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Abstract:  We explore the extension of James-Stein type estimators in a direction that enables them to

preserve their superiority when the sample size goes to infinity.  Instead of shrinking a base estimator

towards a fixed point, we shrink it towards a data-dependent point.  We provide an analytic expression for

the asymptotic risk and bias of James-Stein type estimators shrunk towards a data-dependent point and

prove that they have smaller asymptotic risk than the base estimator.  Shrinking an estimator toward a data-

dependent point turns out to be equivalent to combining two random variables using the James-Stein rule.

We propose a general combination scheme which includes random combination (the James-Stein

combination) and the usual nonrandom combination as special cases.  As an example, we apply our method

to combine the Least Absolute Deviations estimator and the Least Squares estimator.  Our simulation study

indicates that the resulting combination estimators have desirable finite sample properties when errors are

drawn from symmetric distributions.  Finally, using stock return data we present some empirical evidence

that the combination estimators have the potential to improve out-of-sample prediction in terms of both

mean square error and mean absolute error.
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1. INTRODUCTION

     Shrinkage techniques for the linear regression model have been studied extensively since the seminal

works by Stein (1955) and James and Stein (1960), who proved that the usual estimator for the mean

of a multivariate normal distribution is inadmissible and there exists an improved estimator with smaller

risk when the dimension of the multivariate normal vector is greater than two.

     Even though this discovery was surprising, its usage has been restricted to small sample situations

because the advantage of smaller risk tends to disappear as the sample size grows. Schmoyer and

Arnold (1989) proposed a  James-Stein (JS) type estimator that can achieve risk improvement in large

samples, at a cost of imposing a very restrictive assumption on the prior information. We follow an

approach taken by Green and Strawderman (1991) for fixed sample size n  to shrink a given base

estimator towards a data-dependent point; here, however, unlike Green and Strawderman, our data

dependent point can be either asymptotically biased or correlated with the base estimator, and we

consider what happens as ∞→n . The resulting shrinkage estimator in its general form asymptotically

dominates both the base estimator and the data-dependent point in terms of quadratic loss. The data-

dependent point can be another estimator under some mild restrictions.

     Shrinkage estimators of this type have been studied in depth in a series of papers by Saleh and Sen

(1985a, 1985b, 1986, 1987a, 1987b), Sen and Saleh (1987) and Saleh and Han (1990). These

authors considered shrinking unrestricted estimators towards restricted estimators as a smooth version

of the pre-test estimator and provided a range for the degreee of  shrinkage that ensures risk

dominance. In this paper we investigate shrinkage estimation in a more general setup that permits our

results to be applied to a wide range of estimators used in econometrics and statistics, substantively

extending the validity of the work of Saleh and his collaborators.  Further, we provide explicit

expressions for the optimal shrinkage parameter values and propose consistent estimators for these

values, yielding feasible minimum asymptotic risk estimators.

     To illustrate our results we choose the Least Absolute Deviations estimator as the base estimator and

the Least Squares estimator as the data-dependent point. Our estimator in this case is an optimal mix of

the information contained in the two estimators. This example can be viewed as a multivariate extension
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of Laplace (1818), who combined the sample median and the sample mean by minimizing the

asymptotic variance.

2. ASYMPTOTIC RISK IMPROVEMENT

     Suppose data are generated according to ttt Xy εβ +′= 0   nt ...,,2,1= , where 0β ∈ kR  and tε

are independent and identically distributed with mean 0 and variance 2σ . Let nb  be an estimator for

0β , and let nQ  be a symmetric positive semi-definite kk ×  matrix.  The quadratic loss is ),( 0βnbL  ≡

)()( 00 ββ −′− nnn bQb  and its expectation is the risk, denoted by ).,( 0βnbR   Suppose

)( 02/1 β−nbn  and ),( 0βnbL  converge in distribution to some integrable random variables Z and Ψ

respectively. The asymptotic bias of }{ nb  is then defined by EbAB n ≡})({ (Z) and the asymptotic risk

of  }{ nb  is given by ).()},({ 0 Ψ≡ EbAR n β   We consider a 1×k  vector ng  towards which the base

estimator nb  is shrunk. Classical JS type estimators are obtained by setting ng  to a fixed number. In

this paper, we allow ng  to be data-dependent. We now provide formal conditions for our analysis.

Assumption 1.  nQn 1−
p

→  Q  where Q  is a nonstochastic symmetric positive definite matrix.
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 and A , B , and

Σ  are symmetric positive definite matrices.

Once an analyst restricts attention to, for instance, some particular estimators for the base estimator and

the data-dependent point, Assumption 2 can be replaced by a set of more primitive conditions. This is

especially straightforward when nb  and ng  are −M estimators. We note that the local alternatives used

in Saleh and Sen (1985a, 1985b), Saleh and Sen (1986), Saleh and Sen (1987a, 1987b) provide one

example of the bias term ? in Assumption 2. In this paper we entertain the flexible situation where the

bias can be either zero or non-zero.

     The natural JS type shrinkage is
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nnnnnnnn
JS
c ggbgbcgb +−−−≡ )}(||||/1{),( 2

11
δ                                  (1)

where 1c  is a constant and ).()(|||| 2
nnnnnnnn gbQgbgb −′−≡−   When n  is fixed and ng  is

independent of the base estimator, the estimator in (1) is identical to the one in Green and Strawderman

(1991). Saleh and Sen (1987a) and Saleh and Han (1990) have studied this type of general JS

estimator extensively in a special case in which the base estimator is the Unrestricted Least Squares

Estimator and the data-dependent point is the Restricted Least Squares Estimator. Further details are

given in Saleh and Sen (1985a, 1985b, 1986, 1987b) and Sen and Saleh (1987).

