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Prediction of snow in regional and global hydrological models has been a difficult task due
to errors in the forcing data, subgrid-scale variability in the snowpack, and uncertain model
physics. This dissertation conducts thorough studies of uncertainties that are concerned with
snow modeling, in particular for high mountain areas. First, an in-depth analysis of uncer-
tainties associated with meteorological forcing data in the Sierra Nevada was performed. The
use of ensemble forcing data with a reasonable degree of uncertainty and model parameter
adjustments did not overcome the low-bias in simulating snow states using a simple two-layer
(2-L) snow model in the Variable Capacity Infiltration (VIC) land surface model (LSM). To
reveal the uncertainty related to model parameterization, a multi-layer (M-L) soil-snow model
with more complexity has been developed. This dissertation examines the impact of model
complexity on snow simulations in high mountains by comparing the M-L model and the 2-L
model. While the current VIC LSM solves state variables for soil and snow separately, the
new M-L model solves state variables for the integrated soil-snow system simultaneously. This
dissertation has found that the complex M-L model performs better than the 2-L model overall,
in particular during the melting season, but the added complexity did not significantly remove
the uncertainty, which is similar to some other researchers’ findings. This conclusion has led
this dissertation research to data assimilation work to investigate the uncertainty problem from
a different angle.

The data assimilation approach was taken to discover the hidden facets of uncertain land
surface processes that could not be explained by the complex M-L soil-snow model. This
research uses a multiscale data assimilation scheme that allows for incorporation of data with
different scales. As an extension of the traditional state space model (e.g., Kalman filtering), the
multiscale data assimilation incorporates data at different scales by computing their conditional
probabilities in a scale-recursive way. The multiscale assimilation scheme has been embedded
into the M-L soil-snow model of the VIC LSM. This dissertation applies the new assimilation
system to the West Coast region to examine the impact of snow data assimilation at the
regional scale as well as at the local scale. The assimilation at the local and regional scales
showed promise by reducing biases in simulating snow states in the region. In addition, this
research shows the impact of snow data assimilation on energy flux and streamflow simulations.
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Chapter 1

Introduction

The existence of snow cover significantly changes the land surface processes governing the
energy and water cycles. Change in surface albedo due to snow cover affects the overall energy
balance of the snow-covered area, leading to reduced surface temperature and cooling of the
lower boundary of the atmosphere [1]. Simulations of surface climate by General Circulation
Models (GCMs) have large feedbacks with snow cover whose magnitude depends on the snow
process representation of GCMs [2] [3]. In the western United States snow is an important water
supply source for both urban and agricultural uses. In the region, mountain snowmelt accounts
for about 75% of the annual streamflow [4]. In addition to supporting water resources predic-
tions, long-term snow cover monitoring can provide a record of atmospheric climate change of
the region [5] [6]. Using data supported process-oriented models creates more accurate predic-
tion of snow processes during winter and helps provide better water resources services to the
region [7] [8].

Prediction of snow in regional and global hydrological models has been a difficult task due
to errors in the forcing data, subgrid-scale variability in the snowpack, and uncertain model
physics [9]. In particular, simulating snow processes in high mountains such as the Sierra
Nevada is challenging due to additional uncertainties associated with high subgrid-scale varia-
tions of landscape and hydrologic variables (e.g., precipitation) with altitude [10]. Therefore, in
mountainous regions addressing uncertainty is necessary in preparing simulations and analyzing
simulation results. When forcing data and model parameters are prepared for simulations in
high mountains, it is necessary to know the nature of meteorological forcing data and parame-
ters for the area of interest. When necessary, modelers should consider sources of uncertainty
such as the undercatch of precipitation to avoid unreasonable simulation results. In addition,
ignoring uncertainties in the analysis of simulation results will likely contribute to errors in the
state variables under study.

This dissertation conducts thorough studies of uncertainties that are concerned with snow
modeling, in particular for high mountain areas. Many studies have focused on either the
forcing data or model physics to understand uncertain land surface processes [11] [12]. This
dissertation research considers uncertain factors from both forcing data and model physics,
and further presents a method to reduce the uncertainty. First, forcing data, which are the
input to the snow model, are investigated by answering the following questions: (1) why are
forcing data problematic in high mountains? (2) how do the uncertain input data translate

2



to simulation results? and (3) how much does forcing-induced uncertainty compare relative
to other uncertainty factors. The answers to these questions from this study indicate that
forcing data is the dominant contributor to the uncertainty in simulating snow state variables
in a mountain basin of the Sierra Nevada. But this uncertainty associated with forcing data
does not explain everything. For instance, even though quality forcing data that are believed
to represent the model grid cell are used, there exists a large discrepancy between simulated
and observed snow states. In addition, as will be discussed later, the snow albedo scheme
can change simulation results in magnitude as much as precipitation-induced uncertainty for
certain environments. This incomplete understanding of snow process uncertainty leads this
dissertation to its second subject: development of a more complex snow model. This dissertation
focuses on understanding how adding physical process complexity to an existing simple model
can reduce the uncertainty associated with model physics.

Finally, this dissertation discusses how the uncertainties associated with forcing data and
model physics can be alleviated. The data assimilation approach was taken to discover the
hidden facets of uncertain snow processes that could not be explained by greater understanding
of meteorological forcing data and more complex modeling techniques. In particular, the data
assimilation study employs a multiscale process to consider the complex terrain and high spatial
gradient of hydrologic variables with altitude in mountainous areas.

The subsections that follow introduce each of the subjects related to snow process uncer-
tainties.

1.1 Uncertainty in Forcing Data

This dissertation investigates the response of snow-related state variables to uncertain
forcing data as the first step to understanding snow process uncertainties. In high mountains,
the uncertainty associated with meteorological forcing data is conspicuous [13] [14], and the
precipitation error is measurably large [15]. A recent study using NLDAS data has shown that
significant underestimations of snow water equivalent (SWE) by land surface models (LSM)
exist for mountainous regions [16]. Most of the low-biases for SWE result from precipitation
underestimates due to spatial heterogeneity, wind blowing, and scarce measurement gages. As
shown in studies such as [17] using large low or high-biased forcing data cannot produce simula-
tion results comparable to ground observations even through complex modeling. In this regard,
this dissertation sets as its starting point the use of quality data that represent model grid cells
better than normally available forcing data. The Distributed Hydrologic Model Intercompari-
son Project - Phase 2 (DMIP2) provides specially derived precipitation and temperature data
that reduce low biases in high mountain sites of the Sierra Nevada. Based on these datasets
and other secondary forcing data from the North America Land Data Assimilation System
(NLDAS) [18] and North American Regional Reanalysis (NARR) [19], this dissertation aims at
understanding the impacts of uncertain forcing data to snow state variables.

The measure of uncertainty for forcing data is the uncertainty range in noisy ensemble
datasets. The basic approach to the generation of noisy ensemble data is the state space model
approach. For precipitation data, other methods such as an autoregressive model are used due
to the intermittent nature of precipitation events. We compute the moments of the posterior
distribution for the data and use them to generate ensemble data with reasonable levels of noise.
By adding measurement noises to the quality gridded data (i.e., DMIP2 data) at reasonable

3



levels, this study investigates the impact of these perturbed forcing data on snow variables.
This dissertation focuses on learning whether the simulated ensemble SWE values based on
the perturbed forcing can explain the underestimation of SWE that frequently occurs in the
Sierra Nevada. The detailed methods and results are presented in Chapter 2. This chapter also
explains how data from different sources are combined.

1.2 Development of Multi-layer Soil-Snow Model

A new multi-layer soil-snow model is developed and validated to understand the con-
tribution of model physics to uncertain snow processes. The fundamental approach to this
understanding is to investigate how added model complexity affects the simulation of snow
state variables and the energy budget. Quite a few snow model intercomparison studies have
been conducted to address the complexity issue [20] [21]. It is fairly easy to determine whether
a new model is better than an old model or whether one model is better than the other. How-
ever, it is often more complex to identify which snow process makes a difference in terms of the
state variable (e.g., snow depth) of interest than to develop a complex snow model itself. In
many snow model comparison projects including [20] and [22], it is not easy to define which
process is the dominant cause of discordant results among models because descriptions of snow
processes for each model are different.

The development of a new soil-snow model focuses on examining the uncertainty associated
with model physics. With this goal, the model developed in this dissertation investigates the
effect of more complex descriptions of heat transfer in the snow layers. By adding complexity
of physical processes to the existing model, we want to know how this complexity reduces or
increases uncertainty and what additional effort is required by the complex model to reduce the
uncertainty. As will be discussed in later chapters and sections, increasing model complexity
requires more work in terms of computational cost and parameter adjustment as well as more
understanding of physical processes. For easy identification of contributing processes to the
reduction of uncertainty, we focus on representations of heat transfer in the soil and snow
systems while leaving snow surface boundary conditions the same between the existing model
and the new complex model. We build upon the subcomponent two-layer snow model of the
Variable Infiltration Capacity (VIC) land surface model (LSM) and develop a new multi-layer
model within the framework of the VIC LSM. The existing snow model successfully simulates
snow variables in various environments, implying that processes at the surface such as latent
heat transfer are well described by the model. Therefore, it is reasonable to focus on the heat
transfer process through the snow and soil layers and its related processes, which the current
simple model does not have. The details of model development and its results are the subject
of Chapter 3.

1.3 Multiscale Data Assimilation

The previous two major efforts to study uncertainties in model forcings and other factors
in complex model development cannot overcome the majority of the large SWE underestimation
found between the model and SNOpack TELemetry (SNOTEL) observations for mountainous
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regions. The main reason for this problem is due to underestimation of areal precipitation.
Even though we used a precipitation product that incorporated the point-scale observations
from SNOTEL stations, there is a large discrepancy between model simulations and the ground
observation. Even when model-data scale differences are considered, the magnitude seems to
be large. Two simple solutions to this problem are to adjust precipitation data locally and to
run the model at fine scales. In this dissertation study, a data assimilation method is instead
used to reduce the uncertainty related to snow processes.

Assimilation of remotely sensed retrievals into a snow model is an important method to
reduce uncertainties associated with the estimates of snow states. To use data assimilation in
an advantageous way it is critical that the data assimilation scheme account for the uncertainty
structure of both the physical model and observations. To this end, this dissertation study
employs a multiscale data assimilation scheme. Many studies (e.g., [12]) related to snow
modeling uncertainty have focused on characterizing the uncertainty related to the temporal
evolution of the snow variable of interest. However, in high mountains where land surface
environments vary sharply in space, many factors that cause uncertainty are hidden in scale.
We therefore present a method to relate the variable of interest at one scale to another scale to
overcome the unfavorable conditions for physical snow models in high mountains. Moreover,
this method allows us to obtain estimates of snow variables at different scales by getting optimal
parameters for the multiscale process. Chapter 4 introduces the methodology for the multiscale
process and presents the results from an uncertainty experiment based on this method.

This study extends its study scale for the application of the multiscale process from grid
cells to a region that includes states of Washington, Oregon, California, and part of Nevada.
This regional application work is used to understand the impact of the multiscale data assim-
ilation on hydrological variables at different scales. More efforts are made in the simulation
of streamflow that represents the characteristics of hydrological states including snow within a
watershed. This work is presented in Chapter 5.
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Chapter 2

Understanding of Uncertainty in

Forcing Data

2.1 Introduction

Snow processes are affected by various uncertainties such as model physics and meteoro-
logical forcing data. In high mountains, the uncertainty associated with meteorological forcing
data is large [13] [14]. In particular, the precipitation error is dominant. Precipitation gauge
measurement errors involve several processes, including catch errors due to wind-blowing and
losses from evaporation [15]. In this chapter, we investigate the basic response of the land
surface model to the uncertain forcing data. This dissertation focuses on the response of snow-
related state variables to uncertain forcing data.

Many current land surface models simulate hydrological variables using distributed mod-
eling techniques. Their meteorological forcing data are provided for each modeling unit, usually
known as a model grid cell. An areal mean value represents the model grid cell and is inher-
ently different from point scale data. Throughout this chapter we use the areal mean data to
represent model grid cells and investigate their uncertain behavior.

NLDAS provides publicly available areal mean forcing data that cover the continental US
in 1/8th degrees [18]. A recent study using NLDAS data has shown that significant underesti-
mations of snow water equivalent (SWE) by land surface models (LSM) exist for mountainous
regions [16]. Most of the low-biases for SWE result from precipitation underestimation in the
dataset. For the same reason, all four land surface models that participated in the NLDAS
project underestimated the mean annual runoff in the northern Rocky Mountains [17]. NL-
DAS hourly precipitation data are generated by combining daily gauge-based precipitation and
hourly radar-based (Doppler radar with gauge bias correction) precipitation data [18]. One
of the reasons for such low-bias is that the ability to obtain accurate precipitation data from
ground-based radar or gauge measurement for mountain areas is very limited [23]. Note that
version 2 of NLDAS products shows some improvement in precipitation data, which will be
presented in Chapter 5.
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An effort to provide more accurate meteorological forcing data for distributed modeling
has been initiated in the Sierra Nevada via the Distributed Hydrologic Model Intercomparison
Project - Phase 2 (DMIP2) data. The DMIP2 experiment in the Sierra Nevada intends to test
various models in areas of complex hydrology, where accurate forcing data are not available
and model simulations are affected by terrains with high spatial gradients. DMIP2 data are
provided in a finer resolution (i.e., approximately 4 km) than NLDAS data. Its precipitation
data incorporate estimates from three different sources to provide more accurate areal mean
precipitation for the Sierra Nevada [24]. Because the DMIP2 precipitation estimation method
uses ground gage measurements and SNOw pack TELemetry (SNOTEL), it reduces the under-
catch problem that is conspicuous in NLDAS precipitation data. DMIP2 also provides hourly
temperature grids that are derived from daily minimum and maximum temperature records of
gages. Our experiment in this chapter takes advantage of the resolution and quality of DMIP2
data. For example, its temperature data are comparable to the point measurement at the SNO-
TEL station. Figure 2.1 shows the temperature comparison between the point measurement
at the Ebbetts Pass SNOTEL station and its corresponding areal mean values for the 1/8th
degree model grid cell (For precipitation data see Figure 2.7).

Using gridded data comparable to point measurements provides an ideal environment to
examine how uncertain forcing data affect snow-related state variables. This chapter aims to
examine the effect of uncertain forcing data on snow water equivalent simulations using the
DMIP2 data for precipitation and temperature that represent model grid cells better than the
existing NLDAS data. By adding measurement noise to the quality gridded data at reasonable
levels, we investigate the effect of these perturbed forcing data on snow variables. For this
purpose, we generate perturbed ensemble forcing data and analyze their effect. In particular,
this chapter focuses on learning whether the simulated ensemble SWE values based on the
perturbed forcing can explain the underestimation of SWE that frequently occurs in the Sierra
Nevada. For other energy forcing data such as shortwave radiation we combine data from
NLDAS [18] and North American Regional Reanalysis (NARR) [19]. This chapter also explains
how data from different sources are combined.

2.2 Representation of Forcing Uncertainty

2.2.1 Study Site and Data

The study site is the East Fork Carson River Basin in the Sierra Nevada. Figure 2.2 shows
the basin boundary and two SNOTEL stations within the basin. This basin is used for the
Distributed Hydrologic Model Intercomparison Project - Phase 2 (DMIP2). The basin outlet at
East Fork Carson River near Gardnerville, NV covers 922 km2 and is located at latitude 38.845
and longitude -119.70361. We will revisit this basin in Chapter 5 for streamflow simulation.
We use two SNOTEL stations as shown in Figure 2.2. The Ebbetts Pass SNOTEL station is
located at latitude 38.549550 and longitude -119.804650 and the Blue Lake station at latitude
38.607800 and longitude -119.924433. Both of these stations are located in high altitudes with
elevations 8765 feet and 8057 feet, respectively.

DMIP2 provides hourly precipitation and temperature data for the period of 1987 - 2002.
DMIP2 hourly precipitation data use three data sources: 1) hourly cooperative observer gauges,
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Figure 2.1: Temperature comparison between point measurements at the Ebbetts Pass station
and areal mean values at the corresponding grid cell for the 2001 water year.

2) daily total cooperative gauges, and 3) SNOTEL daily precipitation gauges. The daily val-
ues are disaggregated to hourly estimates using the nearest hourly gauge values. The esti-
mated hourly data are interpolated to approximately 4 km Hydrologic Rainfall Analysis Project
(HRAP) grids [25] using an inverse-distance method [24]. The HRAP grid in 4 km x 4 km
resolution was regridded into 1/8th degrees using a weighted spatial averaging algorithm, which
is presented in Appendix D. The hourly temperature grids are estimated from daily minimum
and maximum temperature records of gages.

Other secondary forcing data such as shortwave radiation and pressure are prepared by
combining NARR [19] and NLDAS products. The 3-hourly NARR data are provided in a
resolution of 32 km and regridded into our model grid, which is 1/8th degree. Using the state
space model described in the following subsection, the two datasets are combined to generate
smoothed estimates and related statistics. We use the 2-layer (2-L) snow model of the VIC
LSM for simulations throughout this chapter.

2.2.2 Generation of Ensemble Forcing Data

2.2.2.1 State space approach

A linear state-space model is used to perturb meteorological forcing data. The basic idea is
to obtain the posterior distribution of the sequence of data of interest. For temperature, we have
only one observation from DMIP2 and use it in the observation equation. For other secondary
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Figure 2.2: Study site in the East Fork Carson River Basin.

forcing data (e.g., longwave radiation), we use two observations from NARR and NLDAS
products. Depending on the forcing variable, the trend of each time series shows different
behavior. For example, pressure data behaves like a random walk process (see Figure 2.9)
while radiation data have cyclic behavior. Temperature data show a trend over the water year.
The ideal approach to obtaining the posterior distribution is to prescribe the best model for
each forcing variable. In this study, we use a simple linear model to represent all the variables.
However, we use the Expectation Maximization (EM) algorithm [26] to estimate optimal model
parameters (e.g., noise term covariances) for the model that differ from one forcing variable to
another. For the details of the EM algorithm see Appendix G. For every case, we use the same
observations as the hidden state we want to estimate without data transformation. Thus, our
linear assumption is especially true for the observation equation in the state-space model.

The state space model can be represented by:

xt+1 = Axt + wt (2.1)

yt = Cxt + vt (2.2)

where t is time index, xt and yt are the state and observation at time t, respectively, A and C
are linear operators, wt ∼ N(0, Q), and vt ∼ N(0, R). As usual, we assume that vt and wt are
white and independent of the state xt. Because we are modeling the same state variable as the
observation, C is set to 1.
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From the Markov property and the Bayes rule, the posterior density can be expressed as

p(xt+1|yt+1, y0, ..., yt) ∝ p(yt+1|xt+1, y0, ..., yt)p(xt+1|y0, ..., yt)

= p(yt+1|xt+1)p(xt+1|y0, ..., yt)

= p(yt+1|xt+1)

∫

p(xt+1, xt|y0, ..., yt)dxt

= p(yt+1|xt+1)

∫

p(xt+1|xt, y0, ..., yt)p(xt|y0, ..., yt)dxt

= p(yt+1|xt+1)

∫

p(xt+1|xt)p(xt|y0, ..., yt)dxt (2.3)

where p(·) is a general Gaussian density function and we use conditional independences from
the Markov property to convert the integrand into an easy form for integrating out xt.

As in Blight [27], the posterior density in the final form of Equation 2.3 can now be solved
analytically. The full derivation is available in Appendix F. Using notations in [28] we define

x̂t|t ≡ E[xt|y0, ..., yt] (2.4)

Pt|t ≡ E[(xt − x̂t|t)(xt − x̂t|t)
T |y0, ..., yt] (2.5)

The posterior density can now be written as

xt+1|yt+1, y0, ..., yt ∼ N(x̂t+1|t+1, Pt+1|t+1) (2.6)

with

x̂t+1|t+1 = x̂t+1|t +Kt+1(yt+1 − x̂t+1|t)

Pt+1|t+1 = Pt+1|t −Kt+1CPt+1|t (2.7)

where Kt+1 is the quantity known as Kalman gain.
Once we have these posterior mean and covariance for a sequence of data, we can use the

posterior distribution to generate Gaussian random numbers. For our experiment, we generate
100 perturbed ensemble datasets.

2.2.3 Ensemble Precipitation

Precipitation data have intermittent properties showing a sequence of wet and dry days
for a given period. Therefore, it is difficult to use the general approach to generating ensemble
forcing data based on the posterior distribution of the time series without transformation of the
original data. One thing to note is that we can still use the general state space model approach
for precipitation perturbation by transforming the original data into cumulative format. While
the general approach is possible, we use two different methods to perturb precipitation data.
The first approach is concerned with sampling-related uncertainty of precipitation data. The
sampling-related error is one of the main sources of errors in estimating precipitation [29]. Even
though DMIP2 precipitation data are produced by interpolating ground-based observations, it
is provided in a spatially gridded format similar to radar or satellite precipitation. Therefore, in
this synthetic experiment we assume the underlying interpolation errors as equivalent to radar
or satellite sampling errors. For the second approach an autoregressive (AR) model is used to
generate error time series by assuming some statistics.
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First, we use a simple scaling law proposed by Steiner et al. [30]. The sampling error E is
calculated as:

E = 0.008(
R0

R
)0.20(

L0

L
)0.70(

T0

T
)0.35(

∆t

∆t0
)1.05 (2.8)

where R is the rainfall rate in mm/h, L is the length scale of the domain in km, T is the
accumulation period in days, and ∆t is the sampling interval in hours. The constants have
values R0 = 1mm/h, L0 = 500 km, T0 = 30 days, and ∆t0 = 1 hour. In our study, L is taken
as the length of one side of the model grid cell. For T we use 1 day considering the method of
DMIP2 data generation.

