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ABSTRACT OF THE THESIS 

 

 

 

Development of a Risk Prediction Model for In-Hospital Cardiac Arrests 

Using Continuous Electrocardiographic Telemetry Monitoring Data 

 

by 

 

 

Duc Hong Do 

 

Master of Science in Clinical Research 

University of California, Los Angeles, 2018 

Professor Zhilin Qu, Chair 

 

 

Background: Many electrocardiographic (ECG) changes occur before in-hospital cardiac arrest (ICHA) 

due to pulseless electrical activity (PEA)/asystole. It is not known if these are unique to this period. 

 

Objective: Evaluate whether ECG changes provide predictive information for IHCA from PEA/asystole. 

 

Methods: We collected continuous ECG data from case and control patients. We selected three 

consecutive 3-hour blocks (block 3, 2, 1 in that order) preceding IHCA in cases and randomly in controls; 

only case block 1 immediately preceded IHCA. In each block, we measured dominant positive and 

negative trends in ECG parameters and determined the presence of arrhythmias. We also compared 

features between consecutive blocks. We created one random forest and two logistic regression models, 

and tested them on differentiating case vs. control patients (case block 1 vs. control block 1), and 

temporal relationship to ICHA (case block 1 vs. case block 2).  
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Results: We evaluated 77 cases (age 62.5±17.3, 57% male) and 1783 control patients (age 63.5±14.8, 

67% male). We found many significant differences in ECG trends between case and control block 1, 

particularly in QRS duration, QTc, RR, and ST. New episodes of atrial fibrillation and bradyarrhythmias 

were more common before ICHA. The optimal model developed using only ECG changes was the 

random forest, achieving an AUC of 0.810, 57.9% sensitivity, 95.7% specificity at differentiating case vs. 

control, and AUC 0.942, 88.3% sensitivity, 90.1% specificity at differentiating case block 1 vs. block 2.  

 

Conclusions: ECG parameters during the 3-hour window immediately preceding ICHA differ 

significantly from other time periods, and provides very good predictive information for IHCA.  
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INTRODUCTION 

In-hospital cardiac arrests (IHCA) remain a major health care problem, affecting over 250,000 patients in 

the United States annually, with fewer than 30% of these patients surviving to discharge. Over the past 

decade, there has been considerable interest in early intervention, giving rise to hospital rapid response 

teams and attempts at developing early warning systems. Despite widespread interest in and 

implementation of these systems, well-designed studies have failed to show a significant benefit(1-4).  

The use of threshold cutoffs(5), derived from population-based studies, to generate risk scores for IHCA 

does not account for individual patient level variations. In addition, for patients on medical-surgical 

floors, vital signs and labs, which form the backbone of many such systems, are only obtained every 4-24 

hours. This approach has little ability to detect rapid patient deterioration(6). On the other hand, 

electrocardiographic (ECG)/telemetry data is continuously acquired in many patients in intensive care 

units (ICU), stepdown units, and some medical-surgical floors. ECG parameters reflect many physiologic 

changes due to stressors; many intra-patient ECG changes including PR and QRS prolongation, ST 

changes, and bradyarrhythmias are seen in the 24 hours and particularly the one hour period before 

IHCA(7-9). However, it remains unknown whether these findings are sufficiently specific to the pre-

IHCA period to be useful features for cardiac arrest prediction. 

In this study, we evaluate whether the measurement of trends in ECG parameters, particularly in 

comparison to a patient’s baseline physiologic variations, and detection of new arrhythmias provides 

predictive information for IHCA from pulseless electrical activity (PEA) or asystole. 
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MATERIAL AND METHODS 

We conducted a retrospective case-control study at the University of California, Los Angeles (UCLA) 

Ronald Reagan Medical Center, a 520-bed tertiary care hospital. Telemetry data was obtained by General 

Electric (GE) monitoring systems (GE Healthcare, Waukesha, WI), and pooled on a remote data server 

via Bedmaster (Excel Medical Electronics, Jupiter, FL). Signals were sampled at 240 Hz with 12-bit 

representation. Continuous electrocardiographic data was obtained using a standard 5 electrode 

configuration providing 4 ECG leads (I, II, III and precordial lead usually in the V2 position). A total of 

200 beds, including all 130 adult intensive care unit (ICU) beds, and 70 randomly selected medical–

surgical unit beds were monitored with the Bedmaster system at any one time. This study received 

approval from the institutional review board at UCLA. 

We evaluated all ‘code blues’ between April 2010 and March 2013, and included IHCA cases due to PEA 

or asystole in patients age ≥18 years, with telemetry data available for at least 6 consecutive hours prior to 

and including the onset of IHCA. We excluded cases where cardiac arrest (defined as lack of central 

pulse, apnea, and unresponsiveness) was not the primary reason for the code blue, patients with a do-not-

resuscitate order, primarily ventricular-paced rhythm, out-of-hospital cardiac arrest leading to current 

admission, IHCA in a procedural unit or operating room, and IHCA within the first 24 hours of a trauma 

admission. Only the first IHCA in any patient during a hospitalization was included. The time of cardiac 

arrest was determined by review of ECG data and marked at onset of asystole or initiation of chest 

compressions as visualized by chest compression artifact in cases of PEA. For each case, we extracted 

telemetry data for up to 24 hours prior to IHCA.  

Control patients were selected at random from the same units where code blue patients (not specifically 

patients who met all inclusion/exclusion criteria) were located at the time of IHCA and temporally spread 

across the study period. Criteria for selecting control patients included survival to discharge, no 

unplanned ICU transfers or code blues during the admission. Case patients who had another admission 



 

3 

 

which met those criteria were excluded as controls. For each control patient, we extracted the first 24 

hours of telemetry data available, since this was likely to be the period of greatest instability. 

Telemetry Data Processing 

Telemetry data was processed using a research ECG analysis program written by coauthor DM to obtain: 

1) a minute-by-minute time series of ECG parameters (PR interval, QRS duration, averaged QRS 

amplitude, ST segment height in lead II and V2, QTc, and RR) derived from a 5-minute signal-averaged 

beat obtained in a rolling window fashion, and 2) a time series of all consecutive RR intervals (Figure 1).  

The averaged beat-derived time series was processed with a series of filters to reduce noise and remove 

non-physiologic data from supraventricular arrhythmias or pacing. The RR time series, following removal 

of data points affected by excessive signal artifact, was processed to identify periods of atrial fibrillation 

(AF), second degree heart block (2° HB), and pauses greater than 3 seconds, using modifications of 

methods described by Lian et al(10) and Tsipouras et al(11) (see Supplemental Data for further details).   

Selection of Data Blocks 

Three consecutive 3-hour blocks (blocks 3, 2, 1 in that order) were selected for further analysis: in case 

patients these blocks immediately preceded IHCA while in control patients, these were selected at random 

within the extracted data. Hence, block 1 in cases is the only IHCA block (Figure 2).  

Data for each ECG parameter in each block was evaluated for adequacy of information (minimum 120 

data points available, out of a possible 180). If the minimum number of points was not available, the 

block for that ECG parameter was excluded from analysis. We found that PR interval blocks were the 

most commonly excluded parameter due to AF or excessive baseline artifact. 

