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RNA-Seq Analysis of Gene Expression, Viral Pathogen, 
and B-Cell/T-Cell Receptor Signatures in Complex 
Chronic Disease
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Rob Holt,4 Richard Moore,4 Charles Y. Chiu,1,12,b and David M. Patrick2,3,b; for the Complex Chronic Disease Study Group
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Columbia, 6British Columbia Centre for Disease Control Public Health Laboratory, 7Department of Pathology and Laboratory Medicine, University of British Columbia, 8Department of Medicine, 
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Centre, Doha, Qatar; 11Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, Canada; and 12Department of Medicine, Division of Infectious Diseases, 
University of California, San Francisco

Background.  Chronic fatigue syndrome (CFS) remains poorly understood. Although infections are speculated to trigger 
the syndrome, a specific infectious agent and underlying pathophysiological mechanism remain elusive. In a previous study, we 
described similar clinical phenotypes in CFS patients and alternatively diagnosed chronic Lyme syndrome (ADCLS) patients—indi-
viduals diagnosed with Lyme disease by testing from private Lyme specialty laboratories but who test negative by reference 2-tiered 
serologic analysis.

Methods.  Here, we performed blinded RNA-seq analysis of whole blood collected from 25 adults diagnosed with CFS and 13 
ADCLS patients, comparing these cases to 25 matched controls and 11 patients with well-controlled systemic lupus erythematosus 
(SLE). Samples were collected at patient enrollment and not during acute symptom flares. RNA-seq data were used to study host gene 
expression, B-cell/T-cell receptor profiles (BCR/TCR), and potential viral infections.

Results.  No differentially expressed genes (DEGs) were found to be significant when CFS or ADCLS cases were compared to 
controls. Forty-two DEGs were found when SLE cases were compared to controls, consistent with activation of interferon signaling 
pathways associated with SLE disease. BCR/TCR repertoire analysis did not show significant differences between CFS and controls 
or ADCLS and controls. Finally, viral sequences corresponding to anelloviruses, human pegivirus 1, herpesviruses, and papillomavi-
ruses were detected in RNA-seq data, but proportions were similar (P = .73) across all genus-level taxonomic categories.

Conclusions.  Our observations do not support a theory of transcriptionally mediated immune cell dysregulation in CFS and 
ADCLS, at least outside of periods of acute symptom flares.

Keywords.  chronic fatigue syndrome; RNA-seq; transcriptome; viral infection; B-cell/T-cell receptors.
 

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) 
is a debilitating syndrome of unknown etiology, characterized 
by profound fatigue exacerbated by physical or mental activ-
ity, impaired sleep, cognitive complaints, pain, gastrointestinal 
symptoms, and/or tender lymph nodes. We previously reported a 

clinical phenotype that is similar to ME/CFS in patients described 
as having alternatively diagnosed chronic Lyme syndrome 
(ADCLS) [1]. These individuals were diagnosed with Lyme dis-
ease based on private laboratory testing but were Lyme-negative 
by reference 2-tiered serology according to Centers for Disease 
Control and Prevention (CDC) criteria. Systemic lupus erythema-
tosus (SLE) is an autoimmune disease with symptoms that over-
lap those reported in CFS and ADCLS. However, unlike CFS or 
ADCLS, some pathophysiologic mechanisms associated with SLE 
are known and include chronic inflammation and defects in apop-
tosis clearance [2]. Viral and bacterial infections are known to trig-
ger SLE disease flares by sensitizing B-lymphocytes, thus resulting 
in the production of autoantibodies [2]. A similar autoimmune 
hypothesis has been put forward to explain CFS, making SLE 
cases a useful comparator in studies of CFS and/or ADCLS cases.

The prevailing hypothesis that CFS pathogenesis is immune 
mediated [3] has been supported by observation of aberrant 
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cytokine expression in early illness and in cerebrospinal fluid 
[4, 5], natural killer cell dysfunction [6], and an encouraging 
response to B-cell depletion in clinical trials [7]. Notably, anti-
biotic-refractory arthritis in Lyme disease patients has been 
associated with autoimmune T- and B-cell responses against at 
least 4 human proteins [8]. This naturally leads to the question 
of whether immune dysregulation or other differential patterns 
of gene expression in CFS and ADCLS patients can be identified 
through transcriptional analysis.