Nijssen and Lettenmaier [11] applied the sampling error to produce synthetic precipitation
sequences. Assuming a log-normal distribution, the perturbed precipitation values are produced
as:

Pt =

(

1√
E2 + 1

e
√

ln(E2+1)ǫ(0,1)

)

P (2.9)

where Pt is the perturbed hourly precipitation, P is the hourly DMIP2 precipitation, E is the
sampling error in Equation 2.8, and ǫ(0, 1) is the error from normal distribution with zero mean
and unit variance.

In this experiment, hourly precipitation values were perturbed to generate 100 ensemble
precipitation data for each grid cell independently. Precipitation was perturbed only when
precipitation occurs, keeping the original wet and dry sequence. We use Equation 2.8 for solid
precipitation during cold seasons. Because there is no information about the spatial correlation
of sampling errors and we use only a small number of grid cells, it is assumed that the sampling
errors are spatially uncorrelated.

Following the notation in Shumway and Stoffer [31], the AR model for the error time series
is written as:

ǫt = φǫt−1 + wt (2.10)

where wt is the white noise with zero mean and variance σw and φ a scalar parameter. The
details for this model are introduced in Appendix E.

The AR model needs a prescribed error standard deviation to generate random numbers.
A different number of error standard deviations can be used but in this experiment we use 0.6,
based on initial tests which show reasonable results comparable to the sampling error approach.

2.3 Effect of Uncertainty

Figures 2.3, 2.4, and 2.5 show the ensemble simulation of SWE for the grid cell cor-
responding to the Ebbetts Pass SNOTEL station for the water years 2000, 2001, and 2002,
respectively, using the perturbed precipitation data based on the sampling method. Figure 2.6
shows the effect of ensemble precipitation on SWE simulation for the water year 2002 using the
AR method. Compared to the water year 2002, the ensemble simulation based on the sampling
method shows a wider uncertainty range than that of the AR method. However, the uncertainty
ranges of SWE from both methods do not explain the underestimation of SWE values. Be-
cause our simulation is conducted for gridded cells, it is not easy to directly compare the model
simulated SWE with the observed point-scale SWE. Considering that the DMIP2 precipitation
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and temperature data represent the model grid cell very well, however, the magnitude of the
underestimation for the Ebbetts Pass station is large.

To understand this underestimation of SWE even with perturbed precipitation, we have
calculated the cumulative precipitation from DMIP2 and solid precipitation from the snow
model and compared them with SWE from the Ebbetts Pass station. Figure 2.7 shows this
comparison for the water year 2002. As shown in the figure, at the beginning of the accumulation
period the DMIP2 precipitation and calculated solid snow show similar values to the observed
SWE, but diverge as intermittent melting occurs. Moreover, the cumulative solid snow is less
than the observed SWE. In fact, in order to match the model simulated SWE to observed
SWE, the solid snow should be more than the measured SWE because of the intermittent
melting. This comparison implies that the DMIP2 precipitation should be much higher than
the current value to reduce the underestimation of SWE even though the areal mean value does
not necessarily have to be matched with the point-scale observation. Note that the temperature
values from DMIP2 were very close to those of the SNOTEL observation.
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Figure 2.3: Ensemble simulation of SWE using the sampling method for water year 2000.

Precipitation is known as the most dominant forcing in simulating SWE [32]. Compared to
the precipitation effect on SWE simulations, we also examined the effects of other forcing data.
Figure 2.8 shows ensemble simulations of SWE using the 100 perturbed DMIP2 temperature
data. In comparison with the effect of precipitation, its uncertainty range is very small. Because
of the strong nonlinearities in land surface hydrological processes, temperature effect may be
increased in some cases and reduced in others, depending on the location. For example, when
the temperature is very low and the downward radiation is weak during the accumulation
season, it is likely that temperature uncertainty may not play a big role. In Figure 2.8, the
temperature uncertainty is amplified when melting occurs even though the overall uncertainty
magnitude is much less than that of precipitation.

Figures 2.9 and 2.10 show the smoothed pressure and longwave radiation driving data,
respectively, using NLDAS and NARR products. These smoothed estimators were computed
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Figure 2.4: Ensemble simulation of SWE using the sampling method for water year 2001.
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Figure 2.5: Ensemble simulation of SWE using the sampling method for water year 2002.
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Figure 2.6: Ensemble simulation of SWE using the AR method for the water year 2002.
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Figure 2.7: Comparison of cumulative DMIP2 precipitation, cumulative solid snow from the
snow model, and SNOTEL SWE.
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Figure 2.8: SWE simulations based on ensemble temperature data for the water year 2002.

by the state space approach described in Section 2.2. Based on the smoothing and EM-based
parameter estimation, we computed the posterior distribution, which is then used to gener-
ate 100 ensemble datasets. As discussed earlier, the pressure data from NLDAS and NARR
behave like a random walk process and can be well modeled by our simple linear state space
model. Figures 2.11 and 2.12 show the difference between the baserun simulation and each
of the ensemble simulations for longwave and shortwave radiation, respectively (for convenient
comparison, the differences are plotted). The baserun simulation is forced with DMIP2 grid-
ded precipitation and temperature and smoothed secondary energy forcings from NLDAS and
NARR. Compared with the effect of precipitation perturbations, the effects by longwave and
shortwave are much smaller. In the comparison between longwave and shortwave radiations,
the effect of perturbed shortwave radiation is larger than that of longwave radiation due to the
larger magnitude of shortwave radiation fluxes, particularly during the cold season.

2.4 Conclusion

The results from ensemble simulations show that perturbed forcing data with reasonable
uncertainty cannot reduce the underestimation of SWE. Considering that the gridded precipita-
tion and temperature data are from the DMIP2 product that represents the grid cell very well,
these results show that more uncertainty factors need to be addressed. One of the factors was
found in the comparison between the calculated solid precipitation (i.e., snow) and the observed
SNOTEL SWE. In comparison, the solid precipitation was less than the observed SWE, which
led to underestimation of SWE in the model simulations. Among the forcing variables used,
the effect of precipitation uncertainty was the largest. Temperature followed precipitation and
other secondary forcing variables were smaller than these two.
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Figure 2.9: Smoothed estimator for pressure during October 1999.
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Figure 2.10: Smoothed estimator for longwave radiation during October 1999.
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Figure 2.11: Difference in SWE between the baserun and 100 ensemble simulation using the
perturbed longwave radiation for the water year 2000 at the Ebbetts Pass SNOTEL station.

−
10

−
5

0
5

10

S
W

E
 D

iff
er

en
ce

s 
B

et
w

ee
n 

E
ns

em
bl

e 
an

d 
B

as
e 

R
un

s 
(m

m
)

1999−Oct 1999−Dec 2000−Feb 2000−Apr 2000−Jun 2000−Aug

Figure 2.12: Difference in SWE between the baserun and 100 ensemble simulation using the
perturbed shortwave radiation for the water year 2000 at the Ebbetts Pass SNOTEL station.
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DMIP2 precipitation data are bias-corrected in a sense, at least by removing the systematic
low bias of NLDAS for a subdomain of the Sierra Nevada. It is likely that DMIP2 precipitation
and temperature data are the most accurate ones we could use for distributed modeling unless
we use point-scale adjustments for gridded data. However, our results indicate that there
are still undercatch problems in the raw precipitation data (e.g., cooperative rain gage data)
on which the DMIP2 precipitation product is based. This situation leads us to a question
of snow model physics. We are interested in learning how a more complex model combined
with quality forcing data would help improve the underestimation problem and the degree to
which it would help. At this moment, it seems that at least a more thorough examination of
snow processes is needed to understand the underestimations, which may not be explained by
uncertainties in the forcing data. The underestimation problem is a result of the combination
of uncertain forcing and model physics. Underestimation of SWE due to forcing data with a
large undercatch may not be overcome by any snow model. But we may need to learn how new
snow parameterizations could change the underestimation problem with quality forcing data
such as DMIP2 precipitation and temperature to fully understand the uncertain processes of
snow. In the following chapter, we develop a new snow model and investigate its impact on
simulating snow states.
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Chapter 3

Model Complexity and Its Impact

3.1 Introduction

Snow models have been developed for a wide range of purposes from point scale to global
scale applications. Because of the importance of snow physics in global circulation modeling,
many snow models were developed as components of global circulation models (GCMs) [1].
Snow models were also designed and implemented to monitor snow states at the point scale.
At the local scale, snow models are used for hydrological applications and avalanche studies.
The results from the previous chapter showed that simulations with perturbed ensemble forcing
data did not explain the low bias problem in high mountain sites of the Sierra Nevada. In this
chapter, we are concerned with understanding what portion of this uncertainty a snow model
can explain by developing a more complex snow model.

One of the issues regarding snow model development is the impact of snow model com-
plexity on simulation of snow state variables and energy budget. A small number of snow model
intercomparison studies have been done to address the complexity issue [20] [21]. Many model
intercomparison studies have attempted to discover whether more complicated snow models
with more complete snow processes perform better than simple models. An important study
objective for them is to identify which internal processes play a dominant role in explaining
uncertainties associated with snow model physics and how the identified processes can improve
model performance.

Intercomparison studies of snow models can be classified into: 1) comparison of snow
models using different land surface parameterizations and 2) comparison of snow models using
the same parameterization but with different internal processes. The former includes studies
done by Schlosser et al. [33], Jin et al. [34], Pan et al. [16], Bowling et al. [21], Nijssen et
al. [35], Etchevers et al. [20], and Feng et al. [22]. The latter is well represented by Boone and
Etchevers [36]. Etchevers et al. [20] implemented the SnowMIP project for a more general com-
parison of snow models and found that more sophisticated models do not necessarily perform
better than simpler models. In some cases, simple models simulate snow states better than
sophisticated models.

Depending on study methods, data and study locations, the impacts of snow model com-
plexity are evaluated differently. Model complexity itself is not easy to define because snow
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internal processes for each model are different [20]. Moreover, the difference in land surface
parameterization into which a snow model is incorporated increases the overall complexity for
modeling and analysis. For this reason, a simple criterion for complexity classification such as
the number of snow layers is often used. An array of snow model complexity studies have been
conducted focusing on intercomparison of snow models under different land surface parameter-
ization schemes. When many different models with different levels of complexity are involved
in an intercomparison study, it is often hard to interpret the results because of the complexity
of land surface parameterization [35].

This study aims to address the issue of snow model complexity with a specific goal. Our
experiment focuses on examining the effect of model complexity when we add complexity to
an existing LSM (i.e., VIC LSM). The benefit of this experiment is that we can understand
which physical processes make a difference and which processes do not contribute to model
performance more clearly. The snow model component of the VIC LSM has been evaluated to
simulate snow states (e.g., SWE) relatively well. Feng et al. [22] showed that VIC simulations
are in good agreement with those of SNTHERM [37], which is one of the most complex snow
models. The 2-layer snow model of VIC performed equivalently or sometimes better than the
Community Land Model version 3 (CLM3), which uses five snow layers. Pan et al. [16] showed
that VIC simulated SWE relatively well compared with the other snow models used in the
NLDAS project. VIC also participated in the Project for Intercomparison of Land-surface
Parameterization Schemes (PILPS) Phase 2(e), and the 2-L snow model in the VIC LSM
captured the overall dynamics of snow accumulation and ablation [35]. Even though the 2-L
snow module of the VIC LSM has been evaluated favorably in many simulations, we hypothesize
that there are more internal processes to be added to improve snow processes at a reasonable
level of computational cost. In this regard, we develop a new snow model by adding more
complexity to the existing snow model of the VIC LSM and compare the effect of complexity
between the two models. The fundamental change in complexity is moving from a 2-L structure
to a multi-layer one. This internal process comparison can be done more effectively when using
the same land surface boundary conditions under the same LSM.

Processwise, the snow model developed in this study focuses on a more complete descrip-
tion of heat transfer in the snow layers. In snow model intercomparison studies, both different
boundary conditions and different complexity levels inside the snow layers are used to compare
snow models. This is one of the reasons that snow models show great variability during abla-
tion processes. Even a simple snow model may contain many parameters. In order to make
our comparison experiment reasonably affordable, we limit our experiment to the effect of the
heat transfer through the snow and soil layers and its associated physical processes, including
density changes across the layer. Therefore, we focus on the thermal process in the soil and
snow with the boundary condition in the snow surface having the same formulation between
the two models. For the snow-air boundary condition, we use the formulation used in [38].

One thing to be cautious about complex model development is the expense of running
the model. Since the new multi-layer model allows an unlimited number of vertical layers as
in SNTHERM [37], its computational cost is larger than the existing 2-L model. In order to
reduce the computational cost, we changed some structure of the VIC LSM for cold processes
(see the following section for details). As a result, we combine snow and soil layers into one
single system to solve hydrological variables simultaneously. This simultaneous processes saves
some computational cost by consolidating two numerical non-linear solving process for snow
and frozen soil into one process, created by a new soil-snow model.
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3.2 Development of Multi-layer Soil-Snow Model

3.2.1 Change in Model Structure

The new soil-snow model accounts for direct interactions of thermal fluxes between the
soil and snow systems, combining them as one system. The most significant feature is that the
main variables (e.g., temperature and water content) for the soil and snow layers are simulated
as one system simultaneously. Thus, the heat fluxes through soil and snow layers are calculated
seamlessly. The new model adopts a multiple-layer approach to describe the changes of variables
over time and layer depths more precisely. For example, snow density changes are simulated
over time and depth following Anderson [39]. The new soil-snow model can be embedded in land
surface models (LSM) or run as a stand-alone system when the necessary input and output for
the new model are provided. The new soil-snow model has significantly changed the framework
of the VIC LSM for cold season processes.

Figure 3.1 shows the layer structure of the new soil-snow system, which includes the
snow layers, the soil moisture layers, and the soil thermal nodes. During the cold season, the
temperature profile of the frozen soil is computed, and subsequently the water content for each
soil node is obtained. Then the calculated water content is redistributed over the three soil
moisture layers in the same way as in Cherkauer and Lettenmaier [38]. Even though the soil
and snow systems are shown separately to demonstrate the details of each system, they are
treated as one system in the solution processes. That is, the bottom layer of the snow system
communicates with the top layer of the soil system directly in terms of heat fluxes when snow
is present on the ground. When the number of the snow layers is N , the zero-based index for
the top soil thermal node is N (Figure 3.1). Since the top 30 cm of the snow layers are sensitive
to changes in snow thermal conductivity, a shallow thickness (e.g., 5 cm) is applied for these
layers. For the other layers, the thickness of each layer increases as the depth from the surface
increases for numerical efficiency. The number of layers and their thicknesses can be changed
by the user due to the model’s flexible structure.

For the soil system, the top two layers are shallow (e.g., 10 cm) to be consistent with the
structure of the soil moisture layers from the VIC LSM. As shown in Figure 3.1, the bottom
of the soil system is fixed as an annual average temperature at the damping depth. This fixed
temperature is used as a Dirichlet boundary condition for the whole snow-soil system. Note
that in Figure 3.1 we assume the number of soil thermal nodes as seven for illustration purposes
but any number of nodes can be given by the user. For the soil moisture layers, we use the
same structure as that of the original VIC LSM. The number of soil moisture layers is taken as
three with the top layer being very thin (e.g., 10 cm) by default [40].
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Figure 3.1: New soil-snow model structure

3.2.2 Soil Model

3.2.2.1 Governing equation

The general governing equation for heat flux in the soil column can be written as:

Cs
∂T

∂t
= −∂G

∂z
+ ρiLf(

∂Wi

∂t
)

G = −κ∂T
∂z

(3.1)

where G is the soil heat flux in the z direction, Cs is the volumetric specific heat of soil
(Jm−3K−1), κ is the soil thermal conductivity (Wm−1K−1), ρi is the density of ice (kgm−3),
Lf is the latent heat of fusion (Jkg−1), and Wi is the ice content of the layer (m3m−3). Each
term in Equation 3.1 has a unit of Wm−3. If we let κ change each time step, we can write the
equation in the following form:

Cs
∂T

∂t
=
∂κ

∂z

∂T

∂z
+ κ

∂2T

∂z2
+ ρiLf(

∂Wi

∂t
) (3.2)

Flerchinger and Saxton [41] use the following equation to express the frozen soil moisture
in terms of the layer temperature and other known values:

Wl = W c
max

[(

1

gψe

)(

LfT

T + 273.15

)]−1/b

(3.3)
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where Wl is the liquid water content (i.e., fraction of unfrozen water) (mm), W c
max is the

maximum (or saturated) water content (mm), g is acceleration due to gravity (ms−2), Lf is the
latent heat of fusion (Jkg−1), T is temperature (oC), and b is the pore-size distribution index.
The above equation relates the amount of unfrozen soil moisture (i.e., liquid water in the soil)
to soil properties, temperature, and maximum water content, and is also used in the current
VIC LSM [38].

3.2.2.2 Numerical solutions

The new soil-snow model solves temperature and water content simultaneously as one
system. However, we present the numerical solution for each system separately for convenience.
We use the Crank-Nicholson scheme where θ, the weight between explicit and implicit schemes,
is 0.5 by default. The Crank-Nicholson method has second-order accuracy in both time and
space. Now the governing equation can be represented by:

Cs

T n+1
j − T n

j
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= θ

(

∂κ

∂z

)n

j
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)n

j

+

ρiLf

(
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j − (Wi)

n
j

∆t

)

(3.4)

where j is the layer index, and n is the time index.
Equation 3.4 is a system of equations when used for multiple layers and thus can be

summarized as a matrix equation. We use a multi-dimensional version of the Newton Raphson
(NR) method to solve the system of equations. In this case, the NR method is a multi-
dimensional version. For a macroscale land surface model we need a fast nonlinear solving
algorithm, and the NR method is known to be efficient. To be used for the NR method, we
rearrange Equation 3.4 and equate it to fj to get:
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(3.5)

Note that fj is the governing equation in a finite-difference form for layer j.
The following numerical scheme is used for the first derivative:

(

∂T

∂z

)n

j

= 0.5

(

T n
j − T n

j−1

zn
j − zn

j−1

+
T n

j+1 − T n
j

zn
j+1 − zn

j

)

(3.6)

Note that the first derivative at layer j for time n is the average of the fluxes at the upper and
lower interface of layer. This configuration of numerical differentiation can reduce the numerical
error in a layer structure where each layer has a different thickness.
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In a simpler form, Equation 3.6 can be expressed as:
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(3.7)

where:
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The second derivative can be expressed in the following finite-difference form:
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In the similar way, Equation 3.8 can be expressed in a simpler form:

(
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= 2
F2soil

∆z1∆z2(∆z1 + ∆z2)
(3.9)

where F2soil can be expressed as:

F2soil = ∆z1T
n
j+1 − (∆z1 + ∆z2)T

n
j + ∆z2T

n
j−1

The NR method requires derivatives for each finite-difference form with respect to the
unknowns. The unknowns include T n+1

j−1 , T n+1
j , and T n+1

j+1 in the soil system.
First we define the first derivative as follows:

[U ]x (3.10)

where U is the variable we are taking the derivative of and x is the variable we take the derivative
with respect to.

Based on the definition above, we have the following derivatives for the time t = n:
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For time t = n+ 1, we have the following:

[
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Now we take derivatives for terms with the second derivatives. First for time t = n we
have:

[

(

∂2T

∂z2

)n

j

]

T n+1

j−1

= 0 (3.17)

[

(

∂2T

∂z2

)n

j

]

T n+1

j

= 0 (3.18)

[

(

∂2T

∂z2

)n

j

]

T n+1

j+1

= 0 (3.19)

For time t = n + 1 we have the follow set of results:
[

(

∂2T

∂z2

)n+1

j

]

T n+1

j−1

=
2

∆z1(∆z1 + ∆z2)
(3.20)

[

(

∂2T

∂z2

)n+1

j

]

T n+1

j

= − 2

∆z1∆z2
(3.21)

[

(

∂2T

∂z2

)n+1

j

]

T n+1

j+1

=
2

∆z2(∆z1 + ∆z2)
(3.22)

The final step for the derivatives is to take derivatives of fj with respect to T n+1
j−1 , T n+1

j ,

and T n+1
j+1 .

In the governing equation for the soil system (i.e., Equation 3.1), we have the ice content
term Wi, which can be expressed as

Wi = Wt −Wl (3.23)

where Wt is the total moisture of a given layer. Therefore, the derivative of Wi for layer j can
be written as:

[Wi]Tj
= − [Wl]Tj

(3.24)
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3.2.3 Snow Model

3.2.3.1 Governing equation

The governing equation for the snow layers is expressed as:

∂H

∂t
= −∂F

∂z
− ∂Rs

∂z

=
∂

∂z

(

Ke
∂T

∂z
−Rs

)

(3.25)

where H is the volumetric heat content (Jm−3), F is the heat flux (Wm−2), Ke is the effective
heat conductivity (J s−1 m−1 K−1) and Rs is net (downward) solar radiation (Wm−2). We
follow Verseghy [3] who used the following expression for volumetric heat content:

H = Cv(T − 273.15) − fsLfρsl (3.26)

where Cv is 1.9 × 106ρsl/920, fs is mass fraction of the solid portion of the layer, Lf is latent
heat of fusion (Jkg−1), and ρsl (kg m−3) is the snow density, which includes both solid and
liquid portions.

