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 northeast  discharge from satellite

 S.

 discharge from north  northeast  calculated using satellite

 data of  outlet glaciers is 3.5  that estimated from

berg production.

glaciers,  from those  at  glacier  basal  is ex-

tensive at the underside of the floating glacier  results suggest that the

 northeast parts of  ice sheet  contr ibut ing

positively to sea-level rise.

 Jet Propulsion Laboratory,  of  91109-
 U S A ;  U n i v e r s i t y  o f

Kansas, 2291 Irving  Road, KS 66045-2969 ,  NASA
 l a b o r a t o r y  f o r  l ’ r e c e s s e s ,

 VA 233337, USA; S.
1)1(-2400 Copenhagen NV,
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 traditional view on the  of  ice sheet is that

 of mass (mostly snow) in  is released to the ocean through

 ablation  melting) and  of  Of all three components of

the mass balance, snow  is

measurements across  ice sheet

 and restricted to

the  from snow pits

Observations of surface  arc

 zone (3).  calving

is the least-well known  production has been  in the west (5),

north and northeast (6) by  of  of the

calving front is measured by  distinctive patterns of crevasses over

thickness is  tile height of  calving Immediately inland of the

 front, ice thickness is not well known (  features  more

and locating the which is where a glacier  from  bed to

 afloat in the ocean, is

Satellite  permits  detailed,  precise mapping

of the  line of  glaciers (9, 10).  line is a

 for  ice discharge  ice  that crosses it

 melts into the ocean.  we  tile  line of  and

n o r t h e a s t  glaciers (  data  the

Remote Sensing Satellites  and 2), and estimated  ice discharge at the

 line.  Greenland includes large  of  ice,

 are  of  slopes, combined  constraining

effect of  sea-ice in the fjords (

We  a  digital elevation  of  Greenland (  to

estimate the thickness of  floating glacier  this  that

the glacier ice is in hydrostatic

method, we  elevation data

 assess the  of the



sound ing  (  and laser altimetry  (  col lected along

single longitudinal profiles crossing the grounding line of the three largest glaciers

 2 ancl 3).  comparison shows that hydrostatic  is first reached

about 1 to 2  downstream from the  grounding line or

 line  ). Near that location, the  thickness is  10% of

 thickness and the

Ice discharge was calculated  profiles located 1 km  the hinge

line and parallel to it as the integral of the  of the I)I~M-derived ice thickness

with the velocity component perpendicular to the grounding  Over the float-

ing section of a glacier, the vertical gradient in velocity is negligible (  so the

 velocities represent vertically integrated velocities.  actual ice ve-

locity vectors were  combining the line of sight  of the velocity

 radar  with flow  information  by the

prominent glacier flow lines in the radar amplitude  (Fig. 2). The precision of

the measured perpendicular component of the ice velocity is  ( 

 together,  analysis implies that the 14 glaciers  49.2

of ice into the ocean (10% uncertainty) (l’able 1).  ice volume is 3.5 times that

discharged at the glacier front (6). The largest difference is  on

 where the  is  times the  front

If the floating  sections  in steady-state  the ice

implies that they are melting (  If they  not in steady-state, they

be thickening instead, because not  ice passing the grounding  reaches the

glacier  data collected in  1996011  however,

 that the  at detectable  ( 1 m)  year.

We therefore assume that the ice tongue is in  ice flux decrease

is  to melting. On  the  steady-state melt rate is
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 peak values  the grounding  ( 

 few observations in north and  suggest  surface melt

rates are less than 3  only possible explanation for  ice flux decrease

is then that the ice tongues  mass through extensive melting  the base of

glaciers.  we assume a surface  of  floating tongues ( 6),

melting must average 10  on  S  on

and  on  results in  1.  values

high compared  the 1 to  average basal  rate of  ice shelves

 ), but comparable to the  melt rates  to 10

on several Antarctic  glaciers

‘l’he  glaciers of north  will  state of balance

if the mass discharged at the grounding’  is compensated by an  of

mass  in the interior regions  with glacier ice. over

 area, the predicted balance  is  kin :{/yr  which

is less than half the  discharge  we  at the  line. If

these estimates are correct, this  north and northeast Greenland glaciers

 an excess  glacier  into the  is  to a

 ice density of  7)  a  sea-level rise.

northern sector of the Greenland Ice Sheet is  gives a positive

 to

 cannot be  easily to the  ice  because

floating glacier sections exist elsewhere,  example  tile  coast (5,

 floating sections

basal melting is often  line,

is most efficient  where the glacier  reaches  waters  – 22).
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 C A P T I O N S

Fig. 1. Location of the  glaciers of north and northeast  ant] the

 frames used in this study.  scene is

Fig. 2.  of the floating  of (A)

and  (C)  from

 fringe,  360°  in phase, represents a  mm

displacement of the glacier  toward  of sight  away

vertical)  to forcing  the ocean  image is modulated  the

 brightness of the scene.  hinge line, or limit of  flexing, is shown in

clots.  the  the  h inge  l i ne

(high  rate) and  slowly  the glacier front.

 pattern  with  from an elastic beam  at

one  on bedrock (hinge  on the ocean  ).  location of

the lSR and  profiles for each glacier is shown in clashes.  (N) is indicated

 an  arrows  flow  parallel to flow  conspicuous in

the  images.  fringes on rock  by imperfections in

the  in areas of high topographic

Fig. 3. Ice thickness  from laser altimetry  ice  (1

 neat  line  indicated by an arrow) of

( A ) ;  (C)  as a

 of the  profile. North (N) is  an

precision of the  elevation,  thickness is, respectively, 10

to 20 m  10 cm  10  of the  is

to within SO m.  for  is not

too close to the ice  to the  2).
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 and  calculated upstream (south)  the grounding

are in  because the glacier ice is  hydrostatic equilibrium.



 1. Glacier width (W), average velocity (V), average
thickness  grounding line ice

 from  and  from  outlet  in
 1.  W, V and  for

are for the main glacier branch only.  in
thickness greater than 10% are  with  last line
indicates total ice discharge.
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