     Before proceeding, we define some variables used in our analysis. Since there exists a matrix P

such that Σ=′PP , we define UPZ 1−≡  so that Z  ∼ ),( 2kIN µ  where ξµ 1−≡ P . Then it can be

shown that ZMZUUQUU 12121 )()( ′=−′−  and ZMZUUQU 2211 )( ′=−′  where PQJJPM 111 ′′≡ ,

),(1 kk IIJ −≡ , PQJJPM 122 ′′≡ , and )0,(2 kIJ ≡ . This transformation allows us to use the results in

Ullah (1990) for the ratio of quadratic forms of normal random variables. We now provide conditions

ensuring that the shrinkage estimator in (1) dominates the base estimator and specify the optimal value

for .1c

Theorem 1. Suppose that Assumptions 1 and 2 hold and 4>k . Then

     (i)    Let *
1c  ∈ argmin ))},,(({ 0

1
βδ nn

JS
c gbAR . Then *

1c ων /=  where

             ∫
∞

− ′−≡
0

1
2/1

0 }
2
1

exp{|| dtNN tt µµω ,

             ∫
∞

−− ′−′+≡
0

12
1

02
2/1

0 }
2
1

exp{})({|| dtNNNMtrN tttt µµµµν ,

              with 10 2tMIN t +≡ , 1
011 2 −≡ tt NtMN  and 1

02
1

02
−−≡ ttt NMNN .

     (ii)  ))},,(({ 0
*
1

βδ nn
JS
c

gbAR = κων +− /2  where )(QAtr≡κ .

     (iii)  ))},,(({ 0
*
1

βδ nn
JS
c

gbAR  ≤  )},({ 0βnbAR  where the equality holds only when ν  = 0.

     (iv)   ))},,(({ 0
1

βδ nn
JS
c gbAR  ≤ )},({ 0βnbAR  if 1c ∈[min{0, ων /2 },max{0, ων /2 }]

              where the equality holds only when ν  = 0.
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     (v)  )()}),(({ 3
*
1*

1
µωµωδ ′+−= McgbAB nn

JS
c

              where PJM 13 ≡  and ∫
∞

− ′−−≡′
0

11
2/1

0 }
2
1

exp{|| dtNNNN ttt µµµω µ .

     We call the shrinkage estimator in (1) with the optimal *
1c  the James-Stein Mix (JSM). It is obvious

from Theorem 1 that in order to have a non-empty range of 1c  for risk dominance, we require three

conditions:  (i) ∞<< ω0 , (ii) ∞<||ν , and (iii)  0≠ν . As will be shown in Lemma 4, 2>k  is a

sufficient condition for (i) and 4>k  is sufficient for (ii). Therefore, when the base estimator is

correlated with the data-dependent point, a sufficient condition for asymptotic risk dominance is 4>k .

In contrast to the finite sample fixed point shrinkage analysis where condition (iii) is automatically

satisfied, it must be imposed in our asymptotic setup, where we call it the Relative Efficiency Condition

(REC). The REC does not allow the choice of an asymptotically efficient estimator as the base estimator

unless either we select a super-efficient estimator as our data-dependent point or the data-dependent

point has an asymptotic bias. When nb  is asymptotically efficient and ng  is asymptotically unbiased and

not super-efficient, one can easily show that 0),( 211 =−UUUCov , which implies that ν  = 0, and there

is no risk improvement.

     To gain additional insight, consider the special case in which the base estimator is not correlated with

the data-dependent point )0( =∆ . Then, it can be shown that ωσν 2)2( −= k . In this special case we

only need the condition 2>k , which is the same as in the finite sample analysis. Note that this also

implies that 2*
1 )2( σ−= kc , which is precisely the same shrinkage factor as in the finite sample analysis.

Hence, the deviation of the ratio ων /  from 2)2( σ−k  depends on the degree of the asymptotic

correlation between the base estimator and the data-dependent point.

     Whereas the JSM is a combination of two random variables using a random weight, conventional

combination estimators use a nonrandom weight. This nonrandom combination has been studied mainly

for independent estimators by, for example, Cohen (1976) and Green and Strawderman (1991).

Laplace (1818) combined the sample median and the sample mean by minimizing asymptotic variance.
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Here we consider combining multi-dimensional correlated estimators by minimizing asymptotic risk. The

usual combination gives

nnnnn
NR
c ggbcgb +−−≡ )}(1{),( 22

δ                                            (2)

where 2c  is a constant. Using the same arguments as in Theorem 1, we obtain the following results.

Theorem 2.  Suppose that Assumptions 1 and 2 hold. Then

     (i)   Let *
2c  ∈ argmin ))},,(({ 0

2
βδ nn

NR
c gbAR . Then *

2c αρ /=  where

            ])[( QBAtr θθα ′++∆′−∆−≡  and ])[( QAtr ∆−≡ρ .

     (ii) ))},,(({ 0
*
2

βδ nn
NR
c

gbAR = καρ +− /2 .

