UC Irvine
UC Irvine Previously Published Works

Title

Evidence for substructure in Ursa Minor dwarf spheroidal galaxy using a Bayesian object
detection method

Permalink
https://escholarship.org/uc/item/4zt7c87d
Journal

Monthly Notices of the Royal Astronomical Society, 442(2)

ISSN
0035-8711

Authors

Pace, Andrew B
Martinez, Gregory D
Kaplinghat, Manoj

Publication Date
2014-08-01

DOI
10.1093/mnras/stu938

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/4zt7c87c
https://escholarship.org/uc/item/4zt7c87c#author
https://escholarship.org
http://www.cdlib.org/

arxiv:1208.4146v1 [astro-ph.GA] 21 Aug 2012

Mon. Not. R. Astron. Sod00, 000-000 (0000) Printed 22 August 2012 (MNHX style file v2.2)

Evidence for Substructure in Ursa Minor Dwarf Spheroidal Galaxy
using a Bayesian Object Detection Method

Andrew B. Pack Gregory D. Martinez?, Manoj Kaplinghat, Ricardo R. MiioZ*

1center for Cosmology, Department of Physics and Astronbmiyersity of California, Irvine, CA 92697

2The Oskar Klein Center, Department of Physics, Stockholiuddsity, Albanova, SE-10691 Stockholm, Sweden
3Departamento de Astronomia, Universidad de Chile, CaSié-D, Santiago, Chile

4Department of Astronomy, Yale University, New Haven, CR065

22 August 2012

ABSTRACT

We present a method for identifying localized secondaryufatfons in stellar velocity data
using Bayesian statistical techniques. We apply this ntetbdhe dwarf spheroidal galaxy
Ursa Minor and find two secondary objects in this satellit¢hef Milky Way. One object is
kinematically cold with a velocity dispersion of26 + 0.75 km s* and centered at (9 +
1.5,7.2 + 1.2) in relative RA and DEC with respect to the center of Ursadlilhe second

object has a large velocityffiset of-12.8*1/° km s* compared to Ursa Minor and centered

at (-14.0'723, —2.579%). The kinematically cold object has been found before uaismaller
data set but the prediction that this cold object has a vgldpersion larger than@km st

at 95% C.L. difers from previous work. We use two and three component medishg) with
the information criteria and Bayesian evidence model sieleanethods to argue that Ursa
Minor has one or two localized secondary populations. Tmeificant probability for a large
velocity dispersion in each secondary object raises thiginhg possibility that each has its
own dark matter halo, that is, it is a satellite of a satetit¢he Milky Way.

KEYWORDS. DARK MATTER: SUBSTRUCTURE, DWARF GALAXIES: URsA MINOR, BAYESIAN SrATISTICS

1 INTRODUCTION ence in cold dark matter simulations has been verified, thesma
) ) ) ) function of these sub-subhalos hasn’t been well-quantifidu
The Milky Way dwarf spheroidal galaxies (dSphs) are thetésh g, phalo mass function is seen to follow a universal profilenvh
but most numerous of the Galactic satellites. About 22 d$plie scaled to the virial mass of the host halo. If the sub-sulshdb
been discovered with nine known before the Sloan Digital Sk low the same pattern, then we expect to see a sub-subhalo with
vey (SDSS). The latter satellites are often collectivefemed to Vinax = 0.3Vmax(subhalo) [(Springel et HI. 2008). We are motivated

as the classical dSphs. Thus, thanks to the advent of the SDSSp,; this fact to search for stellar content that could be datexd
the number of known Milky Way dSphs has more than doubled it these sub-subhalos.

(Willman et all 2005; Belokurov et al. 2006; Zucker ef al. @0G;

Belokurov et al.| 2007; Sakamoto & Hasegawa 2006; Irwin et al. Several dSphs show signs of stellar substructure or meiltipl
2007;|Walsh et al._2007). The classical systems are in genera distinct chemo-kinematic populations (Fornax, Sculp8extans,
brighter and more extended than their post-SDSS countsrisu- Ursa Minor, Canes Venatici ). For instance, in Fornax, ¢hare
ally referred to as the ultra-faint dwarfs. The dSph poporesf the stellar over-densities along the minor axis, possibly rants of
Milky Way have a wide range of luminosities, 10Lo, and sizes  past mergers (Coleman ef al. 2004, 2005) and five globula clu
(half-light radii) from 40 to 1000 pc_(Mateo 1998; Simon & Geh  ters (Mackey & Gilmore 2003). In addition, Fornax's metigkhr
2007; Martin et al! 2008), but span a narrow range of dynami- and metal-poor stellar components seem to hafferént velocity
cal mass:M(r < 300pc) ~ 10’° M, for most of the dwarfs  dispersions (Battaglia et/al. 2006). Similarly, Sextans Soulptor
(Strigari et all 2008). In the context of hierarchical stuse forma- each contain two kinematically distinct secondary popoitest with
tion scenario, these dSphs would reside in the dark mathéredos different metallicitied (Bellazzini et &l. 2001; Battaglia E2908).

of the Milky Way host halo and so the dynamical mass provies a Sculptor's populations have firent velocity dispersion profiles,
estimate of the amount of dark matter in subhalos. The dycelmi  in addition to their distinct metalicitied_(Battaglia et £008),
mass-to-light ratios span a large range of 8-4000 (in satés) whereas Sextans has localized kinematically distinct [atjom ei-
some of these systems are the most dark matter dominateisyst ther near its centef (Kleyna et al. 2004; Battaglia &t al.130dr
known (Walker et gl. 2009a; Wolf etial. 2010; Simon €tal. 2011 near its core radius (Walker et al. 2006). There are claimsvof

Martinez et al. 2011). populations with distinct velocity and metallicity digititions in
Simulations also predict that subhalos should have their the brightest ultra-faint dwarf, Canes Venatici | (CVil) éth et al.
own subhalos (“sub-subhalos”, elg., Shaw &t al. 2007; Kuétel. 2006), but this is not seen in two other data sets (Simon & Geha

2008 Springel et al. 2008; Diemand etial. 2008). While theas- 2007;/ Ural et all 2010). The Bootes | ultra-faint could alsave
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Table 1.Observed and derived properties of Ursa Minor.

Parameter Value
Distancé 77+ 4 kpc
Luminosity! 3.9 M x 10PLoy
Core radius 17.9 £ 21
Tidal radiugt 779 +89

Half-light radiust
Deprojected half-light radius(ry/2)

0.445+ 0.044 kpc
0.588+ 0.058 kpc

Average velocity dispersich 1161+ 0.63kms?
Mean velocity? -247 ks
Dynamical mass withimq > 1 556279 x 10" Mo
Mass-to-light ratio withirry»* 290°23Mo /Lo
Ellipticity 3 0.56+ 0.05
Center (32000.0) (15'09M10°.2,67°12'52")
Position anglé 49.4°

Note: References are as follows 1. Wolf et lal. (2010) andeefees therein
2. This paper 3. Mateo (1998)|4. Kleyna et al. (2003) 5. Kleghal. (1998)

two kinematically distinct populations with fiierent scale lengths
(Koposov et al. 2011), although this wasn't apparent inieadata
sets [(Mufloz et al. 2006; Martin etlal. 2007). The largesthese

falling more rapidly on the Western side (Eskridge & Schweit
2001; ! Palma et al. 2003) Statistically significant S-shapemt-
phology is also seen in contours of the red giant branch stars
(Palma et al. 2003).