3.2.3.2 Numerical solutions

The surface layer of the snow system involves fluxes at the snow-atmosphere interface.
Thus, we explicitly treat the fluxes at the upper and lower interfaces of the first layer of the
snow system. Now Equation 3.25 can be written as:

Hn+1
0 −Hn

0

∆t
= −

F n
0+ 1

2

− F n
0− 1

2

∆zj=0
−

(Rs)
n
0+ 1

2

− (Rs)
n
0− 1

2

∆zj=0

=
F n

0− 1

2

− F n
0+ 1

2

∆zj=0
+

(Rs)
n
0− 1

2

− (Rs)
n
0+ 1

2

∆zj=0
(3.27)

where F n
0− 1

2

and F n
0+ 1

2

are the fluxes at the upper interface and lower interface of the first layer,

respectively. Similarly, (Rs)
n
0− 1

2

is the shortwave radiation at the snow-atmosphere interface,

and (Rs)
n
0+ 1

2

is the solar radiation flux at depth z = ∆zj=0. Thus, the solar radiation flux that

contributes to the first layer is (Rs)
n
0− 1

2

− (Rs)
n
0+ 1

2

.

If we do not specifically define the index for space, we consider it as at the snow-atmosphere
interface. That is, we can write as

(Rs)0− 1

2

= (Rs)

First, we need to define the flux at the snow-atmosphere interface. If we use j = 0 for the
surface layer, we can define the net flux at the interface as F0− 1

2

, which can be expressed as

F0− 1

2

= Rn + LE +H +Mp (3.28)

where Rn is net radiation, LE is the latent heat, H is sensible heat, and Mp is the advected
heat by precipitation. The unit of each flux term is Wm−2. Each of these terms is explained
in Liang et al. [42] and we briefly introduce them in the multi-layer perspective.
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The net radiation Rn is computed as:

Rn = fsaRs +RL − εσT 4
j=0 (3.29)

where fsa is surface attenuation factor due to vegetation coverage, Rs is incoming solar (short-
wave) radiation(Wm−2), RL is the downward longwave radiation (Wm−2), ε is the emissivity,
and σ is the Stefan-Boltzmann constant (Wm−2K−4).

The latent heat is computed as:

LE = Ls
0.622ρa

P

1

ra
(ea − es) (3.30)

where Ls is the latent heat of sublimation (J kg−1), ρa is the mass density of air (kg m−3), ea

is actual vapor pressure of air (Pa), P is the atmospheric pressure (Pa), and es is snow surface
vapor pressure (Pa). es is assumed to be equal to the saturation vapor pressure at the snow
surface temperature. When the snow surface temperature is equal to or greater than 0 ◦C, the
latent heat of vaporization Lv is used instead of the latent heat of sublimation. The saturated
vapor pressure over water is computed as:

es,water = 610.8exp

(

17.27(T − 273.15)

237.3 + (T − 273.15)

)

(3.31)

where T is in K.
However, the saturated vapor pressure over ice or snow is different from that over water.

es is approximated by [43]

es = es,water

(

1 + 0.00972(T − 273.15) + 0.000042(T − 273.15)2
)

(3.32)

where T is in K.
The latent heat of sublimation is also a function of the layer temperature and written

as [43]:
Ls = (677.0 − 0.07T ) × 4.1868 × 103 (3.33)

The latent heat of vaporization (Jkg−1) is calculated as:

Lv = (2.501 − 0.002361(T − 273.15)) × 106 (3.34)

where T is in K. We use Lv when the snow surface temperature is 0 ◦C. Therefore, Lv is
2.501 × 106 Jkg−1.

The sensible heat H is written as:

Hs =
ρacp
ra

(Ta − Tj=0) (3.35)

where cp is the specific heat of air at constant pressure (Jkg−1K−1), ra is aerodynamic resistance
(s/m), and Ta is the air temperature (K).

The advected heat is written as:

Mp = ρwcwTaPl
1

∆t
(3.36)

where cw is the specific heat of water (i.e., 4186 Jkg−1K−1), Pl is the amount of liquid rain (m)
during the model time step, and ∆t is the model time step. Note we divided the right-hand
side of Equation 3.36 by ∆t to use consistent units for the flux terms.
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If we combine all the terms related to the upper flux of the snow surface layer, we obtain

F n
0− 1

2

= fsaRs +RL − εσ(T n
j=0)

4

+Ls
0.622ρa

P

1

(ra)n
0

(ea − (es)
n
0 )

+
ρacp
(ra)

n
0

(Ta − T n
j=0)

+ρwcwTaPl
1

∆t
(3.37)

Since we derived the equation for the upper flux of the surface layer, we need to find the
flux from the bottom interface F0+ 1

2

. We write an equation for the flux at the interface between

layer j = 0 and layer j = 1 following [44] as:

F0+ 1

2

= −(DKe)
n
0,1(Tj=1 − Tj=0) (3.38)

where (DKe)
n
0,1 can be expressed as:

(DKe)
n
0,1 =

1
(

∆zn
j=0

2
+

∆zn
j=1

2

)





∆zn
j=0 + ∆zn

j=1

∆zn
j=0

(Ke)n
j=0

+
∆zn

j=1

(Ke)n
j=1



 (3.39)

Note that n denotes the previous time as usual.
Then we obtain

F n
0+ 1

2

= −(DKe)
n
0,1(T

n
j=1 − T n

j=0)

F n+1
0+ 1

2

= −(DKe)
n
0,1(T

n+1
j=1 − T n+1

j=0 ) (3.40)

Now we need to find derivatives for each term with respect to the unknowns. First, the
derivatives of F n

0− 1

2

are expressed as:

[

F n
0− 1

2

]

T n+1

j=0

= 0

[

F n
0− 1

2

]

T n+1

j=1

= 0

[

F n+1
0− 1

2

]

T n+1

j=0

= −4εσ(T n+1
j=0 )3

+Ls
0.622ρa

P

[

1

ra

(ea − (es)
n+1)

]

T n+1

j=0

+ρacp

[

1

ra

(Ta − T n+1
j=0 )

]

T n+1

j=0
[

F n+1
0− 1

2

]

T n+1

j=1

= 0

(3.41)
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The derivatives of F n
0+ 1

2

are given as

[

F n
0+ 1

2

]

T n+1

j=0

= 0

[

F n
0+ 1

2

]

T n+1

j=1

= 0

[

F n+1
0+ 1

2

]

T n+1

j=0

= (DKe)
n
0,1

[

F n+1
0+ 1

2

]

T n+1

j=1

= −(DKe)
n
0,1 (3.42)

Finally we combine all terms to yield:

f0 = Hn+1
0 −Hn

0 − θ
∆t

∆zj=0

F n+1
0− 1

2

− (1 − θ)
∆t

∆zj=0

F n
0− 1

2

+θ
∆t

∆zj=0

F n+1
0+ 1

2

+ (1 − θ)
∆t

∆zj=0

F n
0+ 1

2

+
∆t

∆zj=0

(Rs)
n
0+ 1

2

(3.43)

where we removed 1
∆zj=0

(Rs)
n
0− 1

2

because it is included in F0− 1

2

.

Now, we derive numerical solutions for the intermediate layers of the snow system. By
assuming the effective heat conductivity Ke as a function of z, we obtain:

∂H

∂t
=
∂Ke

∂z

∂T

∂z
+Ke

∂2T

∂z2
− ∂Rs

∂z
(3.44)

If we use the Crank-Nicholson method as we did for the soil system, Equation 3.44 can be
expressed as:

Hn+1
j −Hn

j

∆t
= θ

(

∂Ke

∂z

)n

j

(

∂T

∂z

)n+1

j

+ (1 − θ)

(

∂Ke

∂z

)n

j

(

∂T

∂z

)n

j

+θ(Ke)
n
j

(

∂2T

∂z2

)n+1

j

+ (1 − θ)(Ke)
n
j

(

∂2T

∂z2

)n

j

−
(

∂Rs

∂z

)n

j

(3.45)

Rearranging Equation 3.45 and letting it be fj yields:

fj = Hn+1
j −Hn

j − θ∆t

(

∂Ke

∂z

)n

j

(

∂T

∂z

)n+1

j

− (1 − θ)∆t

(

∂Ke

∂z

)n

j

(

∂T

∂z

)n

j

−θ∆t(Ke)
n
j

(

∂2T

∂z2

)n+1

j

− (1 − θ)∆t(Ke)
n
j

(

∂2T

∂z2

)n

j

+∆t

(

∂Rs

∂z

)n

j

(3.46)
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The derivatives for each term of Equation 3.46 are similar to those we derived from the
soil system. The only difference is for the derivatives of the volumetric heat content H , which
is expressed as:

Hn
j = (Cv)

n
j (T n

j − 273.15) − (fsLfρsl)
n
j (3.47)

Hn+1
j = (Cv)

n
j (T n+1

j − 273.15) − (fs)
n+1
j (Lfρsl)

n
j (3.48)

The derivatives of H with respect to the unknown temperatures are:

[

Hn
j

]

T n+1

j−1

= 0
[

Hn
j

]

T n+1

j

= 0
[

Hn
j

]

T n+1

j+1

= 0
[

Hn+1
j

]

T n+1

j−1

= 0
[

Hn+1
j

]

T n+1

j

= (Cv)
n
j

[

Hn+1
j

]

T n+1

j+1

= 0

(3.49)

3.2.3.3 Snow density

Snow density change over depth is one of the key features of the new soil-snow model.
In the 2-L model, a single density accounts for the state of the entire snowpack. In the new
model, we compute snow density for each layer to describe this property more explicitly. The
representation of density change in the multi-layered setting is based on Anderson’s work [39].
We begin with the basic physical relationship between snow water and snow layer thickness to
derive density change equations based on Anderson’s work. The relationship between the solid
portion density of the snow layer and its depth can be expressed as:

∆z =
Wsρw

ρs
(3.50)

where ∆z is the thickness of the layer (m), Ws is the snow water equivalent (m), ρw is the water
density, and ρs is the density of the solid portion.

We can take derivative on both sides with respect to time to yield:

∂∆z

∂t
= Wsρw

∂(ρs)
−1

∂t

= −Wsρw
1

(ρs)2

∂ρs

∂t
(3.51)

If we rearrange equation 3.51, we have

1

ρs

∂ρs

∂t
= −∂∆z

∂t

1

Wsρw

ρs (3.52)
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If we substitute Equation 3.50 into Equation 3.52, we obtain:

1

ρs

∂ρs

∂t
= −∂∆z

∂t

1

Wsρw

Wsρw

∆z
(3.53)

= − 1

∆z

∂∆z

∂t
(3.54)

The multi-layered snow model requires snow density to change over depth as well as in
time. We consider two-phase density changes: (1) snow settling and (2) compaction.

During destructive metamorphism of snow (e.g., from star-shaped crystals to rounded
aggregates), snow settling occurs, causing an increase in density. The influence of snow settling
is primarily important in the initial stages (i.e., new snow) following snowfall. For the estimation
of snow density changes due to settling, Anderson [39] suggested the following relationship as
a function of temperature and snow density:

1

ρs

∂ρs

∂t
= − 1

∆z

∂∆z

∂t
=

{

C3e
−C4(T0−T ) ρs ≤ ρd,

C3e
−C4(T0−T )e−0.046(ρs−ρd)C6 ρs > ρd

(3.55)

where C3 is the fractional settling rate at 0◦C for densities less than ρd, C4 and ρd are constants
to be determined by calibration. Yen [45] reports that the effect of snow settling is not significant
for densities greater than 250 kg m−3. Therefore, ρd is set as 150 kg m−3. The constant C3

assumes a value of 0.01 hr−1 or 2.78 × 10−6 s−1. C4 is assigned a value of 0.04 K−1. The value
of C6 depends on the bulk density of liquid water, ρl:

C6 =

{

2 ρl > 0

1 ρl = 0
(3.56)

Equation 3.56 indicates that the density change increases by a factor of 2 when liquid water is
present in the snow layer.

According to Anderson [39], the density change due to compaction can be expressed as:

1

ρs

∂ρs

∂t
= − 1

∆z

∂∆z

∂t
(3.57)

=
Ps

ηc

(3.58)

where Ps is snow load pressure (Nm−2) and ηc is the viscosity coefficient (m · hr) related to
snow density, temperature and snow type.

Kojima [46] found the following relationship between the compactive viscosity factor ηc

and the snow solid bulk density ρs:
ηc = ηte

C2ρs (3.59)

where ηt is the viscosity (m ·hr) at a temperature T , and C2 is a constant to be determined by
observed data. Mellor [47] further indicated that the relationship between ηt and η0, which is
the viscosity coefficient at 0 ◦C and ρs = 0 kg m−3, can be expressed as:

ηt = η0e
0.08(T0−T ) (3.60)
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Considering the dependence of density on temperature, the density change due to compaction
can be expressed as

1

∆z

∂∆z

∂t
= − 1

η0
e−C2ρse−0.08(T0−T )Ps (3.61)

Based on Kojima [46] and Mellor [47], Anderson suggested a value of 0.021 m3kg−1 for C2 and
3.6× 106 Nm−2s−1 for η0. These values are also used by Loth et al. [1].

3.2.3.4 Other parameters

The 2-L snow model considers solar radiation in the surface layer only. However, solar
radiation may penetrate below the surface layer and has a gradient over depth. Since shortwave
radiation flux intensity decreases over depth, we consider this process in a multi-layered manner.
The shortwave radiation flux can be expressed as:

Rs(z) = Rir(1 − α) exp(−νz) (3.62)

where Rs(z) is the net solar radiation flux (Js−1m−2) at a depth z, Rir is the incoming shortwave
radiation at the snow surface, α is surface albedo, and ν is the extinction coefficient. The value
of ν depends on the snow density and grain size. Bohren and Barkstrom [48] derived an equation
for ν as an approximate solution for solar radiation penetration into a snowpack:

ν = 0.0038
ρs√
d

(3.63)

where ρs is snow density (kg m−3), and d is grain diameter (m), and thus the scaling factor
0.0038 has units of m2.5 kg−1. Loth et al. [1] uses a parameterization for d following Ander-
son [39]:

d = a+ bρ4
s (3.64)

with the coefficients a = 1.6 × 10−4m, and b = 1.1 × 10−13m13 kg−4.
The concept of liquid water holding capacity is used to describe the gravitational flow of

liquid water. The liquid water holding capacity, Cr is parameterized as a function of the snow
density as used in Anderson [39], Loth et al. [1] and Jin et al. [34]

Cr =

{

Cmin
r ρs ≥ ρe,

Cmin
r + (Cmax

r − Cmin
r )ρe−ρs

ρe
ρs < ρe

(3.65)

where Cmin
r = 0.03, Cmax

r = 0.1, and ρe is 200 kg m−3.

3.2.3.5 Soil snow interface scheme

The model validation process in this dissertation research found that model results are
sensitive to the numerical scheme for the soil-snow interface (see the results on soil temperature
simulations for details). Therefore, we implemented an alternative scheme for the interface used
in [44].
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First, we reintroduce the governing equation for the snow system:

∂H

∂t
= −∂F

∂z
− ∂Rs

∂z
(3.66)

where H is the volumetric heat content (Jm−3), F is the heat flux (Wm−2), and Rs is net
(downward) solar radiation (Wm−2).

The term −∂F
∂z

can be expressed explicitly as follows:

−∂F
∂z

= −Fj,j+1 − Fj−1,j

∆zj

= −(−(DKe)j,j+1(Tj+1 − Tj)) − (−(DKe)j−1,j(Tj − Tj−1))

∆zj

=
(DKe)j,j+1(Tj+1 − Tj) − (DKe)j−1,j(Tj − Tj−1)

∆zj
(3.67)

where Fj,j+1 is the heat flux between layers j and j + 1, and DKe is defined as:

(DKe)
n
j−1,j =

1
(

∆zn
j−1

2
+

∆zn
j

2

)





∆zn
j−1 + ∆zn

j

∆zn
j−1

(Ke)n
j−1

+
∆zn

j

(Ke)n
j





Using the semi-implicit numerical method, the governing equation can be differentiated
as:

Hn+1
j −Hn

j

∆t
= (1 − θ)

(

−
F n

j,j+1 − F n
j−1,j

∆zn
j

)

+

θ

(

−
F n+1

j,j+1 − F n+1
j−1,j

∆zn
j

)

−

(Rs)j

∆zn
j

(3.68)

If we use the expression for F in Equation 3.67, Equation 3.68 becomes:

Hn+1
j −Hn

j

∆t
= (1 − θ)

(

(DKe)
n
j,j+1(T

n
j+1 − T n

j ) − (DKe)
n
j−1,j(T

n
j − T n

j−1)

∆zn
j

)

+

θ

(

(DKe)
n
j,j+1(T

n+1
j+1 − T n+1

j ) − (DKe)
n
j−1,j(T

n+1
j − T n+1

j−1 )

∆zn
j

)

−

(Rs)j

∆zn
j

(3.69)

The solution for temperature profiles requires a system of equations in the form of a
tridiagonal matrix. First we simplify the expressions as:

Fn =
(DKe)

n
j,j+1(T

n
j+1 − T n

j ) − (DKe)
n
j−1,j(T

n
j − T n

j−1)

∆zn
j

I1 = ∆t
(DKe)

n
j,j+1

∆zn
j

I2 = ∆t
(DKe)

n
j−1,j

∆zn
j
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If we rearrange Equation 3.68 using the above expression and set it equal to fj , we obtain the
following:

fj = Hn+1
j −Hn

j − (1 − θ)∆tFn

−θI1(T n+1
j+1 − T n+1

j ) + θI2(T
n+1
j − T n+1

j−1 )

−(Rn)j

∆zn
j

(3.70)

where (Rn)j is the amount of net solar radiation penetrated into the layer j during the given
time step.

We have unknowns: T n+1
j−1 , T n+1

j , and T n+1
j+1 . Therefore, as in our original scheme we need

to take derivatives of fj with respect to the unknowns to yield:

[fj ]T n+1

j−1

= −θI2 (3.71)

[fj ]T n+1

j
= [Hn+1

j ]T n+1

j
+ θI1 + θI2

= (Cv)
n
j + θ(I1 + I2) (3.72)

[fj ]T n+1

j+1

= −θI1 (3.73)

3.3 Study Sites and Data

The M-L soil-snow model is validated and evaluated at a shallow snowpack site and deep
snowpack sites. The Valdai water balance research station in Russia was chosen for the shallow
snowpack site. The Valdai water balance research station is located at 57.6 ◦N and 33.1 ◦E in
the forest zone of Russia. This study uses data collected from the Usadievskiy (hereafter Usad)
catchment within the research site. The Usad catchment has a small area of 0.36 km2 and is
mostly grassland. Therefore, it has ideal conditions for model validation. It also has 18-year
long meteorological forcing data and snow observation data for the period of 1966 - 1983 [49].
For model validation long-term forcing and observation datasets are important because they
provide the ability to study interannual variability of model performances. As will be discussed
later, the good performance of a model during a short period does not guarantee a consistent
long-term performance.

The forcing data for the Valdai station is provided at 3-hour interval and aggregated into
daily values. We also interpolated the dataset into hourly intervals, but the results of the hourly
data are similar to those from the daily data. Thus, we use the daily forcing data to probe
numerical stability and accuracy of the M-L model. The station also provides observed data
including snow water equivalent, snow depth, and soil temperature. Details of this dataset are
provided in [49].

SNOTEL stations in the Sierra Nevada are used for deep snowpack sites for model valida-
tion and comparison. Figure 3.2 shows the East Fork Carson River Basin and the location of
SNOTEL stations within the basin. We use SWE data from these SNOTEL station for model
comparison, and the basic information of these stations is shown in Table 3.1. Among the
information about the SNOTEL stations, we need to note their different elevations to under-
stand that stations at lower elevation tend to have less SWE accumulation. As in Chapter 2,
hourly precipitation and air temperature data from DMIP2 are also used to investigate the
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model performance for water years 2000 - 2002. Other forcing data are from NLDAS [50] and
NARR [19]. For the East Fork Carson River Basin, we conduct hourly simulations.

Figure 3.2: East Fork Carson River Basin and location of SNOTEL stations relevant to it. The
coordinates inside brackets indicate the centers of model grid cells, and the numbers represent
the SNOTEL station numbers.
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Table 3.1: SNOTEL station information in the East Fork Carson River Basin. The unit in
parentheses is meters.

Station Lat / Lon Elevation (ft) SNOTEL ID

Blue Lakes 38.607800, -119.924433 8057 (2456) 356
Ebbetts Pass 38.549550, -119.804650 8765 (2672) 462
Poison Flats 38.505533, -119.626117 7736 (2358) 697
Spratt Creek 38.666250, -119.817550 6115 (1864) 778

Figure 3.3: SNOTEL stations within the East Fork Carson River Basin on a elevation map. The
elevation is interpolated based on the mean elevation of model grid cells within the rectangular
boundary, and its unit is m. Points represent the Blue Lakes (BL), Ebbetts Pass (EP), Spratt
Creek (SC), and Poison Flat (PF) stations.
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3.4 Results and Discussion

3.4.1 Model Performance at the Shallow Snowpack Site

3.4.1.1 Snow water equivalent

Figure 3.4 shows SWE simulations by the M-L and 2-L models with observations. The
results from both models do not show much difference overall. For these simulations, an emis-
sivity of 1.0 and ten soil thermal layers were used. The simulations using a daily time step
show that there is interannual variation in simulating SWE. For some years, both the models
simulate SWE very well (e.g., water year 1969) or moderately well (e.g., water year 1970),
while they overestimate SWE for other years (e.g., water year 1981). The interannual variabil-
ity in model performance from Figure 3.4 has some implications of snow model validation that
long-term simulations provide better understanding of model performance. The overestimation
phenomenon of SWE in some of the Russian sites has also been reported in other literature
including Sun et al. [51].

