual, and motor 

processes, which, in turn, allowed them to quantitatively 

predict the response time distributions associated with using 

each strategy in a simple two-alternative forced choice 

decision task. 

While the architectural approach can thus help remedying 

the aforementioned theoretical and methodological 

weakness, this approach does not come without its 

complications. Specifically, often a given strategy can be 

implemented in numerous different ways in ACT-R (or 

other cognitive architectures), with each implementation 

yielding different response time and other process 

predictions. Part of the problem is that many decision 

strategies are—in the worst case—only formulated verbally 

or—in the best case—specified mathematically or 

algorithmically, without spelling out the strategies’ 

assumptions about lower-level cognitive processes. This 

specification problem (see Lewandowsky, 1993), namely 
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how to translate an underspecified theory or strategy into a 

detailed cognitive model, poses a paramount modeling 

challenge to the researcher who sets out to find out which 

implementation is the most adequate one. To illustrate this 

point, Marewski and Mehlhorn (2011) actually ended up 

implementing over thirty ACT-R models of similar decision 

strategies without being able to make strong conclusions 

about which model most likely represented the correct one.  

In this paper, we present and report a study with an 

experimental paradigm that can help to build and identify 

the correct implementations of decision strategies. In what 

we call the train-to-constrain-paradigm, participants are 

instructed in a detailed step-by-step procedure how to apply 

specific strategies in a decision task. Since the experimenter 

thus knows which strategies participants have relied on in 

the experiment, the resulting response times lend themselves 

to constraining ACT-R implementations of these strategies. 

Specifically, as an initial step, here we focus on a variant of 

that paradigm in which participants are instructed to apply 

three classic compensatory and non-compensatory 

strategies, namely the take-the-best (henceforth: TTB) and 

tallying heuristics, and the weighted-linear model 

(henceforth: WLM). 

The remainder of this paper is structured as follows. First, 

we will explain in more detail the three decision strategies. 

Second, we will present the train-to-constrain-paradigm and, 

in doing so, report a study that we ran using that paradigm. 

Third, we will report the results of this study, and, fourth, 

briefly illustrate how these results can be used to build and 

constrain ACT-R implementations of the three strategies. 

Decision Strategies  

Tallying and WLM have been formulated in different ways 

(and at times also been given different names); here we use 

Gigerenzer and Goldstein’s (1996) definitions as well as 

their TTB heuristic. Gigerenzer and Goldstein specified 

these strategies as models of inductive inference about 

unknown quantities or future events in simple two-

alternative forced choice tasks. In such tasks, a person has to 

infer which of two alternatives (e.g., cities) has a larger 

value on a given criterion (e.g., population). One variant of 

this task that has received considerable attention during the 

past years is the memory-based decision task illustrated in 

Figure 1. In this task, a person has to make inferences by 

relying exclusively on the contents of their memory. The 

experimental paradigm for identifying correct ACT-R 

implementations of TTB, tallying, and the WLM that we 

propose here extends this memory-based task.   

 

Take-the-best. The simple TTB heuristic stands in the 

tradition of Tversky’s (1972) classic elimination by aspects 

model. TTB bases inferences on the attributes of the 

alternatives (e.g., whether a city has an airport), which it 

uses as cues. A cue can have a positive (e.g., a city has an 

airport, coded as “1”), negative (has no airport, coded as “-

1”), or an unknown (coded as “0”) value. The vector of cue 

values that define a person’s knowledge about a specific 

alternative is called the alternative’s cue profile. TTB bases 

inferences on just one good cue. Specifically, TTB orders 

the cues i unconditionally according to their validity vi, with 

             , ci being the number of correct inferences 

based on cue i given that it discriminates between two 

alternatives (i.e., cue values are 1 & 0, respectively, or 1 & -

1, respectively), and wi the number of incorrect inferences. 

TTB’s rules for searching cues, stopping search, and making 

a decision can be summarized as follows: 

Search: Search through cues in the order of their validity. 