Spectroscopic studies of Ursa Minor (Hargreaves et al.;1994
Armandrdf et alll 1995] Kleyna et &al. 2003; Wilkinson et lal. 2004;
Mufoz et all 2005) have shown a relatively flat velocity dispon
profile of o ~ 8 — 12km s*.|Kleyna et al.[(2003) (K03) used a two
component model to test whether the second peak in photpmetr
was a real feature. They found a second kinematically disgiap-
ulation witho = 0.5km st andAV = —1km s, Our results lends
support to this discovery by KO3 but we do not agree on the iiragn
tude of the velocity dispersion of the substructure. Weudischis
in greater detail later.

K03 argued through numerical simulations that the stellar
clump they discovered could survive if the dark matter hldrsa
Minor had a large core (about85 kpc) but not a cusp like the
prediction for inner parts of halos of/d from CDM simulations
(Navarro et al. 1997). Similar numerical simulations intthg the
Ursa Minor stellar clump have confirmed this result (Loralet a
2012). Similar conclusions have been reached using thenase
projected spatial distribution of the five globular clustar Fornax
dSph (Mackey & Gilmole 2003). The survival of these old globu

Bootes | data sets contains 37 member stars and this has to béar clusters has been interpreted as evidence that the datiterm

weighed against the results.of Ural et al. (2010) who sugpestt
least 100 stars are required tdfdrentiate two populations.

Among the classical dSphs, only Draco has a lower V-band
luminosity but Ursa Minor is twice as extended as Draco (im&
of its half-light radius) |(Irwin & Hatzidimitrioll 1995; Paia et al.
2003). Its observed and derived properties are summarnzéd-i
ble[d. Ursa Minor is also likely the most massive satellitéeirms
of its dark matter halo, apart from the Magellanic clouds #rel
disrupting Sagittarius dSph. These properties make Ursmivin
ideal target to search for substructure. Thgat infall for the sub-
halo hosting Ursa Minor should be greater than 23<but proba-
bly no larger than about 50 kis1(Boylan-Kolchin et gl. 2012) and
thus we can expect Ursa Minor to have a sub-subhalo with V
in the range of 8 16km s. Despite its low mass, such a small
sub-subhalo could have held on to its gas because it wasprdte
by the deeper potential well of Ursa Minor.

Several photometric studies withfidirent magnitude limits
and overall extent observed, have reported additionallizh
stellar components of the stellar distribution that desatrom a
smooth density profile (Olszewski & Aaronson 1985; Kleynalet
1998; Palma et &l. 2003), particularly near the center (DermiEal.
1995; Eskridge & Schweitzer 2001). To the northwest of the ce
ter, a secondary peak in the spatial distribution is seenoim ¢
tours and isopleths_(lrwin & Hatzidimitriou 199%; Kleynaadt
1998;| Bellazzini et al. 2002; Palma et al. 2003). Howeveffedi
ent studies have concluded that this secondary peak is¢hsive
or of low significancel (Irwin & Hatzidimitriou 199%; Kleyna all
1998; | Bellazzini et al. 2002; Palma et al. 2003). Smallerlesca
stellar substructure is, however, seen with higher signifie
(Eskridge & Schweitzer 2001; Bellazzini et al. 2002). Conii
proper motion information with shallow photometric datatfre
central 20 arcmin of Ursa Minor, Eskridge & Schweitzer (2001
claim that the distribution of stars in Ursa Minor shows héigmif-
icance for substructure in clumps ©f3'0 in size! Bellazzini et al.
(2002) used the presence of a secondary peak in the digbritmft
the distance to the 200th neighboring star to argue thatutiace
density profile of Ursa Minor is not smooth. In addition, thels
lar density is not symmetric along the major axis with theditgn

halo of Fornax may have a large core in stark contrast to the pr
dictions of dark-matter-only CDM simulations (Goerdt €12006;
Sanchez-Salcedo et al. 2006; Cowsik et al. 2009; Cole [20aR).
Thus, the study of the properties of the substructure in Wisar
has far reaching implications for the dark matter halo of tisph
and by extension the properties of the dark matter partiole.
study is complementary to the recent studies using the pcesaf
multiple stellar populations in Fornax and Sculptor thabadeem
to point towards a cored dark matter density profile (Baitaefl al.
2008 Walker & Pefarrubia 2011; Amorisco & Evans 2012).
Current methods for finding kinematic substructure in the
dSphs has relied on likelihood comparison parameter tests
(Kleyna et al. 2003;_Ural et al. 2010), non-parametric Naga¥r
Watson estimator| (Walker etlal. 2006), or metalicity cutsl an
kinematics |(Battaglia et al. 2011), but not Bayesian method
Hobson & McLachlan |(2003) presented a Bayesian method for
finding objects in noisy data. The object detection methaabie
to find two or more objects using only a two component model in
photometric data. This method can be extended to include- spe
troscopic line-of-sight velocity data to search for obgecising
kinematics, as well as structural properties. We extend amd
ply this method to Ursa Minor to search for stellar substitet
(Irwin & Hatzidimitriou 11995;|Kleyna et al. 1998) and the kin
matically cold feature found by K03.

1.1 Data and Motivation for more Complex Models

The spectroscopic data used contains 212 Ursa Minor mertaysr s
(Mufioz et all 2005); the sample that KO3 used to discovecaied
feature contained 134 stars. Figlite 1 (left) shows the radlac-
ities binned with the best fit single component Gaussiass. itha
reasonable fit. The data are, however, fit better if we useeethr
component Gaussian model, cf., Figlite 1 (right). The meah an
dispersion of these Gaussian distributions were derivenh four
Bayesian object detection that is the subject of this pakea pre-
lude to our final results, we note that the centers of all tipeau-
lations (the primary and two secondaries) found throughotiject
detection method are spatially segregated.

© 0000 RAS, MNRASD0Q, 000-000
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Figure 1. The binned line-of-sight velocity data (red dashed) in Uvinor. Right: Over-plotted is the most probable Gaussian withi= 1151 and an
V = —247.25 (black solid) from the null model (single Gaussian congrij Left: The line-of-sight velocity distributions of the secondayjects and
primary populations.The lines correspond to the velodispersions of dferent populations found with the Bayesian object deteatiethod; velocity ffset
object (blue dot-dot-space), cold object (green dottedingry distribution (purple dot-dash), and the total (klaolid). Each component is weighted by its
average number of stars found using the Bayesian objedttietanethod. The additional kinematic components proaitetter fit to the Ursa Minor data.

Before we develop the Bayesian methodology, we would like or kinematic features. However, we note that the stelladdssity

to dissect the data to see if secondary populations areleviai
strong local deviations in either mean velocity or velodigper-
sion. To this end, we grid a 5& 30 region around the center
of Ursa Minor finely and for each grid point, we find the aver-
age velocityv and velocity dispersionr in a 5 x 5 bin using the
expectation-maximization (EM) method (see Equations 12hlz3
of|[Walker et al.|(2009b)). We disregard grid points wheredtae
fewer than 7 stars in the bin. We have plotted the smoothadd

V maps created using this method in Figlure 2. The velocityetis
sion map is the upper left panel and the average velocity map i
the upper right panel. The data is rotated such that the raajer
is aligned with the abscissa & 49.4°, see Table 1 for the photo-
metric properties of Ursa Minor we use). There are two irsimg
features evident: in the map, roughly centered at (1+4), o is
significantly lower than the rest of the galaxy & 6km s1), and

in theV map centered at(13, 6'), theV significantly difers from
Ursa Minor's overall average\(v| > 10 km st). For reference, the
entire data set has = 115km st andv = —-247.2km s* with the
EM method andr = 116+ 0.6km s andv = -247.2+0.8km s!
using a single component Gaussian model sampled with a Bayes
nested sampling technique (see next section for an expianait

contours of Ursa Minor are significantly asymmetric (Klewial.
1998; Palma et al. 2003) and could hide both features.