Previous whole transcriptome studies of CFS cases compared 
to controls included variable sample sizes ranging from 15 to 163 
samples per study and showed inconsistent results, with stud-
ies reporting a small number of differentially expressed genes 
(DEGs; 0–88) with little to no overlap [9–14]. However, all gene 
expression studies of CFS cases to date have been performed 
using microarrays. The newer RNA-seq approach offers several 
potential advantages relative to microarrays, including detection 
of low-abundance and novel transcripts, broader dynamic range, 
and elimination of background noise, saturation, and probe 
redundancy [15]. Our previous RNA-seq study of acute Lyme dis-
ease patients, diagnosed by clinical criteria and reference serolog-
ical testing, revealed a large number of DEGs (>1200) at the time 
of diagnosis, most of which were related to immune cell activation 
and inflammation pathways in response to acute bacterial infec-
tion [16]. In addition to host gene profiling, RNA-seq can provide 
metagenomic insights into viable infectious organisms in a given 
host by capturing microbial gene expression [17] and also permits 
analysis of B-cell and T-cell receptors (BCRs, TCRs) that mediate 
downstream immune responses [18]. Thus, given the suspected 
involvement of a pathogen trigger and/or immune dysfunction in 
CFS and ADCLS, querying an RNA-seq dataset for both the pres-
ence of pathogens and BCR/TCR profiles may provide clues as to 
the mechanisms that underlie these syndromes.

Previously, we demonstrated that CFS, ADCLS, and SLE 
patients showed significant disability based on physical exam-
ination, symptoms, and functional scale scores compared to 
matched unaffected controls [1]. No differences in baseline 
clinical data and functional scales were observed between CFS 
and ADCLS patients. Immune cell counts were significantly 
lower (and cytokine profiling significantly different) in SLE 
cases compared to controls. These differences were not seen 
in CFS and ADCLS cases relative to controls (Supplementary 
Table 1). Here, we further investigate this patient cohort by deep 
sequencing whole blood RNA to look for gene expression signa-
tures, chronic viral infections, and BCR/TCR sequence patterns 
that might differentiate cases from controls.

METHODS

Study Cohort

Our case-control study design has been described previously [1]. 
Briefly, we enrolled 25 CFS patients who met the Canadian case 
definition [19], 13 ADCLS cases diagnosed on clinical grounds 

and supported only by nonreference testing, and 11 SLE cases 
meeting American College of Rheumatology criteria [20]. As 
opposed to the CDC Fukuda criteria [21] for CFS, the Canadian 
case definition is thought to select individuals with less psychiat-
ric comorbidity and more symptoms and functional impairment 
[22]. Controls were matched by sex and 5-year age strata to CFS 
participants.

Key differences between the subject groups were as follows 
(Supplementary Table 1). ADCLS cases showed significant dif-
ferences in median age when compared to controls or CFS cases 
(P = .02). CFS cases showed significant differences in ethnicity 
compared to controls (P = .04). ADCLS, CFS, and SLE cases all 
showed significant differences (P < .03) in most core symptoms 
compared to healthy controls. SLE cases showed significant dif-
ferences in absolute CD4+ (P = .004) and CD57+ (P = .04) cell 
counts compared to healthy controls, as well as in antinuclear 
antibody reactivity (P = .01).

Library Prep and Sequencing

Blood samples were drawn into Paxgene blood RNA tubes 
(Preanalytix) for immediate RNA stabilization of intracellular 
RNA at collection. Total RNA was extracted using the Paxgene 
blood RNA kit (Preanalytix) and lyophilized in RNAstable reagent 
(Biomatrica) for shipment at room temperature and long-term 
storage. The Ovation human blood RNA-seq kit (Nugen) was used 
to generate strand-specific RNA-Seq libraries depleted for reads 
derived from ribosomal RNA (rRNA) and globin genes according 
to the manufacturer’s protocol. Libraries were sequenced as 100 
base pair paired-end runs on a HiSeq 2500 (Illumina).