Stopping: Stop as soon as a cue is found that 

discriminates between the alternatives. 

Decision: Infer that the alternative with the positive cue 

value has the higher value on the criterion of interest.  

As can be seen, TTB is a non-compensatory strategy, which 

uses solely the first discriminating cue. Translated into a 

process prediction this implies, for example, that the time it 

takes to make decisions with TTB should depend on how 

many cues have been considered before a discriminating cue 

is found.   

 
 

Figure 1: Illustration of the memory-based decision task 

 

Tallying. In contrast to TTB and other non-compensatory 

strategies, many decision models posit that people evaluate 

alternatives by integrating knowledge about multiple cues. 

One such heuristic is tallying. This representative of classic 

unit-weight linear integration models (e.g., Dawes, 1979) 

simplifies decisions by treating all cues equally. For each 

alternative, tallying simply counts the cues with positive 

values and infers that alternatives with the larger number of 

positive cue values score higher on the criterion of interest. 

As a consequence, the various cues can neutralize each 

other’s influence on the final decision, thus making tallying 

a compensatory model. Tallying’s search, stopping, and 

decision rules read as follows: 

Search: Search through cues in any order. 

Stopping: Stop search after m out of a total of M cues 

(with 1 < m < M) have been accessed.  

Decision: Decide for the alternative that is favored by 

more positive cue values. If the number of positive cue 

values is the same for both alternatives, guess. 

 

Weighted-linear model. The WLM is similar to tallying in 

that it integrates all the information available when choosing 

an alternative. In the WLM, cue values are coded like in 

TTB. As suggested by its name however, it integrates all 

cue information by multiplying the cue values by their 

validities and summing them over for each city, thus 
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computing the weighted sum of the cues for each city. The 

WLM’s rules can be summarized as follows: 

Search: Search through cues in any order. 

Stopping: Stop search after m out of a total of M cues 

(with 1 < m < M) have been accessed. Multiply each cue 

value with its validity and compute the weighted sum of 

cues for each alternative. 

Decision: Decide for the alternative that is favored by the 

larger weighted sum. If the weighted sum is the same for 

both alternatives, guess. 

The WLM has a long tradition in the cognitive and decision 

sciences and beyond. For instance, variants of this model 

have been viewed as optimal rules for preferential choice 

and are often considered to define rational behavior (cf. 

Payne, Bettman, & Johnson, 1993).   

Experimental Paradigm 

The train-to-constrain-paradigm builds on several earlier 

studies on TTB, tallying, and the WLM (e.g., Bröder & 

Gaissmaier, 2007; Bröder & Schiffer, 2003; Mata, Schooler 

& Rieskamp, 2007) and on approaches that teach subjects to 

rely on specific decision strategies (e.g., Khader et al., 2011; 

Marewski & Schooler, 2011).  

 In our study, we implemented the training portion of our 

paradigm in a computerized experiment, in which subjects 

were told that they would participate in a quiz show. In that 

show, they first learned fictitious facts about how British 

cities would look like in the future, namely whether these 

cities would have an international airport, a train station, a 

university, and/or a premier league soccer team in the year 

2100 (such facts are typically judged as useful for inferring 

city size; cf. Pachur, Bröder, & Marewski, 2008). In a 

second step, subjects learned how to employ a strategy that 

uses these facts as cues to make decisions. During the actual 

quiz show, they then saw pairs of cities on the computer 

screen and were instructed to always use the strategy to 

infer which of the two cities would be larger in the year 

2100. Subjects were paid according to the degree to which 

their decisions agreed with predictions of the respective 

decision strategy.  

 

Subjects and design. A total of 141 subjects participated in 

the experiment (89 male, Mage = 25.3), of which 120 

finished it successfully. Subjects were randomly assigned to 

one of three between-subjects conditions. The conditions 

differed in terms of the strategy participants learned to use. 

In the first condition subjects learned TTB, in the other two 

conditions they learned tallying and the WLM, respectively. 