Here we aim to show that these two localized kinematic fea-
tures in Ursa Minor are statistically significant. We nowntuo
describing our Bayesian object detection method for findiag-
ondary objects and model selection methods for assessigit-
nificance.

2 METHODOLOGY: THEORY

This paper has two primary objectives: to present a stedisti
methodology for detecting discrete features within a kiaBodata
set and apply this methodology to the Milky Way satelliteagsl
Ursa Minor. In this section we detail the statistical tecjusis used
to detect kinematic objects within the Ursa Minor data skt per-
tinent question we are addressing is whether statistichdinct
kinematic objects can be detected within a galaxy’s stéharof-
sight kinematic data and, if such an object is detected, hertain
can we be that this object is an actual physical attributbefsys-
tem. Thus we require that any methodology used to detectptault

the Bayesian methods we use). We have also plotted the numbersmaller composite objects within the kinematic data seettew

density (lower left panel) and the positions of the stara@oright
panel) in Figur€ to provide a sense for where the data is awd h
significant the features in theando maps are. The number den-
sity map is created the same way asWtendo- maps and it shows
that both features are in regions that are reasonably sdniplthe
plot with the positions of the stars, we have also indicabedmost
probable locations for the centers and the extent of theabdda-
tures as found by our Bayesian object detection method. \éoa
the reader that the plotted extents (tidal radii) of the eéHfeatures
have large error bars see Table|2.1).

The center of the dip in the velocity dispersion (upper left

important properties. First, any proposed algorithm mesifie to
discern an unspecified numbers of statistically separaaeaufes
within the a galaxy’s kinematic data set. And second, thithioe
ology must allow for some kind of determination of the sigrafice
of a proposed object detection.

To meet these criteria, we employ a Bayesian object detectio
technique first introduced by Hobson & McLachlan (2003). im o
implementation, the data distribution is modeled with teparate
components: a background distribution referred to as thregoy
distribution, in our case, the Ursa Minor dSph,j, and a 'sec-
ondary’ distribution ) which is interpreted here as a feature or
object of the Ursa Minor data set. Thus, the actual distigioLis of

panel of FigurdR) is near the spectroscopic feature found by the form:

K03 and the secondary density peak seen in the photometry by

several authors (Irwin & Hatzidimitriou 1995; Kleyna et|&B98;
Bellazzini et all 2002; Palma etlal. 2003). The average Vtgltea-
ture we see does not correspond to any previous noted phisyome

© 0000 RAS, MNRASO0Q, 000—-000
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whereF is the total fraction of stars in the secondary population,
d represents an individual element of the Usra Minor datazset

P(dil.2) = (1 - F)Pp(di].#p) + FP(di|.25)
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Figure 2. The local kinematics of Ursa Minor using mtpdata setUpper Left: A map of the velocity dispersion of Ursa Minor. A portion
of the lower right quadrant drops below 6 kmtawhile the rest of the galaxy is relatively uniforrdpper Right:The average velocity of Ursa Minor found
concurrently with the velocity dispersion. In the uppet lgfiadrant the deviationV > 10— 15 km s1 relative to Ursa Minor while the rest of the galaxy
does not dier more than 5 km=. To make the contour plots, the velocity dispersion and tleeaaye velocity were found within & & 5’ bin (5 ~ 110 pc
for a distance of 77 kpc).ower Left: The stellar density profile of the stars in mﬂ@ data set_ower Right:The most probable locations and
sizes (tidal radii) of the two objects using the Bayesiareobfletection method in Ursa Minor. Both of these locatiomsespond to the deviations seen in
the average velocity and velocity dispersion maps. Thedioate system used here is such that the x-axis lines up hétmgjor axis which has a position
angle of 49.4 M@B). The adopted center for Ursa Minor was=RE5"09™105.2, DEC= +67°12'52" (J2000.0) (KO3). For the entire sample,
we obtain a mean velocity = —247.25 km s and velocity dispersion = 11.51 km sL.

(2 = {d}), and.# denotes the parameter set of the respective Later, we use the evidence as a criterion for selecting liveo
distribution’s model. A major benefit of this type of analys that models, or hypothesedi}: One that assumes a ‘secondary’ fea-
data sets with multiple features will cause the secondapyladion ture represented by equatibh H,;j and another ‘null hypothesis’
parameter posteriors to become multi-modal where eackiéhdi that only assumes the background distributiyn(Ho). In section
ual mode represents a unique feature. This enables us thdear [22 we use this both directly in the ratio of evidences, or dday
an arbitrary number of objects without requiring an ovedynpli- factor, and indirectly in the determination of the the Kalth-
cated probability distribution. In addition, the local Besjan ev- Leibler divergence, a quantity the quantifies the amounnfafri
idences of each mode can be used as a selection criterion. Themation gained from the assumption of one hypothesis ovehano
evidenceZ = P(Z|H) is equal to the integral of the product of  Through a large set of Monte Carlo simulations, these daitere
the likelihood, L(.#) = P(2|.# ,H) = [1; P(di|.#,H), and prior then used to derive confidence levels on the exclusion of die n
probability, Pr(.#) = P(.#|H): hypothesis.

zZ= f L(A)Pr(a)du . )

. ] ] Calculation of the above quantities and sampling of thegsost
Here, the probability density of the parameter set (i.e., rior space was done utilizing a Bayesian nested samplifmpigoe

P(.#|2,H)), or posterior, is related to the evidence by the Bayes’ (Skillind2004{ Feroz et dl. 2009). The reason for this chaicthat

theorem this sampling algorithm possesses all the capabilitiesired for
P(D).M ,H)Pr(A) this project: multi-modal posteriors can be exploréiteently, and
PAMTD H) = =, (3) the evidence is inherently evaluated.

© 0000 RAS, MNRASD0Q, 000-000



2.1 Likelihood

Our methodology utilizes a two component probability digttion
similar to that in the KO3 paper (also see Martinez etal. 12p1
We base the ‘primary’ ) and ‘secondary’ §) probability distri-
butions on a Gaussian with mean velodiys, using the velocity
errorse;, and the assumption of a constant velocity dispersigR,
as the spread:

1 (i—Vps)?

exp[— 2 (035 | pps(R)

(o2, +e?) Nps

Pos(Vi, RlAps) = (4)

Here, pps(R) is the 2-d stellar number density normalized to the
total number in the populatiorNgs).