     (iii) ))},,(({ 0
*
2

βδ nn
NR
c

gbAR ≤ )},({ 0βnbAR  where the equality holds only when ρ  = 0.

     (iv)  ))},,(({ 0
2

βδ nn
NR
c gbAR ≤ )},({ 0βnbAR  if 2c ∈[min{0, αρ /2 },max{0, αρ /2 }]

            where the equality holds only when ρ  = 0.

     (v) ))},,(({ 0
*
2

βδ nn
NR
c

gbAR ≤ )},({ 0βngAR  where the equality holds only when

             γ = 0 with γ = ].)[( 221 QUUUE ′−

     (vi) θδ *
2)}),(({ *

2
cgbAB nn

NR
c

= .

     We call the combination in (2) with the optimal *
2c  the Nonrandom Mix (NRM). If both ρ  ≠ 0 and

γ ≠ 0, the analog of the REC in the present context, then the asymptotic risk of the NRM is strictly

smaller than that of both the base estimator and the data-dependent point.

     So far, we have investigated the JSM and the NRM separately. It will be desirable to combine them

together in one estimator so that the random and non-random contributions to the asymptotic risk

reduction are determined simultaneously in an optimal way. Such a general combination scheme is

naturally given by

nnnnnnnn
OW ggbgbgb +−−−−≡ )}(||||/1{),( 2

21 λλδ λ ,                            (3)

where ),( 21 ′= λλλ  is a constant vector. We now require the following additional assumption.
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Assumption 3. )()( 2121 UUQUU −′−  is nondegenerate.

The following theorem provides results on the combination scheme (3).

Theorem 3.  Suppose that Assumptions 1, 2 and 3 hold and 4>k . Then

     (i)   ))},,(({ 0βδ λ nn
OW gbAR  is strictly convex in .λ

     (ii)   Let *λ  ∈ argmin ))},,(({ 0βδ λ nn
OW gbAR . Then

             )()1( 1*
1 νρωαωλ −−= −  and )()1( 1*

2 ραναωλ −−= −  where νρα ,,  and ω  are given

              in Theorems 1 and 2.

     (iii)  ))},,(({ 0
* βδ

λ nn
OW gbAR

              = .)}2()2({)1( 2222222 κρνανωρνααρνωαραω +−++−−−− −

     (iv)  ))},,(({ 0
* βδ

λ nn
OW gbAR  ≤ )},({ 0βnbAR  where the equality holds only when

             ρ  = 0 and ν  = 0.

      (v) )()}),(({ 3
*
2

*
1* µλ

ωµωλθλδ ′+−= MgbAB nn
OW .

We call the estimator in (3) with the optimal weight *λ  the Optimal Weighting Mix (OWM) and

),,,( ′ωνρα  the Combination Control Parameters (CCPs). We now prove that the OWM

asymptotically dominates both the JSM and the NRM.

Corollary 1.  Suppose that Assumptions 1, 2 and 3 hold and 4>k . Then

     (i)  ))},,(({ 0
* βδ

λ nn
OW gbAR  ≤ ))},,(({ 0

*
1

βδ nn
JS
c

gbAR  where the strict inequality holds

            if *
1λ  is not equal to zero.

     (ii) ))},,(({ 0
* βδ

λ nn
OW gbAR  ≤ ))},,(({ 0

*
2

βδ nn
NR
c

gbAR where the strict inequality holds

            if *
2λ  is not equal to zero.
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The optimal weights *
1λ , *

2λ  can be viewed as the contribution of the nonrandom mix and the random

mix respectively. In the special case where ,2IA σ=  ,2IB τ=  ,0=∆  ,IQ =  and ,0=θ  we can show

that *
1λ  = )/( 222 τσσ +  and *

2λ  = 0; i.e. the random mix makes no contribution. On the other hand, if

,2IA σ=  ,2IB τ=  ,0=∆  ,IQ =  and ,0≠θ  then it can be shown that  0*
2 ≠λ if and only if

)](/[)()]22/(1[)2( 2222 τσθθτσ ++′+≠+−− kkPkEk   where P  has a Poisson distribution with

mean )(2/ 22 τσθθ +′ .

     An exhaustive comparison of biases and risks of the shrinkage estimators beyond that presented in

Corollary 1 would be difficult to present in the space allowed because these are functions of many

parameters.  Thus, we consider a special case in which

          
U

U
1

2









 ∼
































kk

kk

II

II
i

N
2

2

,
0

τδ

δσ
θ

,

where θ  is a scalar and i  is the 1×k  unit vector. Further we set 122 == τσ . Then, the risks and

biases are functions of only δθ , , and k . Some graphical comparisons of risks and biases are displayed

in Figure1 for selected values for δθ ,  and k . It emerges that in this special case, there  exists an

ordering in the risks and biases; that is  BASE < JSM < OWM < NRM in terms of the asymptotic

biases, and  OWM < NRM < JSM < BASE in terms of the asymptotic risks.