Whole Transcriptome Analysis

Paired-end reads were mapped to the human genome (hg19), 
annotated to exons, and normalized to FPKM (fragments per 
kilobase of exon per million fragments mapped) values for all 
25 278 human RNA reference sequences in the National Center 
for Biotechnology Information (NCBI) RefSeq database using 
version 2 of the Tophat/Cufflinks pipeline [23]. Differential 
expression of genes was calculated using the voom transfor-
mation, which applies precision weights to the matrix count, 
followed by linear modeling using the Limma package [24]. 
Genes were considered to be differentially expressed when their 
fold change was greater than ±1.5, P value < .05, and adjusted P 
value (or false discovery rate) < .1%. Pathway and network anal-
yses of the transcriptome data were performed using Ingenuity 
Pathway Analysis software (Qiagen).

Viral Metagenomics

Sequencing data from whole transcriptome libraries were ana-
lyzed for the presence of RNA sequences corresponding to 
known human viral pathogens using the sequence-based ultr-
arapid pathogen identification (SURPI) computational pipeline 
in comprehensive mode [25]. After computationally subtracting 
human reads, remaining reads were aligned against all reference 
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microbial sequences in the NCBI GenBank database. The SNAP 
aligner [26] was used at moderate stringency (edit distance = 
12) to align reads to the NCBI nucleotide nt database, allowing 
for detection of reads with >90% nucleotide identity to known 
viruses. RAPSearch [27] was used to detect divergent reads from 
potential novel viruses by translated nucleotide alignment to the 
NCBI protein nr database. A rapid taxonomic classification algo-
rithm based on the lowest common ancestor was incorporated 
into SURPI, as previously described [28], and used to assign viral 
next-generation sequencing reads to the species, genus, or fam-
ily level. Samples were reported as positive if viral reads were 
mapped to at least 2 unique regions in the genome. Reads cor-
responding to potential microbial pathogens other than viruses 
(ie, bacteria, fungi, and parasites) were not considered because 
libraries were RNA and were generated from whole blood sam-
ples with high human host background, reducing sensitivity, and 
because a separate, more comprehensive analysis of metagen-
omic and 16S DNA/RNA sequencing of low-background plasma 
samples from the same patients had already been performed [29].

BCR/TCR Sequence Analysis

RNA-seq data were analyzed with MiTCR v.1.0.3 [30] using 
the parameters specified by Brown et al [19] to extract CDR3 
TCR data from the transcriptome library data and with MiXCR 
v1.6 [31] in RNA-seq mode to extract BCR sequences. Within 
a given case or control sample, if 2 or more distinct nucleotide 
sequences gave rise to the same peptide BCR/TCR sequence, 
these were merged into a single record. We looked for both 
100% identical BCR/TCR sequences present in samples 
from at least 10 individuals, as well as clusters of highly sim-
ilar sequences present in multiple samples. To generate these 
clusters, all BCR/TCR sequences of length 11–16 amino acids 
(aa) were inputted into FastTree 2.1.3 [32] for phylogenetic 
tree-building. The resulting trees were passed to Patristic [33] 
to calculate all pairwise patristic distances between BCR/TCR 
sequences. The Gengraph package in adegenet [34] was used 
to extract clusters of motifs within a specified patristic distance 
threshold (0.15). We then tallied the number of case and control 
samples in which clustered motifs were found. A χ2 test in R was 
used to evaluate the over- and underrepresentation of specific 
BCR/TCR motifs or motif clusters between subject groups.

RESULTS

RNA-seq Library Sequencing and Analysis

Seventy-four whole blood RNA libraries were sequenced over 10 
lanes on an Illumina HiSeq 2500 instrument. On average, 56.1 
(±14.5) million reads were obtained per sample. Tophat/Cufflinks 
detected an average of 77.3% (±5.5%) of all RefSeq isoforms in 
each sample (Supplementary Figure 1). Principal component anal-
ysis of whole transcriptome data from the 74 study participants 
did not show clusters indicative of technical bias (Supplementary 
Figure  2). The SURPI metagenomics pipeline subtracted, on 

average, 99.1% of raw reads by alignment to the human genome. 
Alignment of the remaining reads to NCBI GenBank identified an 
average of 150 viral reads per sample (range, 0–2549 reads).