Figure 3.4: SWE comparison with emissivity of 1.0

As demonstrated by Nijssen et al. [35], there is more variability during the spring snowmelt
period than the accumulation period. In fact, during the accumulation periods, both models
behave similarly. For model sensitivity analysis, emissivity has been tested. Snow emissivity
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ranges from 0.82 for old snow to 0.99 for fresh snow [52]. We found that an emissivity of 0.94
gives the best results for our simulation. The results are shown in Figure 3.5. Even though the
impact of emissivity changes varies depending on the water year, it noticeably improves the
SWE simulation result for some years.

Figure 3.5: SWE comparison with emissivity of 0.94

For the case of emissivity 0.94, the M-L model captures the melting timing better than
the 2-L model. But the overall performance shows the two models behave similarly to each
other. Other relevant studies showed similar results. For example, the Snow-Atmosphere-Soil
Transfer (SAST) model showed similar capability to that of SNTHERM by using three snow
layers [34]. This result implies that snow models with less complexity can produce equivalent
simulations to those that are complex although they need less computational requirements than
complex models. One of the reasons for this result shown in our study is that ground heat flux,
which benefits most from the multi-layered configuration, is smaller than the surface turbulent
fluxes and radiative fluxes in magnitude. Moreover, the heat flux between soil and snow in
mountainous environments tends to be relatively weak [20].

3.4.1.2 Snow depth

Another important snow state variable for snow model validation is snow depth. The
Valdai station provides snow depth data for the Usad catchment. The simulations for snow
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depth in Figure 3.6 show similar results as those for SWE simulations. Snow depth is closely
related to snow density in our model physics. In particular, for the M-L model SWE for
each layer is computed based on the energy balance, density is updated as a result of SWE
calculation, and then snow depth is updated. In Figure 3.6, the snow depth is the summation
of the thickness of each layer for the M-L model. For the 2-L model, there is only one density
ρsl (kg m−3), which includes liquid water and solid snow, for the entire snowpack and snow
depth Dz (m) is calculated in a similar way to Equation 3.50 as:

Dz =
Wsρw

ρsl

(3.74)

where Ws is snow water equivalent (m), and ρw is the intrinsic density of water (kg m−3)
Even though the methods for calculation of snow depth are different between the two

models, the results for snow depth closely resemble each other. As in the results of SWE, the
M-L model performs slightly better than the 2-L model during some of the melting seasons. For
example, for the water years 1974 and 1981 the M-L model captures the melting timing correctly
although there was overestimation during the accumulation period for both the models. The
M-L model uses parameters for density calculation that need calibration. Among other density
parameters, ρd in Equation 3.55 seems to play a relatively large role in the simulation of snow
depth. According to Anderson [39], ρd is a constant to be calibrated and used to determine the
fractional settling rate at 0 ◦C. For the result presented in Figure 3.6, we used 150 kg m−3 based
on Yen’s finding [45] that the effect of snow settling is not significant for densities greater than
250 kg m−3. To illustrate the effect of parameter ρd we tested a value of 100 kg m−3 and this
result is shown in Figure 3.7. The M-L model is sensitive to that parameter and overestimates
snow depth mostly during the accumulation period compared to that of the 2-L model and the
observations.

3.4.1.3 Ground surface temperature

Predicted ground surface temperature is a useful measure to determine the ability of snow
models. The Valdai station provides ground surface temperature data for the Usad catchment.
The surface temperature data in this station is the snow surface temperature for the snow
season and soil surface temperature for the non-snow season. In the 2-L model the surface
layer has a maximum depth of 12.5 cm in water equivalent, and this depth is maintained
when there is enough snow on the ground. On the other hand, the M-L model uses 2 cm
for the snow surface layer. Even with different configurations for the snow surface layer, both
models simulate ground surface temperature very well compared to the observations as shown
in Figures 3.8, 3.9, and 3.10. All of the values in these figures are daily averages. These results
also support our findings from SWE simulations that there is not much difference in the model
performance between the M-L model and the 2-L model.

3.4.1.4 Soil temperature

Soil temperature at different depths is another indicator used to evaluate snow model
performance along with the ground surface temperature. When the simulation results for
ground surface temperature from both models are well matched to the observations, analyzing
soil temperature provides an opportunity to investigate model performances through a different
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Figure 3.6: Snow depth with density parameter ρd of 150 kg m−3.

angle. The 2-L snow model is also coupled with a frozen soil algorithm [38]. Even though the
M-L soil-snow model uses a different numerical solution from the one in [38], its soil system
structure is identical to the one used in the 2-L model. This is because we wanted to develop a
new model respecting the overall framework of the VIC LSM. Moreover, as discussed previously
this enables us to identify which physical process makes a difference in simulating snow variables.

Before we compare the results for soil temperature between the M-L model and the 2-L
model, we describe the effect of the numerical scheme at the interface between soil and snow
systems. In Section 3.2.3.5, a new scheme for the interface was introduced. This new scheme
was developed based on [44] and applied because the original scheme did not perform well in
terms of soil temperature at 20 cm below the soil surface compared to observations. In our
new model configuration, this under-performance is possible due to the dissimilarity of heat
conductivity between soil and snow. Recall that our new M-L model simulates the soil and
snow systems as one. While implementing this numerical solution for the one soil-snow system,
we use two distinct heat conductivities between soil and snow. Depending on the layer thickness,
the numerical stability can be impaired due to a large difference in heat conductivity between
the two media. When the snowpack is deep, the impaired calculation at the soil-snow interface
may not affect the energy balance computation of the surface layer significantly. However,
when the number of layers are small and the snowpack is not deep as in the Valdai station, the
effect at the interface may be transferred to the surface layer, subsequently affecting the overall
energy balance.
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Figure 3.7: Snow depth with density parameter ρd of 100 kg m−3.

Figure 3.12 shows simulations of soil temperature at 20 cm below the soil surface for the
water years 1973 - 1975. As shown in the figure, the original normal scheme under-performs.
In particular, note the snow accumulation period in the water year 1974. During the period of
December through January, the normal interface scheme underestimates the soil temperature
at 20 cm below the soil surface. This result reveals that when there is added complexity there
are new factors to be considered. In addition, it also implies that there is a possible chance to
improve simulations of soil temperature by using different schemes for the soil-snow interface.
It is worth noting that even though we use the new soil-snow interface scheme, there is no
significant difference in terms of SWE in this specific simulation condition (Figure 3.11). More
accurate soil temperature profile estimates contribute to more precise predictions of ground
heat flux. It is also true that the heat transfer process through the soil and snow layers itself
affects the calculation of temperature profile. But this process is less important since ground
heat flux is small in the energy balance.

Figures 3.13, 3.14, and 3.15 show simulated soil temperature and observed temperature
at a depth of 20 cm for the years with observations. For the M-L model, the new soil-snow
interface scheme has been used. The M-L model simulates soil temperature better than the 2-L
model overall. In particular, during the melting season the M-L model’s temperature is better
matched to the observation. For example, for the water years 1974 and 1975 the M-L model
captures the soil temperature more accurately compared to that of the 2-L model during the
melting seasons. This accuracy is also reflected in the simulations of SWE and snow depth for
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Figure 3.8: Ground surface temperature for the years 1967 - 1972.

the same years. See Figure 3.5 and Figure 3.6 for inter-comparison with SWE and snow depth,
respectively.

3.4.2 Model Performance at Deep Snowpack Sites

The new M-L soil-snow model has also been evaluated in deep snowpack sites of the
Sierra Nevada. Because we do not have various observed data as in the Valdai station, we
validate using observed SWE. Unlike the Usad catchment in the Valdai station, which is small
in size, there is a scale issue in the Sierra Nevada. While we run the models in grid cells
with a size of 1/8th degree, observations are available at the point scale. For this reason,
many studies (e.g., [53]) do not compare model simulated results at the grid cell scale with
point-scale observations directly. However, this study compares model simulations with point-
scale observations because we use quality DMIP2 precipitation and temperature data, which is
presumably the best gridded data for our simulations. In Chapter 2 we have seen that DMIP2
temperature data are comparable to those of SNOTEL stations and the precipitation data are
also interpolated using SNOTEL data.

Figure 3.16 shows the simulations of SWE for the corresponding grid cells to the four
SNOTEL stations in the East Fork Carson River Basin. The conspicuous phenomenon is
the difference in the state of SWE during the melting season at all of the four stations. In
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Figure 3.9: Ground surface temperature for the years 1973 - 1978.

particular, there is more discrepancy during the 2002 water year. During the accumulation
periods, the M-L model and the 2-L model behave similarly as we have seen at the Valdai
station. Considering that the boundary conditions of the two models at the snow surface are
almost identical, this result shows that the effect of ground heat fluxes does not seem to be
significant during the accumulation period. To verify this hypothesis, we compared the ground
heat flux between the two models. In calculating ground heat flux, the 2-L model uses only
the temperature gradient from the top soil layer or the top two layers, while iteratively solving
the overall energy balance for the grid cell or the fraction of it. Since the M-L model solves the
temperature simultaneously for the soil and snow layers, the calculation is different from that
of the 2-L model. These details are presented in Appendix A. The results of simulated ground
heat fluxes for the snow season are shown in Figures 3.17, 3.18, and 3.19 and the values are
daily averages. There is no measurably large difference in the daily ground heat flux between
the two models. In particular, in the middle of accumulation when the snowpack is deep, the
ground heat flux does not show much variability in both the models. During the melting season,
there are some differences between the two models, but the magnitude of the difference is not
large compared to other fluxes such as net radiation.

Comparison of ground heat flux leads us to other possibilities responsible for the discrep-
ancy in SWE during the melting season. Considering the magnitude of the difference in SWE
between the two models, the cause is likely to come from the surface energy fluxes. As we
have seen in the shallow Valdai station, the two models’ ability to simulate the ground surface
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Figure 3.10: Ground surface temperature for the years 1979 - 1983.

temperature is very good and similar to each other. This fact implies that the latent heat fluxes
and sensible heat fluxes are likely to be similar to each other. Because we use the same observed
shortwave and longwave radiation fluxes for both models, these two fluxes do not contribute to
the difference in the energy balance. Considering all these factors, the most probable cause of
the SWE discrepancy during the melting season seems to be attributed to a dominant effect
of albedo. Figures 3.20, 3.21 and 3.22 show comparison of albedo values between the 2-L and
M-L models for the water years 2000, 2001, and 2002, respectively. As expected, there is fairly
a large difference in albedo values between the models. The M-L model produces consistently
low albedo values compared to that of the 2-L model. When there are melting events, the
difference becomes larger. This low albedo in the M-L model leaves more energy available for
melting in the snowpack. Therefore, either rapid melting or early melting occurs in the M-L
model, causing the deviation of SWE from the 2-L model.

As discussed earlier, the 2-L model maintains a maximum thickness of 12.5 cm in water
equivalent for the snow surface layer while the M-L model uses 2 cm. This inherent difference
in the configuration of surface layer thickness did not affect the simulation of ground surface
temperature significantly. However, the cold content, which is used to compute albedo, from
these two different layers with incongruent maximum thickness creates some difference in albedo.
From our results, the cold content from the top 2 cm seems to be error-prone under certain
circumstances. Note that our original albedo scheme did not make a noticeable difference at
the shallow Valdai station. But in the relative deep snowpack of the Sierra Nevada, the original
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Figure 3.11: SWE comparison based on the new soil-snow interface scheme.

albedo scheme does not perform well. The quick solution to this problem would be to use the
total cold content from several layers in calculating albedo. Instead of taking this approach,
we implemented the albedo scheme from the Biosphere-Atmosphere Transfer Scheme (BATS)
model [54] that is more applicable to the multi-layer structure. Details of the BATS albedo
scheme are presented in Appendix H. The results using the BATS albedo scheme are shown
in Figure 3.23. The M-L model based on the BATS albedo scheme captures the timing and
magnitude of the 2-L model and shows more promising results for the Spratt Creek SNOTEL
station. The Spratt Creek site is located at a lower elevation than the other stations (see
Table 3.1 and Figure 3.3) and the maximum accumulation at the station is also lower than
the others. Apart from the other stations, we see some overestimation for SWE at the station.
Figure 3.24 compares the simulated SWE when both models used the BATS albedo scheme.
That is, the 2-L model also used the BATS albedo scheme. In this figure, the 2-L model
has slightly higher SWE during the melting period while the timing of the complete melting is
unchanged. It is worth noting that there is no noticeable change during the accumulation season
compared to the case of the original albedo scheme. Moreover, the 2-L model cannot capture
the melting timing for the Spratt Creek station while the M-L model captures the melting
timing for the 2002 water year and shows closer accumulation to the ground observation than
the 2-L model for the 2001 water year.

The impact of albedo is relatively large compared to those of other physical processes in
simulating SWE. The air temperature in the Sierra Nevada is higher than that of the Valdai
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Figure 3.12: Soil temperature comparison at the depth of 20 cm for the water years 1973 - 1975
between the normal (original) and new schemes.

station. When the air temperature is high during the melting season, the impact of albedo
seems to be more pronounced. Our results show that even though a better description of
physical snow processes may not dramatically reduce the uncertainties due to forcing biases it
contributes to improving simulations in some areas.

3.5 Conclusion

The complexity added to the 2-L snow model of the VIC LSM did not significantly change
the way snow state variables are simulated. With the same boundary conditions at the snow-
atmosphere interface as the 2-L model, the results by the new and more complex M-L model
show that the impact of ground heat flux and its related processes are not very strong. In some
cases, however, the M-L model outperformed the 2-L model. For example, the M-L model
showed consistent improvements in capturing the timing of melting in the shallow snowpack
site of the Valdai water balance research station. Emissivity and certain parameters (e.g.,
critical density for settling) for densification showed relatively high sensitivity in simulating
snow variables. This study reveals that the added complexity involves more parameters and
accurate descriptions of some processes. The additional treatment (e.g., more parameters in the
density scheme) required by the new M-L model was found in soil temperature simulations using
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Figure 3.13: Soil temperature at the depth of 20 cm for the water years 1973 - 1975.

a new soil-snow interface scheme. In terms of numerical schemes, description of the soil-snow
interface is required by the M-L model only due to added complexity in the model structure.
Precise treatment of the soil-snow interface in the M-L model generated improvements to soil
temperature simulations. In this regard, the M-L model can be applied to cases where more
accurate simulations as in point-scale sensor validation are required and adjusting parameters
is not expensive.

As we have seen from the results in the Sierra Nevada sites, the new M-L model did not
overcome the dominant underestimation problem. As shown in other studies such as Pan et.
al. [16] and Feng et. al. [22], underestimation is mainly attributed to low biases in precipitation
data. The bias in precipitation forcing is also dominant in the uncertainty of SWE simulations
in our study where the gridded areal mean temperature is well matched to the point-scale
temperature. The M-L model performed in a similar way to the 2-L model, in particular for
the accumulation season. However, application of a different snow albedo scheme (i.e., BATS
albedo scheme) changed results to a large degree for a site located at relatively lower elevation.
Snow albedo acts on the energy balance directly by changing the net radiation flux. The M-L
model with the BATS albedo scheme showed a promising result for the Spratt Creek station.
This result signals that processes directly related to energy fluxes such as albedo and emissivity
have a large impact on snow state variables. Moreover, the process needs to be one that can
be well integrated with the model’s structure. Recall that the original albedo scheme showed a
consistent low bias. As in the shallow snowpack site, the M-L model performed better than the

47



−
10

0
10

20
30

Temperature_Comparison

T
em

pe
ra

tu
re

 (
°C

)

1975−Oct 1975−Dec 1976−Feb 1976−Apr 1976−Jun 1976−Aug

Multi−L model simulation
2−L model simulation
Observation

−
10

0
10

20
30

Temperature_Comparison

T
em

pe
ra

tu
re

 (
°C

)

1976−Oct 1976−Dec 1977−Feb 1977−Apr 1977−Jun 1977−Aug

Multi−L model simulation
2−L model simulation
Observation

−
10

0
10

20
30

Temperature_Comparison

T
em

pe
ra

tu
re

 (
°C

)

1977−Oct 1977−Dec 1978−Feb 1978−Apr 1978−Jun 1978−Aug

Multi−L model simulation
2−L model simulation
Observation

Figure 3.14: Soil temperature at the depth of 20 cm for the water years 1976 - 1978.

2-L model during the melting season. This ability of the M-L model can contribute to more
accurate streamflow simulations by capturing melting timing and magnitude.
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Figure 3.15: Soil temperature at the depth of 20 cm for the water years 1979 - 1981.

49



Figure 3.16: Comparison of SWE. The solid line is SWE from the M-L model, the dashed line
the 2-L model, and the circle SNOTEL observation. Note the y-axis scale changes in each plot.
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Figure 3.17: Comparison of ground heat flux between the M-L and 2-L models during the snow
season of water year 2000.
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Figure 3.18: Comparison of ground heat flux between the M-L and 2-L models during the snow
season of water year 2001.
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Figure 3.19: Comparison of ground heat flux between the M-L and 2-L models during the snow
season of water year 2002.
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Figure 3.20: Comparison of albedo for the M-L model and 2-L model for the 2000 water year.
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Figure 3.21: Comparison of albedo for the M-L model and 2-L model for the 2001 water year.
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Figure 3.22: Comparison of albedo for the M-L model and 2-L model for the 2002 water year.
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Figure 3.23: Comparison of SWE with the BATS albedo for the M-L model. The solid line is
SWE from the M-L model, the dashed line the 2-L model, and the circle SNOTEL observation.
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Figure 3.24: Comparison of SWE with the BATS albedo for both the M-L model and 2-L
model. The solid line is SWE from the M-L model, the dashed line the 2-L model, and the
circle SNOTEL observation.
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Chapter 4

Multiscale Snow Data Assimilation

4.1 Introduction

The previous chapters showed that snow processes in high mountains such as the Sierra
Nevada are difficult to simulate due to uncertainties associated with high spatial variations
of landscape and steep spatial gradients of hydrologic variables (e.g., precipitation) with al-
titude [10]. In such a complex environment, simulation results may not represent the snow
states of the simulation spatial domain correctly. There are many ways to characterize the
uncertainty associated with snow modeling, depending on the modeling environment. For ex-
ample, we can generate ensemble forcing data based on the available statistics of the modeling
spatial domain to see the ensemble effect on the uncertainty of SWE simulations as in Shamir
and Georgakakos [32] and in Chapter 2. When remotely sensed observations are considered
in modeling snow processes, data assimilation is used widely either to reduce or to represent
uncertainties in various ways [53].

Most of these studies related to uncertainty in snow modeling have focused on charac-
terizing the uncertainty in the aspect of temporal evolution of the snow variable of interest.
However, in high mountains where landscape and ground features vary sharply even over a small
spatial domain, many factors that cause uncertainty are hidden in scale. Moreover, the mod-
eling scales of snow processes are generally constrained by the scale of input forcing data [55].
This constraint is conspicuous in high mountains such as the Sierra Nevada where ground-based
meteorological data are sparse and often affected by measurement errors [56].

In this regard, we present a method to relate the variable of interest at one scale to that
at another in order to overcome the unfavorable conditions for physical snow models in high
mountains with a particular application in the Sierra Nevada. We propagate the properties of
snow states between fine scales and coarse scales using a multiscale data assimilation (MDA)
scheme to reduce the uncertainty due to scaling and forcing errors. Uncertainties associated
with snow processes in terms of model physics, scaling, and meteorological forcing data are
explained by a multiscale perspective. The MDA scheme allows us to obtain estimates of
snow variables at different scales by getting optimal parameters for the multiscale process. To
understand the effect of scaling and data quality in observed data more thoroughly, we use an
ensemble approach in the multiscale process.
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4.2 Probabilistic Interpretation of Multiscale Process

The multiscale stochastic process in this study implements scale-recursive dynamics on
trees [57]. In particular, the Gaussian process behaves in a similar way to the traditional
Kalman filtering on tree structure. The multiscale process consists of two components: mul-
tiscale smoothing and optimal parameter estimation. Time-recursive state space models use
“forward” and “backward” inference algorithms. The backward inference requires us to com-
bine the forward recursion with it. This algorithm is known as the Rauch-Tung-Striebel (RTS)
smoothing algorithm. For multiscale processes, the RTS algorithm is used on trees and is known
as “sweep”. In this subsection, the fundamentals of the multiscale process are introduced based
on probabilistic interpretation of it. In particular, derivations that are not explained in Chou et
al. [58], Fieguth et al. [59], Luettgen and Willsky [60] and Parada and Liang [61] are presented.

4.2.1 Merge of Posterior Probabilities

The key probabilistic inference in a multiscale process is to calculate the probability of the
current node given its child nodes. This inference process is to merge individual probabilities
that relate the parent node with its each child node into one probability. Figure 4.1 shows
the relationship between the parent node and its children in a graphical model. This graphical
model accounts for only four child nodes under their parent node. In fact, this model will be
used throughout the multiscale process in this dissertation. As shown in the graphical model,
we assume that given the parent node, its children are conditionally independent and thus we
can write it as:

p(y1, y2, y3, y3|x) = p(y1|x)p(y2|x)p(y3|x)p(y4|x) (4.1)

Figure 4.1: A graphical model for the relationship between the parent node and its children.

Noting each of the variable in Figure 4.1 is Gaussian, we can write the conditioning
relationship for y1 in the form of a linear function as:

y1 = F1x+ v1 (4.2)

60



where x (0,Σ) and v has mean zero and covariance R. The generic linear function can be
represented by:

y = Fx+ v (4.3)

The first step to compute the conditional probability between x and y is to obtain a joint
distribution of the pair (x, y). If x has variance Σ, its joint distribution is summarized as:
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where we calculated the covariance matrix as

Cov(x, y) = E
[

(x− 0)(y − E(y))T
]

= E
[

x(Fx+ v)T
]

= E
[

xxTF T + xvT
]

= ΣF T (4.4)

Our goal is to calculate the posterior distribution p(x|y1, y2, y3, y4). Letting y = (y1, y2, y3, y4),
the conditional distribution is then p(x|y). In this Gaussian problem, we are interested in finding
the conditional mean, x̂, and the conditional covariance, P . Since we have the joint distribution,
we can use the Gaussian conditioning formulas to calculate x̂ and P .

