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Abstract 

This paper examines what children believe about unmapped number words—those number 

words whose exact meanings children have not yet learned. In the Study 1, 31 children (ages 2-

10 to 4-2) judged that the application of five and six changes when numerosity changes, although 

they did not know that equal sets must have the same number word. In Study 2, 15 children (ages 

2-5 to 3-6) judged that six plus more is no longer six, but that a lot plus more is still a lot. 

Findings support the hypothesis that children treat number words as referring to specific, unique 

numerosities even before know exactly which numerosity each word refers to. 



  Six does not     3 

Keywords 

language development 

number words 

numbers 

children 

concepts 

cognitive development 



  Six does not     4 

Six Does Not Just Mean A Lot: Preschoolers See Number Words as Specific  

“I like some plenty! I like some too much! I like some lot! I like some eight!” This was 

the protest of Teddy (age 2-1/2) upon receiving a small (clearly too small) amount of M&M’s. 

Teddy’s use of eight was ambiguous. On the one hand, maybe he was using eight as an 

approximate quantifier, like plenty, too much, and a lot. On the other hand, maybe he knew that 

eight was a specific number, and thought that eight M&M’s would be more than he had in his 

hand. 

Researchers have long studied number-word learning as a window on the development of 

number concepts. Gelman and Gallistel argued in 1978 that even 2- and 3-year-olds use number 

words in systematic ways, and that children’s use of these words can tell us a lot about their 

numerical thinking. Sometimes, though, it is hard to know what children mean by the number 

words they use. Children Teddy’s age use number words whose exact meanings they do not 

know. But these unmapped number words are not completely without meaning—in the example 

above, Teddy used the word eight in reference to a quantity, indicating that he knew something 

about the word. The question is, what? 

Early Uses of Number Words 

By the time they turn three, most children can ‘count’ (and we use the term loosely) rows 

of about 5 objects—that is, they can say the number words up to five while pointing to one object 

at a time (Gelman & Gallistel, 1978; Fuson, 1988; Wynn, 1992). However, they do not use 

counting to determine the number of things in a set (its numerosity). We know this because when 

children are asked, immediately after counting, how many objects the row has, they do not 

answer with the last word they used in counting. Instead they may give another number word, or 

several number words, or they may interpret the question as a prompt to ‘count’ the row again 
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(Fuson, 1988; Wynn, 1990). When young three-year-olds are shown a set of jars and lids, and are 

asked whether there are enough lids for every jar to have a lid, most children do not even try to 

count the jars or the lids in order to answer the question (Michie, 1984; Mix, 1999a; see also 

Mix, Huttenlocher, & Levine, 1996; Sophian & Adams, 1987). Neither do they use counting 

when asked to hand over a certain number of objects (the Give-A-Number task). Instead, most 

children simply grab a handful (Wynn, 1990; see also Sophian, 1987; Schaeffer, Eggleston, & 

Scott, 1974).  

In two studies using the Give-A-Number task, Karen Wynn (1990, 1992) found that by 2-

1/2 years of age, children give 1 item when asked for one, and multiple items when asked for 

two, three, four, five, or six, although they do not distinguish among these larger numbers. We 

will call this period in development Performance Level I. Around 3 to 3-1/2 years of age, 

children differentiate two from the other words. So they give 1 for one, 2 for two, and a handful 

(but not 1 or 2) of 3 or more for three, four, five, and six. We will call this Performance Level II. 

At the next level (Performance Level III), children give 1 for one, 2 for two, 3 for three, and a 

handful (but not 1, 2, or 3) for other number words. Finally, around 3-1/2 to 4 years of age, 

children seem to experience a sort of epiphany. Suddenly, the relationship of counting to 

numerosity (also called the cardinal principle or cardinality principle) is understood. At this 

point, which we will call Performance Level IV, the child can use counting to generate sets of 

four, five, six, and so on. 

Specific/Unique Numerosities (SUN) View of Number-Word Learning 

What can we conclude from the pattern described above? Wynn proposes an 

interpretation (Bloom & Wynn, 1997; Freeman, Antonucci, & Lewis, 2000; see also Whalen, 

Gallistel, & Gelman, 1999; Wynn, 1992) that we will call the Specific/Unique Numerosities 
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(SUN) view. In this view, the important thing to notice is that children contrast mapped with 

unmapped number words so early on. After all, as early as Level I, children seem to realize that 

the words two, three, four, five, and six, whatever they mean, cannot mean the same thing as one. 

We know this because they never give 1 item when asked for another number word. Children at 

Levels II and III also avoid giving 2 or 3 when asked for higher number words. In the SUN view, 

this pattern indicates that children already know that number words correspond to specific, 

unique numerosities. They know this even before they map each word to its numerosity.  

One concern with the Give-A-Number task might be that it could underestimate 

children’s knowledge. A child might actually know the exact meaning of five, for example, but 

try to get a set of 5 by estimating rather than counting. However, children also contrast number 

words on another task (the Point-to-X task) where they need only point to the target numerosity 

(Wynn, 1992). Results on this task mirror those on the Give-A-Number task, implying that both 

tasks are valid indicators of the number-word meanings a child actually knows.  

An objection to the SUN view might be that it is perfectly possible for children to 

contrast unmapped with mapped number words, and still remain agnostic about how the 

unmapped words relate to each other. For example, Level II children could consider one and two 

to be distinct from all other number words, while still viewing the other number words as 

equivalent. A more convincing demonstration of the SUN hypothesis would show that children 

distinguish among unmapped number words, in addition to contrasting the mapped with the 

unmapped. And in fact, there was a recent study (Condry, Cayton, & Spelke, 2002, April) 

investigating this question. In that study, children expected mapped number words, but not 

unmapped number words, to change when numerosity changed. This finding supports what we 

call the Approximate Numerosities / Bootstrapping View. 
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Approximate Numerosities / Bootstrapping (ANB) View of Number-Word Learning 

According to the ANB view, children believe that unmapped number words mean 

something like a lot (Carey, 2001; Spelke & Tsivkin, 2001). This idea makes perfect sense when 

we consider how numbers are perceived. From infancy, children recognize small, exact 

numerosities like 2 and 3 (Antell & Keating, 1983; Starkey & Cooper, 1980; Strauss & Curtis, 

1981; Van Loosbroek & Smitsman, 1990). They also recognize large, approximate numerosities. 