3. ESTIMATION

     Even though the OWM has some appealing properties, it contains the four unknown combination

control parameters ),,,( ′ωνρα . We now discuss how to estimate the optimal CCPs consistently. For

simplicity, we consider only the case where there is no asymptotic bias.  A similar analysis can be

conducted when ? ? 0; this is especially straightforward when ? is under the user's control, as can often

be arranged.  Suppose that nnn BA ∆̂,ˆ,ˆ , and nQ̂  are consistent estimators for ∆,, BA , and Q

respectively, and consider the following estimators for the combination control parameters:

                                                 ]ˆ)ˆˆˆˆ[(ˆ nnnnnn QBAtr +∆′−∆−≡α                                                   (4)

                                                 ]ˆ)ˆˆ[(ˆ nnnn QAtr ∆′−≡ρ                                                                    (5)



8

                                                 ∫
∞

−≡
0

2/1
0 |ˆ|ˆ dtN ntnω                                                                      (6)

                                                 [ ]dtNMtrN ntnntn ∫
∞

−−≡
0

1
02

2/1
0

ˆˆ|ˆ|ν̂                                                   (7)

where nnt MtIN 11
ˆ2ˆ +≡ , nnnn PJQJPM ˆˆˆˆ

111 ′′≡ , nnnn PJQJPM ˆˆˆˆ
122 ′′≡  and nP̂  is the Cholesky

decomposition matrix of Σ̂ . Before showing the consistency results, we first establish that the control

parameters are finite.

Lemma 4.  Suppose that Assumption 2 holds. Then

     (i)    .|| ∞<α

     (ii)   .|| ∞<ρ

     (iii)  ∞<||ω  if .2>k

     (iv)   ∞<||ν  if  4>k .

We now establish that the estimators defined in (4) – (7) are consistent.

Theorem 4.  Suppose that Assumptions 1, 2 and 3 hold and 4>k . Then

     (i)   αα
p

n →ˆ .

     (ii)  ββ
p

n →ˆ .

     (iii) ωω
p

n →ˆ .

     (iv)  νν
p

n →ˆ .

Once we obtain consistent estimators for the CCPs, a natural way to approximate the OWM is given

by

nnnnnnnnnn
OW ggbgbgb
n

+−−−−≡ )}(||||/ˆˆ1{),( 2
21ˆ λλδ

λ
                           (8)
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where )ˆˆˆ()1ˆˆ(ˆ 1
1 nnnnnn νωρωαλ −−≡ −  and )ˆˆˆ()1ˆˆ(ˆ 1

2 nnnnnn ρναωαλ −−≡ − . We call the estimator in

(8) the Optimal Weighting Scheme (OWS) Estimator. An interesting question is whether we can still

achieve optimality (minimum asymptotic risk) with this estimator. The following corollary answers this

question.

Corollary 2.  Suppose that Assumptions 1, 2 and 3 hold and 4>k . Then

     (i)     *
11

ˆ λλ
p

n →  and *
22

ˆ λλ
p

n → .

     (ii)    )),(( 0
ˆ

2/1 βδ
λ

−nn
OW gbn
n

 
p

→  ).,( 21* UUOW
λ

δ

     (iii)  ))},,(({ 0
ˆ βδ
λ nn
OW gbAR

n
 = ))},,(({ 0

* βδ
λ nn
OW gbAR .

The OWS estimator has the same limiting distribution as the OWM, and therefore achieves the

asymptotic minimum bound. The same analysis as for the OWS estimator applies to the JSM and the

NRM. We call the resulting estimators the James-Stein Combination (JSC) Estimator and the

Nonrandom Combination (NRC) Estimator respectively.

4. APPLICATION

     In this section we discuss how our method can be utilized in combining two possibly correlated

estimators. We choose the Least Absolute Deviations (LAD) estimator as the base estimator and the

Ordinary Least Squares (OLS) estimator as the data-dependent point. The resulting estimator is an

optimal combination of the two estimators. There has been some interesting research on this issue. As

previously mentioned, Laplace (1818) combined the sample median and the sample mean. Taylor

(1974) suggested a two step procedure; first apply the LAD estimator to identify outliers to be trimmed

and then apply the OLS estimator. Arthanari and Dodge (1981)  combined the objective functions of

the LAD estimator and the LS estimator. On the other hand, the use of the JS technique for combining

the Unrestricted LAD and Restricted LAD estimators was extensively investigated by Saleh and Sen

(1987b).  To the best of our knowledge combining the LAD and OLS regression estimators has not

been studied previously.
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     As shown in Bates and White (1993), both the LAD estimator and the OLS estimator are members

of a RCASOI (Regular Consistent Asymptotically Second Order Indexed) class under some regularity

conditions. For any member nb  in a RCASOI class, there is a score representation )( 0
ns  and Hessian

representation )( 0
nH  such that 0β−nb  = ).( 2/1010 −−

+ nosH pnn   In particular, we have the following

representation for the two estimators; =LS
ns 2 X t t

t

n

ε
=

∑
1

, =LS
nH 2∑

=

′
n

t
tt XXE

1

)( ,

=LAD
ns ∑

=
≤ −−

n

t
t t

X
1

]0[ )2/11(2 ε  and =LAD
nH ∑

=

′
n

t
tt XXEf

1

)()0(2  where )0(f  is the value of the

density of tε  at zero. Given these representations it is not difficult to show the required joint asymptotic

normality (Assumption 2), which follows from

=












−

−

)(

)(
0

0
2/1

β

β
LS
n
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b
n ).1(

0

0 2/1

1

1

1

pLS
n

LAD
n

LS
nkk

kk
LAD
n o

s

s
n

Hn

Hn
+





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
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−
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×
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−

