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the Least Absolute Deviations Estimator
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May 2000

Abstract: We explore the extension of James-Stein type estimators in a direction that enables them to
preserve their superiority when the sample size goes to infinity. Instead of shrinking a base estimator
towards a fixed point, we shrink it towards a data-dependent point. We provide an analytic expression for
the asymptotic risk and bias of James-Stein type estimators shrunk towards a data-dependent point and
prove that they have smaller asymptotic risk than the base estimator. Shrinking an estimator toward a data-
dependent point turns out to be equivalent to combining two random variables using the James-Stein rule.
We propose a general combination scheme which includes random combination (the James-Stein
combination) and the usual nonrandom combination as special cases. Asan example, we apply our method
to combine the Least Absolute Deviations estimator and the L east Squares estimator. Our simulation study
indicates that the resulting combination estimators have desirable finite sample properties when errors are
drawn from symmetric distributions. Finally, using stock return data we present some empirical evidence
that the combination estimators have the potential to improve out-of-sample prediction in terms of both

mean square error and mean absolute error.
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1. INTRODUCTION

Shrinkage techniques for the linear regresson mode have been studied extensvely since the semind
works by Stein (1955) and James and Stein (1960), who proved that the usud estimator for the mean
of a multivariate norma distribution is inadmissible and there exists an improved estimator with smaller
risk when the dimension of the multivariate norma vector is gregter than two.

Even though this discovery was surprising, its usage has been redricted to smal sample Stuations
because the advantage of smdler risk tends to disgppear as the sample size grows. Schmoyer and
Arnold (1989) proposed a James-Stein (JS) type estimator that can achieve risk improvement in large
samples, a a cost of imposng a very redrictive assumption on the prior information. We follow an
approach taken by Green and Strawderman (1991) for fixed sample sze n to shrink a given base
estimator towards a data-dependent point; here, however, unlike Green and Strawderman, our data
dependent point can be either asymptoticaly biased or correlated with the base estimator, and we
congder what happensas Nn® ¥ . The resulting shrinkage esimator in its generd form asymptoticaly
dominates both the base estimator and the data-dependent point in terms of quadratic loss. The data
dependent point can be another estimator under some mild restrictions.

Shrinkage estimators of this type have been studied in depth in a series of papers by Saleh and Sen
(19853, 1985b, 1986, 19873, 1987b), Sen and Saleh (1987) and Saleh and Han (1990). These
authors consdered shrinking unrestricted estimators towards restricted estimators as a smooth version
of the pretest estimator and provided a range for the degreee of dhrinkage that ensures risk
dominance. In this paper we investigate shrinkage estimation in a more generd setup that permits our
results to be gpplied to a wide range of estimators used in econometrics and datistics, substantively
extending the vdidity of the work of Sdeh and his collaborators.  Further, we provide explicit
expressons for the optimal shrinkage parameter values and propose consstent estimators for these
vaues, yidding feasble minimum asymptatic risk estimators.

Toillugtrate our results we choose the Least Absolute Deviations estimator as the base estimator and
the Least Squares estimator as the data-dependent point. Our estimator in this caseis an optima mix of

the information contained in the two estimators. This example can be viewed as a multivariate extenson



of Laplace (1818), who combined the sample median and the sample mean by minimizing the

asymptotic variance.

2. ASYMPTOTIC RISK IMPROVEMENT

Suppose data are generated accordingto 'y, = X®°%+e, t=12,..,n, where b°T R* and e,
are independent and identicaly distributed with mean 0 and variance s *. Let b, be an estimator for
b°,andlet Q, beasymmetric positive semi-definite k* k matrix. The quadratic lossis L(b,,b°) v
(b, - b))V, (b, - b% and its expectation is the risk, denoted by R(b,,b°%).  Suppose
nY?(b, - b°) and L(b,,b°) converge in digtribution to some integrable random variables Z and Y
respectively. The asymptotic biasof {b,} isthen defined by AB({b,})° E (2) and the asymptotic risk
of {b.} isgivenby AR{b,},b%)° E(Y). Weconsider a k” 1 vector g, towards which the base
estimator b, is shrunk. Classca JS type estimators are obtained by setting g,, to a fixed number. In

this paper, wedlow g, to be data-dependent. We now provide formal conditions for our analyss.

p
Assumption 1. n"'Q, ® Q where Q isanonstochastic symmetric positive definite matrix.