Unfortunately, because of spatial selection biaggs(R) is
difficult to model. To account for this uncertainty, we considdyo
the ‘conditional’ likelihood (see Martinez etlal. (2011 fietails):

PosVilR, A) = Pps(vi, RI.Z) [ (pps(R)/Nps).- (%)
With this, equatiofi]l becomes:

PMIR, #) = (1- F(R)PpVIR, #p) + F(R)P(ViIR, .2Z5) (6)

where f(R)) is now the ‘local’ fraction of stars in the secondary
population defined by

ps(RiL%s)
Ps(Ri |///s) + app(Ri |%p)

Here, we have introduced the variable= Ns/N,. Instead of vary-
ing « directly, we found that, in some instances, using totaltfoac
as a free parameter simplifies the analysis:

[ s dxdy
[psdxdy +a [ppdxdy’

For the primary population, we assume a king 2-d density pro-
file whose parameters are fixed to the observed photometey. Th
secondary object’s density profile is taken to be a toE:fﬁUr
Bayesian object detection model constituted of 8 paramse2quri-
mary kinematic parameters, 2 secondary kinematic paras)ée
x and y center and tidal radius for the secondary populatiottiae
total fraction. The parameters, priors, and posteriorsliated in
the first row of Tabl&2]1.

f(R) = )

®)

Ftotal =

2.2 Model Selection

Even with accurate probability density modeling and thgiopa-
rameter space exploration, any object detection methggiohall
have fairly limited capabilities if the significance of a detion

Bayesian Object Detection 5

theory (specifically the Kullback-Leibler divergencBy) or in-
formation entropy). Among the most common are the Bayes
tor, the Bayesian information criterion (BIC), the Akaikdarma-
tion criterion (AIC) (Akaike 1974), the Deviance informeti cri-
terion (DIC) (Spiegelhalter et 8l. 2002), and direct cadtion of
the Kullback-Leibler divergenceD ) (Kullback & Leibler{1951).
(For a review and the use of information criterion in cosnggleee
Liddle (2007), for more general reviews of of model selattar-
ticularly Bayesian methods in cosmology see Liddle et &06);
Trotta (2008).) In this paper we use the Bayes Factor, DI@, an
Dy, to quantitatively derive confidence levels. We do not discus
the AIC or BIC since they are Gaussian approximations of te e
dence andy, respectively.

The Bayes factor is the ratio of the evidence of two models or
hypotheses. For example, the Bayes factor between two lmgpot
sesHy andHg, or single component versus multiple components is
defined to be

fac-

_ P(ZIHy)
= P ©)

The general rule of thumb is th&; > 1 favors hypothesi#i;
and By; < 1 favors hypothesiddy. The significance ofBy; is
usually computed as IBo; with InBp; < 1, 1 < InBy; < 25,
25 < InBg; < 5,In Bo; > 5 corresponding to inconclusive, weak,
moderate and strong evidence, respectively, in favor obthgsis
H:. The Bayes factor has the advantage that it is an output of our
sampling algorithm. But, the main disadvantage is that thgeB
factor inherently penalizes the model whose parameterespas
the larger degrees of freedom. This can make determinafitireo
significance of a detection ambiguous in that the Bayes ifagilb
naturally underestimate the importance of a proposed tietec
We address this issue by first utilizing additional selectiite-
ria based on information theory and second, null hypothasisk
data set analyses.

As mentioned in the previous paragraph, we wish to supple-
ment the Bayes factor with other selection criteria basethfm-
mation theory. Typically, these criteria are derived fr@g_ that
guantifies how much more information you gain by switchiragfr
one probability distribution to another. For our case, thisntity
is:

01

DKL(P;L, Po) = fln (%)P(%L@, Hl)d% , (10)
where®y, P1 are the posteriors under hypothestsand Hy, re-
spectively. Another quantity, the DIC (Spiegelhalter eP8l02), is
related to the amount of information gained through thegoHte-
rior as opposed to assuming only the prior probability distion
(i.e.,DkL(P, Pr)):

cannot be determined. In our method, we use several model se-

lection techniques to assess the significance of finding anabb-
ject. Here, the posterior, likelihood, and evidence arel esethe
basis for determining selection criteria that measure tlialsil-

ity of an hypotheses. The two hypotheses that are compaeea ar
model that contains no sub-component feature (the ‘nulbthg
ses’ Hp)) and a model containing a sub-populatidi, ). Model
selection techniques generally fall into two categoriésse de-
rived from the Bayesian evidence, and those based on infamma

1 Other profiles were tried including a King, and Plummer peofiVe de-
tected both objects in all cases. The scale radii for théastetofiles were
unconstrained and errors were higher in other cases.

© 0000 RAS, MNRASO0Q, 000—-000

DIC = —2Dk. (P, Pr)+ 2Cs (11)

whereCp = y2(4) — Y2(4), * = —2In(£L), and D, (P, Pr) =
In(£(4)) - In(Z) (Trotta 2008). We emphasize that the evidence
or Bayes factor andy,. should be used over the traditional in-
formation criterion whenever possible. We also introdueetotal
membership as a physically interpretable model selectiethou
tailored for the problem at hand. The membership that a s{aauit

of the secondary population is derived from the posteriathieyra-

tio of the secondary likelihood to total likelihood (Martin et al.
2011). For the ith star, the membership is:

— f(Ri)Ps(VﬂRiw//s)
(1= F(R)Pp(MiIR, Ap) + F(R)P(VIR, )

m (12)
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Parameter Type Prior (Units) Cold Spot Velocityfset
Model parameters from Bayesian object detection method

os flat Cuts 12 (see caption) 37n 87535
op flat 0to 20 km st 1175+ 05 1075+ 0.5
Vs flat Cuts 12 (see caption) ~ —24675375 -2587529,
Vp flat -242 t0 -252 km 3! -2475+0.75 -24525+ 0.75
Xeen flat -0.6 t0 0.6 kpc 025ﬁ8-8§ -0.24+0.09
Yeen flat -0.4t0 0.4 kpc —o.o7j§0§ 0.23+0.02
Iidal flat in log; 10 to 300 (pc) 151 § 251424
Frotal flatin log o 10°to1 a79ry4t 0.327947

Secondary Population Model Parameters from simultaneaasyonent modeling

Xeen flat -0.24+ 0.1 kpc 026+ 0.02 -0.23"59%
Yeen flat 0.23+ 0.1 kpc -0.07+0.01 022+ 0.02
Fidal flat in logy o 10 to 300 pc 151352 26938

s flat Cuts 12 (see caption) 25+ 0.75 925+ 125
o flat 0to 20 kms? 115+ 05 115+ 0.5

Vs flat Cuts 12 (see caption) -24625+1.0 -2580+15
Yp flat -252 to -242 kms* -24525215 -245257215
fiocal derived - 70% (15/22.5) 85 % (27.(81.6)

Table 2. Parameters, Priors, and Posteriarg.and o, are the velocity dispersions of the secondary and primapulations.Vs andV,, are the average
velocities of the secondary and primary populatioqs, andycen refer to thex andy centers of the secondary population. Note that the dataetated such
that the x axis and the major axis are paraliglq is the tidal radius in a top hat model for the secondary pdjmulaFot is the ratio of stars in the secondary
population to the total population. For the first sectior 4th and 5th columns denote the values when detecting thehjgots individually. The two cuts
indicated in the table as “Cuts 1 and 2" are defined as foll@ut.1 is 0< o < 10km st and-252 < V < —242km s to find the cold spot object. Cut 2 is
0< o <20kms? and-267 < V < —237km s to find the velocity @fset object. In the second section, the 4th and 5th columnteléne values calculated
for the two objects simultaneously using a 3-component mdde coordinatesce, andycen Of the objects were only allowed to vary withi0.1kpc of the
value obtained from the Bayesian object detection metliggy is the weighted average fraction of secondary populatiarssh each secondary object’'s

location.