Together with some moment conditions on tX  and tε , the identical and independent distribution

assumption is sufficient (though not necessary) to deliver the desired result. The asymptotic covariance

between the two estimators is given by 1
21

11 )()()()}0(4{ −−− ′′′=∆ tttttt XXESSEXXEf where

≡tS1 )2/1]0[1(2 −≤− ttX ε  and ≡tS2  .2 ttX ε   We estimate the asymptotic covariance by the plug-

in principle: n∆̂ ≡  1)}0(ˆ4{ −
nf

1

1

1 ][ −

=

− ∑ ′
n

t
tt XXn ∑

=

− ′
n

t
tt SSn

1
21

1 ˆˆ 1

1

1 ][ −

=

− ∑ ′
n

t
tt XXn  where )0(n̂f  is an

estimate for the density at zero and tt SS 21
ˆ,ˆ are estimates for tt SS 21 , using nttt bXy ′−≡ε̂ . We study the

behavior of various combinations of LAD and OLS in the following sections.

5. SIMULATION

     We conduct Monte Carlo experiments designed to investigate the finite sample properties of our JS

type estimators. For purposes of comparison, we also include certain interesting stable estimators (the

Ridge estimator, the Garrotte estimator and the Non-Negative Garrotte estimator). Stable estimators

have been shown to deliver good prediction performance (Breiman 1995, 1996). The definitions for the
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stable estimators are given in Table 1. In the simulation we combine the LAD and the OLS estimators

described in Section 4 to obtain examples of the NRC, JSC and OWS estimators.

      Table 1.  Definition of Estimators

Estimator             Definition

Ridge )( Rb Rb  ∈ argmin 2|||| Xby −    s.t.  sbb <′

Garrotte )( Gb Gb  ∈ argmin 2|||| γZy −    s.t. LS
jijij bXZ =  and s<′γγ

Non-Negative Garrotte )( Nb Nb  ∈ argmin 2|||| γZy −    s.t. LS
jijij bXZ =  and

                                                  0, ≥<′ γιγ s

      NOTE: Values for s  are determined by k -fold cross-validation.

     The data for the simulation are generated as ttt Xy εβ +′= 0  where  ,...,,2,1 nt =  0β ∈ kR ,

500=n  and .5=k   We set 0β  = .)1,1,1,1,1( ′   The number of replications is 1,000. We obtain the

LAD estimator using the efficient 1L  algorithm developed by Barrodale and Roberts (1974). The

simulation was carried out on a 266MHz PC using MATLAB. The random number generator used in

the simulation is that from the MATLAB Statistics Toolbox.

     We choose four symmetric distributions and two non-symmetric distribution for tε . Symmetric

distributions are the Uniform distribution within [-4,4], the standard normal distribution, the Student t-

distribution with 3 degrees of freedom, and the Cauchy distribution with interquartile range 1. These

represent moderate, heavy and very heavy tailed distributions. For the non-symmetric distributions, we

choose the shifted Chi-square distribution centered at zero with 12 degrees of freedom and the shifted

Rayleigh distribution centered at zero with parameter 4. The first entry of tX  is one, and the remaining

explanatory  variables tX  are generated using the joint normal distribution ),0( ΣN , where the

covariances are set to 0.5 and the variances are one. We estimate the required density )0(n̂f  using a

kernel method with Gaussian kernel. For each replication we compute the quadratic loss value for each

estimator. We approximate the risk by averaging the loss values over all replications. The results are

collected in Table 2.
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     Table 2.  Finite Sample Risk Comparison over Different Error Distributions )500( =n

 Uniform    Normal    Student-t              Cauchy          2χ   Rayleigh

OLS 26.306 5.006 14.789 463971952.194 121.770 35.089

LAD 77.029 7.791 9.345 12.789 398.972 99.337

NRC 20.595 5.035 8.908 12.531 126.610 35.982

JSC 72.765 6.306 9.104 12.707 396.751 96.982

OWS 20.617 5.035 8.910 12.525 126.925 35.830

RIDGE 25.504 4.974 14.471 433311022.768 115.666 33.612

GAR 27.241 5.103 15.216 463971921.290 126.777 36.226

NNGAR 26.311 5.006 14.789 463970894.151 123.116 35.090

     It is well known that the performance of the median is worse than the sample mean when the error is

distributed uniformly. As expected, the risk of the LAD estimator (77.029) is greater than the risk of the

OLS estimator (26.306) in this case. All combination methods give negative weight to the LAD

estimator. As a result, both the OWS estimator and the NRC estimator dominate the OLS estimator.

When the regression error is normal, the OLS estimator is asymptotically efficient. Not surprisingly, the

OLS estimator displays the best performance except for the Ridge estimator. However, the

deterioration of the OWS estimator and the NRC estimator relative to the OLS estimator is not large (-

0.57 %). As expected for the Student-t distribution, the risk of the LAD estimator (9.345) is smaller

than the risk of the OLS estimator (14.789). All combination estimators have smaller risk than both the

LAD estimator and the OLS estimator. The improvement of the combination estimators over the LAD

estimator and the OLS estimator is about 2 - 5 % and 38 - 40 % respectively. The Cauchy distribution

represents a very heavy tailed distribution. The risk performance of the OLS estimator is much worse

than that of the LAD estimator (463971952 and 12.789 respectively). Nevertheless, combining the

LAD estimator with the OLS estimator makes an improvement over the LAD estimator. The

improvements over the LAD estimator and the OLS estimator are about 0.6 - 2 % and 100 %

respectively.