Before calculating these quantity, we define F and R as:
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The conditional mean is calculated as:
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(4.6)

In fact, in Equation 4.6 we have the expression for the overall conditional covariance P ,
which is:

(

P−1
1 + P−1

2 + P−1
3 + P−1

4 − 3Σ−1
)
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Therefore the overall conditional mean x̂ can be written as:

x̂ = P
(

P−1
1 x̂1 + P−1

2 x̂2 + P−1
3 x̂3 + P−1

4 x̂4

)

(4.7)

Because we now have the overall conditional mean and covariance for p(x|y), we can use
these in our upward and downward calculations.

4.2.2 Dynamic Equation for Upward Sweep

The equations for merging posterior probabilities in the previous subsection requires us
to obtain an inverse form of the dynamics in scale. In a similar way to the traditional time-
recursive Kalman filtering, we can write a forward equation for multiscale processes, which is
called “downward sweep.” In Figure 4.1, we interpreted the tree structure in terms of conditional
probabilities. Now we introduce a state space model for the evolution in scale as:

x(s) = A(s)x(γs) + w(s) (4.8)

y(s) = C(s)x(s) + v(s) (4.9)

where x(s) is the state of the process at node s, γs denotes the parent of node s. w(s)
is independent and identically distributed (i.i.d.), independent of x(0) and has distribution
N(0, Q(s)). v(s) is also i.i.d. and has distribution N(0, R(s)). Figure 4.2 shows how the
evolution in scale is related to the time-recursive process. In this graphical model, x(s) is a
linear function of the conditioning variable, x(γs). The inverse dynamics may be expressed as:

Figure 4.2: A graphical model for comparison between scale-recursive (left) and time-recursive
(right) processes

x(γs) = Fx(s) + w̄(s) (4.10)

where F is a matrix that relates scale s to scale γs and w̄(s) is white noise as usual.
Our goal is to find the expressions for F and w̄(s). Once we find expressions for these

quantities, the remaining process is similar to that of the traditional Kalman filtering as shown
in Chou et al. [58], Fieguth et al. [59], Luettgen and Willsky [60] and Parada and Liang [61].
This subsection presents the derivation of these quantities in detail. First we need to get the
joint distribution of the pair (x(γs), x(s)), which is summarized as:
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[

Σ(γs) Σ(γs)A(s)T

A(s)Σ(γs) Σ(s)

]

where Σ(s) = A(s)Σ(γs)A(s)T + Q(s) by the Lyapunov equation. We also calculated the
covariance between x(γs) and x(s) as:

Cov(x(γs), x(s)) = E
[

(x(γs) − x̂(γs))(x(s) − ˆx(s))T
]

= E
[

(x(γs))(A(s)x(γs) + w(s))T
]

(4.11)

where we assumed that E(x(s)) = 0. If E(x(s)) is not zero, the mean needs to be subtracted.
The backwards Markovian property shows:

E [w(x)|x(s), . . . , x(S)] = E [w(s)|x(s)] (4.12)

where S is the index for the finest node.
Given the property of w(s), we need to compute E [w(s)|x(s)]. As usual, calculation of

this quantity requires the joint distribution of w(s) and x(s):
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From the definition, E
[

w(s)w(s)T
]

= Q(s). We also define:

E
[

x(s)x(s)T
]

= Σ(s) (4.13)

From this joint distribution, we can express the conditional distribution in Equation 4.12 as:

E [w(s)|x(s)] = E
[

w(s)(A(s)x(γs) + w(s))T
]

·
E
[

(A(s)x(γs) + w(s))(A(s)x(γs) + w(s))T
]−1

x(s)

= E
[

w(s)w(s)T
]

·
E
[

A(s)x(γs)x(γs)TAT (s) + w(s)w(s)T
]−1

x(s)

= Q(s)
[

A(s)Σ(γs)AT (s) +Q(s)
]−1

x(s)

= Q(s)Σ−1(s)x(s) (4.14)

On the other hand, w(s) can be decomposed into E [w(s)|x(s), x(s+ 1), . . . , x(S)] and a re-
maining error w̃(s) as:

w(s) = E [w(s)|x(s), x(s+ 1), . . . , x(S)] + w̃(s)

= E [w(s)|x(s)] + w̃(s) (4.15)

where we used the Markovian property in Equation 4.12. Using Equation 4.14, the remaining
error term can be written as:

w̃s = w(s) −Q(s)Σ−1(s)x(s) (4.16)
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with covariance Q̃(s), which is represented as:

E
[

x̃(s)x̃T (s)
]

= V ar[w̃(s)]

= V ar
[

w(s) −Q(s)Σ−1(s)x(s)
]

= Q(s) − V ar
[

Q(s)Σ−1(s)x(s)
]

= Q(s) −Q(s)Σ−1(s)V ar[x(s)](Q(s)Σ−1(s))T

= Q(s) −Q(s)Σ−1(s)Q(s)

Here we recall our original model:

x(s) = A(s)x(γs) + w(s)

Direct reversing of this equation yields:

x(γs) = A−1(s)x(s) − A−1(s)w(s) (4.17)

If we substitute the result from Equation 4.16 into Equation 4.17, we find:

x(γs) =
(

A−1(s) − A−1(s)Q(s)Σ−1(s)
)

x(s) − A−1(s)w̃(s) (4.18)

If we compare Equation 4.18 with the inverse dynamics equations defined in Equation 4.10 we
find:

F (s) = A−1(s) −A−1(s)Q(s)Σ−1(s) (4.19)

w̄(s) = −A−1(s)w̃(s) (4.20)

We use these expressions for the inverse (upward) dynamics on tree, and other details such as
the EM algorithm is presented in Kannan et al. [57] and Parada and Liang [61].

4.3 Multiscale Assimilation Methods and Data

4.3.1 Method

This subsection describes the method to apply the fundamentals of multiscale assimilation
introduced in the previous subsection to the Sierra Nevada site. The VIC LSM [42] is coupled
with the MDA scheme. We use two physical snow models within the VIC LSM to consider the
uncertainty in model physics more thoroughly: 2-layer (2-L) snow model [38] and multi-layer
(M-L) snow model [62], which was introduced in Chapter 3. The NLDAS forcing data [50] are
used to run the two snow models. Using a macro-scale LSM and forcing data available on the
public domain, we perform our experiment for the environment where observed forcing data
are sparse and error-prone and for the case where the physical model scale is limited by such
input forcing data [55].

We use the SWE variables from two independent sources, one for a fine resolution and the
other for a coarse resolution. For the fine resolution data, the SNODAS product from the Na-
tional Operational Hydrologic Remote Sensing Center (NOHRSC) is used [63]. The NOHRSC
SNODAS product has been reported to well represent the hydrologic system of interest [64].
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Figure 4.3: Multiscale structure on tree. Collective index m includes scale index s, and location
index (i, j).

SNODAS SWE data are archived at 1 km resolution and aggregated into 1/64th degrees for the
experiment. For the coarse resolution, we use the AMSR-E daily SWE product [65]. AMSR-E
SWE data are provided in 25 km resolution. Due to the known problems such as the saturation
effect [66], AMSR-E SWE data are used only during the early snow season.

The SWE data or indirect observations of them (e.g., brightness temperature) that we can
use for data assimilation are often available at different scales from that of model predictions.
Therefore, following Chou et al. [58], Fieguth et al. [59], Luettgen and Willsky [60] and Parada
and Liang [61], we can define the model to describe the multiscale process in a tree structure
as:

x(s) = A(s)x(γs) + w(s) (4.21)

where x(s) is the Gaussian multiscale hidden state vector at node s, and γs denotes the
parent of node s. The process noise w(s) is white and independent of x(s0) and has a distribution
N(0, Q(s)). s is the node index, and s0 represents the root node. As in the traditional Kalman
filter, the Gaussian process x and its noisy observation y can be related as:

y(s) = C(s)x(s) +D(s) + v(s) (4.22)

where y(s) is a noisy measurement vector, D(s) is a matrix for an exogenous input, and v(s) is
white and independent of x(s0) and w(s) and has a distribution N(0, R(s)).

From Equations 4.21 and 4.22, our parameter set θ to be optimized for every assimilation
time can be written as:

θ = {x̂(s0), P (s0), Q(s), R(s)|s ∈ ST} (4.23)

where x(s0) is the unconditional mean for the root node, P (s0) is the unconditional co-
variance matrix for the root node, and ST is the set of all the nodes in the tree. It is important
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to note that we set C(s) as 1 because we use direct SWE observations in this experiment. Also,
we set A(s) to be 1 to conserve the mean SWE value across the scale. The time-varying param-
eter set θ determines the uncertainty that is attributed to observations and model predictions.
We use the expectation-maximization (EM) algorithm to estimate θ when independent SWE
data (e.g., SNODAS data) are available [57] [61]. In our MDA scheme, SWE from SNODAS,
AMSR-E, and the snow models are all considered as independent observations to obtain the
unknown state x(s) in Equation 4.21.

We further investigate the effect of scaling and data quality of independent observations on
multiscale data assimilation using an ensemble approach. To examine the effect of observation
data uncertainty, we are required to generate an ensemble of SNODAS datasets with different
degrees of uncertainty. To avoid using arbitrary uncertain parameters in generating ensemble
noisy data, we focus on posterior density of a state space model as shown in Chapter 2.

Since SWE from SNODAS during a given water year shows a rather simple behavior with
both increasing and decreasing trends, we model the SWE state as:

xt+1 = Axt + wt (4.24)

yt = Cxt + vt (4.25)

where t is time index, xt and yt are the state and observation at time t, respectively, A
and C are linear operators, wt ∼ N(0, Q) and vt ∼ N(0, R). As usual, we assume that vt and
wt are white and independent of the state xt. Note that C is 1 since we are modeling the same
state variable as the observation.

From the Markov property and the Bayes rule, the posterior density can be expressed as:

p(xt+1|yt+1, y0, ..., yt) ∝ p(yt+1|xt+1, y0, ..., yt)p(xt+1|y0, ..., yt)

= p(yt+1|xt+1)p(xt+1|y0, ..., yt)

= p(yt+1|xt+1)

∫

p(xt+1, xt|y0, ..., yt)dxt

= p(yt+1|xt+1)

∫

p(xt+1|xt, y0, ..., yt)p(xt|y0, ..., yt)dxt

= p(yt+1|xt+1)

∫

p(xt+1|xt)p(xt|y0, ..., yt)dxt (4.26)

where p(·) is a general Gaussian density function and we used conditional independences
from the Markov property to convert the integrand into an easy form for integrating out xt.

Following the definition and result in Chapter 2, the posterior density can be written as:

xt+1|yt+1, y0, ..., yt ∼ N(x̂t+1|t+1, Pt+1|t+1) (4.27)

with

x̂t+1|t+1 = x̂t+1|t +Kt+1(yt+1 − x̂t+1|t) (4.28)

Pt+1|t+1 = Pt+1|t −Kt+1CPt+1|t (4.29)

where Kt+1 is the quantity known as Kalman gain.
Perturbed observations are generated based on the posterior distribution whose parameters

are obtained for each SNODAS grid cell independently using the EM algorithm. For data with
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a coarse scale, we aggregate the SNODAS data from 1/64th degrees (i.e., Scale 4) to 1/4th
degrees (i.e., Scale 0) and use this coarse scale data as equivalent observations to AMSR-
E data. Using this aggregated SNODAS data and the original SNODAS data we conduct
multiscale assimilation experiments for two representative cases. In Case I, we perturb the
aggregated SNODAS data at Scale 0 to generate ensemble observations at this scale and use
these data to run the MDA system with the original SNODAS data. In Case II, we perturb
SNODAS data at Scale 4 only along with the aggregated SNODAS data at Scale 0, which is
not perturbed.

The experiment using the coupled MDA system is conducted in a 25 km× 25 km domain
in the East Fork Carson River Basin of the Sierra Nevada. We use data from the Ebbetts
Pass and Blue Lakes SNOTEL stations, the elevation of each of which is 2,672 m and 2,456
m, respectively. We chose these two stations because they well represent the modeling grid
cells at 1/8th degrees. We use five different scales from Scale 0 to Scale 4 to match the
AMSR-E data, VIC LSM output and SNODAS data. For example, Scale 0 is set as 1/4th
degrees (∼ 25 × 25 km2), which corresponds to the AMSR-E data, Scale 1 as 1/8th degrees
corresponding to the VIC LSM scale, and Scale 4 as 1/64th degrees corresponding to the
SNODAS data (Figure 4.4).

Figure 4.4: Design scales where m = (s, i, j).

4.4 Results

The time series in Figures 4.5 and 4.6 show SWE assimilation results with SNODAS data,
model simulations at grid cells corresponding to the Blue Lakes SNOTEL station, and the
SWE observations at the station. Figures 4.7 and 4.8 show the same results for the Ebbetts
Pass SNOTEL station. When the MDA system is applied, the SWE values are close to the
SNOTEL observation at all scales, removing most of the uncertainty in the simulations of SWE
by the 2-L snow model and M-L snow model of the VIC LSM. These figures also show that
the uncertainty due to model physics is much smaller than that of meteorological forcing data.
Even though there are certain differences in the physical description of snow processes (e.g.,
layer structure) between the 2-L and M-L models, their impact was much smaller than that of
forcing data in our experiment setting. Similar results were reported by Pan et al. [16] where
all SWE simulations by the three snow models had large low biases. In our experiment, most
of the low biases are removed by the data assimilation that uses independent SWE data at a
fine scale in a multiscale perspective.
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Figure 4.5: Assimilation results at the grid cell corresponding to/including the Blue Lakes
SNOTEL station with SNODAS only for the 2004 water year.
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Figure 4.6: Assimilation results at the grid cell corresponding to/including the Blue Lakes
SNOTEL station with SNODAS only for the 2005 water year.
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Figure 4.7: Assimilation results at the grid cell corresponding to/including the Ebbetts Pass
SNOTEL station with SNODAS only for the 2004 water year.
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Figure 4.8: Assimilation results at the grid cell corresponding to/including the Ebbetts Pass
SNOTEL station with SNODAS only for the 2005 water year.
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We also need to examine the effect of observations with coarse resolution because they have
their own characteristics in scaling. For this purpose we use the AMSR-E daily SWE product
along with the SNODAS product. Figure 4.9 and Figure 4.10 show the time series of assimilated
SWE when AMSR-E SWE data were used with SNODAS data for the Blue Lake SNOTEL
station. Figure 4.11 and Figure 4.12 show the time series of assimilated SWE when AMSR-
E SWE data were used with SNODAS data for the Ebbetts Pass SNOTEL station. Due to
reported problems with AMSR-E data in high mountains with deep snowpack [66] [53], only data
during the early snow season are used. When AMSR-E data are assimilated, variability in the
posterior SWE increased as shown in the early snow season (e.g., December), not improving the
assimilation results. This result shows that errors in the AMSR-E data reported by Andreadis
and Lettenmaier [53] are also reflected in our multiscale process experiment.

0
50

0
10

00
15

00

Blue_Lakes_CA_VIC_SNODAS_AMSRE

S
W

E
 (

m
m

)

2003−Oct 2004−Jan 2004−Apr 2004−Jul

VIC Multi−L simulation
VIC 2−L simulation
MKF assimilation at 1/8th deg.
SNODAS at 1/8th deg.
MKF assimilation at 1/64th deg.
SNODAS at 1/64th deg.
SNOTEL observation

Figure 4.9: Assimilation results at the grid cell corresponding to/including the Blue Lakes
SNOTEL station with SNODAS and AMSR-E for the 2004 water yea.

Spatial distribution of the assimilated SWE in Figure 4.13, in which only SNODAS data
are assimilated, shows a similar result to what we have seen in the temporal evolution of SWE.
As the scale becomes finer, the spatial distribution of SWE is better captured in the domain
while we see the spatially averaged effect as the scale becomes coarser. When assimilated with
SNODAS data, it results in a considerable improvement in the spatial structure of SWE at the
model scale. Not only do we have better estimates of the mean field of SWE at the modeling
scale (i.e., 1/8th degrees), but we can also describe the system of the domain at its sub-grid
scale whether an observation is available for the fine scale or not.

We have shown how the MDA scheme reduced the uncertainty in simulating SWE based
on one assimilation event. To better understand the uncertainty associated with forcing data
and independent SWE data, we performed the MDA runs using an ensemble-based approach.
As described in Section 4.3, the ensemble assimilation is conducted by generating ensemble
members for the SNODAS SWE data. Figure 4.14 shows the ensemble generation of SNODAS
data based on the state space model discussed earlier, and Figure 4.15 shows the difference
between the original SNODAS data and ensemble members. The simulations in both figures
use variance Σp = 4Pt+1|t+1.

70



0
50

0
10

00
15

00

Blue_Lakes_CA_VIC_SNODAS_AMSRE

S
W

E
 (

m
m

)

2004−Oct 2005−Jan 2005−Apr 2005−Jul

VIC Multi−L simulation
VIC 2−L simulation
MKF assimilation at 1/8th deg.
SNODAS at 1/8th deg.
MKF assimilation at 1/64th deg.
SNODAS at 1/64th deg.
SNOTEL observation

Figure 4.10: Assimilation results at the grid cell corresponding to/including the Blue Lakes
SNOTEL station with SNODAS and AMSR-E for the 2005 water year.
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Figure 4.11: Assimilation results at the grid cell corresponding to/including the Ebbetts Pass
SNOTEL station with SNODAS and AMSR-E for the 2004 water year.
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Figure 4.12: Assimilation results at the grid cell corresponding to/including the Ebbetts Pass
SNOTEL station with SNODAS and AMSR-E for the 2005 water year.

Figures 4.16 and 4.17 show the snapshots of differences in SWE between the assimilation
without perturbation and the 50 perturbed ensemble assimilations at Scale 1 and Scale 4,
respectively. For the snapshot at each scale, the SWE differences are presented under Cases
I and II. We used the M-L snow model only for the assimilation. Figure 4.16 also shows
the range of differences (dashed line) between the original unperturbed SNODAS data and 50
perturbed data, which are the inputs for the MDA runs, for Cases I and II. That is, the range
shows the maximum and minimum differences in the time series. For both cases, we generated
the perturbed SNODAS data using the posterior variances Pt+1|t+1 and 4Pt+1|t+1 to introduce
a range of uncertainty degrees. In the figure, only the uncertainty range of the perturbed
SNODAS SWE for 4Pt+1|t+1 is shown as a reference.

This ensemble-based multiscale process provides a few important pieces of information
related to snow modeling and data assimilation. First, in both Cases I and II, the independent
SWE data with the larger posterior variance (i.e., 4Pt+1|t+1) resulted in a lager uncertainty
range than those with the smaller posterior variance. However, the range of uncertainties is
still relatively small considering the magnitude of the ground observations at the SNOTEL
stations. For example, in Figure 4.16 (right panel) where the snapshot is viewed at Scale 1,
we have much smaller uncertainty range of the ensemble posterior SWE compared to that of
the perturbed SNODAS data. Note that the uncertainty range generated by the perturbed 50
SNODAS datasets is presented in dashed line. This result is because the uncertainty (e.g., data
quality) of SNODAS SWE data at Scale 4 is alleviated at Scale 1 through the MDA scheme.
It is assumed that a reasonable range of uncertainties was provided to SNODAS SWE data
by the posterior variances. In Figure 4.16 (right panel), for example, when Σp = 4Pt+1|t+1 the
maximum uncertainty range (dashed line) at Scale 4 is approximately 30 mm in SWE difference
from the original SNODAS data. Even with this range (i.e., about 30 mm) of uncertainty in
observations at Scale 4, the assimilated results at Scale 1 (i.e., model scale) have not changed
significantly. These results imply that we will see more significant change in the simulation of
SWE at Scale 1 by changing the forcing data at Scale 1 rather than by changing SNODAS data
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Figure 4.13: Assimilation results with SNODAS data at different scales (only results with m =
1 and m = 4 are shown). Prior SWE denotes VIC M-L snow model prediction for the current
time given previous assimilations at scale m = 1, and Posterior SWE the assimilation results
for the current time step at a given scale, which belongs to {0, 1, 2, 3, 4} in this experiment.
The first row shows results for March 1, 2004, the second row for April 15, 2004, the third row
for March 1, 2005, and the fourth row for April 15, 2005.

73



0
20

0
40

0
60

0
80

0

EP_Ensemble_SNODAS_Scale_4_noise_4_Var_2004

S
W

E
 (

m
m

)

2003−Oct 2003−Dec 2004−Feb 2004−Apr 2004−Jun 2004−Aug

Original SNODAS
Ensemble SNODAS

Figure 4.14: 50 perturbed SNODAS data using Σp = 4Pt+1|t+1 at the grid cell corresponding
to the Ebbetts Pass SNOTEL station for the 2004 water year.
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Figure 4.15: Difference between the original SNODAS data and 50 perturbed SNODAS data
using Σp = 4Pt+1|t+1 at the grid cell corresponding to the Ebbetts Pass SNOTEL station for
the 2004 water year.
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Figure 4.16: SWE differences at Scale 1 between the normal unperturbed assimilation and
50 perturbed ensemble assimilations for Case 1 (left) and Case II (right) at the Ebbetts Pass
SNOTEL station for the 2004 water year. The SNOTEL observation (red) is shown as a
reference and the dashed line indicates the range of differences between the original SNODAS
data and the 50 perturbed ensemble data.