Trend Determination 
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For the averaged beat data, in each block of data, we determined the dominant positive and negative trend 

for each ECG parameter (Figure 3, Supplemental Methods). All time series processing was performed 

using Matlab 2017b (Mathworks, Natick, MA).  

Statistical Analysis 

The following features, all continuous variables, were calculated from the averaged beat data for each 

ECG parameter in each block: 

1. Change in dominant positive and negative trends in block n (Δyn
+, Δyn

-). This was calculated by 

subtracting the maximal and minimal value for the trend.  

2. Slope of the dominant positive and negative trends (Δyn
+/Δxn

+, Δyn
-/Δxn

-). This was calculated by 

dividing the change over the duration.  

3. Difference in dominant positive and negative trend change and slope between a patient’s block n 

and immediately preceding block (n-1). Four values were calculated: difference in dominant 1) 

positive change (Δyn-(n-1)
+), 2) negative change (Δyn-(n-1)

-), 3) positive slope (Δyn
+/Δxn

+- Δy(n-

1)
+/Δx(n-1)

+), and 4) negative slope (Δyn
-/Δxn – Δy(n-1)

-/Δx(n-1)
-).   

Continuous variables were assessed for normality using the Shapiro-Wilks test. Comparisons between 

groups were performed using Wilcoxon rank-sum test given non-normality of many variables. For the 

presence of AF, 2° HB, and pauses, we calculated an indicator variable for the presence of those 

arrhythmias in block n, and a second for the presence of those arrhythmias in block n but not block (n-1).  

Next, we divided the case and control block 1 into a stratified 75% model development and 25% 

validation set. Using the development set, we performed univariate logistic regression analyses, and 

retained any variable with p<0.05 for use in multivariable model development. Missing values were 

imputed using multiple imputations. We created 3 models: logistic regression with backward stepwise 

regression, forward stepwise regression, and random forest with 10000 trees. We evaluated each model 
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on the validation set by using the area under the curve (AUC) and sensitivity for classifying a block as 

IHCA while maintaining a low false positive rate (FPR).  

We performed further testing of model robustness by first setting a classification threshold where FPR on 

the validation set was approximately 5% and evaluated the sensitivity and specificity on case block 1 vs. 

case block 2 (temporal differentiation of ICHA detection), validation case block 1 vs. control block 2, 

case block 2 vs. validation control block 1, case block 2 vs. control block 2.  

Univariate analyses were performed using JMP 13 (SAS Institute, Cary, NC). Multivariable analyses 

were performed using R v3.4.4(12,13). A two-sided p<0.05 was considered statistically significant. For 

univariate analyses, adjustment for multiple comparison testing was evaluated by calculating q-values to 

estimate the false discovery rate with q<0.05 considered significant(14).  
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RESULTS 

We identified 77 case (mean age 62.5±17.3, 57% male) and 1783 control patients (mean age 63.5±14.8, 

67% male). The primary causes of IHCA in the case patients were respiratory in 44 (57%), multiorgan 

failure in 13 (17%), and metabolic acidosis in 12 (16%). Sixty-eight (88%) of IHCA occurred in the ICU 

setting, 53 (69%) had ROSC, and 19 (25%) survived to discharge (Table 1).  

Univariate analysis 

All block 1 dominant trend changes and slopes were right skewed in their distribution. Intra-patient 

comparisons between block 1 and block 2 for each variable were normally distributed; in controls these 

distributions were centered near zero. On univariate analysis, we found 39/62 variables, both block 1 

measures and block1-block2 comparisons, that were significantly associated with IHCA, particularly 

those related to QRSd, QTc, RR, ST lead II, and ST lead V2 (Table 2, Supplemental Table 1). For these 

ECG parameters, increased change in both positive and negative directions were associated with IHCA.  

Any AF, 2° HB, or pauses in block 1 was found in 35% vs. 20% (OR 2.0, CI1.2-3.3), 38% vs. 18% (OR 

2.6, CI 1.6-4.2), and 32% vs 20% (OR 1.8, CI 1.1-2.9) of cases vs. controls, respectively. Having any AF, 

2° HB, or pauses in block 1 but not block 2 was found in 14% vs. 3% (OR 4.4, CI 2.2-8.8), 27% vs 3% 

(OR 3.8, CI 2.2-6.3), 23% vs 23% (OR 2.0, CI 1.2-3.5) of cases vs. controls, respectively (Table 2).  

Significant differences in 12/62 variables for case vs. control block 2 were found(Supplemental Table 2). 

After adjustment for multiple comparisons, all variables for block 1 with p<0.05 remained significant 

with q<0.05 compared to none for block 2. 

Multivariable analyses   

Both logistic regression models derived by backwards and forwards stepwise regression achieved similar 

AUC on the development set (0.770 vs 0.778) and validation set (0.841 vs 0.849) (Table 3, Figure 4). In 

both models, the presence of AF and 2° HB in block n but not block n-1, QRSd Δyn
+, QRSd Δyn

+/Δxn
+, 
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QTc Δyn
-, RR Δyn-(n-1)

+, and ST Lead V2 Δyn-(n-1)
- were significantly associated with the risk of IHCA 

(Supplemental Table 3). 

The random forest model achieved an AUC of 0.730 on the development set and 0.810 on the validation 

set. The 5 most important variables in this model were: RR Δyn-(n-1)
+, QTc Δyn

-, QTc Δyn-(n-1)
-, ST Lead V2 

Δyn-(n-1)
+, and QRSd Δyn

+ (Supplemental Figure 2).  

Evaluating the models based on sensitivity achieved with a low FPR, the random forest model performed 

best, achieving a sensitivity of 47.3%, 52.6%, and 57.9% with a FPR of 2.5%, 5%, and 10% respectively 

(Table 3). Using an optimal threshold determined by maintaining an approximately 5% FPR, the random 

forest model was the best at distinguishing block 1 from block 2 in cases (AUC 0.939, sensitivity 89.6%, 

specificity 90.1%). All models, as expected, performed poorly at differentiating case block 2 from either 

control block 1 or block 2 (Table 3).  
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DISCUSSION 

ECG “biomarkers” as predictors of adverse events or outcomes have long fascinated clinicians. Heart rate 

variability and microvolt T-wave alternans are prominent examples of ECG-derived features which have 

been associated with a variety of adverse outcomes in a diverse group of patients ranging from those with 

prior myocardial infarction to cardiomyopathy and even post-menopausal women(15-17). However, the 

actual impact of these measures remain poorly defined; the association is clear but there are no clear 

therapeutic targets or feedback for clinicians, leaving these primarily as research tools (18-20).  

A significant problem with most ECG “biomarkers” stems from their static nature as a snapshot in time, 

ignoring the inherent dynamic nature of even basic ECG parameters(21). While clinicians intuitively 

assess patient status by evaluating for changes from baseline, this approach has not been translated 

utilized in the development of ECG “biomarkers” for risk prediction, including those used for continuous 

ECG monitoring. While making rule-based (threshold-based) evaluations on single time-point data such 

as the 12-lead ECG is reasonable, studies have long shown the importance of comparison to prior ECGs 

to make important clinical diagnoses and management decisions(22-24). Hence, for ECG to be a useful 

risk prediction modality, models should reflect the dynamic nature of ECG and provide a closed feedback 

loop (Figure 5).  