For example, babies can distinguish between 8 and 16 objects, but not between 8 and 12 (Xu & 

Spelke, 2000). If children assumed that number words simply label the numbers we perceive, 

then it would make sense to have exact words for 1, 2, 3, and perhaps 4, but approximate words 

for bigger sets (plenty, too much, a lot . . . eight?) . According to the ANB view, children do not 

necessarily conceive of the existence of large, exact numerosities until, having reached Level III, 

they notice that each successive counting word (e.g., from one to two, from two to three) 

corresponds to a numerosity increase of 1 (Carey, 2001). Language thus allows children to 

‘bootstrap’ their way to representations of large, exact numbers-- concepts that were 

inconceivable before. 

The Present Studies 

The present studies tried to find out whether young children think that unmapped number 

words refer to specific numerosities (as in the SUN view), or to approximate numerosities (as in 

the ANB view). Study 1 was designed to find out whether children were aware of two things: 

1. Changing the numerosity of a set will also change its number word; changes that do not 

affect numerosity of a set will not affect the number word. Prior research has shown that 

children as young as 2-1/2 know which transformations affect quantity (Gelman & Gallistel, 
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1978; McGarrigle & Donaldson, 1974; Mehler & Bever, 1967). Here, we try to learn whether 

children believe that these changes affect the number word as well. 

2. Sets of equal numerosity have the same number word; sets of unequal numerosity have 

different number words. Prior research has shown that preschoolers can recognize numerical 

equivalence without counting (Huttenlocher, Jordan, & Levine, 1994; Mix, 1999a, 1999b; 

Mix et al., 1996; Sophian & Adams, 1987). Here, we try to learn whether children believe 

that equal sets share the same number word. 

Study 1 

Method 

Participants 

84 children (41 girls, 43 boys) were screened for possible participation in the complete 

series of tasks. Of these, 25 were dropped because they did not yet know at least two number 

words (see Sorting of children into performance levels, below); 3 children were dropped because 

they failed too many memory checks (see Memory-check criterion, below for more detail); and 2 

children were dropped because they did not complete the tasks. This left a total of 54 children 

(26 girls, 28 boys) ranging in age from 2-10 to 4-1, mean age 3-6. 

All children were monolingual and native speakers of English. No questions were asked 

about socio-economic status, race, or ethnicity. However, participants were recruited from 

university-affiliated and private day-care centers serving primarily middle-class families, and 

were presumably representative of the Midwestern university community from which they were 

drawn. 

Tasks 
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Give-A-Number task. The purpose of this task (based on Wynn, 1992) was to determine 

which number-word meanings each child knew. This information was used to determine 

performance levels for subsequent tasks. A pile of 15 erasers was placed in front of the child, 

who was asked to give a certain number of them to a puppet. Requests were of the form “Can 

you give five apples to the monkey? Just take five and put them right here on the table in front of 

him.” After responding, the child was asked a single follow-up question, of the form “Is that 

five?” which repeated the initial number word asked for. If a child responded “no” to the follow-

up question, the original request was repeated. 

Each child received 15 trials: 5 trials with each of 3 puppets (a monkey, a dog, and a 

snake). A different type of eraser was used for each puppet (apples, flowers, and teeth). One 

object was always requested first, then two and three in counterbalanced order, then five and six 

in counterbalanced order.  

Sorting of children into performance levels. The Give-A-Number task formed the basis 

for the performance levels used in the rest of the analysis. Children were grouped according to 

the highest number word whose exact meaning they knew. Scoring criteria were taken from 

Wynn, 1992: children were given credit for knowing a number word if they (a) gave the correct 

number of items for that word on at least 2 of the 3 trials, and (b) gave that number of items no 

more than once for any other word. For example, a child who gave 1 and 2 (but not 3) upon 

request was placed in Performance Level II.  

With few exceptions, results followed the pattern reported by Wynn (1992). Children 

succeeded up to a certain number, and failed at all higher numbers. There were only four 

children who did not follow this pattern. Two of them correctly counted out sets of 5 and 6 but 

failed at one of the lower numbers. These children were placed in Level IV. The other two 
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children succeeded at 1 and 2, failed at 3 and 5, but then happened to grab 6 (without counting) 

on the six trials. These children were placed in Level II. 

Counting task. In order to keep the procedure as similar as possible to that used by Wynn 

(1990), children were also given a warm-up task in which they counted arrays of 2, 3, 5, and 6 

objects glued to a board. Order of tasks was counterbalanced across participants. 

Transform-Sets task. The purpose of this task was to learn what transformations children 

consider relevant to number words. Materials included a metal box with hinged lid 

(approximately 14 cm x 9 cm x 6 cm) and rubber erasers (moons, soccer balls, cars, and 

eyeballs). The experimenter placed the box on the table and said, “The way we play this game is, 

I will put something inside the box, and you try to remember what’s in there.” On the warm-up 

trials, the experimenter placed 1 eraser inside the box, saying for example “Here’s a moon”. The 

experimenter then closed the lid and asked the child “OK, what’s in the box?” After the child 

answered, the experimenter either shook the box vigorously, rotated it 360 degrees on the table, 

or removed the eraser (right in front of the child) and replaced it with one of a different shape.  

After completing the action, the experimenter said, “OK, now what’s in the box?” 

After the four warm-up trials, the experimenter said, “Now you will guess how many 

things are in the box.” As the child watched, the experimenter then placed 2, 3, 5 or 6 identical 

erasers in the box, telling the child the correct number word (e.g., “Here are five moons.”) Then 

the experimenter closed the lid and asked the memory-check question-- “How many moons?” No 

correction was offered on the memory-check question; trials where the child answered 

incorrectly were excluded from the analysis. 

After the memory-check question, the experimenter ‘transformed’ the set in one of four 

ways: (a) by picking up the (closed) box and shaking it vigorously; (b) by rotating the (closed) 
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box 360 degrees on the table; (c) by opening the box and adding 1 eraser to it; or (d) by opening 

the box and removing 1 eraser from it. (An eraser was always added to sets of 2 or 5; an eraser 

was always removed from sets of 3 or 6.) Finally, the experimenter asked the test question-- 

“Now how many moons—is it five or six?” (For trials with initial sets of 2 or 3, the question was 

“ . . . is it two or three?”) The form of the questions was kept the same, so the correct choice was 

offered first exactly half of the time. 

Each child received 8 trials: 2 trials starting with two objects, 2 trials starting with three 

objects, 2 trials starting with five objects, and 2 trials starting with six objects. One of the trials 

for each number word involved a numerosity-irrelevant transformation (shaking or rotating the 

box), and the other involved a numerosity-relevant transformation (adding or subtracting an 

item). Order of trials was randomized across participants. 

For scoring, the 8 trials were collapsed to produce 4 measures: low-same, low-different, 

high-same, and high-different. The low-same measure was the composite score from trials where 

initial sets of 2 and 3 were shaken or rotated. The low-different measure was the composite score 

from trials where initial sets of 2 and 3 gained or lost an object. The high-same measure was the 

composite score from trials where initial sets of 5 and 6 were shaken or rotated. The high-

different measure was the composite score from trials where initial sets of 5 and 6 gained or lost 

an object. 