As the membership is derived from the posterior, each stinaie

its own probability distribution. Our data set contains 21&s and

so to simplify the analysis we use the average membershigabf e
star’s probability distribution. A global model selectiparameter,
the total average membership, can be found and interpretédtea
average number of stars contained in the secondary papulatie

find (see Figur&lBi4) that the membership correlates with eac
the other model selection parameters (i.e., a model with big-
dence will have high membership and a model with low evidence
will have low membership).

2.3 Testing the Method with Mock Data

for (0.2, -0.1) location. For the (-0.23, 0.24) location, weed a
slightly larger value for tidal radius;iqo = 0.25kpc. We note that
both populations were created assuming an underlying King p
file but the object detection used a top-hat model when finttieg
second population, identically to how the objects were tbiarthe
actual data. Each individual mock data set had 1-3 seconuary
rameters that deviated from the base parameters to test &chw e
parameter #ected the detection. In some sets we did not expect to
find the secondary population, for example, if they had sl
radius or small secondary population fraction.

The results for model selection of thig, , DIC, InBy,, and
total membership using two fiierent kinematic priors are summa-
rized in the right and middle columns of Figlide 3 (seconday-p

We created 100 mock data sets containing a second populationulation located at (0.2, -0.1)) and Figuite 4 (secondary |atjoun

to test whether known secondary objects could be detecied us
our object detection method. The second populations wesgdd

at either (0.2, -0.1) or (-0.23, 0.24) kpc (roughly the lomasg of
the cold and velocity fiset objects). The kinematic and structural
parameters of this second population were selected to nthmeic
cold and velocity ffset objects. The positions and velocity errors
from the Ursa Minor data set were used to simulate obsenaitio
errors. To pick which population a star is assigned to, thoallo
fraction was found via Equatidd 8 and membership was rangoml
assigned with the second population weighted by the loa-fr
tion. The primary population parameters were the best fitesl
from Ursa Minor photometry and the kinematics of the entinms
ple: riga = 1.745 kpc,reore = 0.401 kpc, ellipticitye, = 0.56,

o = 115 kms?t, andV = -247 kms'. The second popula-
tion’s base parameters werg: = 0, s = 0.0, Fioa = 60/212,
leore = 0.05kpc,AVs = 0 kms?, o = 4km s?, riga = 0.15kpc

located at (-0.23, 0.24)). The left and middle columns shdfw d
ferent kinematic priors with the left column showing the <t
find kinematically cold objects (& o < 10km s, -252 < V <
—242km s1). The middle has the cuts to find objects with a signif-
icant velocity dfset (0< o < 20km s, -267 < V < —-237km s?);
this cut will also find the kinematically cold objects, but time
Ursa Minor case the velocityfiset object was significantly more
likely and tended to dominate the posterior. The symboldtfese
columns are labelgdolored according to a by-eye definition of the
x and y posterior: peakgfiound” (red square), not peakgdot
found” (green x), “possible” peaks (blue triangle), doupksaked
with one correct (light blue diamond). Results for the atctlisa
Minor data with corresponding cuts are shown as filled blaciec
The “possible” peaks are posteriors where there was a peatlthne
second population’s center, a snfaédium peak somewhere else
in the posterior, or a small peak at the correct location. dtwe-
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Figure 3. Model selection tests usinBk|, DIC, logBF = InBo; (cf., for definitions) for 50 mock data sets located at (0.21)-0Also shown for

comparison are the results for the actual Ursa Minor datafsetore negative

DIC favors the secondary object hypothesise strongly, while the same is

true for larger values dDk | and Bayes factot.eft column: Figures in column 1 show the results of the analysis of thekndata sets in exactly the same way
as the real data set was analyzed to look for the cold objeltouts on mean velocity and dispersion given by 8 < 10km st and—252< V < —242km s
(Cut 1). The top panel shovBk , the middle panel DIC and the bottom panel the logarithm efBayes factor (written in the text asBg;. Mock data sets
that had second populations with significanteliences in their kinematics with respect to the backgrowpliation were found with our object detection

method. The symbols are labeledlored according to a by-eye classification

of the x and ygs: peakeffound (red square), not pealtetbt found (green

X), possible peaks (blue triangle) and double peaked withammrect (light blue diamond). The results for the actuadMinor data set is shown as filled
black circle.Middle column: This panel has the same symbols and colors as the left mostieoThe diference here is that the velocity cuts used are broader

(and the same as that used to find the velodifged object). The cuts areQo <

of Dk, DIC and Bayes factor from analyses of 1000 null hypothesisknuiata

20km s and—-267 < V < —237km s (Cut 2).Right column: Histograms
sets with Cut 1 (red dotted) and Cut 2 (blue solidg értical lines show the

DkL, DIC and Bayes factor values (in the top, middle and bottone[sa respectively) for the actual Ursa Minor data set witth £(green dotted) and Cut 2

(magenta dot-dashed).

ble peaked data had one peak at the correct location and adseco
at another location. The “possible” sets tended to span aheeb
between “found” and “not found” and were not easily catezgdi
otherwise.

Both Figures show a clear trend between the “found” and “not
found” sets in all the model selection methods. Note thatenneg-
ative DIC corresponds to favoring the more complicated rhode
Sets that are “not found” by-eye have model selection daitisat
is equivalent to the model selection criteria of null hypstis mock
data sets (i.e., sets made with no second population), et; S
tion[31. The model selection criteria for the two objectsrfd in
Ursa Minor also lie in the “found” section of the mock dataetes-
tion criteria. From the analysis of these mock data sets welude
that our method is fully capable of detecting the cold andeigy
offset objects, and the model selection criteria favor therfpues-
ence of two additional components in Ursa Minor.

© 0000 RAS, MNRASO0Q, 000—-000

3 RESULTS

We have found two objects in the Ursa Minor data set of
Mufioz et al.|(2005) using a Bayesian object detection ntethibe
first object, referred to as the “cold object” here, is kinéoaly
cold, oo = 3.5738km %, with an average velocity close to that
of the full Ursa Minor sampl€ycoq = —246835km s . The loca-
tion coincides with the location of the KO3 stellar clump.eT$ec-
ond object, referred to as the velocitffset object, has a large av-
erage velocity fiset compared to the mean velocity of Ursa Minor,
Vo = —25882%km s°* with a dispersion ofr,, = 8.8"15km s,
The kinematics and structural properties are summarizgeifirst
section of Tabld_Z]1. The model selection tests for the cbid o
ject are: Total Membershig 158, D, = 4.8, DIC = -261,

In Bo; = 0.9. The model selection tests for the velocitysets ob-
ject are: Total Membershig 27.0, Dk, = 139, DIC = -36.5,
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Figure 4. Model selection tests usifx ., DIC, In By; for 50 mock sets located at (-0.24, 0.23) and the Ursa Minta. déhe layout is the same as FigQite 3.
The third column from left displays the results from the stiobed mock data sets instead of the null hypothesis mocksadisaplotted in Figurgl 3.

InBo; = 3.6. In Figured B[K the results of model selection test
are plotted along side the mock set distributions. All of thedel
selections tests favor the additional secondary objecdts mid-
erate to high significance except for the Bayes factor whiah h
weak to moderate significance for the cold and velocitget ob-
jects. This significance is based on the recommendationsofal
(2008)1 Ghosh et al. (2006); Spiegelhalter etlal. (2002)véier, it

is important to judge the significance of the informatiortiesia and
the Bayes factor for the problem at hand. We do this by geingrat
mock data sets and deriving the information criteria andeBdwc-

tor in the same way as the real data is handled. When thisstest i
performed, we find that the confidence levels of both objers a
above the 98% C. L. (see TaljleR.1). In addition, all of the ehod
selection values, for both locatigobjects, lie in the “found” re-
gion of the mock sets of Figufé[3-4.