In this study, we show that: 1) it is feasible to trend changes over time in clinically relevant ECG 

parameters and arrhythmias using continuous ECG monitoring data, 2) trends in ECG parameters and 

arrhythmias differ significantly in the 3-hour window pre-IHCA as compared to controls and prior 3-hour 

windows in case patients, and 3) this information can be leveraged in predictive models for IHCA due to 

PEA or asystole. To our knowledge, this is the first study to evaluate the use of continuous ECG 

monitoring for the prediction of ICHA from PEA and asystole, which make up around 80% of total 

ICHA(25). 

Utilizing trends in ECG analysis 
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The evaluation of trends in ECG parameters on continuous recordings, rather than absolute thresholds, 

allows for individualization of clinical risk prediction based on the patient’s baseline 

electrocardiogram(9,26). For example, 0.1mV ST depression in a patient with baseline left ventricular 

hypertrophy confers a significantly lower risk compared to a patient with a baseline normal ST segment. 

While some physiologic fluctuation in ECG parameters are expected even in resting normal healthy 

subjects(21,27), we found that the degree of fluctuations observed prior to IHCA, particularly in the ST 

segment and QRS duration, exceed those normally observed.  

The evaluation of trends in both the positive and negative directions allow for detection of different types 

of physiologic disturbances associated with different causes of cardiac arrest (Figure 6). For example, 

while QRS prolongation by intraventricular conduction delay can reflect progressive ischemia(28), a 

decrease in measured QRS duration is likely artefactual as a result of decreasing QRS amplitude(29), 

reported in septic shock states(30). We previously showed in a case control study with 27 bradyasystole 

cases and 304 controls that combinations of various ECG trend changes could be used to obtain as much 

as 33% sensitivity with 100% specificity(9). However, bradyasystole cases represent an ideal scenario 

where trends in many ECG parameters change monotonically in one direction over a long period leading 

up to ICHA, which is not true of the larger group of PEA cases.      

Therefore, we developed further features to compare trends and arrhythmias with those during prior time 

periods. This is based on the rationale that some ECG parameters, particularly RR interval and ST 

segments, can fluctuate significantly even in healthy states with exertion/rest and other stressors. Hence, 

differentiation of physiologic vs. pathologic changes (eg. differentiating a slowing heart rate preceding 

many types of PEA compared to physiologic slowing of heart rate(31,32)), can be better deduced by 

comparing magnitudes and rates of change to those in earlier time periods when the patient was known to 

be stable (Figure 7).  
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Similarly, second degree HB, either AV or sinoatrial, occurs commonly during sleep, particularly in 

patients with sleep apnea, and hence is unlikely to be predictive unless they are of new onset(33). New 

episodes of AF have been associated with increased ICU length of stay and hospital mortality, but not AF 

in patients with a prior history(34). While we found that pauses of greater than 3 seconds were 

proportionately more common in the pre-ICHA period, the baseline rate in control patients is high, likely 

reflecting the limitations of arrhythmia detection methods that depend only on RR intervals due to their 

susceptibility to frequent ectopic beats, artifact, and low amplitude QRS complexes(35).  

Utilization of ECG findings in the prediction of IHCA 

In this study, we show that ECG changes in a 3-hour window alone have a very good ability to predict an 

imminent IHCA. This finding is independent of commonly used criteria such as vital signs and laboratory 

values(36).  

While logistic regression has been the standard method of risk prediction development, it assumes that 

risk factors (ECG metrics in our study) are additive(37). Given the inherent correlated nature of the 

positive and negative trend measure for a particular ECG parameter and the potential for different types of 

cardiac arrest to present predominantly with one or the other (Figure 6), logistic regression models may 

perform poorly due to model instability. On the other hand, non-linear classifiers such as the random 

forest perform better with such classification problems(38), at the cost of becoming a “black box”. 

In this study, while the AUC achieved by the logistic regression models were slightly superior to that of 

the random forest model, it must be considered that relatively few patients suffer IHCA and therefore 

models with low FPR for similar sensitivity achieved are preferred to prevent excessive false alarms. 

Using this criteria, the random forest model performed best, attaining 57.9% sensitivity with 95.7% 

specificity at the selected threshold. The random forest model, furthermore, showed excellent temporal 

discriminatory ability with an 89.6% sensitivity and 90.1% specificity at distinguishing block 1 vs. block 

2.  
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In practice, ECG metrics can play a complementary role to predictive algorithms that combine multiple 

data streams including demographic, vital sign, and laboratory data using a Bayesian approach(39). 

Whereas the intermittently collected data for vital signs and laboratory data can predict the “at-risk” 

patient, ECG changes, which predominantly occur in the last hour preceding ICHA, can help pinpoint the 

patient at impending risk of IHCA or who is rapidly deteriorating from an unanticipated event.  

Limitations 

The number of ICHA cases used in the derivation of this model is small and predominantly from ICU 

patients, potentially introducing bias towards the findings seen in this particular sample patient 

population. This in large part represents the difficulties of acquiring high quality continuous ECG data 

due to limitations from a data acquisition and information technology standpoint. Despite the innovations 

in ambulatory ECG monitoring with miniaturization, accessibility, and data storage, there has been little 

transformation in inpatient telemetry monitoring systems, driven by a vicious cycle of lack of data 

availability to develop useful predictive models, feeding a lack of sufficient clinical application(40) to 

drive innovation in accessibility and data storage.   

It should be noted, however, that cardiac arrest due to respiratory failure, the most common cause of 

PEA/Asystole in a general hospital population, also made up the largest group of cases in our study(41).  

Due to the small number of cases, we also were unable to use an independent test set to validate our 

models which can lead to overestimation of the model’s predictive power. However, further testing using 

block 2 data showed performance that was as expected. The positive predictive value is also a very 

important characteristic to consider in light of the pervasive problem of alarm fatigue(35), but difficult to 

estimate from an unbalanced-sample case-control study. 

In addition, we have not investigated other potential ECG parameters such as heart rate variability, the use 

of different detection window durations, and concurrent changes in 2 or more ECG parameters. These 

will be investigated as part of future studies. 



 

12 

 

CONCLUSIONS 

Trends in ECG parameters, particularly in QRS duration, QTc, ST height, and RR, differ significantly 

between a 3-hour window immediately preceding ICHA from PEA or asystole compared to other 3-hour 

windows in both case and control patients. New episodes of AF and second degree heart block are also 

more common immediately prior to ICHA.  

Using ECG changes alone, we created a random forest model with AUC 0.810 on an independent 

validation set with 57.9% sensitivity achieved with 4.3% false positive rate. Using this threshold, the 

model was able to distinguish between the final 3-hour block preceding IHCA and the preceding 3-hour 

block with an AUC of 0.939, 89.6% sensitivity and 90.1% specificity. This study supports the feasibility 

of utilizing ECG changes over time in predictive models for IHCA. 
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FIGURE 1 

Processing of data and model development. Block n-1 refers to the block that precedes block n 

temporally (eg. Block 2 which precedes block 1, or block 3 which precedes block 2).  
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FIGURE 2 

Block selection example. Three consecutive 3-hour blocks are selected in both case and control patients. 