     The LAD estimator is out-performed by the OLS estimator in terms of risk (398.972 and 121.770)

for the Chi-square distribution. For the OWS estimator and the NRC estimator, the weight on the LAD
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estimator is very small (about 0.080 - 0.096). On the other hand, the JSC estimator gives a large

positive weight to the LAD estimator (0.99), which clearly shows the inferiority of the JSC estimator

when the regression error is not symmetric. The failure can be explained by the bias in the constant

coefficient, which makes the distance between the two estimators very large (384.778). This in turn

makes the JS weight too large. All combination estimators are better than the LAD estimator, but worse

than the OLS estimator. When the error has the Rayleigh distribution, the result is basically the same as

for the Chi-square distribution. However, the skewness is smaller than for the Chi-square distribution,

and as a result, the bias in the constant term is much smaller. The OWS estimator and the NRC

estimator now give a small negative weight to the LAD estimator.

     The performance of the stable estimators are shown in the same table. The Ridge estimator gives

smaller risk than the OLS estimator over all error distributions considered in the simulation including the

normal distribution. This is a well-known standard result based on the trade-off between variance and

bias. On the other hand, the other stable estimators (the Garrotte estimator and the Non-Negative

Garrotte estimator) are not better than the OLS estimator, which might at first seem surprising.

However, Breiman (1995, 1996) showed that the Garrotte estimator and the Non-Negative Garrotte

estimator give smaller prediction mean squared error than the OLS estimator when irrelevant variables

appear in the model. Here none of our variables are irrelevant. Despite this, the additional risk

associated with the Garrotte and Non-Negative Garrotte is small.

     Overall, we see that our combination estimators, and especially the NRC and OWS, perform

consistently well across our various examples.  Each of the other estimators behaves much less reliably.

6. EMPIRICAL STUDY: OUT-OF-SAMPLE PREDICTION

     In this section we investigate the out-of-sample predictive ability of the combination estimators using

actual data. Let y  be a 1×T  vector of out-of-sample actual values and let  e  be a 1×T  vector of the

prediction errors where T is the number of out-of-sample observations. In order to evaluate forecasting

performance, we use the following forecasting error measurements: prediction mean squared error

)(ePMSE Tee /′≡  and prediction mean absolute error )(ePMAE ∑
=

−≡
T

t
teT

1

1 || . We also use 2R

type prediction measures: )(/)(1 22 ySePMSER −≡  and )(/)(12 yMAEePMAERA −≡  where



14

)(2 yS  is the sample variance of y  and )( yMAE  is the mean absolute error of .y   The data set

contains daily stock market returns for ADC TeleCom Co. and HomeStake Co., stocks that have been

randomly chosen from the DATASTREAM database. The sample period covers January 1, 1990

through March 31, 1996 which gives us 1630 observations. We model daily excess returns, computed

by subtracting the 3-month US T-bill rate from daily returns. Table 3 provides summary statistics.

    Table 3.  Summary Statistics for Daily Excess Stock Returns (in percent)

     Mean  Median    Max        Min   Std. Dev.    Skew.   Excess

  Kurtosis

ADC TelCom 0.15 -0.01 11.92 -22.13 2.94 -0.17 3.93

HomeStake 0.01 -0.02 11.25 -12.45 2.52 0.08 1.96

Our forecasting model for excess returns is

α=tr  + ∑
=

−

1

1

k

i
iti rβ  + ∑

=
−

2

1

k

i
itmirγ + tε

where mtr  is the daily excess returns on the S&P500 index and .121 == kk  The simple efficient market

hypothesis requires that 0=== γβα , so that the best predictor is zero. We call this the Random Walk

predictor and we include this in our comparison study. We use a fixed rolling window method to

estimate the coefficients, and set the size of estimation window to be 520, which is about a two year

sample period. We repeat the entire exercise identically  for each of the 8 estimators and for each of the

target variables.

     The outcomes are summarized in Figures 2 and 3. We can represent an estimator as a point in

PMAE-PMSE space. In these diagrams, we prefer estimators located closer to the origin because the

PMAE and the PMSE can be treated as “bad” commodities. We represent combination and stable

estimators by their first initial in PMAE-PMSE space except that the NRC estimator is denoted by “c”

and the Random Walk predictor denoted by “w”. For example, "r" stands for the Ridge estimator, “g”

for the Garrotte estimator, and so on. In the case of ADC TeleCom (Figure 2), all combination

estimators outperform both the LAD and the OLS estimators in terms of PMSE, but the improvement

over the LAD estimator is very small. The performances of the NRC and OWS are almost identical.
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They also achieve better performance than the stable estimators. Interestingly, all our estimators beat the

Random Walk predictor in terms of PMSE, but the Random Walk predictor beats all estimators in

terms of PMAE, which indicates that there seems to exist some forecastibility. Nevertheless, if the

analyst’s loss function is the sum of absolute deviations, then the random walk predictor is preferred.

     The out-of-sample prediction results for HomeStake stock are given in Figure 3. The Non-negative

Garrotte, Garrotte, Ridge and JSC estimators outperform all other estimators in terms of both PMSE

and PMAE. The behavior of the Random Walk predictor is similar to the results seen for ADC

TeleCom stock. The combinations estimators generally achieve better performance than the LAD and

OLS estimators but the magnitude of improvement is very small.