én'?(b, - b°)u d ) €1 éA DU
Assumption 2. a ®, )g® §U13~N(X,S) where X ° a 3 SO 4 Eand A, B,ad
&¥%(g, - b%){ 2 U oy &DCB

S are symmetric pogtive definite matrices.

Once an analyst redtricts atention to, for instance, some particular estimators for the base estimator and
the data-dependent point, Assumption 2 can be replaced by a set of more primitive conditions. Thisis
especidly sraghtforward when b, and g, are M - estimators. We note that the local alternatives used
in Saleh and Sen (1985a, 1985h), Saleh and Sen (1986), Saleh and Sen (1987a, 1987b) provide one
example of the bias term ? in Assumption 2. In this paper we entertain the flexible stuation where the
bias can be either zero or non-zero.

The natura JS type shrinkageis



de (b, 9,)° {1- ¢ /lIb, - g, IR} (b, - 9,)+ 9, @)
where ¢, is a congtant and ||b, - g, |° (b, - 9,)®,.(b,- g,). When n is fixed and g, is

independent of the base estimator, the estimator in (1) isidentical to the one in Green and Strawderman
(1991). Sdeh and Sen (1987a) and Sdeh and Han (1990) have studied this type of generd JS
edimator extensvely in a specid case in which the base estimator is the Unrestricted Least Squares
Estimator and the data-dependent point is the Restricted Least Squares Estimator. Further details are
given in Saleh and Sen (1985a, 1985b, 1986, 1987b) and Sen and Saleh (1987).

Before proceeding, we define some variables used in our andyss. Since there exids a matrix P

such that PP(=S, we define Z° P"'U sotha Z ~ N(ml, ) where m° P"’x . Then it can be
shown that (U, - U,)Q(U,-U,)=ZM,Z and UQU, - U,)=2ZM,Z where M, ° PUQJ,P,
J.° (I,- 1), M,° PQsQI,P,and J,° (I,,0). Thistrandformetion alows usto use the resultsin

Ullah (1990) for the ratio of quadratic forms of norma random variables. We now provide conditions
ensuring that the shrinkage estimator in (1) dominates the base estimator and specify the optima value

for c,.

Theorem 1. Suppose that Assumptions 1 and 2 holdand k > 4. Then
() Letc; T agmin AR{d;"(b,,9,)},b°). Then c; =n/w where

¥
\ . 1

w O Ny, [V exp{- Eth]In}dt,
0

¥
< . ; 1
n° d NOt | 1/2{tr(M2N0tl)+ m‘NZtrr}exp{- Enﬂ’\lnn}dt ’
0
with N, © | +2tM_, N, © 2tM,N;' and N, © N;'M, N .
(i) AR({dCJIS(bn,gn)},bO): -n?/w+k wherek °tr(QA).
(i) AR({d® (b, 9,)},b°) £ AR({b},b°) wheretheequaity holdsonly whenn =0.

(iv) AR{d; (b, 9,)}.b°) £ AR{b,},b°) if c,T [min{0,2n /w} max{0,2n /w}]

where the equdity holdsonly when n = 0.



(v) AB{d> (b, g,)})=- ¢;M;(nw +w)

¥
\ . 1

where M, ° J,P and w¢°- (YN, [** exp{-ErannnN}Nnrrdt.
0

We cdl the shrinkage esimator in (1) with the optima ¢, the James-Stein Mix (JSM). It is obvious
from Theorem 1 that in order to have a non-empty range of ¢, for risk dominance, we require three
conditions. (i) O<w <¥ ,(ii) |[n |<¥ ,and (iii) n 1 0. Aswill be shownin Lemma4, k>2 isa
aufficient condition for (i) and k >4 is sufficient for (ii). Therefore, when the base edtimator is
correlated with the data-dependent point, a sufficient condition for asymptotic risk dominanceis k > 4.
In contrast to the finite sample fixed point shrinkage analyss where condition (iii) is autométicaly
satisfied, it must be imposed in our asymptotic setup, where we cdl it the Relative Efficiency Condition
(REC). The REC does not alow the choice of an asymptotically efficient estimator as the base estimator
unless either we select a super-efficient estimator as our data-dependent point or the data-dependent
point has an asymptotic bias. When b, isasymptoticaly efficient and g,, is asymptoticaly unbiased and
not super-efficient, one can easly show that Cov(U,,U, - U,) =0, whichimpliesthet n =0, and there
IS no risk improvement.