For cases, the blocks immediately precede in-hospital cardiac arrest (IHCA) (Panel A). In controls, the 

blocks are randomly selected (Panel B). Only block 1 in cases is associated with IHCA. While only PR 

interval data is shown in this example, all ECG parameters for the subject are evaluated in the same 

blocks. 
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FIGURE 3 

Dominant trend determination. The direction of change at each point is calculated by robust linear 

fitting (Panel A). Blue denotes positive trends and red denotes negative trends. Next short segments 

flanked by longer segments with opposite directionality are merged with the more dominant trend to 

remove minor fluctuations. Panel B shows the resultant dominant trends after a short negative trend 

segment is merged with the longer positive trend segment. The dominant trend in either direction is then 

determined by the trend in that direction with the longest duration.  
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FIGURE 4 

Receiver Operating Characteristics Curves for the Validation Set.  Curves are shown for 3 

multivariable models with their area under the curve (AUC): Panel A) Logistic regression with backward 

stepwise regression, B) Logistic regression with forward stepwise regression, C) Random forest with 

10,000 trees. The (X) marks the threshold chosen based on a specificity of approximately 95%.  
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FIGURE 5 

Optimal Continuous ECG Risk Prediction Model that provides a closed feedback loop, is updated 

continuously, and leverages the dynamic nature of ECG to provide personalized risk prediction. 
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FIGURE 6 

Patterns of Electrocardiographic Parameter Changes by Cause of Cardiac Arrest. The different 

panels show block 1 (final 3 hours before cardiac arrest) in 7 case patients, with the determined cause of 

the cardiac arrest. Graphs from top to bottom show trends in RR, QRS duration, ST lead II, and ST lead 

V2. The y-axis scaling is the same for a parameter across all cases. Positive (blue) and negative (red) 

trends are shown with the dominant trends for each block denoted by wider points. Similar patterns can be 

seen within cases from the same cause of arrest: eg. panels A, B, and C both show shortening of the RR 

followed by terminal prolongation of RR, with similar patterns of ST changes also seen in panels A and 

B. Different patterns can be noted despite similar determined cause of cardiac arrest (eg. Panel D vs. A, 

B, C). Unknown causes of cardiac arrest can potentially be matched to cases with known causes to 

determine possible cause of arrest (eg. Panels F and G).    
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FIGURE 7 

Comparison of Electrocardiographic Parameter Changes Over Time. RR and ST height in lead II 

data for a patient with cardiac arrest due to respiratory failure. From left to right, the graphs show 1. Each 

parameter over the 24 hour period preceding in-hospital cardiac arrest (IHCA) with the selected blocks 

labeled, 2. Block 3 (9 to 6 hours before IHCA), 3. Block 2 (6 to 3 hours before ICHA), 4. Block 1 (3 to 0 

hours before ICA). A similar scaling is used for all blocks. Positive (blue) and negative (red) trends are 

shown with the dominant trends for each block denoted by wider points. Fluctuations in the RR and ST 

are noted in all blocks, which is expected. However, comparison between block 1 and the other blocks, 

particularly the immediately preceding block, shows a greater degree of change for both RR and ST in the 

negative direction in block 1. 
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TABLE 1: DEMOGRAPHICS 

 Case (n = 77) Control (n = 1783) 

Age 62.5±17.3 63.5±14.8 

Male 44 (57%) 1201 (67%) 

ICU  68 (88%) 1322 (75%) 

Arrest characteristics   

 ROSC 53 (69%)  

 STD 19 (25%)  

Arrest Cause   

 Respiratory – unintubated 23 (29%)  

 Respiratory - intubated 11 (14%)  

 Metabolic acidosis 12 (16%)  

 Hemorrhagic shock 3 (4%)  

 Cardiogenic shock 5 (6%)  

 Distributive shock 1 (1%)  

 Myocardial infarction 1 (1%)  

 Multiorgan failure 13 (17%)  

 Unknown 8 (10%)  

Abbreviations. ROSC: return of spontaneous circulation, STD: survive to discharge 
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TABLE 2: ELECTROCARDIOGRAPHIC PARAMETER SUMMARY 

 Case (n = 77) Control (n = 1783) p-value‡ 

Arrhythmias, n(%) 

 AF, any in block 1 27 (35%) 373 (20%) 0.0067 

 AF, present block 1 not block 2 11 (14%) 64 (3%) 0.0002 

 2° HB, any in block 1 29 (38%) 332 (18%) 0.0002 

 2° HB, present block 1 not block 2 21 (27%) 162 (3%) <0.0001 

 Pauses, any in block 1 25 (32%) 376 (20%) 0.0242 

 Pauses, present block 1 not block 2 18 (23%) 229 (12%) 0.0153 

Trend Slope (Δy1/Δx1)†, median (IQR) 

 QRS Amplitude Averaged + (µV/hr) 320 (115 – 670) 312 (138 – 627) NS 

 QRS Amplitude Averaged - (µV/hr) 271 (118 – 684) 285 (137 – 608) NS 

 PR Interval + (ms/hr)* 6.3 (3.7 – 13.4) 6.7 (3.6 – 12.6) NS 

 PR Interval - (ms/hr)* 6.5 (3.3 – 20.2) 6.7 (3.7 – 13.4) NS 

 QRS Duration + (ms/hr) 6.3 (2.4 – 13.7) 4.2 (1.8 – 8.6) 0.0134 

 QRS Duration - (ms/hr) 5.4 (2.7 – 13.7) 3.7 (1.6 – 8.1) 0.0002 

 QTc + (ms/hr) 16.7 (9.0 – 38.0) 13.9 (7.6 – 27.5) NS 

 QTc - (ms/hr) 15.6 (8.5 – 48.5) 13.3 (6.9 – 25.5) 0.0238 

 RR + (ms/hr) 40.8 (26.3 – 77.2) 52.8 (27.2 – 98.2) NS 

 RR - (ms/hr) 40.9 (12.9 – 90.7) 53.8 (25.6 – 112.9) NS 

 ST Lead II + (µV/hr) 28.6 (13.1 – 68.3) 15.0 (7.8 – 29.0) 0.0023 

 ST Lead II - (µV/hr) 30.5 (14.0 – 61.5) 15.0 (8.0 – 30.4) <0.0001 

 ST Lead V2 + (µV/hr) 17.5 (6.9 – 44.8) 10.5 (5.5 – 19.5) 0.0029 

 ST Lead V2 - (µV/hr) 16.8 (6.6 – 34.0) 10.5 (5.3 – 20.7) 0.0389 

Trend Slope Comparison (Δy1/Δx1 – Δy2/Δx2) †, median (IQR) 