Scores reflected whether or not the child still gave the initial number word after the set 

was transformed (rather than being scored correct/incorrect). Each trial was assigned a score of 1 

if the child had answered the test question (“OK, now how many moons?”) with the same 

number word as the trial began with. If the child gave a different number word after the 

transformation, a score of 0 was assigned. If children see number words as specific, then they 
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should give the initial number word more often on same trials (where the box was merely shaken 

or rotated) than on different trials (where an item was gained or lost). 

Transform-Sets memory-check criterion. Two children failed the memory-check question 

on at least half the trials. These children’s data were dropped from the analysis (see Participants, 

above). Of the other children’s data, 395 trials (95%) had valid memory-checks and were 

included in the analysis; 21 trials (5%) had failed memory checks and were excluded. (38 

children missed no trials; 14 children contributed to the trials that had to be dropped. Only three 

children missed more than two trials.) When a trial was excluded, the composite measure (e.g., 

low-same) was computed by doubling the score of the other, valid trial in the measure. If a child 

missed both memory checks of a given pair, no data were entered for that composite score (this 

happened only once).  

Compare-Sets task. The purpose of this task was to learn whether children expect 

numerically equal sets to have the same number word. Materials included two puppets (a frog 

and a lion) and pictures representing snacks, approximately 20 cm x 6 cm. Each picture showed a 

row of identical food items (peaches, brownies, hamburgers, etc.) framed by a dark border. In 

half of the trials, Frog’s snack (picture) was identical to Lion’s. We will call these same trials. In 

the remaining trials, the Frog’s snack (picture) differed from Lion’s snack (picture) by one item. 

We will call these different trials. On the different trials, a large, empty circle was drawn around 

the blank space (always at the end of a row) where an item was missing from one of the pictures. 

It was easy to see that one snack had more than the other. The experimenter introduced the task 

by saying  

Now I want to tell you a story about when Frog and Lion came to my house and I gave 

them some snacks. I tried to make their snacks just exactly the same, because they like 
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their snacks to be the same. But sometimes I made a mistake, and their snacks were not 

the same. Like sometimes I gave more to Lion, or I gave more to Frog. So I want to show 

you the snacks I gave them, and you can tell me if their snacks are just the same, or if I 

made a mistake. 

Before each trial, the experimenter said: “The next snack I gave them was [strawberries]. 

This is Frog’s snack . . . ” (placing the picture of 5 strawberries in front of Frog) “ … and this is 

Lion’s snack . . . ” (placing the picture of 6 strawberries in front of Lion.) The experimenter then 

lined up the pictures one above the other, so that they were easily compared and asked, “Are 

their snacks just the same, or did I make a mistake?”  

If the child responded correctly, the experimenter offered affirmation (“That’s right, I 

made a mistake, didn’t I? Can you see the empty place where I forgot to put a strawberry? Yes, 

there it is!”).  If the child responded incorrectly, the experimenter offered correction (“Hmm. 

They are the same kind of snack, but . . . oh, no! I think I forgot to put a strawberry on Frog’s 

plate! Can you see the empty place where I forgot to put a strawberry? Yes, there it is!”). 

The test trials were the same as the warm-up trials, except that after the child had 

answered the control question (and been corrected if necessary) the experimenter removed both 

pictures and asked the test question -- “Frog had five strawberries.  Do you think Lion had five or 

six?” On the low-number trials, the question was, “Do you think Lion had two or three?” The 

form of the question was always the same, so the first choice was correct exactly half the time. 

Finally, with the pictures still hidden from view, the experimenter asked the memory-check 

question, “And were their snacks just the same, or did I make a mistake?” No correction was 

offered on the memory-check question; trials where the child answered incorrectly were 

excluded from the analysis. 
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Each child received 8 trials: 2 trials where Frog’s snack had two objects, 2 trials where 

Frog’s snack had three objects, 2 trials where Frog’s snack had five objects, and 2 trials where 

Frog’s snack had six objects. In half these trials (which we call same trials), Lion’s snack was 

identical to Frog’s. In the other half (which we call different trials), Lion’s snack differed from 

Frog’s by 1 item. Order of trials was randomized across participants. 

For scoring, the 8 trials were collapsed to produce 4 measures: low-same, low-different, 

high-same, and high-different. The low-same measure was the composite score from trials where 

Frog and Lion both had 2 items, or both had 3 items. The low-different measure was the 

composite score from trials where Frog had 2 and Lion had 3, or vice versa. The high-same 

measure was the composite score from trials where Frog and Lion both had 5 items, or both had 

6 items. The high-different measure was the composite score from trials where Frog had 5 and 

Lion had 6, or vice versa. 

Scores reflected whether or not the child gave the same number word for Lion’s set as the 

experimenter had given for Frog’s set (rather than being scored correct/incorrect). Each trial was 

assigned a score of 1 if the child had answered the test question (“Frog had five strawberries. 

How many did Lion have?”) with the same number word as Frog’s. If a child gave a different 

number word for Lion’s snack, a score of 0 was assigned. If children see number words as 

specific, then they should give the same number word more often on same trials (where the 

snacks were identical) than on different trials (where the snacks differed by 1). 

Compare-Sets memory-check criterion. 1 child failed the memory-check question on half 

of her Compare-Sets trials. This child’s data were dropped from the analysis (see Participants, 

above). Of the other children’s data, 400 trials (94%) had valid memory-checks and were 

included in the analysis; 24 trials (6%) had failed memory checks and were excluded. (38 
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children missed no trials; 16 children contributed to the trials that had to be dropped. Only one 

child missed more than two trials.) When a trial was excluded, the composite measure (e.g., low-

same) was computed by doubling the score of the other, valid trial in the measure. If a child 

missed both memory checks of a given pair, no data were entered for that composite score (this 

happened three times). 

Procedure 

Data were collected in two sessions, no more than a week apart (mean 3 days apart). 

Subjects who were tested twice in the same day got the first session in the morning and the 

second session in the afternoon. Testing was done in a quiet room at the child’s school by a 

female experimenter. The first session included the Give-A-Number and Counting tasks; the 

second session included the Transform-Sets and Compare-Sets tasks. Order of tasks within the 

session was counterbalanced across participants. 