(i.e., observation) at Scale 4.
When the differences in the assimilated SWE are compared between Case I and II at the

VIC LSM modeling scale (i.e., Scale 1), the impact of uncertainty in the SNODAS data on the
ensemble assimilation is larger in Case I than in Case II, as shown in Figure 4.16. This result
means that the assimilation at Scale 1 is more sensitive to observed data at its parent scale (i.e.,
Scale 0) than those at Scale 4. More specifically, the result implies that if the quality of data at
Scale 0 is good, it can be used to improve the assimilation results at Scale 1. Currently, most
of remotely sensed SWE products (e.g., AMSR-E SWE) are available at coarser scale than our
modeling scale (i.e., Scale 1). Even though our experiment with the AMSR-E SWE product
did not show improvement in multiscale processes, our ensemble-based results show that there
are still potential benefits of using quality data with coarse resolution.

The result in Figure 4.16 also shows that the range of uncertainty in both cases expands
rapidly when melting occurs. This snapshot at Scale 1 gives us a different angle than the one at
Scale 4 shown in Figure 4.17. This result clearly shows that the uncertainty in snow modeling is
relatively high during the melting process whether the melting occurs during the accumulation
season or the melting season. For example, a large uncertainty range is shown during the period
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Figure 4.17: SWE differences at Scale 4 between the normal unperturbed assimilation and
50 perturbed ensemble assimilations for Case 1 (left) and Case II (right) at the Ebbetts Pass
SNOTEL station for the 2004 water year. The SNOTEL observation (red) is shown as a
reference.

of mid-November to early December in Figure 4.16. This large range at Scale 1 appears to be
the effect of the snow model, rather than the ensemble effect, noting that the distribution of the
drawn SWE samples shows much less fluctuation than the uncertainty range by the assimilated
ensemble SWE. For the distribution of the generated SWE samples, in Figure 4.16 we present
the maximum deviations of the 50 drawn ensemble members from the unperturbed value for
each observation time based on the posterior distribution. Even though the effect of the different
model physics between our 2-L model and M-L model is small in temporal evolution of SWE
(e.g., Figure 4.5), different representations of liquid water can still cause a difference in melting
time by several days as shown by Rutter et al. [67]. Our ensemble-based assimilation results
provide a similar evidence that the model uncertainty during the melting period can be large.

Figure 4.18 shows the root mean square errors (RMSE) across the scale (i.e., Scales 0
to 4). The figure uses the SNOTEL SWE observations as the reference data in computing
RMSE without perturbation of SNODAS data. The assimilated SWE results at all scales show
a large improvement in RMSE. In addition, the RMSE decreases as the resolution becomes
finer, reflecting that there is a spatial averaging effect, which was also observed in the spatial
distribution of SWE in Figure 4.13. Spatial averaging alters the mean value of each grid cell
at a scale by aggregating values at a smaller scale to a larger target scale. However, the RMSE
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values by the posterior SWE at all assimilation scales are much smaller than that of the prior
SWE. This result informs us that the uncertainty due to the forcing data is larger than that
of the spatial averaging effect, considering that the model physics plays a relatively small role
in our uncertainty experiment. In some cases, SNOTEL may not represent the mean value of
the corresponding model grid cell. However, their correlation was reported to be high in areas
with persistent snow cover [64].
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Figure 4.18: Root mean square error (RMSE) at different scales at the Ebbetts Pass SNOTEL
station for water years 2004-2005

Figure 4.19 shows the average of ensemble RMSE for each scale. For each scale we cal-
culated 50 RMSE’s using the unperturbed assimilated SWE as the reference data instead of
the SNOTEL observation. Then we took the average of the RMSE’s to obtain the average
ensemble RMSE for each scale. For Case I, only the SNODAS data at Scale 0 was perturbed
using the posterior variances Pt+1|t+1 and 4Pt+1|t+1. Therefore, the average RMSE decreases
towards Scale 4 overall. On the contrary, for Case II, the average RMSE increases towards
Scale 4 since the SNODAS SWE at Scale 4 was perturbed. This overall linear behavior in the
average RMSE summarizes how the uncertainties in independent SWE data propagate through
the multiscale linear process. However, we observe a different behavior in the average RMSE
for Scale 1. For instance, under Case II the average RMSE shows increase for Scale 1 rather
than decrease. This behavior seems to reflect the effect of model-simulated SWE at Scale 1.
We did not perturb the model-simulated SWE by giving noise either to the forcing or the model
parameters. But for Case I we see the largest average RMSE at Scale 1. This result suggests
that at Scale 1 the assimilation is affected by the model simulation uncertainty as we have seen
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the difference between the snapshots at Scale 1 and Scale 4 from Figures 4.16 and 4.17 . The
uncertainty from model simulation at Scale 1 is smoothed at Scale 4 while propagating through
the scale nodes.

Blue Lakes, Water Year 2005
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Figure 4.19: Average of ensemble RMSE for each scale at the Blue Lakes station for the 2005
water year.

4.5 Conclusion

High mountains are scale-sensitive areas where the spatial gradient of hydrologic variables
is sharp. However, there is not much support for distributed snow modeling to consider such
scale sensitivity due to sparse and error-prone forcing data. The presented data assimilation
framework showed a new paradigm where a land surface model fully embeds an assimilation
scheme for multiscale processes to address such issues in the alpine environment. The results
show that the forcing data play a much bigger role in the uncertainty of SWE simulations than
the scaling effect due to aggregation or the model physics. The assimilation scheme removes
most of the uncertainty in the simulation of SWE. Without regard to scale, all assimilated
results show similar states of SWE to the ground SNOTEL observations. Our ensemble-based
experiment provides various angles to examine the scaling issue and the effect of observed data
quality. In particular, the ensemble-based assimilation showed that the range of uncertainty
increases when melting occurs. Also, the ensemble results showed that information from obser-
vations with close resolution to the model resolution affects the assimilation result with more
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sensitivity.
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Chapter 5

Data Assimilation at Regional Scale

5.1 Introduction

This chapter extends the application of the multiscale process in Chapter 4 to a regional
scale. We implemented a multiscale data assimilation experiment for a small area in the pre-
vious chapter to study uncertainties associated with snow processes. This chapter not only
extends this work’s spatial domain, but also investigates the impacts of a multiscale-based
snow data assimilation framework on snow processes, energy budget, and streamflow simula-
tions in the West Coast region. Hydrologic processes such as streamflow in the western United
States are dominated by snow accumulation and ablation processes [4]. However, predictions of
snow processes in the region are greatly affected by uncertainties associated with precipitation
and temperature due to complex terrain and high altitudes. Proper forcing data at fine spatial
scales are rarely available in mountainous regions. Consequently, the accuracy of streamflow
simulations in mountainous regions is significantly deteriorated [17]. Mitchell et al. [18] showed
that all the participating land surface models in NLDAS underestimate the mean annual runoff
in the northern Rocky Mountains. This underestimation is primarily attributed to systematic
precipitation biases [68]. Systematic precipitation biases result from complex terrain and gauge
measurement errors, mainly due to wind-blowing [13]. But the question is how to remove the
systematic uncertainty in streamflow simulations and related hydrologic processes maintain-
ing key physical process information and computational complexity. This chapter focuses on
answering this research question at the regional and watershed scales.

As discussed in the previous chapters, local adjustments of biased forcing data can be
performed to improve simulation results. Alternatively, forcing data with fine resolutions that
represent the spatial characteristics of the study domain can be used to improve simulation
results. However, simulations at a large scale like this study are not easy to conduct due to
lack of fine-scale forcing data, in particular for mountainous areas. Also, local scale forcing
adjustments are only possible for small scale studies due to local data availability. Therefore,
we take a data assimilation approach in which SWE observations are directly assimilated into
the snow model based on the methodology in the previous chapter. The multiscale process used
in this dissertation can be expanded to assimilate observed forcing data when they are available.
This extended capability will be the subject of future research following this dissertation study.
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As an extension of the study in Chapter 4, the same methodology is used except the size
of the domain under study. However, this chapter is more interested in learning the impacts
of data assimilation at regional and subregional scales. The impacts of data assimilation are
studied for SWE, snow covered area, energy fluxes, and streamflow both temporally and spa-
tially. SWE data from SNODAS and AMSR-E are used at fine and coarse scales, respectively,
in the data assimilation process. Results indicate that the assimilation reduces large low bi-
ases in simulating SWE and improves the spatial distribution of SWE in mountainous areas,
which contributes to more accurate estimates of early summer streamflow in both timing and
magnitude.

5.2 Data and Methods

5.2.1 Study domain

The study domain at the regional scale includes Washington, Oregon, California, and part
of Nevada. Within this region, a subregional scale study is also conducted. This subregion has
fourteen SNOTEL stations, and is used to evaluate the impact of multiscale data assimilation.
The study domain in the West Coast is shown in Table 5.1. Figure 5.1 shows a spatial map that
defines the spatial domain. The entire study domain has been divided into 128 subregional units,
and the multiscale process is conducted for each assimilation unit independently. Figure 5.2
shows an elevation map for the entire spatial study domain. This map was generated from
NLDAS mean elevation data with a resolution of 1/8th degree.

Table 5.1: Study domain for data assimilation in the West Coast region (in degrees)

North boundary 49.0
South boundary 33.0
East boundary -116.625
West boundary -124.625

For in-depth study of the impact of data assimilation, a subregion has been selected at
the assimilation unit scale. Unit 85 is used for this purpose, and most of this unit is covered
with snow during the winter season. This subregion has fourteen SNOTEL stations as shown
in Figure 5.3. We have selected two watersheds for streamflow simulations. Figure 5.4 and
Figure 5.5 show the basin boundaries and streamflow and SWE gages for the Upper Merced
River Basin with drainage area 321 square miles and the East Fork Carson River Basin with
drainage area 356 square miles, respectively.

5.2.2 Data

We use hourly meteorological forcing data from NLDAS. This dataset includes precipita-
tion, temperature, wind speed, and other secondary forcing such as downward solar radiation
and pressure. For observation data with fine and coarse resolutions, the same sources as in
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Figure 5.1: Study domain for multiscale data assimilation in the western US and 128 assimila-
tion units. The number for each unit indicates assimilation unit number for identification.
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Figure 5.2: Elevation (m) in the study domain
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Figure 5.3: A subregional study area with fourteen SNOTEL stations in the Sierra Nevada.
The background image represents SNODAS data for April 15, 2005.

Chapter 4 are used. For the fine resolution data, the SNODAS product from NOHRSC is
used [63]. SNODAS SWE data are archived at 1 km resolution and aggregated into 1/64th
degree as in Chapter 4. For the coarse resolution, the AMSR-E daily SWE product [65], which
is provided in 25 km resolution, is used. Due to the known problems such as the saturation
effect [66] and the results we have seen in Chapter 4, AMSR-E SWE data are used only during
the early snow season, October through December.

To study the impacts of data assimilation, this chapter compares snow covered area
(SCA) from data assimilation with that of the Moderate Resolution Imaging Spectroradiometer
(MODIS) remote sensing product. MODIS has higher spatial and spectral resolution, and thus
has a better ability to detect cloud and snow under vegetation canopies compared to products
from the Geostationary Orbiting Environmental Satellite (GOES) [69]. The dataset used in
this study is MOD10A1, which is a daily gridded snow cover data product at a resolution of
500 m. To fit with the scaling shown in Table 5.2, the 500 m product was regridded into 1/64th
degree according to the method described in Appendix D.

5.2.3 Assimilation Scales

The design of assimilation scaling depends on the scales of available data and model output
and the domain size to be assimilated. In Chapter 4 only four different scales were used. In this
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Figure 5.4: Upper Merced River Basin boundary. The triangle indicates USGS streamflow
station at the Pohono Bridge.

regional study, the spatial domain is so large that it needs to be divided into appropriate units.
The assimilation scheme is very efficient, and it can be coupled with the VIC LSM seamlessly.
But for a large area like this study domain, the input and output processes of data limit the
size of unit. For this reason, we use a unit size of 1 degree × 1 degree, which produces 128
assimilation units for the entire domain. High performance computing resources can be used to
provide favorable unit size configurations at a range of scales. Table 5.2 shows the appropriate
configuration of scales for the 1 degree × 1 degree assimilation unit.

85



#

!(

!(

!(

!(

119°56’24"W

119°56’24"W

119°36’36"W

119°36’36"W

38°22’12"N 38°22’12"N

38°42’0"N 38°42’0"N


Elevation (m)

High : 3410

 

Low : 1364

Figure 5.5: East Fork Carson River Basin boundary. The triangle indicates USGS streamflow
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Table 5.2: Assimilation scales.

Scale Resolution (degrees) Cell size

0 1 1 x 1
1 1/2 2 x 2
2 1/4 4 x 4
3 1/8 8 x 8
4 1/16 16 x 16
5 1/32 32 x 32
6 1/64 64 x 64
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5.3 Results

5.3.1 Spatial Distribution of Snow Variables

5.3.1.1 Regional scales

This subsection presents spatial distributions of SWE based on the multiscale data assim-
ilation. Spatial distributions of SWE at a large spatial domain show how the multiscale process
affects the snow variable in magnitude and spatial extent. In the West Coast region, the spatial
distribution of SWE closely follows the altitudinal gradient. Figures 5.6 and 5.7 show the spa-
tial distributions of SWE at different scales over the study domain for April 1, 2005 and April
1, 2006, respectively. These results are produced using the SNODAS product only, as results
with both SNODAS and AMSR-E products will be discussed later. The posterior distribution
at both Scales 3 and 6 shows more snow-covered area as well as more accumulation of SWE.
Based on the results in Chapter 4, we presume that this posterior distribution represents the
SWE state of the study domain. The verification of this presumption will be provided later in
this chapter. Figures 5.8 and 5.9 show the spatial distribution of SWE for April 1, 2007 and
April 1, 2008, respectively. These spatial distributions for the water years 2007 and 2008 show
the state of drought in the West Coast region, in particular the Sierra Nevada. They show
contraction both in magnitude of SWE accumulation and in snow covered area, presenting
the ability of the multiscale assimilation scheme to capture interannual variability affected by
regional climate conditions.

Figure 5.6: Spatial distribution of prior SWE at Scale 3 (a), posterior SWE at Scale 3 (b), and
posterior SWE at Scale 6 (c) on April 1, 2005.
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Figure 5.7: Spatial distribution of prior SWE at Scale 3 (a), posterior SWE at Scale 3 (b), and
posterior SWE at Scale 6 (c) on April 1, 2006.

As in Chapter 4, the SWE product from AMSR-E has also been used for a coarse resolution,
which is 1/4th degree or Scale 2. Because of measurement quality problems in forests and deep
snowpacks, AMSR-E SWE data are used only at the beginning of the snow season. An example
of AMSR-E SWE map is shown in Figure 5.10. It captures the overall spatial distribution
of snow over the study domain, but shows low biases, in particular on high elevations. For
comparison with posterior SWE values, see Figures 5.11 and 5.12 where posterior SWE maps
are shown for assimilation cases with and without the AMSR-E SWE product. Note that for the
case without the AMSR-E product we use only the SNODAS product for assimilation. When
AMSR-E data are used, SWE values on high mountains tend to be reduced due to the low bias
of AMSR-E SWE. On the other hand, assimilation with AMSR-E SWE predicts more snow for
some parts at low elevations. For example, as shown in Figure 5.11 assimilation with AMSR-E
SWE shows more snow accumulation in the eastern part of Oregon where the elevation ranges
from 1000 m to 1500 m. Even though we have seen some noisy behaviors when assimilated with
AMSR-E data in Chapter 4, this result reveals that there is the possibility that assimilation
with AMSR-E data performs better than the case with only SNODAS assimilation for low-lying
regions.

5.3.1.2 Sub-regional scales

This subsection views the assimilation results at a subregional scale, which is assimilation
unit 85. This assimilation unit has fourteen SNOTEL stations (see Figure 5.3). The elevation
of the snow-covered area in this assimilation unit ranges from 1600 m to over 2600 m. Fig-
ures 5.14, 5.15, 5.16, and 5.17 show the spatial distribution of SWE over assimilation unit 85 on
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Figure 5.8: Spatial distribution of prior SWE at Scale 3 (a), posterior SWE at Scale 3 (b), and
posterior SWE at Scale 6 (c) on April 1, 2007

Figure 5.9: Spatial distribution of prior SWE at Scale 3 (a), posterior SWE at Scale 3 (b), and
posterior SWE at Scale 6 (c) on April 1, 2008
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Figure 5.10: An example map of SWE from the AMSR-E product on December 15, 2005.
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Figure 5.11: Comparison of posterior SWE between without AMSR-E data (a), with AMSR-E
data (b), and the difference (c) for December 15, 2005.

Figure 5.12: Comparison of posterior SWE between without AMSR-E data (a), with AMSR-E
data (b), and the difference (c) for December 15, 2007.
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April 15th of the water years 2005, 2006, 2007, and 2008, respectively. In this high mountain
area, there is a large difference in magnitude and spatial distribution between the prior and
posterior SWE values. This discordant spatial distribution is large for the water years 2005,
2006, and 2007. However, for the 2008 water year, prior SWE shows more accumulation than
posterior SWE at Scale 3 (see Figure 5.17). This difference results from using the version 2
product from NLDAS for the 2008 simulation. This new product shows some improvements for
precipitation data. The improved behavior of the new NLDAS product is shown in the tempo-
ral evolution of SWE (e.g., see Figure 5.23). This result supports our consistent argument that
the forcing, particularly precipitation, is a dominant factor in the simulation of snow variables
in high mountains.

Figure 5.13: Elevation (m) of assimilation unit 85.

To evaluate the results of the assimilation scheme, we use the MODIS snow covered area
(SCA) product. Figures 5.18, 5.19, 5.20, and 5.21 show comparisons between the posterior
SWE at Scale 6 and MODIS SCA. All these figures compare output for around April 15 where
the accumulation in this subregion is known to be the highest (see the time series plots later).
Because the MODIS SCA was regridded into 1/64th degree, it is also at Scale 6 for pixel to
pixel comparison. The numbers in the parentheses indicate the matching rate in percentage
between the two methods. The matching rate was calculated using a threshold of 20 % SCA in
fraction. Thus, if a pixel is covered with snow by 20 % or more in fraction and the corresponding
posterior SWE pixel has snow, it is classified as 1. Otherwise it is classified as 0, which means
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Figure 5.14: Spatial distribution of prior SWE at Scale 3 (a), posterior SWE at Scale 3 (b),
and posterior at Scale 6 (c) in the Sierra Nevada where 14 SNOTEL stations are located.

Figure 5.15: Spatial distribution of prior SWE at Scale 3 (a), posterior SWE at Scale 3 (b),
and posterior at Scale 6 (c) in the Sierra Nevada where 14 SNOTEL stations are located.

Figure 5.16: Spatial distribution of prior SWE at Scale 3 (a), posterior SWE at Scale 3 (b),
and posterior at Scale 6 (c) in the Sierra Nevada where 14 SNOTEL stations are located.
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Figure 5.17: Spatial distribution of prior SWE at Scale 3 (a), posterior SWE at Scale 3 (b),
and posterior at Scale 6 (c) in the Sierra Nevada where 14 SNOTEL stations are located

they do not match. Overall, the posterior SWE at Scale 6 is well matched to the MODIS
SCA. The matching rate is high in places where elevations are high and snow accumulation is
also high. Edge areas are not matched well between the two datasets. In addition, the two
datasets agree well during the snow accumulation period while during the melting period the
matching rate is not high (figures are not shown). As we have seen in the figures for comparison
between prior and posterior spatial distribution, the MODIS data also show a large contraction
of SCA during the dry water year of 2007. For the 2008 water year, SWE accumulation has
been reduced compared to the 2005 and 2006 water years, but SCA has not contracted by as
much as the 2007 water year. This phenomenon is shown from both assimilated results and
MODIS observations. Figure 5.22 shows the matching rate in time series for the snow season of
the 2006 water year. This figure shows results only from days without clouds blocking MODIS
measurements. As shown in the figure, the matching rate is low during the melting period.

Figure 5.18: Comparison of snow covered area: posterior SWE at Scale 6 (a), MODIS SCA at
Scale 6 (b), and matching map (c).
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Figure 5.19: Comparison of snow covered area: posterior SWE at Scale 6 (a), MODIS SCA at
Scale 6 (b), and matching map (c).

Figure 5.20: Comparison of snow covered area: posterior SWE at Scale 6 (a), MODIS SCA at
Scale 6 (b), and matching map (c).

Figure 5.21: Comparison of snow covered area: posterior SWE at Scale 6 (a), MODIS SCA at
Scale 6 (b), and matching map (c).
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Figure 5.22: Matching rate between the MODIS-derived SCA and posterior SWE at Scale 6.

5.3.2 Temporal Evolution of SWE

It is often hard to analyze simulation results over a large area. In particular, when the
study is done in mountain environments where observations are limited, it is necessary to
investigate a subregion of the study domain. In this subsection, temporal evolution of SWE
based on the multiscale process is presented in assimilation unit 85 as in the spatial study. We
use observed SWE data from the SNOTEL stations belonging to the subregion (i.e., unit 85)
shown in Figure 5.3. This one unit is composed of 64 grid cells of 1/8th degree. Table 5.3 show
grouping of the SNOTEL stations in the subregion, and this information is used to interpret
the results of the temporal evolution of SWE.

The assimilation results show promise in comparison with the SNOTEL observations over-
all. The posterior SWE values at Scale 3 for the corresponding grid cells to the Ebbetts Pass
and Blue Lakes station match the ground observations well as shown in Figures 5.23 and 5.27,
respectively. These results are similar to those we have seen in Chapter 4 for these stations.
Note that in Chapter 4 we used only 4 grid cells of 1/8th degree while here we use 64 grid cells
of the same resolution. This comparison implies that the multiscale process presented in this
dissertation shows some independence from the number of scales used. In Chapter 4, we used
four different scales whereas we use seven different scales as shown in Table 5.2.