MiTCR returned 18 627 TCR sequences; MiXCR returned 
22 319 BCR sequences. After merging discrete nucleotide 
sequences encoding identical peptides, 39 788 records remained 
across the samples, representing 28 799 unique BCR/TCR 
motifs of average length 15aa (range, 6–41aa). Clustering the 
27 876 motifs of length 11–16aa yielded 22 707 clusters, 20 840 
(91.7%) of which contained only a single motif. We focused our 
analysis on the 35 clusters that contained 20 or more motifs 
(Supplementary Table 2).

Transcriptomics

First, we determined whether there were any DEGs between 
cases and controls in whole blood samples collected during 
enrollment, at which time ADCLS, CFS, and SLE cases all 
showed marked disability [1]. A  comparison of CFS and/or 
ADCLS cases with controls yielded no DEGs, nor did a com-
parison of CFS cases with ADCLS cases. In contrast, 42 DEGs 
were identified when SLE cases were compared against controls 
(Supplementary Table 3). Pathway analyses for SLE cases sug-
gested that 10 of 42 (23.8%) DEGs were involved in the acti-
vation of interferon signaling pathways mediated by cytosolic 
pattern recognition receptors (Figure 1).

Viral Metagenomics

We detected sequences from a small number of viruses in the 
RNA-seq data, including anelloviruses/torque teno viruses 
(TTVs), human pegivirus 1 (formerly designated GB virus C), 
human papillomaviruses (HPVs), and human herpesviruses 
(HHVs) (Table 1). The overall virome composition in CFS, 
ADCLS, and SLE cases did not differ significantly from controls 
(χ2 test, P = .73). Six of 25 (24%) CFS samples were positive for 
HPVs, which was a higher detection rate than the 7.6%–9.1% 
prevalence in other patient groups but was not significant (χ2 
test, P = .31). No novel and/or divergent viruses were detected 
by translated nucleotide alignment, an approach that has previ-
ously proven useful for pathogen discovery [35].

BCR/TCR Sequence Analysis

Finally, we examined the BCR/TCR repertoires of each case or 
control sample. Immune cell counts in CFS and ADCLS patients 
were no different from those in controls (Supplementary 
Table 1), thus reducing potential BCR/TCR bias. Of the 28 799 
unique motifs, we first looked at motifs found in at least 10 study 
participants. Of the 50 motifs we found, 2 showed unusual distri-
butions between subject groups: motif_2026, underrepresented 
in SLE cases, and motif_11947, overrepresented in CFS cases 
(Table 2). Recognizing that receptor–antigen binding is degen-
erate, we also looked at clusters of related BCR/TCR motifs 
and their distribution across subject groups. By χ2 testing, we 
found the following 3 significant clusters of motifs with unusual 
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distributions (Table 2): motifs belonging to cluster 11_285 were 
overrepresented in control samples—interestingly, this clus-
ter contained motif_2026, which was previously observed to 
be underrepresented in SLE cases; motifs belonging to cluster 
13_2782 were underrepresented in ADCLS cases; and motifs 
belonging to cluster 14_522 were underrepresented in SLE cases.

Given that our previous work showed similar phenotypes 
between CFS and ADCLS cases [1], we performed a second 
comparison of specific motifs and clusters in which CFS and 
ADCLS samples were grouped and compared to matched con-
trols. Three clusters of motifs not previously seen as significant 
emerged, all of which were found more frequently in CFS and 
ADCLS cases than controls: cluster 11_1320, cluster 12_656, 
and cluster 13_2702. In the earlier 4-group analyses, all of these 
clusters tended toward underrepresentation in controls but not 
to a statistically significant degree.

DISCUSSION

Here, we queried RNA-Seq data from a case-control study of 
patients with complex chronic diseases for various signatures that 
might offer insight into the pathophysiology of CFS or ADCLS. 