Results 

Performance Levels II and III were merged in the following analysis (n = 31, mean age 3-

5, range 2-10 to 4-1). A separate analysis showed no significant difference between Levels II and 

III on any measure. Unlike Wynn (1992), we did have a few children (n=7) who used counting to 

make sets of 5, but did not quite manage to do 6. In some cases, the problem was clearly 

procedural—the children lost track of which items they had already counted, etc. Several of the 

other children seemed to believe that six was a huge number. One child said, “Woo-hoo! Well 

I’m not a octopus, so I may not do too good on this.” These children typically gave all 15 items 

when asked for six. As another child reflected, “What is six? It’s a lot. It means all of them. One, 

two, three, four, five, six, seven, eight. It’s a big, long line of them.”  
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These children, along with children who succeeded at both numerosities 5 and 6, were 

placed in Performance Level IV (n = 23, mean age 3-8, range 2-11 to 4-1). A separate analysis 

showed no significant difference between the children who succeeded at 5 but not 6, and those 

who succeeded at both 5 and 6, on any measure. 

Transform-Sets task 

Trials were scored 1 or 0, according whether or not the child repeated the original number 

word after the set was transformed. If the SUN view is correct and children do see number words 

as specific, then the scores should be higher for same trials (where the box was merely shaken or 

rotated) than for different trials (where an item was gained or lost). If the ANB view is correct, 

children should be equally likely to repeat the initial number word, regardless of the type of 

transformation (at-chance performance would mean a score of 1 on both same and different 

trials). 

Figure 1 illustrates the results. The upper portion of the figure shows the response 

patterns that would be predicted by the SUN and ANB views, respectively. Note that the 

predictions differ only for Level II-III, and only on high-number trials (trials involving the words 

five and six). Predictions do not differ for low-number trials (represented by the solid black and 

confetti-patterned bars in each cluster), since these trials involve the already-mapped number 

words two and three. Predictions also do not differ for Level IV children (not pictured in the 

upper portion of the figure), who have mapped the exact meanings of the high number words and 

presumably should do well at the task.  

The lower portion of the figure shows the actual responses of children at each 

performance level. As expected, all children did well on the low-number trials, and Level IV 

children did well on both low- and high-number trials. However, the Level II-III children also 
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did well on the high-number trials. As predicted by the SUN view, they kept the same number 

word for sets that had been shaken or rotated (solid white bar), but used a different number word 

for sets that had gained or lost an item (diagonal-patterned bar). 

A 2 (level: II-III vs. IV) x 2 (number: low vs. high) x 2 (concordance: same vs. different) 

repeated measures ANOVA revealed a main effect of concordance on percentage of same-

number-word responses, F (1,51) = 124.61, p < .001. This reflects the fact that, on the whole, the 

children as a group were more likely to say that the number word of a set changed when an item 

was gained or lost, than when the set was merely shaken or rotated. There was no main effect for 

number, and no significant interactions.  

Based on the original hypothesis, we also conducted a set of planned comparisons, 

focusing on low-same versus low-different and high-same versus high-different measures within 

subjects, by performance level. As expected, all children repeated the initial number word 

significantly more often on low-same trials than on low-different trials, ps < .001 by paired t-test. 

Most importantly, the same was true for the measures high-same versus high-different, ps < .001 

by paired t-test. A separate analysis of Level II found the same results even for this youngest 

group, ps < .01 by paired t-test. The mean of each performance level for each measure was also 

significantly different from chance (1.0), ps <. 05 by one-sample t-test, with one exception: the 

low-different measure for Level II children alone was not significantly different from chance, p = 

.16. 

Compare-Sets task  

Some children initially interpreted the question “Are their snacks just the same?” as 

asking about snack type rather than snack numerosity, making comments like “Yes, they are the 

same, and Frog has more” (see Karmiloff-Smith, 1977 for a related finding). The warm-up trials 
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were effective in clearing up this confusion; on the first warm-up trial 30 children (56%) 

answered incorrectly that the discrepant snacks were the same; on the first test trial, only one 

child (.02%) made this error. A separate analysis found essentially no differences between the 

children who initially made this error and those who did not (see Compare-Sets task under 

Results, below). 

Trials were scored 1 or 0, according to whether or not the child gave the same number 

word for Lion’s snack as the experimenter had given for Frog’s snack. If the SUN view is correct 

and children do see number words as specific, then the scores should be higher for same trials 

(where the snacks were identical) than for different trials (where the snacks differed). If the ANB 

view is correct, children should be equally likely to give the same number word, regardless of the 

type of trial (chance would be a score of 1 on both same and different trials). 

Figure 2 illustrates the results. The upper portion of the figure shows the response 

patterns that would be predicted by the SUN and ANB views, respectively. Note that the 

predictions differ only for Level II-III, and only on high-number trials (trials involving the words 

five and six). Predictions do not differ for low-number trials (represented by the solid black and 

confetti-patterned bars in each cluster), since these trials involve the already-mapped number 

words two and three. Predictions also do not differ for Level IV children (not pictured in the 

upper portion of the figure), who have mapped the exact meanings of the high number words and 

presumably should do well at the task.  

The lower portion of the figure shows the actual responses of children at each 

performance level. As expected, all children did well on the low-number trials, and Level IV 

children did well on both low- and high-number trials. On this task, however, Level II-III 

children performed at chance on the high-number trials. As predicted by the ANB view, they 
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were not more likely to apply the same number word to two identical sets (solid white bar) than 

to two visibly different sets (diagonal-patterned bar). 

A 2 (level: II-III vs. Level IV) x 2 (concordance: same vs. different) x 2 (number: low vs. 

high) repeated measures ANOVA revealed a main effect of concordance on percentage of same-

number-word responses, F (1,49) = 45.38, p < .001. This reflects the fact that, on the whole, the 

children as a group were more likely to apply the same number word to two identical sets than to 

two visibly different sets. There was also a Concordance x Number interaction, F (1,49) = 12.55, 

p < .001, reflecting children’s greater success on low-number trials (involving numbers 2 and 3) 

than on high-number trials (involving the numbers 5 and 6). Finally, there was a Concordance x 

Level interaction, F (1,49) = 8.26, p < .01, reflecting the fact that Level IV children performed 

better than Level II-III children overall. There was no main effect of number, and no significant 

interactions of Number x Level or Concordance x Number x Level. 

Based on the original hypothesis, we also conducted a set of planned comparisons, 

focusing on low-same versus low-different and high-same versus high-different measures within 

subjects, by performance level. As expected, all children were significantly more likely to give 

the same number word on low-same trials than on low-different trials, ps < .001 by paired t-test. 