 

Materials. Sixteen well-known British cities were used as 

alternatives. These cities correspond to those that most 

subjects in Pachur et al.’s (2008) pre-study 1 recognized. A 

pre-study suggested that subjects’ familiarity with these 

cities’ names aids them to learn a large number of facts 

about these cities. Since the degree of familiarity was 

roughly the same for all cities in both Pachur et al.’s pre-

studies, no interference effects of familiarity were expected, 

and, indeed, also none found. These 16 cities were 

combined with 8 cue profiles, illustrated in Table 1. In 

doing so, each of the 8 cue profiles was used twice—albeit 

with different city names.  

 

Table 1: Cue profiles used 

 

 

Learning task. The experiment started with a learning task 

(cf. Bröder & Schiffer, 2003), in which subjects were taught 

the 4 cues about the 16 British cities, corresponding to a 

total of         facts.  Specifically, during learning, 

cities and cues were presented repeatedly in a random order 

until subjects correctly recalled at least 14 of the 16 cities’ 

cue profiles perfectly. Cue profiles were assigned at random 

to specific cities. 

 

Strategy learning task. After having learned all cues, in 

each of the three between-subjects conditions, subjects were 

trained how to use one of three decision strategies. The 

strategy learning procedure required subjects to go through 

a stepwise explanation of the decision process assumed by 

each strategy as well as to apply that strategy correctly on 

several practice trials that mimic the actual decision task. 

During practice, subjects received feedback about whether 

they had applied the strategy correctly, and the strategy was 

practiced until subjects’ decisions concurred to 100% with 

the strategy’s predictions. During the strategy learning task, 

subjects also memorized additional information that is 

necessary for applying the strategy, such as the cue 

validities in the case of TTB and WLM. The instructions on 

how to use each strategy were crafted such that they reflect 

the strategy descriptions from the literature. 

 

Repetition of learning task. To make sure participants still 

remembered the 64 facts correctly, one round of the learning 

task was repeated upon completion of the strategy learning 

task.  

 

Decision task. In a decision task, 72 pairs of the previously 

learned British cities were presented (one city on the left 

side of the computer screen, the other one on the right; see 

Figure 1). To avoid inducing frequency effects, the pairs 

were constructed such that each city name appears equally 

often. Subjects were instructed to always apply the strategy 

to decide which of the cities will be larger in the year 2100. 

For each correct application of the strategy, subjects 

received a bonus payment of 0.5 Euros (0.68 US$). Each 

decision inconsistent with the strategy’s prediction resulted 

in a penalty of 0.5 Euros (no feedback was given).  

 

 City1 City2 City3 City4 City5 City6 City7 City8 

Airport + + - - + + - - 

Soccer team - - - - - - + + 

University - - + + + + + + 

Train station + - + - + - + - 
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Cue-memory task. In a cue-memory task, subjects had to 

reproduce the cue values they learned for the cities. The 

purpose of this task was to collect data about how well 

subjects remembered the cue values they were taught. This 

data will be used in future projects to populate the 

declarative memory of the ACT-R models.   

Experimental Results 

Figure 2 shows the mean of the 25
th

, 50
th

 and 75
th

 response 

time percentiles for the three experimental conditions as a 

function of the number of cues that have to be retrieved 

from memory prior to finding the most valid discriminating 

one (henceforth: most valid discriminating cue). Several 

important observations can be made. First, tallying 

participants made the fastest decisions. Their response time 

varied from under 3s for the 25
th

 percentile to almost 6s for 

the 75
th

 percentile. This is much faster than previous 

decision making experiments have reported. For example, 

Bröder and Gaissmaier (2007) reported mean response times 

between 6.5s and 8s in their first, and between 11s and 15s 

in their second experiment. It should be noted that those 

experiments did not instruct subjects to rely on specific 

strategies, but that instead used participants’ decisions to 

infer, post hoc, by means of strategy classification 

procedures which strategies subjects have used.  

    

 
 

Figure 2: Participants’ aggregate response time percentiles 

as a function of most valid discriminating cue. Error bars are 

standard errors of the mean computed across all participants 

in the respective experimental condition. 