 QRS Amplitude Averaged + (µV/hr) 69 (-183 – 323) 10 (-212 – 243) NS 

 QRS Amplitude Averaged - (µV/hr) 53 (-175 – 317) -4 (-187 – 203) NS 

 PR Interval + (ms/hr)* 0.0 (-2.6 – 3.4) 0.2 (-4.8 – 5.1) NS 

 PR Interval - (ms/hr)* 1.0 (-2.9 – 8.3) 0.2 (-4.8 – 5.0) NS 

 QRS Duration + (ms/hr) 1.4 (-1.7 – 10.3) 0 (-3.7 – 3.9) 0.008 

 QRS Duration - (ms/hr) 2.4 (-1.0 – 6.1) 0.1 (-3.5 – 3.7) <0.0001 

 QTc + (ms/hr) 2.2 (-7 – 22.6) 0.3 (-11.0 – 11.3) NS 

 QTc - (ms/hr) -0.3 (-10.2 – 21.2) 0.4 (-8.9 – 10.7) NS 

 RR + (ms/hr) 5.3 (-23.5 – 30.9) 3.3 (-31.8 – 38.3) NS 

 RR - (ms/hr) 1.4 (-13.8 – 37.9) 0.1 (-42.2 – 38.1) NS 

 ST Lead II + (µV/hr) 6.3 (-8.2 – 32.9) -0.4 (-11.5 – 11.1) 0.0164 

 ST Lead II - (µV/hr) 4.5 (-8.4 – 26.4) -0.2 (-11.7 – 11.1) 0.0023 

 ST Lead V2 + (µV/hr) 3.1 (-8.6 – 14.2) -0.1 (-7.9 – 7.7) 0.0355 

 ST Lead V2 - (µV/hr) 0.8 (-7.8 – 16.8) 0.0 (-8.2 – 7.0) NS 

Trend Change (Δy1) †, median (IQR) 

 QRS Amplitude Averaged + (µV) 89 (43 – 180) 86 (47 – 158) NS 

 QRS Amplitude Averaged - (µV) 106 (58 – 190) 85 (48 – 143) 0.0191 

 PR Interval + (ms)* 8 (5 – 14.5) 7 (4 – 14) NS 

 PR Interval - (ms)* 8 (4 – 17) 7 (4 – 14) NS 

 QRS Duration + (ms) 9.5 (3 – 16) 4 (2 – 8) <0.0001 

 QRS Duration - (ms) 7.5 (3 – 13) 5 (2.8 – 8) 0.0015 

 QTc + (ms) 22.6 (11.7 – 41.1) 14.6 (8.5 – 26.7) 0.0017 

 QTc - (ms) 30.1 (11.2 – 57.3) 14.4 (9.0 – 26.0) <0.0001 
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 RR + (ms) 72 (32 – 138) 61 (32 – 103) 0.0035 

 RR - (ms) 45 (19 – 123) 58 (31 – 105) NS 

 ST Lead II + (µV) 34 (15 – 70) 16 (9 – 29.8) <0.0001 

 ST Lead II - (µV) 34.5 (16.5 – 74) 16 (9 – 29) <0.0001 

 ST Lead V2 + (µV) 20 (8 – 41) 11 (6 – 20) 0.0004 

 ST Lead V2 - (µV) 20 (9 – 42) 11 (6 – 20) <0.0001 

Trend Change Comparison (Δy1-2) †, median (IQR) 

 QRS Amplitude Averaged + (µV) 17 (-46 – 92) 0 (-59 – 61) NS 

 QRS Amplitude Averaged - (µV) 0 (-35 – 122) 0 (-42 – 49) 0.0020 

 PR Interval + (ms)* 0 (-4 – 3) 0 (-5 – 4) NS 

 PR Interval - (ms)* 1 (-2.75 – 7) 0 (-4 – 4) NS 

 QRS Duration + (ms) 2 (-1 – 12) 0 (-3 – 3) <0.0001 

 QRS Duration - (ms) 1.5 (-1 – 5.75) 0 (-3 – 3) 0.0002 

 QTc + (ms) 7.0 (-5.8 – 24.9) 0.7 (-8.3 – 9.3) 0.0268 

 QTc - (ms) 5.6 (-7.4 – 36.3) -0.20 (-8.5 – 8.2) 0.0024 

 RR + (ms) 26 (-13 – 86) 1 (-33 – 37) <0.0001 

 RR - (ms) 8 (-21 – 63) 2 (-31 – 35.5) <0.0001 

 ST Lead II + (µV) 9 (-7 – 50.5) 0 (-10 – 10) 0.0008 

 ST Lead II - (µV) 5 (-9 – 24.5) 0 (-10 – 10) 0.0004 

 ST Lead V2 + (µV) 4 (-3.25 – 19.5) 0 (-7 – 6) 0.0175 

 ST Lead V2 - (µV) 7.5 (-1.5 – 26) 0 (-6 – 7) 0.0007 

*Reported where measureable given this is not measureable in atrial fibrillation 
†For each row, + denotes the measure for the dominant positive trend, and – denotes the measure for 

the dominant negative trend for that ECG parameter. All negative trend change and slope 

measurements are reported as the absolute value.  
‡ All univariate comparisons with p-value < 0.05 were also significant at q-value < 0.05, which corrects 

for false discovery rate due to multiple hypothesis testing 
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TABLE 3: MULTIVARIATE MODEL PERFORMANCE 

 Logistic Regression – 

Backward Stepwise 

Logistic Regression – 

Forward Stepwise 

Random Forest 

Development Set (Case block 1 vs. Control block 1) 

 AUC 0.770 0.779 0.730 

Validation Set (Case block 1 vs. Control block 1) 

 AUC 0.841 0.849 0.810 

 Sensitivity, FPR 2.5% 21.1% 31.5% 36.8% 

 Sensitivity, FPR 5.0% 42.1% 42.1% 57.9% 

 Sensitivity, FPR 10.0% 47.4% 52.6% 63.2% 

Validation Set Performance at Selected Threshold 

 Sensitivity 47.4% 52.6% 57.9% 

 Specificity 94.3% 93.2 % 95.7% 

Test* – All Case Block 1 vs. Case Block 2  

 AUC 0.764 0.761 0.942 

 Sensitivity 37.7% 45.5% 88.3% 

 Specificity 91.5% 91.5% 90.1% 

Test* – Validation Set Case Block 1 vs. Control Block 2  

 AUC 0.822 0.849 0.853 

 Sensitivity 47.4% 52.6% 57.9% 

 Specificity 95.2% 94.5% 95.6% 

Test* – Case Block 2 vs. Validation Set Control Block 1  

 AUC 0.519 0.530 0.577 

 Sensitivity 8.5% 8.5% 9.9% 

 Specificity 94.3% 93.2 % 95.7% 

Test* – Case block 2 vs. Control block 2 

 AUC 0.528 0.538 0.593 

 Sensitivity 8.5% 8.5% 9.9% 

 Specificity  95.2% 94.5% 95.6% 

*All sensitivity and specificities are reported at the selected threshold 
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SUPPLEMENTAL METHODS 

Averaged Beat-derived ECG Parameter Filter Details: 

1. A median 2k+1 filter (k = 7): each time point was replaced with the median value of 15 points 

centered around that time point. The median filter is commonly used to reduce artifacts and 

outliers while preserving signal. The larger the k value, the greater the decrease in artifact but this 

comes at the cost of signal loss and increase in time delay. A filter size of 15 (k=7) was found to 

have reasonable tradeoff in our data (Supplemental Figure 1A). 