3.1 Significance of Information Criteria and Bayes’ Factor

In order to assess the significance of the model selectids, tes
knowledge of the false positive rate is helpful. We make dse/0
types of tests: null hypothesis mock data sets and scranclaited
sets. Null hypothesis mock data sets are constructed bywirty
the line-of-sight velocities from a Gaussian with Ursa Mikone-

matic&. To simulate positional and velocity errors, the positiohs
stars and the line-of-sight velocity errors were kept. Té¢rambled
sets were constructed by repicking a random observed fiseght
velocity and line-of-sight velocity error pair, withoutgiacement,

for each star in the data set. 1000 null hypothesis mock ddta s
and scrambled data sets were constructed and analyzed wvith o
object detection method.

The results of the object detection method and our employed
model selection tests for the null hypothesis mock datasseighe
scrambled mock data sets are shown in the last columns of Fig-
ured 3 an@l4, respectively. T (top), DIC (middle), and Iy,
(bottom) are binned and the maximum is normalized to unite T
analysis with the cuts to find cold objects €© o < 10km s?,
-252 < V < —-242km s?) is shown in red, while that with cuts
to find objects with significant velocityffset (0< o < 20km s?,
—-267< V < —237km s?) is shown in blue. The model selection re-
sults for the real Ursa Minor data are plotted as verticadircold
object with green dotted line and velocitffget object with purple
dash-dot line. The confidence levels of the model selectiberiz
for the null hypothesis mock data sets and scrambled dataaset
above the 98.5% c. |. with every model selection critericeyTare
summarized in Table_3.1. Even though thé}a shows weak evi-
dence for the cold object according to standard definitibimsstill

2 We usedv = —-2470km s1 ando- = 11.5km s'1.
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Figure 5. The posteriors for the secondary populations in Ursa Misargithe three-parameter model. The secondary populai@fixed at (25, —0.07)kpc

and (0.24,0.23)kpc and allowed to vary.Dkpc in both coordinates. They correspond to the cold (bkdld) and the velocity fiset (red dots) objects,
respectivelyUpper Left:The x coordinate posteriors for of the secondary populatidpper Right:The y coordinate posteriors for the secondary populations.
Lower Left: The velocity dispersion posteriors of the cold object (klaolid), velocity dtset object (red dotted), and the primary (blue dasHhsal)er Right:
The average velocity posteriors of the cold object (bladidsovelocity offset object (red dotted), and the primary (blue dashed). €berslary populations

have distinct kinematic properties and are both localized.

above the 95% confidence level for both the null hypothesiskmo
data sets and scrambled data sets.

3.2 Narrowing down secondary population parameters using
a 3-component model

To reliably calculate the kinematic properties of the seleon ob-
jects we introduce a model with two secondary populatiore T
additional populations are only allowed to vary hy &pc in both

x andy from the best-fit center locations found in the Bayesian
object detection method for the cold and velocityset objects.
Equatior[Y is changed to include the third component an@auakst
of the normalization parametes, = E—: there are now two nor-

malization parametersy, = E—i ande, = ':‘—f whereN; and N,
denote the normalization of the first and second object. Bhe r
sults for the kinematic parameters argoq = 4.3 + 0.8km s,
Veold = —2463 + 1.0kms?, oo = 9.3 + 1.3kms?, andv,, =
-2580 + 1.5km s1, respectively. These values are in full agree-
ment with the values obtained using the two-component (Sape
object detection) method.

The normalization ratios, as defined, are not easily in&tept:
So we introduce a derived parameter, local fractiorigy, that is

© 0000 RAS, MNRASD0Q, 000—-000

defined as the weighted average of stars with membershiptegre
than 50% in the secondary population compared to the totabeu

of stars within the secondary object’s tidal radius. In shibiis a
measure of the fraction of secondary stars in each objectgibn.

We derive fipcaicor = 15.8/225 or 70% andfipcavo = 27.0/316

or 85%. Clearly, we are able to find these objects only because
they seem to have a high local fraction. The kinematics anut-st
tural properties of the secondary population model are samzed

in the second section of Talle P.1. In upper left and rightefsan
of Figure[®, we have plotted the posteriors for the x and y cen-
ters, respectively, for the cold (black solid) and velodaifiset ob-
jects (red dotted). The centers for the cold and velocifget ob-
ject are (025, -0.07) kpc and £0.24, 0.23) kpc and the two panels
show the deviation from the “fixed” centers. The lower righter

left) panel of Figurdb is the posterior of the (Vs) for the cold
(black solid), velocity fset objects (red dotted), and primary (blue
dashed).

An increased prior volume for the centers and tidal radius in
the 3-component model changes the posteriors for the stalct
parameters of the velocityfiset object but does not changes its
kinematics. By only allowing more freedom in the locationtloé
centers (200 pc versus 100 pc) the posteriors of both cegééns
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Test using null hypothesis mock data sets

Total Average

Information Entropy Bayesian Evidence

Membership DkL DIC In Bo1
Value at 95% C.L. from null hypothesis mock data sets usinglCu 5.25 1.28 -16.35 0.17
Cold object values from data (inferred C. L.) 15.82 (99.8%)  .82499.7%) -26.08 (99.5%) 0.87 (99.7%)
Value at 95% C.L. from null hypothesis mock data sets using2Cu 4.49 1.84 -17.79 0.13
Velocity offset object values from data (inferred C.L.) 27.62009 %) 13.93 £ 999 %) -36.49 (99.9 %) 3.59(99.9 %)

Test using scrambled data sets

Total Average

Information Entropy Bayesian Evidence

Membership DkL DIC In Bo1
Value at 95% C.L. from scrambled mock data sets using Cut 1 9 6.9 2.22 -20.45 0.40
Cold object values from data (inferred C. L.) 15.82 (99.7%)  .82499.1%) -26.08 (98.5%) 0.87 (99.0%)
Value at 95% C.L. from scrambled mock data sets using Cut 2 9 3.8 1.46 -16.30 0.07
Velocity offset object values from data (inferred C.L.) 27.062009 %) 13.93£999%) -36.49 £ 99.9 %) 3.59 & 99.9 %)

Table 3. Confidence Levels computed from null hypothesis and scraghniviock data sets. The inferred C.L.. refers to the numbeunlbhgpothesis mock
data sets and scrambled data sets sets that have a modgbselatue lower than that of the actual Ursa Minor data. TE&9C.L. value is defined such
that 95% of the null hypothesis or scrambled data sets hawadua below this. Both additional populations found in thes@JMinor data are above the 98%
C.L. for all the model selection methods. The two cuts indidan the table as “Cuts 1 and 2” are defined as follows. Cut@ & o < 10km s and
—-252< V < —242km st used to find the cold spot object in the data. Cut 2 is® < 20km st and—-267 < V < —237km st used to find the velocity fiset

object in the data.

tails. An increase in the maximum tidal radius (in the prigirihe
objects (500 pc from 300 pc) increases the size of the vglofittet
object and moves its center roughly 150 pc away from the cente
of Ursa Minor while the same change introduces tails in the po
terior of the cold object. Given these results, it is fair &y shat
the the size and center of the secondary objects are not kwitvn
precision and more data will help considerably. However,amn-
clusions regarding kinematics seem to be robust.