On the high-number trials, however, only Level IV children, who knew the exact meanings of 

five and/or six, predicted that identical sets should have the same number word and that differing 

sets should not, t(20) = 4.93, p < .001. Level II-III children were not more likely to apply the 

same number word to identical sets than to differing sets, p = .48. The mean responses of Level 

IV children were also significantly different from chance (0.1) on both measures, ps < .01, 

whereas Level II-III children responded at chance. 
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A separate analysis compared children who misunderstood the control question on the 

first warm-up trial as asking about snack type rather than snack numerosity with the performance 

of children who had not made this error. This analysis found no differences in the performance 

of children at Level II-III. At Level IV, there was no difference found for three of the measures 

(low-same, low-different, or high-different). On the high-same measure, children who initially 

made the error (n=9) actually performed better than the other children, t(20) = -2.75, p = .01.  

Discussion 

What do these findings tell us about how children use number words? In particular, do 

children expect unmapped number words to refer to specific, unique numerosities? Apparently, it 

depends on the task. Both the Transform-Sets task and the Compare-Sets task had significant 

results, but in opposite directions. The Transform-Sets results suggest that children do treat 

unmapped number words as unique and specific. The fact that children who did not know the 

meanings of five and six nonetheless expected these words to change with the addition or loss of 

one item is consistent with what we have termed the SUN view. On the other hand, the 

Compare-Sets results are more consistent with what we have termed the ANB view. On the 

Compare-Sets task, children who did not know the meanings of five and six applied the same 

word to unequal sets, and different words to identical sets.  

The Compare-Sets findings are consistent with those of Condry, Cayton, and Spelke 

(2002). In that study, children at Level II did not judge that the words four and eight should 

change with numerosity. However, that study also found that Level II children could not recall 

the initial number word even in the absence of any transformation, a question equivalent to the 

memory-check question used in our Transform-Sets task. Level II children in the present study 

answered the question correctly on 109 of 120 trials (89%). In other words, they showed no 
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evidence of the difficulty described by Condry et al. This leads us to believe that the Condry et 

al. task may simply have been more difficult than ours. For example, 2- and 3-year-olds may 

have found the forced-choice format of the present study easier than the yes/no format of the 

Condry et al. task. 

Returning to the present study, there appear to be two possibilities:  

1. the Transform-Sets task is a valid measure of children’s SUN knowledge, whereas the 

Compare-Sets task underestimates it, or  

2. the Compare-Sets task is a valid measure of children’s SUN knowledge, whereas the 

Transform-Sets tasks overestimates it.  

Let us consider each of these possibilities separately. The first possibility is that children 

at Levels II and III do understand the SUN principle as it is described here, but nevertheless 

responded at chance on the high-number Compare-Sets trials. This is really two questions: (1) If 

children know the SUN principle, why didn’t they apply it on the high-number trials; and (2) If 

they didn’t apply it on the high-number trials, why did they apply it on the low-number trials?  

Question (2) is easy to answer. The children did not need to apply the SUN principle on 

the low-number trials. It was possible to succeed on these trials just by recalling the numerosity 

of each animal’s snack. As we know from infant research, the numerosities 2 and 3 can be 

identified without counting. Thus, the question  

Frog had three peaches—do you think Lion had two or three? 

 could be interpreted as, simply  

Do you think Lion had two or three peaches? 

The child could answer this question by recalling what Lion’s snack looked like, without 

thinking about Frog’s snack at all. 
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Question (1) is more puzzling. Of course a task may simply be too difficult, but the 

memory-check criterion verified that the children were paying attention and remembered 

whether the snacks were the same or not. The Level III children, who performed at chance on the 

high-number compare-sets trials, were not much younger than the Level IV children, who 

performed above chance (average age 3-7 vs. 3-8). Nor were they much less proficient at 

counting, at least at the numerosities tested here (Level III children were able to count sets of 5.6 

on average, vs. 5.8 for the Level IV children). Neither of these differences even approached 

statistical significance. So the results probably don’t reflect greater ability of the Level IV 

children overall, but rather some specific developmental change related to number. Is that change 

the acquisition of the SUN principle?  

If so, we have arrived at possibility (b) -- that Level II-III children do not apply a SUN 

principle to higher number words, but were somehow able to succeed on the Transform-Sets task 

anyway. In fact, there is a way they might do so. The task contrasted quantitative changes 

(adding or subtracting 1 object) with non-quantitative changes (shaking or rotating). Perhaps 

children could succeed on this task just by knowing that the words five and six have something to 

do with quantity. They could reason that when quantity changed, the number word changed. 

When quantity stayed the same, the number word stayed the same. Perhaps children would 

expect any quantifier to change under these circumstances, not just number words. What is 

needed is a test that determines whether children distinguish number words from other 

quantifiers like some or a lot. Although both types of words relate to quantity, the SUN principle 

only applies to number words.  

Study 2 looked at children’s use of six and a lot. We reasoned that if they treat these 

words as synonymous, then the findings from the Transform-Sets task could be reinterpreted and 
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it would be reasonable to conclude that children do not have a SUN assumption. If, on the other 

hand, children do not treat six and a lot as synonymous, then it seems reasonable to conclude that 

children do have a SUN assumption about number words, but that the Compare-Sets task for 

some reason failed to elicit it. 

Study 2 

A new task directly assessed whether children who do not yet know the exact meaning of 

six consider it synonymous with a lot. We reasoned that if children view six as specific and 

unique, then a set of six should no longer have six after more items are added. If (as we speculate 

above) the Transform-Sets task taps into children’s treatment of quantifiers in general, rather 

than number words in particular, then children should also expect the label a lot to change with 

the addition of more items to a set. On the other hand, if children expect only six and not a lot to 

change when quantity changes, then it would seem that they really do treat number words 

differently. This would allay our concerns about the Transform-Sets task. 

Besides helping us interpret the results of earlier tasks, we hoped that this task would 

allow us to include Level I children. (Level I children had been dropped from Part 1 after early 

testing showed that most of them failed the memory-check questions on the Transform-Sets and 

Compare-Sets tasks.) In Part 2, children were first sorted into performance levels, and then given 

a novel task contrasting the terms six and a lot. 

Method 

Participants 

Participants included 17 children (10 girls, 7 boys) ages 2-7 to 3-6 (mean 3-1), recruited 

from the same preschools as in Part 1. Based on the Abbreviated Give-a-Number task, these 

children were sorted into performance levels: Level I children (n = 7 mean age 2-10, range 2-7 to 
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3-3), Level II children (n = 7, mean age 3-2, range 2-10 to 3-5), and Level III children (n = 3, 

mean age 3-4, range 3-1 to 3-6). Another two children tested were at Level IV; their data were 

dropped from the analysis. 