2. Tachyarrhythmia filter: the post-median filter RR interval time series was processed minute by 

minute to look for data points that exceeded 115% of the maximum of the preceding 20 points, or 

was 85% less than the minimum of the preceding 15 points. Each such point was flagged; N flags 

resulted in N+1 segments. If the mean RR for each segment was less than 80% of the mean of the 

entire RR time series (ie. segment HR exceeded 20% of the mean HR), the particular segment 

was flagged as a tachyarrhythmia block. PR interval, P wave duration, QTc, and RR data were 

removed for tachyarrhythmia blocks given the lack of comparability to non-tachyarrhythmia data 

for the purposes of trend analysis (Supplemental Figure 1B).   

3. Pacer-dependence filter: this filter identifies extended periods of extremely constant (invariable) 

HR, which is not physiologic. An extended constant HR was defined as lasting at least 120 
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consecutive HR data points. Thus, all 120 consecutive data point windows were processed to 

check for invariability. The median value of these 120s data points were subtracted from each of 

the 120 HR values. If the maximal absolute difference of these 120 differences were less than 

0.12 heart beats, then the 120-data point window was extended downstream one data point at a 

time, undergoing the same iterative checks as described above, until the largest window of 

invariability was identified. Corresponding metric data was dropped as pacing would artificially 

change the ECG metric of interest (Supplemental Figure 1C).  Multiple windows of complete 

pacer dependence could be identified in a single patient. The minimum of 120 data points and the 

0.12 maximal allowable heart rate difference were chosen purposefully to be extremely stringent 

to avoid wrongfully eliminating non-paced data. 

4. After the heart rate based filters, all metrics of interest, except ST, were processed through a 

continuity filter based on the assumption that changes to ECG metrics should be gradual and that 

large jumps are most likely secondary to artifacts and/or noise. A histogram was created with 10 

equal sized bins. Data points belonging to the highest frequency bin were defined as “modes”. 

Continuity check was conducted in both a forwards and backwards fashion starting at each 

“mode”. Marching point by point, if a value was greater than 115% of the maximum or less than 

85% of the minimum of the previous 20 continuous points, that value was defined as 
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discontinuous. Performing the check both forwards and backwards and from multiple starting 

points, the “modes”, ensured that dropped values fail to meet the continuity criteria from multiple 

angles (Supplemental Figure 1D).  

Dominant trend determination 

For the averaged beat data, in each block of data, we determined if the slope at each data point was 

positive or negative by performing robust linear fitting of 51 data points centered at the point of interest. 

Consecutive points with the same slope directionality were joined to form segments. Small segments 

flanked by larger segments of the opposite slope sign were merged into the larger segment. The dominant 

positive and negative trends, defined as the trend with the longest consecutive number of data points with 

positive and negative slopes respectively, were then determined for each block (Figure 3, main 

manuscript). 

Beat-to-beat data processing: 

1. Atrial fibrillation detection. We used a modified method of non-empty-cells described by Lian et 

al(10). A sliding window size of 128 beats was chosen with the window sliding/shifting by a 

single beat across time. As such, each beat was covered by 128 consecutive sliding windows 

containing 128 consecutive beats. For each beat the RR interval in milliseconds (ms) was noted. 
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The differential RR interval (dRR), also in ms, was also calculated for each beat by subtracting 

the RR interval at any particular beat by the RR interval of the preceding beat. The (RR, dRR) 

pair of each beat is then graphed on a 2-D plot with RR on the x-axis and dRR on the y-axis. The 

plot was then segmented into squares or "cells" that are 25 by 25 ms in size. The number of cells 

that contain at least 1 pair of (RR, dRR) is defined as a non-empty cell (NEC). The number of 

NECs is the surrogate for the degree of irregularity with higher NECs correlating with higher 

degree of irregularity and higher probability of atrial fibrillation. In order to determine an optimal 

threshold to define a point as being atrial fibrillation (both number of NECs and number of 

sliding windows including that point), we annotated atrial fibrillation episodes in 117 cases and 

117 controls. We then performed 700 iterations of random sampling, with replacement, from 

these cases/controls and calculated the F1 statistic (which balances sensitivity and positive 

predictive value) using every combination of NEC and number of windows. We then compiled 

this data to determine the optimal threshold over the 700 iterations. We found that the optimal F1 

statistic was obtained with a threshold of 52 NEC and 100% of windows, with an F1 value of 

0.87 (Sensitivity 92.4%, Specificity 97.5%, PPV 81.6%, NPV 99.1%).  
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SUPPLEMENTAL FIGURE 1 

Averaged-beat ECG parameter filters. The examples shown are for PR interval data from different 

patients. Points that are labeled blue are retained following application of the filter while points labeled 

red were removed from further analysis. Green markings represent calculations made for filtering. Panels 

A. Median filter for reducing signal noise, B. Tachyarrhythmia filter to remove segments of 

noncomparable data due to tachyarrhythmias, C. Pacer dependence filter removes segments of paced data 

from analysis, 4. Continuity filter removes significant outlier points which are likely artefactual. Data 

points for cases more than 24 hours from arrest are shown here only for illustration purposes of filters. 
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SUPPLEMENTAL FIGURE 2 

Random Forest Importance Plot. This shows the 15 variables with the highest importance in the 

random forest, based on mean decrease in the Gini coefficient (measure of how much each variable 

contributes to homogeneity of the nodes and leaves in the random forest). Higher values signify higher 

importance of the variable. 
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SUPPLEMENTAL FIGURE 3 

Receiver Operating Characteristics Curves for the Model Development Set.  
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SUPPLEMENTAL FIGURE 4 

Receive Operating Characteristic Curves for Model Testing on Case block 1 vs. Case block 2. Block 

1 is the 3-hour block immediately preceding in-hospital cardiac arrest, while Block 2 is the 3-hour block 

preceding block 1. Only blocks from case patients are included in this analysis. Block 1 is considered 

true-positive for in-hospital cardiac arrest, while block 2 is considered false-positive for cardiac arrest. 

The red (X) marks the sensitivity and specificity at the threshold chosen based on the validation set. AUC 

= area under the curve. 
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SUPPLEMENTAL FIGURE 5 

Receive Operating Characteristic Curves for Model Testing on Validation Case block 1 vs. Control 

block 2. Block 1 is the 3-hour block immediately preceding in-hospital cardiac arrest, while Block 2 is 

the 3-hour block preceding block 1. Validation set case block 1 and all control block 2 are included in this 

analysis. The red (X) marks the sensitivity and specificity at the threshold chosen based on the validation 

set. AUC = area under the curve. 
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SUPPLEMENTAL FIGURE 6 

Receive Operating Characteristic Curves for Model Testing on Case block 2 vs. Validation set 

Control block 1. Block 1 is the 3-hour block immediately preceding in-hospital cardiac arrest, while 

Block 2 is the 3-hour block preceding block 1. All case block 2 and validation set control block 1 are 

included in this analysis. AUC = area under the curve. 
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SUPPLEMENTAL FIGURE 7 

Receive Operating Characteristic Curves for Model Testing on Case block 2 vs. Control block 2. 