3.3 Perspective Motion

Line-of-sight velocity measurements for the Milky Way dities
receive a small contribution from andy direction velocities of
the star (wherez is along the line-of-sight to the center of the
galaxy), and this contribution increases with distancenftbe cen-
ter (Feast et al. 1961; Kaplinghat & Strigari 2008). A simitan-
tribution could also arise due to solid-body rotation or soother
physical mechanism (such as tides) that leads to a velocitlient.
Motivated by the large velocityffset we found, we ask whether
the this term changes our conclusions. The observed liségbt
velocity of a star may be written as,

Vios = Vz — VxX/D - Vyy/D (13)

whereD is the distance to the galaxy and Y) are the projected
coordinates on the sky. This method has been applied to thiesiS
Fornax, Sculptor, Sextans, and Carina and results agraeottier
methods|(Walker et &l. 2008). The proper motion we find assgmi
only a primary population with a constant velocity dispensis
(ttas t15) = (529 + 848 —280 + 449) mas century, which shows
clearly that we are unable to constrain the proper motion rsalU
Minor using this &ect.

Observations from the HST find a proper motion for Ursa Mi-
nor of (u,us) = (=50 + 17,22 + 16) mas century (Piatek et al.
2005), which is an order of magnitude smaller (when comparin
the mean) than the result we calculate. If stars with high begm
ship in the velocity @set object are weighted as not being in Ursa

Minor the proper motion of this subset j&,( us) = (117+90, 163+
127) mas century. Removing both secondary populations this
way results in g, i5) = (-84 + 79, -185+ 174) mas century.

If we remove all the stars in these locations we fipg, fi;) =
(-67+ 60, —203+ 181) mas century. These comparisons provide
clear proof that it is hard to estimate the tangential vé&jowiith
perspective motion if there are secondary populations endtita
set.

To investigate this issue further we run a three-component
model to try and pin down the two secondary components when
including perspective motion. We add thiffext into our likeli-
hood function by changing the model velocity for all threenco
ponents (cf.¥ys in Equatior#) toves; given by Equatiofl I3 with
¥ andy; for each star measured from the center of Ursa Minor.
Each component has its own but v, andv, are the same for all
three components. Note that the actual tangential veladitye
two secondary components is now implicitly tied to thevalue
— there is no hope of disentangling them given the small proje
tion on the sky of the secondary components. We then impase th
same constraints on the center as before §&f2). We find results
that are consistent with those we found§8.2 in the absence of
perspective motionkeig = 0.245:593kpe, Yeois = —0.0657393kpc
andx,, = —0.27533.kpc, yvo = 0.24 + 0.025kpc. The kinematic
properties are the same as without perspective motion exicep
error bars are larger. Thus the three-component model \uih t
prior on the centers provides afidirent fit and favors the pres-
ence of the secondary objects over perspective motion. ldad p
spective motion or a velocity gradient or rotation been &debet
fit to the likelihood instead of either of the objects, thisuhb
not have been the case since the likelihood allows for the- fre
dom to dial down the fraction of stars in the secondary object
In this three-component fit, the mean velocity of Ursa Min®r i
(-311+ 212 -54835] —2455 + 0.75) km s?, in good agreement
with the results obtained when stars in the locations papdlay
the secondary populations are removed.

Instead of using a three component model (as we did above),

© 0000 RAS, MNRASD00, 000-000



we also explored thefiect of using the Bayesian object detection
method including the perspective motioffeet. This could lead
to faulty results (and we show below that it does) becausedhe
locity offset spot has a large impact on the determination of the
background parameters — specifically the perspective motitith
the velocity cuts to find the cold object, we find a mean vejocit
for Ursa Minor of (1001150, 1125275 —2475733)km s and a
dispersion in the line-of-sight velocity of X+ 0.5km s, The
dispersion of the cold object is how consistent with zerobatua
1-0, 3.25+ 3.0 km s and the location of the centers is now much
less well-determined. However, the values obtained fopéiepec-
tive motion are unphysically large and hence this is cleady
the correct model to be considering. With ti@0km s veloc-
ity cut (to find the velocity €set object), we find a mean veloc-
ity for Ursa Minor of (-200°1%, -11754% —247"15 )km s™* and
10.75 + 0.5 km s for its dispersion in the line-of-sight veloc-
ity. The center, as with the other object, is no longer tiglethn-
strained, and the hint for deviation in mean velocity forstbb-
ject is muted £25872 km ). Thus, we arrive at the conclusion
(unsurprisingly) thawvarying background parameteis Bayesian
object detection methods can lead to faulty results in detscon-
taining multiple signals if those signals have a significefféct on
the determination of the background parameters. In péatictor
this analysis we saw that the presence of the veloditseo spot
affects the magnitude and the direction of the inferred tanglent
motion and hence the object detection method has troubilegfitt
one secondary location and perspective motion. But with ltwo
calized secondary populations and perspective motion #tbad
still picks out both secondary objects. Thus, the three asrapt
model is preferred by this data set.

A tangential velocity measured using perspective motion
could also be hiding a possible solid-body rotation. An orde
of magnitude estimate of this rotation speed wouldvhg =

R M +V2 (Re =445+ 44 pcD = 77 + 4 kpc). Using the re-

sults presented in this section, we calculatg: ~ 7km s with
entire data set, angy; ~ 4km st when the velocity fiset popula-
tion is removed, and when both secondary populations arevesin
or when all stars near the secondary populations are remdhed
rotation speeds are all comparable but in each estimatethton
is about a dierent axis. The summary of our results from this sec-
tion is that a larger data set is required to simultaneoushstrain
properties of the secondary populations and rotation qugarmo-
tion. The results of our three-component analysis sug@iestthe
data prefer the presence of both secondary objects to pékape
motion (or a rotation that masquerades as it).

4 DISCUSSION

KO3 utilized a frequentist likelihood test with a two comjeoi
kinematic model (Ursa Minor dSph plus a secondary popuiatio
similar to our Bayesian object detection method. They dieced

a stellar clump with a high likelihood ratio~( 10%) located at
(10,4) (on-sky frame) relative to the Ursa Minor center with pa-
rametersg = 0.5 kms?, vs = —1 kms? and clump fraction
of 0.7 (fraction of stars in the second population). The kiag-
cally cold object found with our Bayesian object detectiogtinod

is centered at (168’ + 1.8,5.5 + 0.9) (on-sky frame relative to Ursa
Minor center), has a size of B + 0.5, with kinematic properties
o =425+0.75 km s, andAV = —-1.1*33_ km s. The diference
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between our results and those of KO3 lie in the velocity dispe
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sion of the cold object. We have considerably more starsofa t
roughly 212 to 134 of K03) and are therefore able to infer tise d
persion with much greater confidence. We find the mean value fo
the velocity dispersion to be close to 4 km,ssimilar to the dis-
persion of Segue 1 dSph (Simon et al. 2011).

The main uncertainty in our estimates of the dispersion for
cold and velocity €fset objects is the presence of perspective mo-
tion or solid-body rotation. Perspective motion by itsedfnoot
explain these secondary populations. A three-componelysia
(i.e., main Ursa Minor population and both secondary pdjnria)
with the coordinates of the centers fixed to within 0.1 kpc smd
cluding perspective motion (with unconstrained tangémnioc-
ity) prefers the presence of both the secondary populatiarthis
analysis, the velocity dispersions of the cold or velociffset ob-
jects are not significantly fferent from the values obtained without
including perspective motion.