To gain additiond ingght, consider the specia case in which the base estimator is not correlated with
the data-dependent point (D=0). Then, it can be shown that n = (k- 2)s ®w . In this specia case we
only need the condition k > 2, which is the same as in the finite sample anadyss. Note that this dso
impliesthat ¢, = (k - 2)s ?, which is precisaly the same shrinkage factor asin the finite sample andysis.
Hence, the deviation of the ratio n /w from (k- 2)s ? depends on the degree of the asymptotic
correlation between the base estimator and the data-dependent point.

Whereas the JSM is a combination of two random variables usng a random weight, conventiona
combination estimators use a nonrandom weight. This nonrandom combination has been studied mainly
for independent estimators by, for example, Cohen (1976) and Green and Strawderman (1991).

Laplace (1818) combined the sample median and the sample mean by minimizing asymptatic variance.



Here we consder combining multi-dimensiond corrdated estimators by minimizing asymptotic risk. The
usud combination gives

dozNR(bn’ gn) ° {1- CZ} (bn - gn) +gn (2)

where ¢, isacongant. Usng the same arguments as in Theorem 1, we obtain the following results.

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then
() Letc, T agmin AR{d."(h,,9,)}.b") .Thenc, =r /a where
a°tr[(A- D- Di+B+qq9)Q] and r ° tr[(A- D)Q].
(ii) AR({dC'zR(bn,gn)},bO) =-r?la+k.

(iii) AR({dCE‘R(bn,gn)}, b° £ AR({b },b°) wherethe equdity holdsonly when r =0.

(iv) AR{d. (b,,9,)}.b°%) £ AR{h,},b°) if c,T [min{0,2r /a } max{0,2r /a }]
where the equdity holdsonly when r = 0.
(v) AR({dCE‘R(bn,gn)},bO) £ AR{g,},b°) wheretheequdity holds only when

g=0withg= E[(U, - U,)QU,].

(vi) AB({d " (b,.g,)})=cq .

We call the combination in (2) with the optima ¢, the Nonrandom Mix (NRM). If both r 1 0 and
g! O, the andog of the REC in the present context, then the asymptotic risk of the NRM is grictly
smaller than that of both the base estimator and the data-dependent point.

So far, we have investigated the JSM and the NRM separately. It will be desirable to combine them
together in one estimator so that the random and non-random contributions to the asymptotic risk
reduction are determined smultaneoudy in an optima way. Such a generd combination scheme is
naturdly given by

d"(b,.9,) ° {1-1,- 1 ,/1b, - g, I} (b, - G,)+9,. &)

where | =(l ,,1 ,)¢isacongtant vector. We now require the following additional assumption.



Assumption 3. (U, - U,)Q(U, - U,) isnondegenerate.
The following theorem provides results on the combination scheme (3).

Theorem 3. Suppose that Assumptions 1, 2 and 3 hold and k > 4. Then

(i) AR{d?"Y(b,,g,)}, b°) isdrictly convexin | .

(i) Let!" 1 agminAR{d®"(b.,g.)},b°). Then
l;=(@w-1)*(rw-n) andl,=(@w-1)*(@n-r) wherea,r,n andw aegiven
in Theorems 1 and 2.

(i) AR({d>(b,,9,)},b°)
= (aw- 1) *{-arw?- (2arn-an?+r?)w+(@n*- 2rn)} +Kk.

V) AR{d®¥(b,,g,)},b°%) £ AR({b,},b°) wheretheequdlity holdsonly when
r =0andn =0.

() AB({d " (b,,9,)}) =110 - I ;M s(mw +wg).

We cadl the egimator in (3) with the optima weight |~ the Optima Weighting Mix (OWM) and
(a,r ,n,w)c the Combination Control Parameters (CCPs). We now prove that the OWM
asymptoticaly dominates both the JSM and the NRM.

Corollary 1. Suppose that Assumptions 1, 2 and 3 hold and k > 4. Then
() AR{d>"(b,,9,)}.b%) £ AR{d (b, 9,)},b%) where the sirict inequality holds

. *

if I, isnot equa to zero.

(i) AR{d>" (b, g,)}.b%) £ AR({d " (b,, g,)}, b ) wherethe strict inequality holds

. *

if I, isnot equd to zero.