The first feature of the assimilation results is that the multiscale process removes most
of the low bias in the mountainous area. In particular, for the 2005 - 2006 water years, prior
SWE shows large underestimates, and these values are recovered in posterior SWE. For the
2007 water year, underestimation by the prior simulation is much less than that of the previous
two years. This result reveals that when accumulation of snow is small due to drought the
uncertainty also decreases. This phenomenon is consistently shown in all ten stations presented
in these figures.

96



Table 5.3: Group of SNOTEL stations in the subregional domain by elevation. Only ten stations
are shown.

Station Name Elevation (ft) Group

Ebbetts Pass 8700 A
Horse Meadow 8557 A
Carson Pass 8353 A
Burnside Lake 8139 A
Blue Lakes 8000 A
Echo Peak 7800 B
Poison Flat 7736 B
Rubicon #2 7500 B
Fallen Leaf 6300 C
Spratt Creek 6200 C

Even though the overall performance of the multiscale process scheme is encouraging,
there are some differences in performance depending on the location. The comparison between
stations at high elevations and their corresponding model grid cells show better results than
those at low elevations. That is, comparison at stations marked as Group A in Table 5.3
present better results among the groups. At the stations belonging to Group B the multiscale
process scheme also produces good results. However, there is overestimation at the Poison
Flat station belonging to Group B. This overestimation is attributed to overestimates from the
SNODAS product. In Figure 5.33, we included the aggregated values of posterior SWE into
Scale 3, supporting our analysis that the SNODAS product at Scale 6 is overestimated. This
aggregated value for each day in the time series is the average of 64 grid cells at 1/64th degree,
which are equivalent to one 1/8th grid cell. The aggregation into Scale 3 shows similar results
to the posterior SWE at Scale 3. This overestimation result implies that the quality of data at
the fine scale greatly affects posterior results at a coarse scale.

The stations at low elevations are located at the edge of snow dominated areas. Therefore,
the gradient of snow state variables at the edge with altitude is relatively large while high moun-
tain sites have deep snowpack with less gradients. For example, as shown in Figure 5.14, the
fringe area has a larger gradient of SWE over elevation. This result also implies that SNOTEL
stations at this fringe area may not well represent the areal mean value of a corresponding grid
cell. The Fallen Leaf (Figure 5.31) and Spratt Creek (Figure 5.32) stations are located at this
fringe area (see Figure 5.3) whose elevation is relatively low. These stations show poor compar-
ison results relative to the stations in high elevations. As shown in Figure 5.33, overestimates
from SNODAS add difficulty in this type of point to grid cell comparison.

5.3.3 Impacts on Energy Fluxes

This section investigates the impact of snow data assimilation on energy fluxes over the
study domain. Sensible heat and latent heat fluxes are studied for this purpose. When snow
cover exists, the surface albedo changes rapidly, reducing the surface temperature. This reduced
temperature causes the outgoing longwave radiation to be smaller, leading to less sensible heat
flux from the snow surface. Therefore, the existence of snow cover on the ground surface directly
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Figure 5.23: Temporal evolution of prior and posterior SWE at the Ebbetts Pass station.

Figure 5.24: Temporal evolution of prior and posterior SWE at the Horse Meadow station.

98



Figure 5.25: Temporal evolution of prior and posterior SWE at the Carson Pass station.

Figure 5.26: Temporal evolution of prior and posterior SWE at the Burnside Lakes station.
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Figure 5.27: Temporal evolution of prior and posterior SWE at the Blue Lakes station.

Figure 5.28: Temporal evolution of prior and posterior SWE at the Echo Peak station.
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Figure 5.29: Temporal evolution of prior and posterior SWE at the Poison Flat station.

Figure 5.30: Temporal evolution of prior and posterior SWE at the Rubicon #2 station.
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Figure 5.31: Temporal evolution of prior and posterior SWE at the Fallen Leaf station.

Figure 5.32: Temporal evolution of prior and posterior SWE at the Spratt Creek station.
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Figure 5.33: Temporal evolution of prior and posterior SWE at the Spratt Creek station.

affects the turbulent heat fluxes. Our assimilation results show this general phenomenon during
the cold season. Figure 5.34 shows the spatial distribution of sensible heat for April 15, 2005,
when snow accumulation is high in the region while Figure 5.35 for June 15, 2005, which is one
of the melting days. During the melting period, the sensible heat flux is higher than during the
accumulation period as shown in the figures due to increased temperature. These figures also
show the difference between posterior and prior simulations. The difference occurs mostly due
to the snow-covered areas. This difference can easily be identified by comparing the sensible
heat flux distribution with the SWE distribution in Figures 5.36 and 5.37. When melting
occurs, the difference in sensible heat between prior and posterior simulations increases due to
the difference in snow covered area between the prior and the posterior.

Latent heat flux distributions are shown in Figures 5.38 and 5.39. As in sensible heat
flux, there is stronger latent heat flux during the melting season (i.e., June 15) than during the
accumulation season. The strong latent heat flux occurs in most of the study domain except
the high elevations in the Sierra Nevada where snow covered areas still remain. In California,
the Central Valley region and the coastal region show high latent heat in April, because active
evaporation is induced by stored soil moisture from winter storms. In particular, strong latent
heat flux is shown at the foot of the Sierra Nevada due to early melting snow at low elevations.
This strong latent heat at the foot of the Sierra Nevada is more apparent during the melting
season in Figure 5.39. This figure also shows more latent heat flux in the eastern part of Oregon
for which the posterior simulation shows more snow than the prior. Note that there is little
difference in latent heat flux in the region along the coast between the posterior and the prior.
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Figure 5.34: Comparison of daily average sensible heat flux (W/m2) for April 15, 2005: prior
at Scale 3 (a), posterior at Scale 3 (b), posterior minus prior (c).

Figure 5.35: Comparison of daily average sensible heat flux (W/m2) for June 15, 2005: prior
at Scale 3 (a), posterior at Scale 3 (b), posterior minus prior (c).
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Figure 5.36: Comparison of daily average SWE (mm) for April 15, 2005: prior at Scale 3 (a),
posterior at Scale 3 (b), posterior minus prior (c).

Figure 5.37: Comparison of daily average SWE (mm) for June 15, 2005: prior at Scale 3 (a),
posterior at Scale 3 (b), posterior minus prior (c).
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Figure 5.38: Comparison of daily average latent heat flux (W/m2) for April 15, 2005: prior at
Scale 3 (a), posterior at Scale 3 (b), posterior minus prior (c).

Figure 5.39: Comparison of daily average latent heat flux (W/m2) for June 15, 2005: prior at
Scale 3 (a), posterior at Scale 3 (b), posterior minus prior (c).
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5.3.4 Impacts on Streamflow Simulation

Streamflow represents the composite effect of a watershed and is one of the most important
variables used to validate hydrological simulations. This subsection examines the impact of the
multiscale data assimilation on streamflow simulations. While we have studied SWE and energy
fluxes over the large study domain, we conduct streamflow simulations in two small basins in
the Sierra Nevada (see Figures ?? and 5.5). These basins are located in high elevations, where
forcing uncertainty was dominant as we have seen previously. Because this study focuses on
the impact of multiscale assimilation on streamflow, we do not calibrate model parameters.

Figure 5.40 shows the simulated daily streamflow with the observation at the East Fork
Carson River Basin near Gardnerville, NV. Streamflow based on the posterior simulation shows
promise during the 2005 and 2006 water years. As we have seen in the simulation of SWE, there
has been large underestimation during these two years, and our posterior results recover this low
bias. For the 2007 and 2008 water years, the posterior simulation shows some overestimation.
This overestimation is attributed to SWE overestimates in the posterior simulation at Scale
6. The result in the Poison Flat belonging to the East Fork Carson River Basin, for example,
shows overestimates of SWE for the 2007 and 2008 water years (Figure 5.29). The discrepancy
between the simulated streamflow and the observation for the 2005 and 2006 water years is
so large that it is not easy to remove the uncertainty in streamflow without considering snow
accumulation and melting. Figure 5.41 shows the monthly streamflow simulation for the 2005
- 2008 water years. This monthly average also shows a similar result to that of the daily one.
During the 2007 water year, the drought in the Sierra Nevada caused an abrupt decrease in
streamflow. As a result, the under-catch of precipitation, which usually occurs in the mountain
basin, did not contribute to the low bias in streamflow. For the 2008 water year, drought in
the Sierra Nevada and improved precipitation data from NLDAS generate a good result in the
streamflow simulation.

The simulation in the Upper Merced River Basin also shows promise (Figures 5.42 and 5.43).
For the daily comparison between the prior and the posterior, the posterior improves stream-
flow simulation results by removing underestimation by the prior during the 2005 and 2006
water years. On the other hand, during the 2007 and 2008 water years, the posterior reduces
overestimation by the prior. Similar results are found in the monthly simulations (Figure 5.43).
These results show the ability of the multiscale process used in this dissertation to represent
the subscale variability for areas where streamflow is dominated by snow accumulation and
ablation processes.

5.4 Conclusion

This chapter showed how multiscale assimilation of SWE affects other hydrological vari-
ables. The existence of snow on the land surface changes the energy balance on it, in particular
by altering albedo. The results in this chapter also showed such changes in the surface en-
ergy balance. The posterior predicted the state of snow on the ground more accurately than
the prior in both volume and extent. In many cases, the posterior predicted the existence of
snow for the areas where the prior predicted no snow. The existence of snow changed surface
temperature and albedo, and subsequently brought changes to sensible and latent heat fluxes.
In addition, we compared the snow covered area by the model with MODIS SCA. The results
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Figure 5.40: Comparison of daily simulated streamflow with the observation for the water years
2005 - 2008.

are promising and showed similarity between the assimilation and MODIS observations. To
evaluate the impact of the proposed assimilation method at the basin scale, we compared sim-
ulated streamflow and observations. The assimilation scheme improved streamflow simulations
by removing uncertainties associated with model forcing and physics in a complex mountain
environment. In particular, the approach employed in this dissertation show how one can use
snow data assimilation to generate more accurate streamflow simulations.
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Figure 5.41: Comparison of monthly simulated streamflow with the observation for the water
years 2005 - 2008.
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Figure 5.42: Comparison of daily simulated streamflow with the observation for the water years
2005 - 2008.
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Figure 5.43: Comparison of monthly simulated streamflow with the observation for the water
years 2005 - 2008.
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Chapter 6

Conclusions

Mountain hydrology is by nature a complex field due to the complicated terrains and
highly diverse land surface environments it encompasses. The distinct problem in mountain
hydrology is that it is very difficult to accurately simulate hydrological variables [10]. This
dissertation thoroughly examines hydrological processes in mountainous areas with a particular
focus on simulating snow processes and related energy exchanges. The complete investigation
of mountain snow processes in this dissertation includes: (1) understanding behavior of meteo-
rological forcing data in high mountains, (2) development of a complex soil-snow model, and (3)
study of a method to reduce uncertainties related to snow processes. Therefore this dissertation
covers data, model physics, and a solution to improving uncertainty, and so comprises a full
study set of snow processes.

Chapter 2 presented why forcing data in high mountains are problematic and how they
affect the model simulation. To define the degree of uncertainties associated with model forcing
data, this study employed an ensemble approach. We used the gridded precipitation and
temperature data from the DMIP2 product that represents the grid cell very well. We added
noise to these DMIP2 data to assign uncertainties. The results from ensemble simulations
showed that perturbed forcing data with reasonable uncertainty could not remove the low-bias
in SWE. One of the reasons was that the DMIP2 dataset has less solid precipitation than
observed by SNOTEL, which led to underestimation of SWE in the model simulations. Among
the forcing variables used, the effect of precipitation uncertainty was the largest. Temperature
followed precipitation and other secondary forcing variables were smaller than these two. It is
likely that DMIP2 precipitation and temperature data are the most accurate ones we could use
for distributed modeling. However, our results imply that there are still undercatch problems in
the raw precipitation data (e.g., cooperative rain gage data) on which the DMIP2 precipitation
product is based. This situation led us to raise questions of how snow model physics can
contribute to solving this problem. We need to learn how new snow parameterizations could
change the underestimation problem with quality forcing data such as DMIP2 precipitation
and temperature to fully understand the uncertain processes of snow.

In Chapter 3, we developed a new multilayer (M-L) soil-snow model and investigated its
impact on simulating snow states. The complexity added to the 2-L snow model of the VIC
LSM did not significantly change the simulation results while the M-L model showed consistent
improvements in capturing the timing of melting in the shallow snowpack site of the Valdai
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station compared to the 2-L model. Emissivity and certain parameters (e.g., critical density
for settling) for densification showed relatively high sensitivity in simulating snow variables. In
terms of numerical schemes, description of the soil-snow interface occurs in the M-L model due
to the added complexity of its model structure. Precise treatment of the soil-snow interface in
the M-L model generated improvements to soil temperature simulations. In this regard, the
M-L model can be applied to cases where more accurate simulations as in point-scale sensor
validation are required and adjusting parameters is not expensive.

As we have seen from the results in the Sierra Nevada sites, the new M-L model did
not overcome the dominant underestimation problem. The bias in precipitation forcing was
dominant in the uncertainty of SWE simulations in our study where the gridded areal mean
temperature is well matched to the point-scale temperature. The M-L model performed in a
similar way to the 2-L model, in particular for the accumulation season. However, application
of a different snow albedo scheme (i.e., BATS albedo scheme) changed results to a large degree
during the melting season. The M-L model with the BATS albedo scheme showed a promising
result for a site located at relatively lower elevation. This result implies that processes directly
related to energy fluxes such as albedo and emissivity have a large impact on snow state
variables.

Chapter 4 builds upon the research from the previous chapters. This chapter showed a
method to reduce the uncertainty in simulating snow states. Quality meteorological forcing
data, preferably with a fine resolution, tend to generate reasonable estimates of snow states.
This phenomenon was shown in the 2008 year simulations in Chapter 5. However, it is very
difficult to obtain quality forcing data for mountainous areas due to lack of gages and complex
terrains. When we understand that high mountains are scale-sensitive areas, there is not much
support for scale sensitivity from the traditional approach. Instead of using quality forcing data,
we assimilated snow data from other sources with different scales into the model. The presented
data assimilation framework showed a new paradigm where a land surface model fully embeds
an assimilation scheme for multiscale processes to address such issues in the alpine environment.
The assimilation scheme removed most of the uncertainty in the simulation of SWE. The results
also showed that the forcing data play a much bigger role in the uncertainty of SWE simulations
than the scaling effect due to aggregation or the model physics. Without regard to scale, all
assimilated results showed similar states of SWE to the ground SNOTEL observations.

All work in the previous chapters are applied and expanded in Chapter 5. The new soil-
snow model and multiscale data assimilation method are used to simulate various hydrological
variables. As in Chapter 4, SWE data from the SNODAS and AMSR-E products are assimilated
into the new model to investigate the impact of data assimilation on hydrological variables. The
results of the multiscale assimilation of SWE changed energy fluxes on the land surface. The
assimilated result, the posterior, predicted the state of snow on the ground more accurately
than the prior in both volume and extent. In many cases, the posterior predicted the existence
of snow for the areas where the prior predicted no snow. The existence of snow changed surface
temperature and albedo, and subsequently brought changes to sensible and latent heat fluxes. In
addition, we compared the snow covered area by the model with the one that was derived from
the MODIS product. For this comparison, we used various data processing techniques for data
with different scales. The results are promising and showed similarity between the assimilation
and MODIS observations. To evaluate the impact of the proposed assimilation method at the
basin scale, we compared simulated streamflow and observations. This dissertation showed how
the multiscale assimilation scheme for snow reduced uncertainties in streamflow simulations.
The assimilation scheme improved streamflow simulations by removing uncertainties associated
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with model forcing and physics in a complex mountain environment.
This dissertation study should be useful to hydrological scientists and water resources plan-

ners in several ways. First, it provides a baseline of support for interpreting snow states and
available water resources in mountainous areas. As we have seen in Chapter 5 the prediction
of snow states in mountain basins dominated by snow accumulation and ablation determines
the accuracy of streamflow simulations. By more greatly understanding the data (e.g., precip-
itation) that are provided to a physical model as an input, researchers can analyze estimates
of snow states and other related hydrological variables. Second, this dissertation contributes
to understanding the physical processes of snow by describing snow models with different com-
plexity levels. As we have seen, a complex model does not necessarily guarantee better results.
This dissertation provided a measure to evaluate snow models with different treatments of snow
processes that affect simulation results. Third, this dissertation proposed a data assimilation
framework that can be deployed in the real-time prediction of hydrological variables including
streamflow. Our data assimilation scheme is very efficient and can be run with a normal model
simulation environment of the VIC LSM without special treatment of numerical methods. As
we have seen in the streamflow simulations, the posterior results showed large improvements
in estimating streamflow values. When the developed multilayer soil-snow model is refined
more in conjunction with the multiscale assimilation scheme, it is expected that more accurate
prediction of snow states in mountainous areas will be achieved.
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Appendix A

Ground and Snow Heat Flux

A.1 Introduction

The structure of the VIC LSM for cold season processes has been changed by incorporating
a multi-layer soil-snow model. Therefore, the way ground heat and snow fluxes are computed
has also changed. This appendix shows how to calculate these fluxes.

A.2 Ground Heat Flux

A.2.1 Governing Equation

The ground heat flux, which is the heat flux across the ground surface, is calculated using
the first two layers of the soil system.

The governing equations above can be solved numerically using the following finite differ-
ence approximation

Cs
∂T

∂t
= −∂G

∂z
+ ρiLf(

∂Wi

∂t
) (A.1)

G = −κ∂T
∂z

(A.2)

where G is the soil heat flux in the z direction, Cs is the volumetric specific heat of soil
(Jm−3K−1), κ is the soil thermal conductivity (Wm−1K−1), ρi is the density of ice (kgm−3),
Lf is the latent heat of fusion (Jkg−1), and Wi is the ice content of the layer (m3m−3). In the
above equation each term has a unit of Wm−3.
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Figure A.1: An example of layering scheme for ground heat flux. The top three layers (i.e.,
j = 0, 1, 2) are fixed and the rest layers can vary depending on the number of soil thermal
layers.

A.2.2 Solution

Because we are interested in the heat flux at the ground surface, we can rewrite the
Equation A.2 as:

Cs

T n+1
0+ 1

2

− T n
0+ 1

2

∆t
= −G1 −G0

∆z0
+ ρiLf

(

(Wi)
n+1
0+ 1

2

− (Wi)
n
0+ 1

2

∆t

)

= − 1

∆z0
G1 +

1

∆z0
G0 + ρiLf

(

(Wi)
n+1
0+ 1

2

− (Wi)
n
0+ 1

2

∆t

)

(A.3)

If we solve for G0, we have:

G0 = G1 +
∆z0
∆t

Cs(T
n+1
0+ 1

2

− T n
0+ 1

2

) − ρiLf

(

(Wi)
n+1
0+ 1

2

− (Wi)
n
0+ 1

2

∆t

)

(A.4)

In our simultaneous calculation of soil and snow temperature, the temperature for the
next time step has already been calculated. We only need to recalculate the ground heat flux
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using those known temperatures. Now, we need the expression for G1, which is the flux at the
interface corresponding to T1 as shown in Figure A.1. G1 can be calculated as

G1 = 0.5

(

−κ01
T n+1

1 − T n+1
0

z1 − z0
− κ12

T n+1
2 − T n+1

1

z2 − z1

)

(A.5)

where κ01 is the average heat conductivity between z0 and z1, and in the same way κ12 between z1
and z2. Therefore we use the average of the upper and lower fluxes of the interface corresponding
to T1 to reduce numerical errors.

In Figure A.1, we are using the temperature at the midpoint between z0 and z1, which is
expressed as T0+ 1

2

. Assuming the linear relationship between layers 0 and 1, we can write as

T0+ 1

2

=
T0 + T1

2
(A.6)

In the same way, the ice content between z0 and z1 can be calculated as the average of (Wi)0

and (Wi)1 yielding

(Wi)0+ 1

2

=
(Wi)0 + (Wi)1

2
(A.7)

A.3 Snow Heat Flux

Figure A.2 shows a layering scheme for the snow system, which depends on the number of
layers. In a similar way to the calculation of ground heat flux, snow heat flux is the flux at the
interface between the first layer and the second layer, which is denoted as F0+ 1

2

in Figure A.2.
We use an equation for the flux at the interface between layer j = 0 and layer j = 1

following [44]:
F0+ 1

2

= −(DKe)0,1(T1 − T0) (A.8)

where (DKe)0,1 can be expressed as

(DKe)0,1 =
1

(

∆z0

2
+ ∆z1

2

)

(

∆z0 + ∆z1
∆z0

(Ke)0
+ ∆z1

(Ke)1

)

(A.9)

In our solution to the temperature of the soil-snow system, we use the Crank-Nicholson
method. In the same context, we can write the snow flux as

F0+ 1

2

= θF n+1
0+ 1

2

+ (1 − θ)F n
0+ 1

2

(A.10)

where n denotes the previous time as usual. Therefore, we have

F n
0+ 1

2

= −(DKe)
n
0,1(T1 − T0) (A.11)

(DKe)
n
0,1 =

1
(

∆zn
0

2
+

∆zn
1

2

)





∆zn
0 + ∆zn

1
∆zn

0

(Ke)n
0

+
∆zn

1

(Ke)n
1



 (A.12)
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Figure A.2: An example of layering scheme for the snow system.
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Appendix B

Matrix Equations for Netwon-Raphson

Solutions

B.1 Introduction

Computing soil and snow state variables simultaneously requires a fast solution in the
new macro-scale model for cold season processes. Therefore, we use the Newton-Raphson (NR)
method in a multi-dimensional way. This appendix shows how to set up the matrix to apply
the multi-dimensional NR method.