Tasks 

Abbreviated Give-A-Number task. The purpose of this task was to sort children into 

performance levels. Materials included the monkey puppet and erasers from Part 1. Children 

were asked for one, three, and six erasers; often this was enough to determine their performance 

level. (For example, a child who gave 1 for one, 3 for three, and 6 for six (by counting) was 

placed in Level IV. On the other hand, a child who gave 1 for one, 2 for three, and 2 for six was 

placed in Level I. If necessary, children were also asked for two and five erasers. (E.g., a child 

who succeeded at one and failed at three would be asked for two; a child who grabbed 6 for six 

without counting would be asked for five.) Children might also be asked for any or all of the 

number words a second time. (E.g., a child who gave 1 for one, 3 for three, 3 for six, 2 for two, 

and grabbed 5 for five without counting was asked for three, five and six again.) In order to 

succeed at a given number word, children had to give the correct numerosity for that number 

word each time they were asked (once or twice) and also refrain from ever giving that 

numerosity for another number word.  

Six-Versus-A-Lot task. The purpose of this task was to determine whether children at 

Levels I-III treat six and a lot as synonymous. Materials included 2 plastic bowls, approximately 

13 cm in diameter and 7 cm deep, and 10 clear plastic containers of small objects (e.g., pennies, 

see Appendix). There were two warm-up trials, followed by eight test trials. For the warm-up 

trials, the empty bowls were placed in front of the child, who was told  
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The way we play this game is, I’m going to put one penny in here (experimenter places 1 

penny in a bowl) and one penny in here (experimenter places 1 penny in the other bowl). 

All right. So this bowl has one penny in it, and this bowl has one penny in it. And here 

are some more pennies (experimenter pours all the remaining pennies into one of the 

bowls). Okay, now I’m going to ask you a question about one penny. Which bowl has 

one penny? 

The other warm-up trial was the same except for the final question, which was “Okay, 

now I’m going to ask you a question about some pennies. Which bowl has some pennies?” Order 

of warm-up trials was counterbalanced across participants. The purposes of these warm-up trials 

were (a) to show that either bowl (the one containing additional objects or the one that remained 

unchanged) could be the correct choice, and (b) to check that the child understood basic 

quantifiers. Children who did not contrast one with some on the warm-up trials were excluded 

from the analysis (5 children were excluded for this reason). 

The test trials were similar to the warm-up trials, except that the experimenter started by 

placing 6 objects in each bowl. The test trials were of 2 types: six trials and a lot trials. On the six 

trials, the child was told (for example)  

I’m going to put six pennies in here (experimenter places 6 pennies in a bowl) . . . and six 

pennies in here (experimenter places 6 pennies in the other bowl). All right. So this bowl 

has six pennies, and this bowl has six pennies. And here are some more pennies 

(experimenter pours all the remaining pennies into one of the bowls). OK, now I’m going 

to ask you a question about six pennies. Which bowl has six pennies?  

On the A Lot trials, the child was told  
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I’m going to put a lot of pennies in here (experimenter places 6 pennies in a bowl) . . . 

and a lot of pennies in here (experimenter places 6 pennies in the other bowl). All right. 

So this bowl has a lot of pennies, and this bowl has a lot of pennies. And here are some 

more pennies (experimenter pours all the remaining pennies into one of the bowls). OK, 

now I’m going to ask you a question about a lot of pennies. Which bowl has a lot of 

pennies? 

Trials were blocked so that each child completed four of one type and then four of the 

other. Order of blocks was counterbalanced across participants. To maintain their interest, 

children were allowed to pour the objects back into their original container after each trial, and to 

choose the objects for the next trial.  

 

Results and Discussion  

Because there were too few children at each performance level to compare levels 

systematically, all participants’ data were analyzed together. Each trial received a score of 1 if 

the child pointed to the bowl that had more objects added, or 0 if the child pointed to the bowl 

that remained unchanged (i.e., still contained 6 objects). Figure 3 illustrates the results. Overall, 

children did not apply the word six to a set of six-plus-more items (black bar). However, they did 

apply the phrase a lot to a set of a-lot-plus-more items (white bar). These response patterns were 

significantly different from each other t(16) = -7.03, p < .001, and significantly different from 

chance (2.0), ps < .05. A separate analysis of Level I children alone showed that even in this 

youngest group, the response patterns were still significantly different-- both from each other, 

paired t(6) = -20.14, p < .001, and from chance (2.0), ps < .001.  
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One concern was that children’s answers might be influenced by a pragmatic contrast 

between six and a lot. For example, a child who received the a lot trials first might, when 

presented with the six trials, choose the less-full bowl-- not because she saw six itself as specific, 

but simply because a different word would prompt a different response. To control for this 

possibility, a separate analysis was conducted of the first block of trials only. This analysis found 

even stronger results in the predicted direction, independent samples t(16) = -9.62, p < .001. 

Children’s application of six to the unchanged numerosity was clearly not prompted by a 

pragmatic contrast with a lot. 

Thus it appears that children do not treat six and a lot as synonymous, even at Level I. A 

possible objection to the Six-Versus-A-Lot task is that since a large number of objects are added, 

it leaves open the possibility that six could still be considered an approximate quantifier of 

relatively small sets. For example, if children considered six to mean approximately 4-8 objects 

(but not 50), they might say that the full bowl did not contain six, without thinking that six is a 

specific number. However, this seems unlikely because the Transform-Sets task described in Part 

1 of this study found the same results when sets changed by only 1 item. 

General Discussion 

On Balance, Results Favor the SUN View  

We now have results from 3 tasks designed to find out whether children expect 

unmapped number words to refer to specific, unique numerosities. On the Transform-Sets task, 

children who knew the exact meanings of the words one and two only (Level II) or of one, two, 

and three only (Level III) judged that the application of five and six changes when a set gains or 

loses even a single item. They also judged that the application of five and six does not change 

when a set is merely shaken up or turned around. On the Compare-Sets task however, Level II-
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III children were willing to apply the same unmapped number word (five or six) to two unequal 

sets, and to apply different words to identical sets.  

The Six-Versus-A-Lot task attempted to resolve this conflict by testing a possible flaw in 

the Transform-Sets task, namely that it might tap into children’s knowledge of quantifiers in 

general, rather than number words in particular. On this task however, children did not treat the 

non-numerical quantifier a lot as specific—only the number word six. This inclines us to believe 

that children do indeed view unmapped number words (unlike other quantifiers) as referring to 

specific, unique numerosities, even before they know exactly which numerosity each word refers 

to. In terms of the views of number-word learning described in the introduction to this paper, we 

believe that, despite the contradictory findings of the Compare-Sets task, our results tend to 

support the SUN view, rather than the ANB view.  