 

     Second, the response times of TTB participants fall in the 

response time range of those reported in these previous 

experiments. However, this resulted in participants in the 

TTB condition being slower than tallying participants, 

which also is a finding that stands in contrast to previous 

studies, in which post hoc strategy classification procedures 

were used (e.g., Bröder & Gaismaier, 2007).  

    Third, WLM participants are the slowest, which is a result 

that is consistent with Bröder and Gaissmaier’s (2007) 

earlier studies.  Bröder and Gaissmaier reported mean 

response times between 10s and 11s in their first and 

between 15s and 23s in their second experiment, which fall 

close to the time range of our participants. 

 Fourth, as can be seen in Figure 2a, TTB participants’ 

response times increase as a function of most valid 

discriminating cue. In contrast, Figures 2b and 2c show that 

for tallying and the WLM the response times do not exhibit 

such an increase when they are analyzed in the same way as 

for TTB participants. This result is to a large extent 

consistent with earlier work: in Bröder and Gaissmaier’s 

(2007) experiments, participants who were inferred to have 

relied on TTB exhibited strong increases in mean response 

times as a function of the most valid discriminating cue, 

while those who were classified as likely users of tallying or 

the WLM did not exhibit increases that were as strong.  

Implementing Strategies in ACT-R  

In the constraining portion of our paradigm, the observed 

response times will be used to build and constrain ACT-R 

implementations of the three decision strategies. 

Specifically, each individual participant’s responses in the 

memory task can be used to model the contents of that 

subject’s declarative memory after having gone through the 

training phase. These declarative memory contents can then 

be used to model the retrieval processes associated with 

using each of the three decision strategies (cf. Marewski & 

Mehlhorn 2011, for this approach). Together with 

perceptual, motor, and other cognitive processes—all of 

which can be modeled in ACT-R—these retrieval processes 

will contribute to the response times predicted by the 

corresponding ACT-R models of the decision task.  

Overview of ACT-R 

ACT-R describes cognition as a set of modules that interact 

through a production system. The production system 

consists of production rules (i.e., if-then rules) whose 

conditions (i.e., the “if” parts) are matched against the 

contents of the modules. If a rule’s conditions are met, then 

the production rule can fire and the specified action is 

carried out. Each module implements different cognitive 

processes. The declarative module, for instance, enables 

information storage in and retrieval from memory, the 

intentional module keeps track of a person’s goals, while the 

imaginal module holds information necessary to perform the 

current task. A visual module for visual perception and a 

manual module for motor actions (e.g., typing on a 

keyboard) simulate interactions with the world. In 

coordinating the modules, the production rules can only act 

on information that is available in buffers, which can be 

thought of as processing bottlenecks, linking the modules’ 

contents to the production rules. For instance, the 

production rules cannot access all contents of the declarative 

module, but only these that are currently available in the 

retrieval buffer. ACT-R distinguishes between a symbolic 
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and a subsymbolic system. The symbolic system is 

composed of the productions rules as well as of the modules 

and buffers. Access to the information stored in the modules 

and buffers is determined by the subsymbolic system. This 

system is cast as a set of equations and determines, for 

instance, the timing of memory retrieval.   

 

 
 

Figure 4: ACT-R predictions of response time percentiles 

of a tallying and weighted-linear model implementation. 

Error bars are standard errors of the mean, computed across 

30 simulation runs of the ACT-R model. 

 

Illustrating our ACT-R models 

Figures 4a, 4b and 4c present our preliminary ACT-R 

models, developed prior to running the experiment as a 

source of rough predictions of participants’ eventual 

behavior. All of these three models are, perhaps, the most 

naïve implementations which follow the above mentioned 

strategy definitions and experimental instructions. In 

developing these models, no parameters were fitted, but 

those from Marewski and Mehlhorn (2011) were used.  