B.2 Matrix of Equations
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where ∂(f0)
∂x0

∣

∣

∣

xi

is the derivative of the equation for layer j = 0 with respect to x0 evaluated

with the value of xi. Layer equation fj is shown in Chapter 3. xi is a vector that contains the
solutions from the ith iteration. Note that we are solving for solutions at the (i+1)th iteration.

B.3 New Mass Fraction

This section shows how to solve the new snow mass fraction (i.e., (fs)
n+1
j ) when the layer

temperature for the new time step (i.e., T n+1
j ) is equal to 0 ◦C. We have the following equation

for the snow surface:

(f0)i = Hn+1
0 −Hn

0 − θ
∆t

∆zj=0
F n+1

0− 1

2

− (1 − θ)
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F n
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0+ 1
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+ (1 − θ)
∆t

∆zj=0

F n
0+ 1

2

+
∆t

∆zj=0

(Rs)
n
0+ 1

2

(B.1)

where H = Cv(T − 273.15) − fsLfρsl. The definition for each term is presented in Chapter 3.
We need to solve Equation B.1 for (fs)

n+1
j at the surface layer with T n+1

j being 273.15 K.
The result can be written as

(fs)
n+1
0 =

1

Lfρsl

(

−Hn
0 − θ

∆t

∆zj=0

F n+1
0− 1

2

− (1 − θ)
∆t

∆zj=0

F n
0− 1

2

)

+
1

Lfρsl

(

θ
∆t

∆zj=0
F n+1

0+ 1

2

+ (1 − θ)
∆t

∆zj=0
F n

0+ 1

2

)

+
1

Lfρsl

(

∆t

∆zj=0
(Rs)

n
0+ 1

2

)

(B.2)

where Hn+1
0 = −(fs)

n+1
0 Lfρsl when T n+1

0 = 273.15K.

126



The only term that contains the solid fraction of snow fs is the heat content H (Jm−3).
The derivative of H with respect to (fs)

n+1
j is written as:

[

Hn
j

]

(fs)n+1

j

= 0 (B.3)
[

Hn+1
j

]

(fs)n+1

j

= −Lf (ρsl)
n
j (B.4)

Thus the following holds:
[fj](fs)n+1

j
= −Lf (ρsl)

n
j (B.5)
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The right-hand side RHS can be written as:

(RHSj)i = −(fj)i + (xj)i
∂(fj)

∂xj

∣

∣

∣

∣

xi

(B.6)

where (xj)i is the ith (i.e., previous) iteration result for the unknown of layer j (i.e., (fs)j).
Note that only the jth component of the vector xi is used for the jth layer equation.
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Appendix C

Verification of the Proposed Numerical

Solution

C.1 Introduction

The challenge for the proposed numerical method is to solve two unknown variables using
only one equation. That is, for each snow layer, we have only one equation, but need to
solve two unknowns: temperature and water content. Therefore, temperature profile and water
content profile consist of 2 × N unknown variables while we have N equations. Recall the
governing equations and their solutions in Chapter 3. We use an independent non-linear solver
to evaluate and verify the proposed numerical scheme. We use fsolve, which implements the
minpack package (http://www.netlib.org/minpack/ ).

C.2 Comparison with fsolve

Figure C.1 shows the comparison result between the proposed NR solution and the fsolve
(minpack) solver.
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Figure C.1: Comparison of temperature profile between the proposed Newton-Raphson solution
and the minpack package
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Appendix D

Algorithm for Spatial Aggregation and

Resampling

D.1 Introduction

This appendix describes the algorithm to aggregate and resample remotely sensed data
used in this dissertation. The goal of resampling or spatial aggregation is to obtain areal mean
values for grid cells corresponding to the model simulation domain. In this dissertation, two
sources of remotely sensed data were used: MODIS for fine resolution and AMSR-E for coarse
resolution. This dissertation uses a conservative approach to resampling. In particular, for
AMSR-E, which has a 25 km × 25 km resolution, we have found that resampling is sensitive to
the resampling algorithm. For example, when we resample the original level 3 AMSR-E snow
water equivalent product to the model grid cell with a resolution of 1/4th degrees, the simplest
way to represent the model grid cell is to use the value of the AMSR-E grid cell nearest to the
center of the target model grid cell. However, since the spatial variation of AMSR-E is high
from grid cell to grid cell, using one nearest cell value is not accurate. We have found that our
approach produced a very different set of data compared to this simple method.

D.2 Algorithm

Even though there are many methods to avoid this resampling problem, we developed a
weighted averaging algorithm. As shown in Figure D.1, we first convert remotely sensed data
into the same projection as the target grid cell, for which we are calculating areal mean values.
In Figure D.1, the dashed blue rectangle is the target grid cell, and other rectangles are grid
cells for remotely sensed data. Then, we calculate the relative contributing area to the target
grid cell using various computational geometry techniques (e.g., convex hull technique). Once
the relative areas are calculated, these are used as weights for the corresponding grid cells.
Figure D.2 shows an example of processing MODIS snow cover data with a resolution of 500 m,
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where the coordinate system is sinusoidal. The thick polygons in Figure D.2 are the computed
relative areas that fall within the target grid cell, which has a resolution of 1/64th degree.

This method is computationally expensive compared with the method to select one or
several values without weighting to represent the target grid cell. One efficient way of using
the weighting algorithm is to compute the weights once for all and reuse them. Reusing the
weights becomes a simple matrix calculation.

Figure D.1: Coordinate conversion of EASE grids to geographic for calculation of contributing
areas to the target grid cell.
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Figure D.2: Calculation of weighted area relative to the target grid cell.
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Appendix E

Error Time Series

E.1 Introduction

This appendix describes the lag-one autoregressive model that was used to generate the
precipitation error time series in Chapter 2.

E.2 Error Time Series Model

In order to produce one hundred samples of input data, the errors of hourly precipitation
are modeled as lag-one autoregressive (i.e., AR (1)) random sequences. The AR(1) model can
be expressed by:

ǫt = φǫt−1 + θλt (E.1)

where ǫt is the error time series, φ and θ are the AR (1) coefficients, and λt is a normal random
number with mean of zero and variance of one.

Following the notation in Shumway and Stoffer [31] Equation E.1 can also be written as:

ǫt = φǫt−1 + wt (E.2)

where wt is the white noise with zero mean and variance σw. Therefore, wt can expressed in
terms of λt as:

wt = θλt (E.3)

The AR(1) coefficients can be estimated based on the method of moments estimators. The
Yule-Walker equations in Shumway and Stoffer [31] are given by:

γ(h) = φ1γ(h− 1) + · · ·+ φpγ(h− p), h = 1, 2, . . . , p (E.4)

σ2
w = γ(0) − φ1γ(1) − · · · − φpγ(p) (E.5)

where γ(h) is autocovariance function with lag of h. Note that σw is the standard deviation of
the white noise in Equation E.2.
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For AR(1), Equations E.4 and E.5 can be written as:

γ(1) = φ1γ(0) = φγ(0) (E.6)

σ2
w = γ(0) − φ1γ(1) = γ(0) − φγ(1) (E.7)

where φ1 is now replaced by φ.
Using the method of moments, it is possible to replace γ(h) with ˆγ(h). Also, it can be

sometimes more convenient to use the sample autocorrelation function (ACF) ρ. If γ(0) is
factored in Equations E.6 and E.7, these equations become:

ˆρ(1) = φ̂ (E.8)

σ̂2
w = γ̂(0) − φ̂γ̂(1) = γ̂(0)[1 − φ̂ρ̂(1)] = γ̂(0)[1 − ρ̂(1)2] (E.9)

Since the first coefficient of the AR(1) model is obtained from Equation E.8, the second coef-
ficient needs to be represented in terms of the sample lag-one ACF. From Equation E.3, the
following holds:

V ar(wt) = σ2
w = θ2V ar(λt) = θ2 (E.10)

Therefore, using the result in Equation E.9, the second coefficient

θ̂ = σ̂w =
(

γ̂(0)[1 − ρ̂(1)2]
)

1

2 =
(

σ̂2
ǫ [1 − ρ̂(1)2]

)
1

2 (E.11)

where σ̂2
ǫ = γ̂(0), which is the variance of the error time series.
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Appendix F

Posterior Distribution of a State Space

Model

F.1 Introduction

We describe the posterior density of a state space model to represent uncertainty of ob-
served data (e.g., SNODAS data) used in this dissertation.

F.2 Equation

We model as:
xt+1 = Axt + wt (F.1)

yt = Cxt + vt (F.2)

Uncertainty simulation requires an ensemble of datasets (e.g., noisy SNODAS data). But
there is no straight-forward way of generating ensemble data. Unless we use arbitrary noise
parameters, we should know certain parameters for a given domain (e.g., variance). But in most
cases, those parameters are not available. The alternative is to obtain a distribution from the
available data. A state space model provides underlying signals of the data with certain degree
of uncertainty. Therefore we use a posterior density of a state space model (i.e., Kalman filter)
to generate ensemble noisy data using a Bayesian approach. Even though the parameters in the
proposed state space model are estimated using the expectation-maximization (EM) algorithm,
this method is purely based on data, not requiring known domain parameters.

We derive a posterior distribution of the Kalman equation given in Equations F.1 and F.2
(The EM algorithm and details of the model are not included here).

Following Blight [27] we use the following notation for a multivariate normal distribution:

{x;µ,Σ} = e−
1

2
(x−µ)T Σ−1(x−µ) (F.3)
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When β is a square nonsingular matrix, we have:

{x;α + βµ,Σ} = {µ; β−1(x− α), β−1Σ(β−1)T} (F.4)

Also, using the definition it can be derived as:

{x;µ1,Σ1}{x;µ2,Σ2} = {x; (Σ−1
1 + Σ−1

2 )−1(Σ−1
1 µ1 + Σ−1

2 µ2),

(Σ−1
1 + Σ−1

2 )−1}{µ1;µ2,Σ1 + Σ2} (F.5)

The density we are interested in is:

p(xt+1|yt+1, y0, ..., yt) (F.6)

where p(·) is a general Gaussian density function.
Noting that this is a posterior distribution, as usual we can write the posterior as

posterior ∝ likelihood× prior (F.7)

From the Markov property and the Bayes rule, this density can be expressed as

p(xt+1|yt+1, y0, ..., yt) ∝ p(yt+1|xt+1, y0, ..., yt)p(xt+1|y0, ..., yt)

= p(yt+1|xt+1)p(xt+1|y0, ..., yt)

= p(yt+1|xt+1)

∫

p(xt+1, xt|y0, ..., yt)dxt

= p(yt+1|xt+1)

∫

p(xt+1|xt, y0, ..., yt)p(xt|y0, ..., yt)dxt

= p(yt+1|xt+1)

∫

p(xt+1|xt)p(xt|y0, ..., yt)dxt (F.8)

where we used the conditional independences in the state space model represented by Equations
F.1 and F.2. For example, conditioning on the state xt the outputs ys and yu can be written
as

p(yu|xt, ys) = p(yu|xt), s < t < u (F.9)

Using Equation F.3, we can write the first term in Equation F.8 as

p(yt+1|xt+1) = {yt+1; xt+1, R} (F.10)

where we calculate the conditional mean using Equation F.2

E[yt+1|xt+1] = E[xt+1 + vt|xt+1] (F.11)

= xt+1 (F.12)

where we noted the previous assumption that xt is independent of vt. The conditional variance
can be calculated in a similar way.

Also, the first term of the integrand can be written as

p(xt+1|xt) = {xt+1;Axt, Q} (F.13)

But we need to express this distribution by regarding xt as a random quantity. To do that, we
use Equation F.4 as

{xt+1;Axt, Q} = {xt;A
−1xt+1, A

−1Q(A−1)T} (F.14)
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The second term in the integrand can be simplified using the following definition

x̂t|t ≡ E[xt|y0, ..., yt] (F.15)

Pt|t ≡ E[(xt − x̂t|t)(xt − x̂t|t)
T |y0, ..., yt] (F.16)

as
p(xt|y0, ..., yt) = {xt; x̂t|t, Pt|t} (F.17)

Combining the three terms yields

p(xt+1|yt+1, y0, ..., yt) ∝ {yt+1; xt+1, R}
∫

{xt;A
−1xt+1, A

−1Q(A−1)T}{xt; x̂t|t, Pt|t}dxt

(F.18)

To calculate the integration, if we apply Equation F.5 to the integrand of Equation F.18,
we have

{xt;A
−1xt+1, A

−1Q(A−1)T}{xt; x̂t|t, Pt|t} = {xt;µxt
,Σxt

}
{A−1xt+1; x̂t|t, A

−1Q(A−1)T + Pt|t}
(F.19)

where

µxt
=

(

(A−1Q(A−1)T )−1 + P−1
t|t

)−1 (

(A−1Q(A−1)T )−1A−1xt+1 + P−1
t|t x̂t|t

)

Σxt
=

(

(A−1Q(A−1)T )−1 + P−1
t|t

)−1

Now the posterior density is

p(xt+1|yt+1, y0, ..., yt) ∝ {yt+1; xt+1, R}
∫

{xt;µxt
,Σxt

}{A−1xt+1; x̂t|t, A
−1Q(A−1)T + Pt|t}dxt

= {yt+1; xt+1, R}

{A−1xt+1; x̂t|t, A
−1Q(A−1)T + Pt|t}

∫

{xt;µxt
,Σxt

}dxt

= {yt+1; xt+1, R}{A−1xt+1; x̂t|t, A
−1Q(A−1)T + Pt|t}

= {xt+1; yt+1, R}{x̂t|t;A
−1xt+1, A

−1Q(A−1)T + Pt|t} (F.20)

At the last line of Equation F.20, we used

{x;µ,Σ} = {µ; x,Σ} (F.21)

The second term of the right-hand side of Equation F.20 can be manipulated further using
Equation F.4 as

{x̂t|t;A
−1xt+1, A

−1Q(A−1)T + Pt|t} = {xt+1;Ax̂t|t, A(A−1Q(A−1)T + Pt|t)A
T}

= {xt+1;Ax̂t|t, Q+ APt|tA
T} (F.22)
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Now the posterior distribution takes the following form

p(xt+1|yt+1, y0, ..., yt) ∝ {xt+1; yt+1, R}{xt+1;Ax̂t|t, Q+ APt|tA
T}

and applying Equation F.5 one more time yields

p(xt+1|yt+1, y0, ..., yt) ∝ {xt+1; x̂t+1|t+1, Pt+1|t+1} (F.23)

where

x̂t+1|t+1 =
(

R−1 + (Q+ APt|tA
T )−1

)−1

(

R−1yt+1 + (Q+ APt|tA
T )−1Ax̂t|t

)

(F.24)

Pt+1|t+1 =
(

R−1 + (Q+ APt|tA
T )−1

)−1
(F.25)

From this, we can express the posterior density of the state space model as

xt+1|yt+1, y0, ..., yt ∼ N(x̂t+1|t+1, Pt+1|t+1) (F.26)

Now, we want to express the mean and covariance matrix in a convenient form. Equa-
tion F.25 can also be rearranged to yield

(Pt+1|t+1)
−1 = R−1 + (Q+ APt|tA

T )−1

(Q+ APt|tA
T )−1 = (Pt+1|t+1)

−1 − R−1 (F.27)

Using Equation F.25, Equation F.24 can be written as

x̂t+1|t+1 = Pt+1|t+1

(

R−1yt+1 +
(

(Pt+1|t+1)
−1 − R−1

)

Ax̂t|t

)

(F.28)

Before we rewrite this equation in a convenient form, we define

x̂t+1|t ≡ Ax̂t|t (F.29)

Pt+1|t ≡ APt|tA
T +Q (F.30)

Kt+1 ≡ Pt+1|t(Pt+1|t +R)−1

= Pt+1|t+1R
−1 (F.31)

where Kt+1 is the quantity called Kalman gain.
Finally we have

x̂t+1|t+1 = Pt+1|t+1R
−1yt+1 + x̂t+1|t − Pt+1|t+1R

−1x̂t+1|t

= Kt+1yt+1 + x̂t+1|t −Kt+1x̂t+1|t

= x̂t+1|t +Kt+1(yt+1 − x̂t+1|t) (F.32)
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Appendix G

EM Algorithm for a State Space Model

G.1 Introduction

This section describes the EM algorithm for the state space model used in Chapters 2
and 4. The model is shown in Figure G.1. In this appendix we focus on the complete log
likelihood, which is the first step of the EM algorithm. The rest step is just to take derivative
of the matrix equation.

Figure G.1: A graphical model for the state space model. x is the hidden state and y is the
observation.
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G.2 Complete Log Likelihood

The complete log likelihood for the state space model in Figure G.1 can be written as:

l(A,C,Q,R|x, y) = log
T
∏

t=0

p(xt|xt−1)p(yt|xt)

= logp(x0) +

T−1
∑

t=0

logp(xt+1|xt) +

T
∑

t=0

logp(yt|xt) (G.1)

As an example, if we include the term for the matrix A, the partial likelihood can be
written as:

l(Q,A|x) = log

(

T−1
∏

t=0

p(xt+1|xt)

)

=
T−1
∑

t=0

log (p(xt+1|xt))

=

T−1
∑

t=0

log

(

1

(2π)d/2

)

+log|GQGT |− 1

2 − 1

2
(xt+1 − Axt)

T (GQGT )−1(xt+1 −Axt) (G.2)

=

T−1
∑

t=0

(

log

(

1

(2π)d/2

))

+

T−1
∑

t=0

(

−1

2
log|GQGT | − 1

2
(xt+1 − Axt)

T (GQGT )−1(xt+1 − Axt)

)

=

T−1
∑

t=0

(

log

(

1

(2π)d/2

))

+

T−1
∑

t=0

−1

2
log|GQGT | −

T−1
∑

t=0

1

2
(xt+1 − Axt)

T (GQGT )−1(xt+1 −Axt)

= const +
T−1
∑

t=0

−1

2
log|GQGT |

−
T−1
∑

t=0

1

2
(xt+1 −Axt)

T (GQGT )−1(xt+1 − Axt)

Based on the above complete log likelihood, we take the derivative with respect to A and
obtain an updated estimate:

A(n+1) =

(

T−1
∑

t=0

E[xt+1x
T
t |y, θ(n)]

)(

T−1
∑

t=0

E[xtx
T
t |y, θ(n)]

)−1

(G.3)

where θ(n) is the parameter from the previous iteration.
Other parameters can be derived in a similar way.
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Appendix H

BATS Snow Albedo Scheme

H.1 Introduction

The snow albedo in BATS model depends on a spectral mix of the incident radiation, solar
zenith angle, soot loading of the snow, snow depth, and grain size [54].

H.2 Albedo Scheme

Depending on the wavelength of the radiation, λ, the scheme has different albedos:

αV = αV D + 0.4f(θZ)[1 − αV D] (H.1)

αIR = αIRD + 0.4f(θZ)[1 − αIRD] (H.2)

where αV is the albedo for λ < 0.7 µm, αIR is the albedo for λ > 0.7 µm, θZ is the solar zenith
angle, f(θZ) is the increase of snow visible albedo due to solar zenith angle exceeding 60◦, and
the subscript D denotes diffuse albedos given by

αV D = [1 − CSfτ ]αV N (H.3)

αIRD = [1 − CNfτ ]αIRN (H.4)

CS = 0.2 (H.5)

CN = 0.5 (H.6)

where αV N is the albedo for visible radiation incident on new snow with solar zenith angle less
than 60◦ and taken as 0.95, αIRN is the albedo of new snow for near-infrared solar radiation
with solar zenith angle less than 60◦ and taken as 0.65, and fτ is the fractional decrease of snow
albedo due to snow aging.

f(θZ) is parameterized as

f(θZ) =
1

b

[

b+ 1

1 + 2b C(θZ)
− 1

]

(H.7)

f(θZ) = 0, if C(θZ) > 0.5 (H.8)
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where C(θZ) is the cosine of solar zenith angle.

Equation H.7 becomes 0 when C(θZ) = 0.5 for all b, and 1 when C(θZ) = 0 (i.e., sun on
the horizon). b is adjustable, but set as 2.0.

Snow albedo decreases because snow grain size increases over time. Also it decreases when
dirt and soot accumulate. The snow aging factor, fτ is parameterized as

fτ =
τS

1 + τS
(H.9)

where τS is the non-dimensional age of snow and can be calculated as

∆τS
∆t

=
1

τ0
(r1 + r2 + r3) (H.10)

where τ0 is 106 s and ∆t is the model time step (s). The three parameters, r1, r2, r3, can be
calculated as

r1 = e5000(
1

273.16
− 1

Ts
) (H.11)

r2 = r10
1 ≤ 1 (H.12)

r3 =

{

0.01 over Antarctica,

0.3 elsewhere
(H.13)

where Ts is the snow surface temperature in K.

The parameter r1 represents the effect of grain growth due to vapor diffusion. r2 reflects
the additional effect near and at the freezing point of melt water and r3 the effect of dirt and
soot. Note that the effect of dirt and soot is represented only by one parameter value. In our
simulation, we use 0.3 for r3.

A snow water equivalent of 0.01 m is assumed to restore the snow surface albedo to that
of new snow. Since the precipitation in one model time step is usually less than that required
to restore the surface albedo, the snow age is reduced by a factor depending on the amount of
the fresh snow in m, ∆Ps, as follows:

τn+1
S = (τn

S + ∆τS)(1 − 100∆Ps), τS > 0 (H.14)

Note that if we use the unit mm for ∆Ps, we multiply it by 0.1 instead of 100.
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