Whole blood samples were chosen for analysis instead of periph-
eral blood mononuclear cells, as this enables detection of circu-
lating viral pathogens by metagenomic analysis and as a more 
clinically accessible sample type for biomarker development. 
No gene expression signature could be identified when CFS 
patients were compared to age-, sex-, and geography-matched 
controls, which is consistent with an earlier study of 44 pairs of 
twins discordant for CFS in which no differences were observed 
by microarray [9]. Blood samples in the current study were col-
lected at patient enrollment when patients were ambulatory and 
thus able to attend a screening appointment, in contrast to dur-
ing symptom flares when they might otherwise be bed-bound. 
Thus, we cannot exclude the possibility that there are differences 
between CFS cases and controls confined to periods of symptom 
flares. We are presently investigating this hypothesis in a fol-
low-up study involving RNA-seq data collected before and after 
flares induced by cardiopulmonary exercise stress testing.

Similarly, no differentially expressed genes were identified 
when ADCLS cases were compared to controls. We previously 
reported that individuals with documented acute Lyme dis-
ease showed differential expression of a large number of tran-
scripts related to inflammation and host responses to infection 

Table 1.  Number of Patients with More Than 1 Unique Read to Human Viruses by Metagenomic RNA-seq 

Disease
Human  

Pegivirus 1
Human 

Herpesvirus 4
Human 

Herpesvirus 6A
Human 

Papillomaviruses 
Torque Teno Viruses/ 

Anelloviruses Total

Alternatively diagnosed chronic 
Lyme syndrome (n = 13)

0 0 0 1 1 2

Chronic fatigue syndrome 
(n = 25)

1 0 1 6 0 8

Systemic lupus erythematosus 
(n = 11)

0 1 0 1 1 3

Controls (n = 25) 1 0 0 2 3 6

Total 2 1 1 10 5 19

Figure 1.  Canonical pathways predicted to be involved in systemic lupus erythematosus by RNA-seq analysis. Pathways are ranked by the negative log of the P value of 
the enrichment score. The color scheme is based on z score, with activation in orange, z score = 0 in white, and undetermined directionality in gray. Also plotted is the ratio 
of identified differentially expressed genes to the total number of genes involved in each pathway (“ratio”). The yellow line represents the designated significance threshold 
(P < .05). Abbreviation: IRF, interferon regulating factor 
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[17]. There are at least 2 plausible explanations for our failure 
to observe this signature in the current analysis. First, as sug-
gested by negative reference CDC 2-tiered serological testing, 
the ADCLS cases in this cohort may not have been infected by 
Borrelia burgdorferi. Second, the Lyme signature identified in 
the previous study reflects acute or subacute infection, whereas 
the 13 ADCLS cases were all chronic, having been sampled, on 
average, 10.7 years following their self-reported symptom onset.

The lack of DEGs between CFS and ADCLS cases and con-
trols does not reflect a technical issue, as the SLE cases—a 
positive control representing a disease with known immune 
dysfunction—yielded 42 DEGs. This is a low number but could 
be attributed to disease control, as patients were sampled out-
side of flares. The differential genes identified in association 
with SLE patients belonged largely to interferon signaling 
pathways mediated by pattern recognition receptors; notably, 
a type I interferon signature has been reported as a potential 
biomarker for personalized medicine in SLE [36].

Viral pathogens are frequently suggested to be triggers for 
CFS [37]. We detected a small number of viruses in blood across 
all cohorts, corresponding to nonpathogenic flora (eg, anellovi-
ruses such as TTV and HPgV-1), likely skin contamination (eg, 
human papillomaviruses) [38], or latent infections (eg, herpesvi-
ruses), none of which were significantly enriched in any subject 
group. Importantly, no sequence reads corresponding to novel 
or unexpected viral pathogens were detected. Our failure to 
detect significant viral infections correlated with subject group is 
not surprising—assaying pathogens through RNA-seq will only 
capture active infections and not a prior “hit-and-run” infection 
often posited to explain CFS onset [39]. The viral metagenomic 
results presented here are consistent with a separate study by our 
group using metagenomic and 16S DNA/RNA sequencing of 
plasma samples from the same patients for pathogen detection, 
which also failed to identify any significant differences between 
subject groups with regard to infections [29].