To estimate the luminosity of the secondary objects, we use
the total membership of the objects with the assumption tthet
stars were drawn uniformly from the three distributions af&
Minor. We find the luminosity of the cold and velocityfset ob-
jects to be 4x 10* L, and 6x 10* L. The luminosity of the KO3
object is 15 x 10* L, and given the uncertainties we would chalk
this down as agreement between the two analyses. The dynami-
cal mass within half-light radius of dispersion supportgdtems
can be estimated to about 20% accuracy using the line-bf-sig
velocity dispersions and the half-light radius (WalkerleP809a;
Wolf et alll2010). Assuming that the ratiof,/r+qa Of the objects
is the same as that of Ursa Minor, we fikt],» = 6 x 10° M, and
My2 = 5x 10° M,, for the cold and velocity fiset object. From this
M/L(r12) = 30 Mo/Le and M/L(r1,2) = 175M,/L,, for the cold
and velocity dfset objects. If we use this same estimator to find the
velocity dispersions assuming the objects are relaxe@sstvith
only stellar components ard/L = 2 (as in K03), we estimate a
velocity dispersion ofr = 1.0 km s for both the cold and veloc-
ity offset objects. This dliers from the velocity dispersion found
through our object detection method by-4and 6.60 for the cold
and velocity dfset objects, respectively. Note that the estimator for
M1, assumes that the system is dynamical equilibrium, which may
not be the case here. If our current results hold up with tiditiad
of more data, then either these objects have highly inflagéatity
dispersions due to the influence of motion in binary stejatems
or tidal disruption, or these objects really do have a mucpela
mass than inferred from their luminosities. In the lattesegave
would have found a satellite of Ursa Minor, the first detettid a
satellite of a satellite galaxy. We discuss each of thessipidities
briefly below.

Contribution of binary orbital motion to the line-of-
sight velocities can inflate the observed line-of-sightoeéles
of stars |(Aaronson & Olszewski 1987; Hargreaves et al. 11996;
Olszewski et &l.| 1996; Minor etial. 2010; McConnachie & €6t
2010). A galaxy with a lower intrinsic velocity dispersiomaha
higher chance of having its observed dispersion inflatedSphd
with a velocity dispersion between 4 and 10 kmh s highly un-
likely to be inflated by more than 30% (Minor et al. 2010) (for a
application of this method sée Simon et al. (2011); Martiekeal.
(2011)). The objects we have found have observed velocgy di
persions in this range. Assuming both objects are inflated by
30%, their actual intrinsic velocity dispersion would bevbeen
25-3.3kms?tand 71 km s? respectively, for the cold and veloc-
ity offset objects. These velocity dispersions are still muchdrigh
than 1 km s (that is expected for a relaxed stellar system, i.e. a
globular cluster). It is unlikely that binary orbital moti@lone can
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account for the large velocity dispersions inferred frons tthata
set for both secondary populations. With multi-epoch datawvill
be able test this hypothesis directly as was done for Segspth d
(Martinez et al. 2011).

To assess thefect of tidal disruption from Ursa Minor we cal-
culate the Jacobi Radius, and compare; to the mean tidal radius
estimated from our three-component analysis. To calctifetela-
cobi radius, we consider both an NFW (Navarro et al. 1997)and
pseudo-isothermal (cored) profile for the halo of Ursa Mifforset
the NFW density profile of Ursa Minor, we pick NFW scale radius
rs = 1 kpc and estimate the density normalizatignusing My,
values from Wolf et &l (2010) for a NFW profile. We find thathgt
actual distance of the center of the objects is equal to thiegted
distance from the center of Ursa Minor, then< r,. If the objects
are further than about 1 kpc away, then> r; with the NFW pro-
file. The situation for a pseudo-isothermal profilg(¢% + r2)) with
ro = 300 pc is similar, withr; > ry if the objects are further than
about 1-2 kpc from the center of Ursa Minor. Theestimates in-
dicate that tides from Ursa Minor could have dfeet on these ob-
jects even if they are protected by their own dark mattershalbe
survival of globular cluster sized objects in dSphs haséaching
implications for the density profile of the host halo (Kleetaal.
2003;| Goerdt et al. 2006; Strigari et al. 2006; Cowsik et 809,

Lora et al! 2012). The objects we find are more extended and mas

sive than the globular cluster sized objects considereddh sork
in the past. Thus these constraints will have to re-evatdliate
Generically, the estimated high dispersions of these tbjec

and their survival are facts at odds with each other. The dge o

Ursa Minor ¢ 12 Gyr) is much longer than the crossing time for
stars inside Ursa Minor of 150 Myr (assuming a typical veloc-
ity of 10km s%). The crossing times for the stars in the cold and
velocity dfset object are- 50 Myr. These objects have had time
to make multiple orbits around Ursa Minor and it is hard to see
how they could have survived given the short crossing tinmésss

they have been recently captured by Ursa Minor and are now the

process of tidal disrupted (which would account for the iefieve-
locity dispersion). However, this is not a likely scenariioce Ursa
Minor probably fell into the Milky Way early, between 8-11 Gy
(Rocha et al. 2011), and capturing a large object after ghani
likely. It is more reasonable to assume that these objeets iar-
vived for long because they were protected by a dark matterdfia
their own. The reality is probably more complicated: thelscts

may have their own dark matter halos and at the same time are be

ing tidally disrupted. These implications are intimatebdtto the
dark matter halo of Ursa Minor and pinning down the propsrtie
these objects would help to decipher if the dark matter hildrea
Minor has a cusp or a core.

5 CONCLUSION

We have presented a method for finding multiple localized
kinematically-distinct populations (stellar substruefuin line-of-
sight velocity data. In the the nearby dwarf spheroidal)galdrsa
Minor, we have found two secondary populations: “cold” and-*
locity offset (vo)” objects. The estimated velocity dispersions are
Ocold = 4.25+0.75km st ando, = 9.25+1.25km s?, and the es-
timated mean velocities afgoq = —24625+ 1.0 km s andv,, =
—-2580+ 1.5 km s™. They are located at (85*59¢, —0.07°0.33) kpc
(cold object) and£0.24 + 0.09,0.23 + 0.02) kpc (velocity dfset
object) with respect to the center of Ursa Minor. The loaatid

the cold object matches that found earlier by Kleyna et 1082,

but our results reveal that the velocity dispersion of thikl @b-
ject could be large with a mean value close to 4 ki o assess
the significance of our detections, we employed the BayetFac
and information criteridy_ and DIC supplemented with the anal-
ysis of mock data sets with secondary populations, null thgxs
mock data sets and scrambled data sets. The two secondagysobj
have> 985% C.L. in all the model selection tests employed.

If the velocity dispersions are as large as our Bayesiaryanal
sis seems to indicate, then these objects are likely unihgrgiolal
disruption or are embedded in a dark matter halo. The two pos-
sibilities are not exclusive of each other. If these objerts dark
matter dominated, this would be the first detection of a kegelf
a satellite galaxy.

As emphasized by Kleyna et|al. (2003) the presence of local-
ized substructure has important implications for innersitgrpro-
file of the dark matter halo of Ursa Minor. The shape of the inne
profile (cusp or core) has important implications for thegamies
of the dark matter particle with cold dark matter model pcadg
a cuspy inner density profile. If the stellar substructureasted by
its own dark matter halo, then it has further implications dark
matter models since this would likely be the smallest bouaudk d
matter structure discovered.
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