The optima weights | ;, |, can be viewed as the contribution of the nonrandom mix and the random
mix respectively. In the specia casewhere A=s ?l, B=t ?I, D=0, Q=1, and g =0, we can show
that |, =s?/(s*+t?) and | ;, =0; i.e. the random mix makes no contribution. On the other hand, if
A=s?l, B=t?l, D=0, Q=I, and q* 0, then it can be shown tha 1,20 if ad only if
(k- 2)E[L/(k- 2+2P)]* k(s 2+t 2)/[q¢ + k(s 2+t 2)] where P has a Poisson digtribution with
mean q @ /2(s * +t ?).

An exhaugtive comparison of biases and risks of the shrinkage estimators beyond that presented in

Corollary 1 would be difficult to present in the space dlowed because these are functions of many

parameters. Thus, we consder aspecia casein which

.o ROu&?, dI,uwo

858’”“3&8’3(1 I, t21, 55
where g isascdar and i isthe k™ 1 unit vector. Further we set s 2 =t 2 =1. Then, the risks and
biases are functions of only q, d , and k. Some graphical comparisons of risks and biases are displayed
in Fgurel for sdected values for q,d and k. It emerges that in this specia case, there exigts an

ordering in the risks and biases; that is BASE < JSM < OWM < NRM in terms of the asymptotic
biases, and OWM < NRM < JSM < BASE in terms of the asymptotic risks.

3. ESTIMATION

Even though the OWM has some gppeding properties, it contains the four unknown combination
control parameters (a, r ,n,w)¢. We now discuss how to estimate the optimal CCPs consigtently. For
amplicity, we congder only the case where there is no asymptotic bias. A smilar andyss can be
conducted when ? ? 0; thisis especidly straightforward when ?is under the user's control, as can often
be arranged. Suppose that A I_5>n, f)n , and én are consgtent estimators for A,B,D, and Q
respectively, and consder the following estimators for the combination control parameters:

&,° tr[(A, - D, - D§+8B,)Q,] @

f .0 trl(A, - DHQ,] 5)



¥
~ NN -2
Wn0 dNOtnl dt (6)
0
¥ ~
nAnOc\jNOtn|_1/2tr['\/IZn'\IOtn-l]dt (7)
0

where N, ° | +2tM,, M, ° PO® JP, M, ° PUM JP ad P, is the Choleky

decomposition matrix of S . Before showi ng the consstency results, we first establish that the control

parameters arefinite.

Lemma 4. Suppose that Assumption 2 holds. Then
(i) |a|<¥.
(i) |r |<¥.
(i) |w|<¥ if k>2.
(iv) |n|<¥ if k>4.

We now establish that the estimators defined in (4) — (7) are consistent.

Theorem 4. Suppose that Assumptions 1, 2 and 3 hold and k > 4. Then
N p
i) a, ® a.
. e ~ p
(i) b,® b.
e ~ p
(if)w, ® w.
~ p
(vyn, ®n.
Once we obtain consstent estimators for the CCPs, a natural way to gpproximate the OWM is given

by
d2(b, ) © {1- 1y - 10 /Iy - 0, B} (B - 0,) +0, )



where |, © @ W, - )" N(F W, -, and |, ° (@W, - )@, - r.). We cal the estimator in
(8) the Optimd Weighting Scheme (OWS) Estimator. An interesting question is whether we can il

achieve optimality (minimum asymptatic risk) with this estimator. The following cordllary answers this
question.

Corollary 2. Suppose that Assumptions 1, 2 and 3 hold and k > 4. Then

~ p

p * ~ *
M I ®ladl, ®1,
i n**@>(b,,g,)-b°) ® d(U,U,).

(i) AR{d?"(b,,9,)},b%) = AR{d(b,,g,)},b°%).

The OWS edimator has the same limiting distribution as the OWM, and therefore achieves the
asymptotic minimum bound. The same analyss as for the OWS estimator applies to the JSM and the
NRM. We cdl the resulting estimators the James-Stein Combination (JSC) Edtimator and the
Nonrandom Combination (NRC) Estimator respectively.