This interpretation also accords well with our anecdotal experiences of testing. A great 

many children (perhaps half of all children tested) initially responded to requests like Can you 

give six apples to the monkey by saying “I don’t know how to do six.” (The experimenter’s reply 

in these cases was “That’s okay, you can just do your best.”) After such an exchange, at least one 

child responded to the follow-up question (Is that six?) with an optimistic “Maybe!” Such 

behavior is consistent with a view of number words as specific. 

How to Explain the Compare-Sets Results? 

We are thus left with the question of how to interpret the Compare-Sets results. If 

children do have a SUN assumption, why did they not use it to perform this task? The Compare-

Sets memory-check criterion ensured that the children were paying attention and remembered 

whether the sets were ‘the same’ or not. The Level IV children (who did very well on the task) 

were not significantly older or more proficient at counting than the Level III children (who 
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performed at chance), so we assume that the Level IV children’s success does somehow derive 

from having mapped the exact number-word meanings. But if we want to argue in favor of the 

SUN view that Level II-III children already view unmapped number words as referring to exact 

numerosities, then how does mapping the words to their meanings help children succeed on the 

Compare-Sets task? We discuss several possible answers below. 

Unmapped number words might tax short-term memory. Even if children understand that 

unmapped number words refer to unique numerosities, mapping each word to its numerosity 

could make the whole package easier to think about. A similar phenomenon has been observed 

with regard to language development at the community level. Hunt and Banaji (1988) observed 

that over a period of decades, Californian surfers have developed a vocabulary for describing 

waves, including the terms hollow and flat. Presumably, an earlier generation of surfers would 

have described the same waves using sentences. Recognizing word meanings mainly uses long-

term memory; analyzing sentence structure mainly uses short-term memory. Thus, the 

development of specialized terms allows speakers to shift the burden from short-term to long-

term memory. It could be that mapping the meaning of a number word confers a similar gain in 

short-term memory. This suggestion is consistent with theories on the development of expertise 

in other domains (see e.g., Ericsson and Charness, 1994; Kintsch, Patel, & Ericsson, 1999). 

Approximation. Another possibility is that Level II-III children chose to give approximate 

answers on the Compare-Sets task1. It is not unusual for adults to use number words in 

approximate ways. Consider the following hypothetical conversation: 

Colleague A: “How big was Intro Psych when you taught it last year?” 

Colleague B: “300 students. Why? Did they split it up this year?” 

Colleague A: “No, it’s still 300.” 
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Of course, both speakers know that the exact number of students enrolled is probably not 

300. But in this context, 300 is close enough. Why would Level II-III children use approximation 

on the Compare-Sets task if Level IV children don’t? And why only on the high-number trials? 

Perhaps because, as discussed above, unmapped number words are unwieldy concepts, making 

the whole task more difficult. Adults might also use approximation in cases when accurate 

answers are difficult to come by-- imagine Colleagues A and B again, chatting in the hallway. 

Colleague B: “So, how many students do you have in Intro Psych?” 

Colleague A: “300.”  

On the other hand, imagine that B asks A the same question in A’s office, where the 

latest enrollment figures happen to be sitting on the desk right in front of A. 

Colleague B: “So, how many students do you have in Intro Psych?” 

Colleague A: (glancing down at desk) “297.”  

The simplest explanation of the difference in A’s answers would be that when the 

enrollment information was sitting right in front of her, an exact answer was easy to give. In the 

hallway, it would have been difficult. 

For children at Level II-III, the fact that unmapped number words are placeholders (albeit 

placeholders for specific, unique numerosities) might make them awkward enough, and the 

Compare-Sets chain of inferences cumbersome enough, to be avoided in favor of an approximate 

answer.  For Level IV children, however, calculating the correct answer is easy (as it is for Level 

II-III children on the low-number trials, either through inference or recall) and so the exact 

answer is offered. 

Continuous versus discrete quantities. Still another possibility is that the children may 

have analyzed the Compare-Sets stimuli as continuous quantities rather than as sets of discrete 
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objects2. In fact, the stimuli were designed in a way that encouraged this—they were pictures of 

slightly overlapping items (e.g., peaches), placed in a row. This was done deliberately, so that 

children could use length cues to determine easily whether the rows were equal or not. 

(Remember that we were most interested in children at Levels II and III, who could not yet use 

counting to make this determination.) Even if, as we have argued in this paper, children view 

unmapped number words as referring to specific numerosities, they may not apply this reasoning 

to their thinking about continuous quantities.  

What is needed to test this possibility are two new tasks. One task should be as similar as 

possible to the Compare-Sets task but use stimuli that children analyze as sets of discrete objects. 

The other task should be as similar as possible to the Six-Versus-A-Lot task (or the Transform-

Sets task) but use stimuli that children analyze as continuous quantities. If children applied the 

SUN principle in the case of discrete objects but not continuous quantities, the discrepancy in 

findings of the present study would be explained. 

Food versus non-food items. A related explanation hinges on the fact that the Compare-

Sets stimuli were pictures of food, whereas the stimuli in the other tasks were not3. Could this 

have prompted children to think about the stimuli in a different way? Specifically, in light of the 

continuous-versus-discrete question mentioned above, food arrays may be particularly prone to 

analysis as continuous quantities. In her work with chimpanzees, Boysen (1996, 1999) has 

reported a response bias when candy arrays are used as stimuli. The bias disappears when 

symbolic representations of number are used instead. It is possible that children, like chimps, 

think about food differently than they think about buttons and batteries. 

What is needed to test this possibility are, again, two new tasks. One should be similar to 

the Compare-Sets task but use non-food arrays. The other should be similar to the Six-Versus-A-



  Six does not     32 

Lot (or Transform-Sets) task, but use food. If children applied the SUN principle to the non-food 

items but not the food items, then the discrepancy in findings of the present study would be 

explained. 

Number Words in Different Contexts are not Analyzed as Homonyms 

Some theories (including, but not limited to the ANB theory described in this paper) have 

suggested that children first learn the number words as homonyms. That is, they assume that the 

counting word five and the determiner five have unrelated meanings, despite sounding the same. 

If the SUN view is correct, then the homonym idea probably is not. In order to apply the SUN 

principle to cardinal number words and not overextend it to all quantifiers, children must have 

some way of figuring out which words are the cardinal number words in the first place. (The fact 

that children do not overextend the SUN principle to cover all quantifiers is demonstrated by the 

Six-Versus-A-Lot task reported here.)  

How do children identify the cardinal number words as a special subset of quantifiers? 

According to the homonym view, children cannot use the fact of these words appearing in the 

counting sequence as evidence about their properties, since these two contexts are not connected 

in the child’s mind. Perhaps children use contextual cues to identify the cardinal numbers? 