Block 1 is the 3-hour block immediately preceding in-hospital cardiac arrest, while Block 2 is the 3-hour 

block preceding block 1. All case block 2 and all control block 2 are included in this analysis. AUC = 

area under the curve. 
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SUPPLEMENTAL TABLE 1 

Significant Univariate analyses, Development Set (Case block 1 vs. Control block 1)  

Variable OR Estimate* AUC 

Slope†   

 QRSd Δy1
+/Δx1

+ 1.3 (1.04 – 1.5) 0.587 

 QRSd Δy1
-/Δx1

- 1.4 (1.2 – 1.6) 0.611 

 QTc Δy1
-/Δx1

- 1.06 (1.00 – 1.1) 0.557 

 ST lead II Δy1
+/Δx1

+ 1.5 (1.1 – 1.9) 0.677 

 ST lead II Δy1
-/Δx1

- 1.5 (1.2 – 1.9) 0.667 

 ST lead V2 Δy1
+/Δx1

+ 1.8 (1.2 – 2.7) 0.620 

 ST lead V2 Δy1
-/Δx1

- 1.6 (1.02 – 2.5) 0.603 

Trend†   

 QRS amplitude Δy1
- 1.3 (1.04 – 1.7) 0.562 

 QRSd Δy1
+ 2.4 (1.8 – 3.0) 0.677 

 QRSd Δy1
- 1.6 (1.3 – 2.1) 0.600 

 QTc Δy1
+ 1.1 (1.04 – 1.2) 0.620 

 QTc Δy1
- 1.2 (1.1 – 1.3) 0.664 

 RR Δy1
+ 1.4 (1.1 – 1.7) 0.552 

 ST lead II Δy1
+ 1.7 (1.3 – 2.2) 0.684 

 ST lead II Δy1
- 2.0 (1.5 – 2.6) 0.698 

 ST lead V2 Δy1
+ 2.3 (1.4 – 3.7) 0.634 

 ST lead V2 Δy1
- 3.3 (1.8 – 6.0) 0.672 

Slope Comparison   

 QRSd Δy1
+/Δx1

+- Δy2
+/Δx2

+ 1.3 (1.1 – 1.6) 0.605 

 QRSd Δy1
-/Δx1

-- Δy2
-/Δx2

- 1.5 (1.2 – 1.8) 0.631 

 ST lead II Δy1
+/Δx1

+- Δy2
+/Δx2

+ 1.4 (1.06 – 1.9) 0.611 

 ST lead II Δy1
-/Δx1

-- Δy2
-/Δx2

- 1.6 (1.2 – 2.1) 0.609 

 ST lead V2 Δy1
+/Δx1

+- Δy2
+/Δx2

+ 1.5 (1.02 – 2.2) 0.572 

Trend Comparison   

 QRS amplitude Δy1-2
- 1.5 (1.1 – 1.9) 0.577 

 QRSd Δy1-2
+ 2.4 (1.8 – 3.3) 0.661 

 QRSd Δy1-2
- 1.7 (1.3 – 2.3) 0.617 

 QTc Δy1-2
+ 1.1 (1.01 – 1.2) 0.602 

 QTc Δy1-2
- 1.1 (1.04 – 1.3) 0.597 

 RR Δy1-2
+ 1.7 (1.3 – 2.2) 0.632 

 ST lead II Δy1-2
+ 1.9 (1.3 – 2.9) 0.625 

 ST lead II Δy1-2
- 2.2 (1.4 – 3.3)  0.629 

 ST lead V2 Δy1-2
+ 1.8 (1.1 – 3.0) 0.599 

 ST lead V2 Δy1-2
- 3.8 (1.7 – 8.4) 0.681 

Arrhythmias   

 Afib, any in block 1 2.0 (1.2 – 3.3)  

 Afib present block 1 not block 2 4.4 (2.2 – 8.8)  

 2° HB, any in block 1 2.6 (1.6 – 4.2)  

 2° HB present block 1 not block 2 3.8 (2.2 – 6.3)  

 Pauses, any in block 1 1.8 (1.1 – 2.9)  

 Pauses present block 1 not block 2 2.0 (1.2 – 3.5)  
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* OR for QRSd and QTc are shown per 10ms change (trend change) or 10ms/hr (slope). OR for QRS 

amplitude, ST lead II, and ST lead V2 are shown per 0.1mV change (trend change) or 0.1mV/hr 

(slope).  OR for RR is shown per 100ms change (trend change) or 100ms/hr (slope) 
† All OR for slopes and trend changes are reported for absolute values of the parameter.  
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SUPPLEMENTAL TABLE 2 

Electrocardiographic parameter summary for block 2  

 Case (n = 71‡) Control (n = 1679‡) p-value 

Arrhythmias, n(%)    

 AF, any in block 2 17 (24%) 365 (22%) NS 

 AF, present block 2 not block 3 3 (4%) 74 (4%) NS 

 2° HB, any in block 2 7 (10%) 309 (18%) NS 

 2° HB, present block 2 not block 3 3 (4%) 153 (9%) NS 

 Pauses, any in block 2 8 (12%) 331 (20%) NS 

 Pauses, present block 2 not block 3 5 (7%) 207 (12%) NS 

Trend Slope (Δy2/Δx2)†, median (IQR) 

 QRS Amplitude Averaged + (µV/hr) 250 (114 – 541) 283 (134 – 609) NS 

 QRS Amplitude Averaged – (µV/hr) 199 (92 – 499) 281 (127 – 588) NS 

 PR Interval + (ms/hr)* 5.7 (3.1 – 17.7) 6.3 (3.4 – 12.2) NS 

 PR Interval – (ms/hr)* 5.2 (2.5 – 12.2) 6.4 (3.5 – 12.6) NS 

 QRS Duration + (ms/hr) 3.1 (1.7 – 6.3) 4.0 (1.6 – 8.3) NS 

 QRS Duration – (ms/hr) 3.6 (1.8 – 8.2) 3.5 (1.4 – 7.7) NS 

 QTc + (ms/hr) 13.0 (7.3 – 23.9) 13.7 (7.2 – 26.7) NS 

 QTc – (ms/hr) 12.4 (6.3 – 35.7) 12.5 (6.7 – 23.4) 0.023 

 RR + (ms/hr) 33.1 (13.3 – 63.4) 48.4 (24.8 – 92.7) 0.031 

 RR – (ms/hr) 28.9 (14.3 – 65.3) 54.7 (24.7 – 110.8) NS 

 ST Lead II + (µV/hr) 20.8 (8.6 – 40.1) 14.8 (7.5 – 28.6) NS 

 ST Lead II – (µV/hr) 19.6 (10.4 – 33.9) 14.6 (8.1 – 29.1) NS 

 ST Lead V2 + (µV/hr) 12.6 (6.6 – 28.3) 10.0 (5.1 – 20.3) 0.012 

 ST Lead V2 – (µV/hr) 12.2 (6.3 – 23.2) 10.5 (5.4 – 20.1) NS 

Trend Slope Comparison (Δy2/Δx2 – Δy3/Δx3) †, median (IQR) 