If immune dysfunction indeed plays a critical role in CFS and/
or ADCLS, one would expect to observe differences in the adap-
tive immune responses of cases vs matched controls. To explore 
this possibility, we looked for BCR and TCR sequences over-
represented or underrepresented in different subject groups. By 
RNA analysis of whole blood samples, we obtained a high yield of 
BCR/TCR sequences. Significant TCR motifs across the different 
sample cohorts were not seen, perhaps because clonal expansion 
of different TCRs recognizing the same antigen is host major 
histocompatibility complex–dependent. In contrast, 2 signifi-
cant BCR motifs were detected. One, motif_11947, was enriched 
in CFS cases, though we did not observe a parallel enrichment 
by cluster analysis of related motifs containing motif_11947. 
Similarly, BCR motif_2026 was significantly underrepresented 
among lupus cases when examined alone. However, when the 
larger cluster of related motifs containing motif_2026 was exam-
ined, the underrepresentation was no longer apparent—in fact, 
the larger cluster registered as overrepresented among controls. 
We also observed 3 BCR motif clusters overrepresented in cases 
when we combined ADCLS and CFS cases into a single group, 
which was then compared to controls.

Given the large size of the dataset (we began with nearly 
40 000 unique motifs and, during clustering, performed more 
than 142 million pairwise comparisons), it is difficult to say 
whether these enriched motifs constitute meaningful biolog-
ical reality or whether they represent an artifact of analyzing 
data on such a large scale. A larger cohort of ADCLS and CFS 
cases and controls with longitudinal sampling is needed to 
explore whether the observed associations between motifs and 
disease phenotype remain significant and whether these TCR/
BCR motifs constitute useful disease biomarkers, as previously 
shown for cancer [40].

In conclusion, a multipronged RNA-seq–based investigation 
of patients with complex chronic diseases and matched controls 
did not yield any signatures that might act as host biomarkers of 

Table 2.  B-Cell/T-Cell Receptor Motifs or Groups of Motifs Over- or Underrepresented Among Sample Classes 

Sample Class Proportion (n)

Motif/Cluster ID Sequence/Consensus P Value (corrected) Controls (n = 25) CFS (n = 25) ADCLS (n = 13) SLE (n = 11)

motif_11947 CQSYDSSLSGYVF (BCR) .006 (.006) 0.24 (6) 0.52 (13) 0.23 (3) 0.18 (2)

cluster13_2782 cssytssstlyvf (BCR) .014 (.013) 0.76 (19) 0.84 (21) 0.54 (7) 0.82 (9)

cluster11_285 CmIWHssawvf (BCR) .031 (.032) 0.56 (14) 0.36 (9) 0.31 (4) 0.36 (4)

motif_2026 CMIWHSSAWVF (BCR) .033 (.034) 0.32 (8) 0.28 (7) 0.23 (3) 0 (0)

cluster14_522 CASslggsTDTQYF (TCR) .036 (.035) 0.4 (10) 0.4 (10) 0.38 (5) 0.09 (1)

Motif/Cluster P Value (corrected) Controls (n = 25) CFS + ACDLS (n = 38)

cluster13_2702 CsSYAGsnnX (BCR) .015 (0.015) 0.24 (6) 0.5 (19)

cluster12_656 CcsyagsstwvF (BCR) .02 (0.021) 0.64 (16) 0.87 (33)

cluster11_1320 CASssXeTQYF (BCR) .027 (0.027) 0.2 (5) 0.42 (16)

All BCR Motifs Identified were associated with the light chain; the TCR Motif Identified was associated with the beta chain. The boldface text denotes the sample class containing the 
signfiicantly overrepresented or underrepresented motif.

Abbreviations: ADCLS, alternatively diagnosed chronic Lyme syndrome; BCR, B-cell receptor; CFS, chronic fatigue syndrome; SLE, systemic lupus erythematosus; TCR, T-cell receptor.
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CFS or ADCLS or suggest an underlying biological mechanism. 
Thus, these chronic syndromes do not appear to be associated 
with transcriptionally mediated immune cell dysregulation nor 
with active viral infection in blood. Other approaches for analysis 
of these RNA-seq data are feasible, such as a genome-wide asso-
ciation study of single nucleotide polymorphisms, and continued 
exploration may lend new insights into these debilitating diseases.

Supplementary Data
Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the author to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the author, so 
questions or comments should be addressed to the author.
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