All models perform the same task as our experimental 

subjects: The models “read” two city names off a computer 

screen, process them, decide for one of them, and enter a 

response by “pressing” a key. To illustrate this, Figure 3 

shows the first and last seconds of an 18-seconds-long 

processing stream of our preliminary ACT-R 

implementation of the WLM. The various decisional, 

memorial, perceptual and motor processes assumed by the 

model are coordinated by production rules. 

  Specifically, by first “reading” the names of both cities, 

the model tries to retrieve a memory trace of the city names 

called a chunk. Chunks are facts like “York is a city” or  

“York has an airport” which model people’s familiarity with 

city names and their cue knowledge about these cities, 

respectively. For each cue, the model retrieves its validity. If 

the cue value is positive, the model adds the validity of this 

cue to the weighted sum of the city, initiating a summation 

procedure. If the cue value is negative, the model subtracts 

the validity of the corresponding cue from the weighted sum 

of that city, initiating a subtraction procedure. Finally, the 

model compares the total weighted sums of the two cities 

and chooses the one with the larger total weighted sum by 

pressing a key. As Figure 4c shows, the predicted response 

time percentiles of 30 simulation runs of this WLM ACT-R 

implementation lie close to the 75
th

 percentile range 

observed in participants’ data (Figure 2c), suggesting that 

this implementation is not an implausible model, but also 

that other processes which boost participants’ response 

times, such as memorizing the weighted sum, are present in 

participants. Our preliminary tallying model (Figure 2b) 

predicts response times within experimental data, while the 

TTB model (Figure 2a) is faster. These three models have to 

be adapted to successfully capture participants’ behavior, a 

more successful example of which is the tallying model 

presented on Figure 4d, which was built after the 

experiment. While the former tallying model did not include 

Figure 3: Processing stream of the weighted-linear model for the first and last seconds of the decision process. Production 

rules on the right hand side are stylized representations of the actual ACT-R productions for this model. Note that the 

model’s decision time predictions can vary across different decision trials, for instance, as a function of perceptual and 

motor processes, or cue activation. Also note that the same production rules fire more than once during the process. 
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memorization of the number of positive cue values of 

already seen cities, the latter model did, which produced a 

response time distribution close to participants’ response 

times. Exact modeling of each participant’s cue knowledge 

is the next modeling step to be made. Naturally, after 

identifying the most promising implementations of all 

strategies, all models would then have to be tested in new 

experiments, this way ensuring that they can also account 

for behavior in tasks for which they were not developed.  

Discussion and Conclusion 

While it goes beyond the scope of this short proceedings 

paper to present more ACT-R implementations—that is part 

of a larger research paper—one legitimate question one may 

raise is what the methodological advantages of our approach 

over earlier experimental work is. As mentioned above, in 

earlier studies including Marewski and Mehlhorn’s (2011) 

ACT-R modeling efforts and Bröder and Gaissmaier’s 

(2007) response time analyses for TTB and other heuristics, 

participants’ decisions had to be used to infer, post hoc, by 

means of strategy-classification and/or other model 

selection procedures which strategies participants relied 

upon in an experiment. As a result, the conclusions that 

could be drawn from analyses of response times crucially 

hinged on the accuracy of the strategy classification and/or 

model selection procedure. Our train-to-constrain approach, 

in contrast, allows identifying the response time patterns 

associated with a strategy without the need to use potentially 

inaccurate strategy classification. To illustrate this point, the 

deviations observed between Bröder and Gaissmaier’s and 

our findings could, besides being a product of differences in 

the stimuli and materials used, also be a result from the 

strategy classification method used by these authors. More 

studies with our paradigm, including experiments that make 

use of Bröder and Gaissmaier’s stimuli and materials, are 

warranted to decide between these and other competing 

explanations.  

To conclude, response times such as the ones observed in 

our experimental paradigm can be used to find out which 

ACT-R implementation best mirrors classic decision 

strategies used by trained subjects. Once identified, these 

implementations can, hopefully, be used to model behavior 

both in previously published studies as well as in new 

studies in which subjects’ decision strategies are 

unconstrained by training. 
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