 QRS Amplitude Averaged + (µV/hr) 8 (-149 – 187) 8 (-228 – 241) NS 

 QRS Amplitude Averaged – (µV/hr) 24 (-162 – 159) -3 (-216 – 194) NS 

 PR Interval + (ms/hr)* -0.8 (-3.8 – 5.9) -0.1 (-5.2 – 4.4) NS 

 PR Interval – (ms/hr)* -0.3 (-5.8 – 3.9) 0.0 (-5.0 – 4.5) NS 

 QRS Duration + (ms/hr) 0.3 (-3.2 – 2.1) 0.0 (-3.6 – 3.8) NS 

 QRS Duration – (ms/hr) 0.4 (-2.7 – 3.2) -0.2 (-3.8 – 3.1) NS 

 QTc + (ms/hr) 0.3 (-7.2 – 12.2) -0.2 (-10.3 – 10.5) NS 

 QTc – (ms/hr) -2.6 (-13.0 – 21.2) -1.0 (-10.9 – 8.0) 0.014 

 RR + (ms/hr) 0.2 (-16.8 – 33) -3.0 (-40 – 33) NS 

 RR – (ms/hr) -0.5 (-16.9 – 16.9) -0.4 (-43.7 – 41.8) NS 

 ST Lead II + (µV/hr) -1.1 (-13.1 – 21.6) -0.1 (-10.4 – 10.9) NS 

 ST Lead II – (µV/hr) 2.3 (-13.6 – 12.8) -0.2 (-11.2 – 10.6) NS 

 ST Lead V2 + (µV/hr) 0.9 (-10.8 – 14.8) -0.5 (-8.1 – 6.7) NS 

 ST Lead V2 – (µV/hr) 3.4 (-6.0 – 13.8) -0.5 (-8.4 – 7.5) NS 

Trend Change (Δy2) †, median (IQR) 

 QRS Amplitude Averaged + (µV) 79 (41 – 159) 86 (44 – 159) NS 

 QRS Amplitude Averaged – (µV) 64 (26 – 126) 83 (44 – 143) 0.041 

 PR Interval + (ms)* 7.5 (4 – 17) 7 (4 – 13) NS 

 PR Interval – (ms)* 6 (3 – 13) 7 (4 – 14) NS 

 QRS Duration + (ms) 4 (2 – 11) 4 (2 – 8) NS 

 QRS Duration – (ms) 4 (2 – 9) 4 (2 – 8) NS 
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 QTc + (ms) 16.3 (7.7 – 35.6) 14.3 (8.2 – 26.2) NS 

 QTc – (ms) 15.6 (8.3 – 40.4) 14.6 (8.5 – 25.7) 0.013 

 RR + (ms) 35 (16 – 70) 59 (30 – 106) 0.023 

 RR – (ms) 33 (21 – 63) 56 (30 – 105) 0.017 

 ST Lead II + (µV) 19 (9 – 41) 16 (9 – 29) 0.006 

 ST Lead II – (µV) 20 (12 – 45) 16 (9 – 28) NS 

 ST Lead V2 + (µV) 14 (8 – 28) 11 (6 – 20) 0.002 

 ST Lead V2 – (µV) 12 (6 – 22) 11 (6 – 20) NS 

Trend Change Comparison (Δy2-3) †, median (IQR) 

 QRS Amplitude Averaged + (µV) 0 (-38 – 66) 0 (-62 – 59) 0.042 

 QRS Amplitude Averaged – (µV) 11 (-59 – 48) 2 (-43 – 50) NS 

 PR Interval + (ms)* 0 (-5 – 5) 0 (-4 – 4) NS 

 PR Interval – (ms)* 0 (-3 – 6) 0 (-5 – 4) NS 

 QRS Duration + (ms) 0 (-4 – 4) 0 (-3 – 3) NS 

 QRS Duration – (ms) -1 (-6 – 2) 0 (-3 – 3) NS 

 QTc + (ms) 2.6 (-9.3 – 13.1) -0.4 (-9.7 – 8.0) NS 

 QTc – (ms) -2.6 (-9.2 – 15.0) 0.0 (-9.6 – 9.3) 0.031 

 RR + (ms) -9 (-40 – 23) -1 (-37 – 32) NS 

 RR – (ms) -8 (-29 – 13) 1 (-39 – 34) NS 

 ST Lead II + (µV) 0 (-12 – 15) 0 (-10 – 10) NS 

 ST Lead II – (µV) 4 (-5 – 12) 0 (-10 – 9) NS 

 ST Lead V2 + (µV) -1 (-12 – 10) 0 (-7 – 6) NS 

 ST Lead V2 – (µV) 0 (-7 – 10) 0 (-7 – 6) NS 

*Reported where measureable given this is not measureable in atrial fibrillation 
†For each row, + denotes the measure for the dominant positive trend, and – denotes the measure for 

the dominant negative trend for that ECG parameter. All negative trend change and slope 

measurements are reported as the absolute value.  
‡This reflects the number of patients with both block 2 and block 3 available. 6 case patients and 104 

control patients who had both block 1 and 2 were missing a block 3 
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SUPPLEMENTAL TABLE 3 

Multivariable Logistic Regression Models 

  OR (95% CI) * p-value 

Logistic Backward Stepwise   

 Atrial fibrillation (present block n, not block n-1) 3.7 (1.5 – 9.0) <0.001 

 2° HB (present block n, not block n-1) 4.6 (2.4 – 9.0) <0.001 

 QRSd Δyn
+/Δxn

+  0.62 (0.39 – 0.97) 0.032 

 QRSd Δyn
+  3.1 (1.9 – 5.1) <0.001 

 QTc Δyn
-  1.1 (1.06 – 1.2) <0.001 

 RR Δyn-(n-1)
+  1.5 (1.2 – 2.0) 0.002 

 ST Lead V2 Δyn-(n-1)
-  4.6 (1.8 – 11.7) 0.001 

Logistic Forward Stepwise   

 Atrial fibrillation (present block n, not block n-1) 3.9 (1.6 – 9.5) 0.002 

 2° HB (present block n, not block n-1) 4.8 (2.5 – 9.4) <0.001 

 QRSd Δyn
+/Δxn

+  0.63 (0.40 – 0.99) 0.044 

 QRSd Δyn
+  2.9 (1.7 – 4.8) <0.001 

 QTc Δyn
-  1.1 (1.0 – 1.2) 0.002 

 RR Δyn-(n-1)
+  1.5 (1.1 – 2.0) 0.002 

 ST Lead II Δyn-(n-1)
+  1.7 (1.01 – 2.8) 0.043 

 ST Lead V2 Δyn-(n-1)
-  4.4 (1.7 – 11.6) 0.002 

Block n is the 3-hour block being evaluated. Block n-1 is the preceding 3-hour block. 

 

* OR for QRSd and QTc are shown per 10ms change (trend change) or 10ms/hr (slope). OR for ST 

lead II and ST lead V2 are shown per 0.1mV change (trend change) or 0.1mV/hr (slope).  OR for RR is 

shown per 100ms change (trend change) or 100ms/hr (slope) 
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