     Prediction performance measured by prediction 2R  is summarized in Table 4. The prediction 2R  is

not necessarily positive because out-of-sample predictions are not guaranteed to be orthogonal to out-

of-sample residuals. The prediction 2R  compares the performance of a predictor to the imaginary

situation where we know in advance the sample mean of the target variable over the entire out-of-

sample period and use it as our predictor. Therefore,  a positive prediction 2R  indicates that the

predictor is better in terms of PMSE than the sample mean assumed known in advance. According to

the summary statistics in Table 4, the return on ADC TeleCom Co. is more difficult to predict than that

for HomeStake Co.. Nevertheless, all combination estimators and the LAD estimator give positive

prediction 2R ’s.



16

     Table 4.  Out-of-Sample Prediction Performance

           ADC TeleCom Co.

              2R              2
AR

              HomeStake Co.

               2R               2
AR

OLS -0.001410 0.000879 0.005622 -0.00955

LAD 0.001613 0.003402 0.004698 -0.00674

NRC 0.001871 0.002967 0.006569 -0.00878

JSC 0.001782 0.003366 0.006987 -0.00663

OWS 0.001858 0.002964 0.006606 -0.00875

RIDGE -0.000540 0.003894 0.006282 -0.00561

GAR -0.001280 0.002069 0.007043 -0.00616

NNGAR -0.000320 0.002136 0.010452 -0.00405

Random Walk -0.001999 0.004883 -0.000147 -0.00149

7. CONCLUSION

     We have proposed an extension of JS type estimators in a direction that preserves their risk

improvement when the sample size goes to infinity. This extension supports use of JS type estimators

when one has a moderate or large number of observations. This is important because large data sets are

becoming more and more widely available. We permit the data-dependent point towards which we

shrink our base estimator to be asymptotically biased or asymptotically correlated with the base

estimator, in contrast to previous work.  Many interesting estimators are valid candidates for use as a

data-dependent point.  Our results thus suggest that a wide range of  estimation and forecasting

improvements over standard techniques are readily available using our approach.
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APPENDIX

Proof of Theorem 1.  One can also show using Assumption 2 that )),(( 02/1
1

βδ −nn
JS

c gbn
d

→

11 ||/1{ Uc−  221
2

2 )}(|| UUUU +−−  ≡  ).,( 211
UUJS

cδ   This implies that )),,(( 0
1

βδ nn
JS
c gbL  

d
→

2
21 ||0),(||

1
−UUJS

cδ . Therefore, ))},,(({ 0
1

βδ nn
JS
c gbAR = κνω +− 1

2
1 2 cc . The first and second

derivatives of the asymptotic risk with respect to 1c  are )(2 1 νω −c  and ω2 . Since ω  > 0,

))},,(({ 0
1

βδ nn
JS
c gbAR  is strictly convex in .1c   By setting the first derivative to zero and solving for

,1c  we have *
1c ./ων=   Since ZMZ 1/1 ′=ω  and ZMZZMZ 12 / ′′=ν , a straightforward application

of Lemma 2 in Ullah (1990) delivers the expressions for ω  and ν  in (i). Plugging *
1c  into the

asymptotic risk, we have the minimum asymptotic risk ))},,(({ 0
*
1

βδ nn
JS
c

gbAR = κων +− /2 . Since

≡κ )},({ 0βnbAR , ))},,(({ 0
*
1

βδ nn
JS
c

gbAR  ≤  )},({ 0βnbAR , where the equality holds only when ν

= 0. The result in (iv) is obtained from the strict convexity of the asymptotic risk. The last result follows

from an application of Lemma 2 in Ullah (1990).  QED.

Proof of Theorem 3.  It follows from Lemma 3 that ))},,(({ 0βδ λ nn
OW gbAR  = −2

1αλ 12ρλ +

+212 λλ −2
2ωλ κνλ +22 . The Hessian is given by 








ω

α
20
02

, which is positive definite. Hence,

))},,(({ 0βδ λ nn
OW gbAR  is strictly convex in .λ   By setting the first derivative to zero and solving for

,λ  we have )()1( 1*
1 νρωαωλ −−= −  and )()1( 1*

2 ραναωλ −−= − . Plugging *λ  into the asymptotic

risk, we have the minimum asymptotic risk ))},,(({ 0
* βδ

λ nn
OW gbAR  =

.)}2()2({)1( 2222222 κρνανωρνααρνωαραω +−++−−−− −   For the last result, we define

≡)(ωh )}2()2({ 222222 ρνανωρνααρνωαρ −++−−−− . We want to show )(ωh  ≥ 0 for all ω ,

which delivers the desired result. (Case 1) 0=ρ  and .0=ν   Then )(ωh  = 0. (Case 2) 0=ρ  and

.0≠ν   Then )(ωh  = 0)1(2 >−αωαν  because ,0>α  0≠ν  and .1>αω   (Case 3) 0≠ρ  and

.0=ν   Then )(ωh  =  0)1(2 >−αωωρ  because 0,0 ≠> ρω  and .1>αω   (Case 4) 0≠ρ  and

.0≠ν    Define }.0)(|{* =∈ ωωω h   Suppose that .0=− ραν  Then
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=*ω 222( ρνα −− 22/)2 αραρν− . It can be shown that *ωω > , because 1>αω  and .0≠ρ

This implies that )(ωh  ≥ 0 for all ω . Now consider the case that .0≠− ραν   Define ≡−
*ω

2/)2( ραρν −  and ≡+
*ω  α/1 . It follows that **

+− < ωω  and ωω <+
*  because 1>αω .  This implies

that )(ωh  ≥ 0 for all ω . Again, the last result follows from an application of Lemma 2 in Ullah (1990).