Bloom and Wynn (1997) have identified four properties of cardinal number words. Number 

words (a) are used only with count nouns-- two dogs but not two water, (b) do not appear with 

modifiers-- very much but not very three, (c) precede adjectives in the noun phrase-- four yellow 

cars but not yellow four cars, and (d) can occur in the partitive construction-- five of the boys. 

Could it be that children apply the SUN principle to any word with these properties? 

We think not. Of the four properties, (c) and (d) are true of all quantificational 

determiners, and (a) and (b) are true of subsets including (but not limited to) number words. 
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There are even a few non-number words (another, several) that fit all of these criteria. But there 

is no evidence that children mistakenly believe that another or several are number words.  

On the other hand, children do identify the counting words as a set, a point made by 

Fuson (1988, p. 35): 

Children seem to learn very early the distinction between words that are in the number-

word sequence and words that are not in the sequence. In our experiments through the 

years with 3-, 4-, and 5-year-olds, not one of the more than 500 subjects has ever used 

anything but number words when asked to say the sequence or to count entities. With 

more than 40 2-year-olds, three children have used letters from the alphabet (either alone 

or mixed in with number words) on one trial each. Gelman and Gallistel (1978) also 

reported very infrequent use of nonnumber words in counting by 2- to 5-year-olds. 

Baroody (1986b) reported for a large sample of moderately and mildly retarded children 

aged 6 to 14 that only one ever used nonnumber words when counting (the alphabet was 

used). (p. 35) 

It seems likely that children are able to distinguish cardinal number words from other 

quantifiers by noticing that only these words (and not other quantifiers, like a lot) are also used 

in counting. The discovery that children apply a SUN principle to unmapped number words 

supports this assumption.  

If the Idea of Large, Exact Numerosities is not Acquired with the Cardinal Principle, Then 

When? 

The question of whether children assume that sets have specific numerosities is different 

from the question of whether children assume that number words label these numerosities. The 

latter, however, entails the former. Because we have argued here that children treat number 
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words as referring to specific numerosities, we have implicitly argued that children conceive of 

such things as specific numerosities.  

This point is not uncontroversial. Hurford (1987), who has written in detail about number 

systems across languages, suggests that the culturally earliest systems of representing number do 

not allow for the expression of large, exact numerosities at all. Peter Gordon (2003) reports on a 

contemporary Amazonian people who use a one/two/many quantifier system and have trouble 

establishing numerical equivalence among large sets. Bilingual studies (e.g., Spelke and Tsivkin, 

2001) suggest that exact arithmetic facts are represented in a language-specific format, and 

transfer poorly to other languages and facts (Dehaene, Spelke, Pinel, Stanescu, & Tsivkin, 1999). 

Such findings have led scholars to wonder whether the very idea of large, exact numerosities 

might in itself be acquired along with the linguistic number system-- the essence of the ANB 

view described above.  

On the other hand, the historian of numbers Georges Ifrah discusses several methods of 

calculating large, exact numbers in the absence of number words. These include carving notches 

on bones or sticks, tying knots in string, and putting pebbles in a pile (the word calculation 

derives in fact from the Latin calculus, “small stone”). Ifrah offers the example of a shepherd 

tending a herd of 55 sheep. Lacking any word for the number 55, the shepherd can nonetheless 

keep track of his flock on a piece of wood or bone, by carving one notch into it for each sheep. 

Each morning and evening, as the sheep move between shelter and pasture, the shepherd can 

“count” them off by moving his finger down the row of notches (Ifrah, 1985, p. 9). The use of 

such methods bespeaks an understanding that large, exact numerosities exist, even by people 

who lack number words to describe them. In that case, it would seem wrong to conclude that 

people who have no number words also have no idea of number.  
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After all, the reverse seems possible—to have a formal command of numbers without 

much intuitive grasp of the quantities they represent. The authors of this paper can add, subtract, 

multiply and divide the numbers one million, one billion, and one trillion. Given enough time 

and objects, we believe we could generate these numerosities for a puppet. But our sense of the 

quantities involved remains so poor that neither of us knew until recently which number most 

closely approximated her own age in seconds.4  

These and other considerations (including as the findings reported here) suggest that 

linking counting to cardinal number words is unlikely to be the way children learn to conceive of 

exact, large numerosities. Just how they do so remains unclear. To say that the idea of exact 

numerosities is present before Level IV is not to say that it is innate. All the children in the 

present study knew at least one, and usually two exact number words—language could still play 

an important role in the development of numerical concepts, just not the role described in the 

ANB view.  

Then again, perhaps in attributing an integer list to adults, and then asking how children 

acquire it, scholars have misunderstood the difference between adult and child knowledge of 

numbers. Perhaps what all of us have, besides the number sense we share with other animals 

(Dehaene, 1997), is just the belief that large, exact numerosities exist, plus better or worse 

technologies for keeping track of them. The linguistic number system allows us to represent 

numerosities far beyond the range of our unaided number sense, but at the end of the day we may 

still have much in common with Teddy, angling for that magic number of M&M’s.  
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Appendix 

Six-plus-more Task Materials 

Label Description Approx. no. 

Batteries AA and AAA batteries, assorted brands  50 

Beads Wooden hair beads, 1.5 cm long x 1 cm diameter  100 

Beans Dried black beans, 1 cm x 0.5 cm  1500 

Buttons White and clear buttons, 1cm to 2.5 cm diameter  500 

Candles Pink birthday candles, 6 cm long x 0.5 cm diameter  72 

Fish Foam cut-out fish, assorted colors, 3.5 x 3.3 cm x 2 mm  100 

Jingle bells Gold-colored jingle bells, 0.5 cm to 1.5 cm diameter  150 

Paper clips Vinyl coated paper clips, assorted colors, 2 cm x 0.5 cm  200 

Pennies U.S. pennies  100 

Washers Hexagonal machine screw nuts, 1 cm diameter  500 
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Footnotes 

1 We are grateful to Stanislas Dehaene and an anonymous reviewer for suggesting this 

possibility. 

2 We are grateful to Alan Leslie for suggesting this possibility. 

3 We thank Alan Leslie for suggesting this possibility as well.  

4 HINT: 1 million seconds = about 11-1/2 days; 1 billion seconds = almost 32 years; 1 trillion 

seconds = the amount of time that has passed since the Neanderthals disappeared (Paulos, 1988, p. 

10). 
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Figure Captions 

Figure 1. Hypothesized and Actual Responses, Transform-Sets task. 

Figure 2. Hypothesized and Actual Responses, Compare-Sets task. 

Figure 3. Results of Six-Versus-A-Lot task. 
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SUN view ANB view

(a) Hypothesized Responses, Levels I-III,        
Compare-Sets Task
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