QED.

Proof of Corollary 1. Because of strict convexity, ))},,(({ 0
* βδ

λ nn
OW gbAR  ≤

))},,(({ 0βδ λ nn
OW gbAR  for any λ . Choose .),0( *

2 ′= λλ   Then, ))},,(({ 0βδ λ nn
OW gbAR  =

κων +− /2 , which is ))},,(({ 0
*
1

βδ nn
JS
c

gbAR . Since *λ  is the unique and global solution, the strict

inequality holds if *
1λ  is not equal to zero. For the second claim, choose .)0,( *

1 ′= λλ  Then,

))},,(({ 0βδ λ nn
OW gbAR  = καρ +− /2 , which is equal to ))},,(({ 0

*
2

βδ nn
NR
c

gbAR . The same

argument applies to the strict inequality. QED.

Proof of Lemma 4. It is trivial to show that ∞<||α  and ∞<|| ρ because these are obtained by

adding variances and covariances of normal random variables. In order to show that ∞<||ω , we note

that 
ZMZ

ZZ
ZZ 1

1
′

′
′

=ω . It can be shown that 
mM ZMZ

ZZ
λλ
11

1

≤
′

′
≤  where Mλ  and mλ  are the largest

and smallest eigenvalues of 1M . This implies that 





′
≤≤





′ ZZ
E

ZZ
E

mM

1111
λ

ω
λ

. If ,2>k  then

1
2

1
2λ

ω
λM mk k( ) ( )−

≤ ≤
−

. For the last claim, note that ν2 ≤ [ ] 







′

′
2

1

2
2 )(

1
)(

ZMZ
EZMZE  by the

Cauchy-Schwarz inequality. Since Z  is a normal random variable, [ ]2
2 )( ZMZE ′  < ∞. Hence, we

have 







′

≤







′

≤







′ 222

1
22 )(

11
)(

1
)(

11
ZZ

E
ZMZ

E
ZZ

E
mM λλ

. If ,4>k  then

)4)(2(

1
)(

1

)4)(2(

1
22

1
2 −−

≤







′

≤
−− kkZMZ

E
kk mM λλ

 by Theorem A.2.20 in Judge and Bock

(1978). Therefore, |ν| < ∞.  QED.
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Proof of Theorem 4. Since trace is a continuous function, ]ˆ)ˆˆˆˆ[(ˆ nnnnnn QBAtr +∆′−∆−≡α  is

consistent. By the same reasoning, ]ˆ)ˆˆ[(ˆ nnnn QAtr ∆′−≡ρ  is consistent. The argument for nω̂ and nν̂ is

more involved. We define .)2det(),( 2/1
11

−+≡ tMItMg   We want to show that there exists a

dominating function )(td  such that (i) | ),( 1 tMg | ≤ )(td  for all 22Σ  and Q  in a compact parameter

space and (ii) d t dt( )
0

∞

∫ < ∞. Using the relationship between determinant and eigenvalues of a matrix, we

can express )( ⋅g  in terms of eigenvalues; ),( 1 tMg  = λi
i

k

=
∏






1

1 2/

where iλ  is an eigenvalue of the

inverse matrix of .2 1tMI +   Using some linear algebra, we can obtain an upper bound given by

2
1 ),( tMg  ≤ 

1
2 1| |κ t

k

+








where κ  is the minimum (in absolute value) eigenvalue of 1M   Hence the

natural candidate for the dominating function is d t
t

k

( )
| |

.
/

=
+









1
2 1

2

κ
  As long as 2>k , the

dominating function )(td  will satisfy the second condition, d t dt( )
0

∞

∫ < ∞. Hence we have the desired

result. The proof for the consistency of nν̂ is more complicated, but the key step is again to find a

dominating function. Since the argument is similar, we just give the dominating

function:
1

1||2
1

||2)(
+









+
=

k

t
ktD

κ
ξ where κ  is the minimum eigenvalue (in absolute value) of 1M

and ξ  is the maximum (in absolute value) eigenvalue of .2
2M   QED.

Proof of Corollary 2. Both n1̂λ  and n2λ̂ are continuous function of the consistent estimators. Since the

limit of continuous function of consistent estimators is the value of function evaluated at the limit  of the

consistent estimators, we have the desired results: *
11

ˆ λλ
p

n →  and *
22

ˆ λλ
p

n → . The consistency of the
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estimated weights together with the Slutsky Theorem delivers )),(( 0
ˆ

2/1 βδ
λ

−nn
OW gbn
n

 
d

→

),( 21* UUOW
λ

δ  which in turn implies that ))},,(({ 0
ˆ βδ
λ nn
OW gbAR

n
 = ))},,(({ 0

* βδ
λ nn
OW gbAR .  QED.
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Figure1.  Bias and Risk Comparison

                      (k  = 5 and δ  = 0)
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Figure 2.  Out-of-Sample Prediction Performance for ADC TeleCom.

Figure 3.  Out-of-Sample Prediction Performance for HomeStake.
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