4. APPLICATION

In this section we discuss how our method can be utilized in combining two possibly correlated
esimators. We choose the Least Absolute Deviations (LAD) estimator as the base estimator and the
Ordinary Least Squares (OLS) estimator as the data-dependent point. The resulting estimator is an
optimal combination of the two estimators. There has been some interesting research on this issue. As
previoudy mentioned, Laplace (1818) combined the sample median and the sample mean. Taylor
(1974) suggested a two step procedure; firgt gpply the LAD estimator to identify outliers to be trimmed
and then apply the OLS estimator. Arthanari and Dodge (1981) combined the objective functions of
the LAD egtimator and the LS estimator. On the other hand, the use of the JS technique for combining
the Unrestricted LAD and Redtricted LAD estimators was extensvely investigated by Sdeh and Sen
(1987b). To the best of our knowledge combining the LAD and OLS regression estimators has not
been studied previoudy.
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As shown in Bates and White (1993), both the LAD estimator and the OL S estimator are members
of aRCASOI (Regular Congstent Asymptoticaly Second Order Indexed) class under some regularity

conditions. For any member b, in a RCASOI dlass, there is a score representation (s°) and Hessian

n

. _ 0l o 12 . .
representation (H?°) suchthat b - b° = H, s +0,(n""7). In paticular, we have the following

representation  for  the  two  estimators,  s°=28§ X.e, H'S=23 E(X,X9,
t=1

t=1

% =- 28 X (Yoo - 1/2) and H™°=2f(0)§ E(X, X9 where f(0) is the value of the
t=1

t=1

dengty of e, a zero. Given these representations it is not difficult to show the required joint asymptotic
normality (Assumption 2), which follows from

P N -1 ..
1/2§(b#AD - bO)L,J_ o 1H#AD Ok’k u -1/283#AD9

Q LS 0 U_ € -1 le,J n é +Op(])'

@(bn -b )g é)k’k n Hn b

LS =
n @

Together with some moment conditions on X, and e, the identicad and independent distribution

assumption is sufficient (though not necessary) to ddiver the desired result. The asymptotic covariance

between the two estimators is given by D={4f(0)} "E(X, X9 "E(S,S¢$)E(X, X9 *where

S;° -2X,(e, £0]-1/2) and S,,° 2X,e,. We edimate the asymptotic covariance by the plug-

in pindple D, ° {4f,(0} ' [n'4 X, X8 n"4 $, 54 [n"Q X, Xg" where f,(0) is an
t=1 t=1 t=1

estimate for the density a zeroand S, S, are esimatesfor S,, S, using &, © y, - X b, . We study the

behavior of various combinations of LAD and OLSin the following sections.

5. SIMULATION

We conduct Monte Carlo experiments designed to investigate the finite sample properties of our JS
type estimators. For purposes of comparison, we aso include certain interesting stable estimators (the
Ridge estimator, the Garrotte estimator and the Non-Negative Garrotte estimator). Stable estimators
have been shown to ddliver good prediction performance (Breiman 1995, 1996). The definitions for the
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dable estimators are given in Table 1. In the smulation we combine the LAD and the OLS egtimators
described in Section 4 to obtain examples of the NRC, JSC and OWS estimators.

Table 1. Definition of Estimators

Estimator Definition
Ridge (b%) bR T argmin ||y - Xb|? st. bb<s
Garrotte (b®) b1 agmin ly- Zg|F st Z;=X;b°andgy<s
Non-Negative Garrotte (b") b" 1 agmin |ly- Zg |f st Z; = X;b° and
gl <s,g%0

NOTE: Vauesfor < aredetermined by k -fold cross-vaidation.

The data for the Smulation are generated as y, = X®b° +e, where t=1,2,..,n, b°T R,
n=500 and k=5. Weset b° = (1,1,1,11)¢. The number of replications is 1,000. We obtain the
LAD edimator usng the efficient L, agorithm developed by Barrodde and Roberts (1974). The

amulation was carried out on a 266MHz PC usng MATLAB. The random number generator used in
the smulation is that from the MATLAB Stetistics Toolbox.

We choose four symmetric distributions and two non-symmetric didtribution for e,. Symmetric
digtributions are the Uniform digtribution within [-4,4], the standard normd digtribution, the Student t-
digtribution with 3 degrees of freedom, and the Cauchy digtribution with interquartile range 1. These
represent moderate, heavy and very heavy tailed distributions. For the non-symmetric distributions, we
choose the shifted Chi-sguare distribution centered at zero with 12 degrees of freedom and the shifted
Rayleigh digtribution centered at zero with parameter 4. The first entry of X, is one, and the remaining

explanatory varidbles X, ae generated usng the joint normd didribution N(0,S), where the
covariances are s&t to 0.5 and the variances are one. We estimate the required density fn (0) usng a

kernel method with Gaussian kerndl. For each replication we compute the quadratic loss vaue for each
estimator. We approximate the risk by averaging the loss vaues over dl replications. The results are
collected in Table 2.



Table 2. Finite Sample Risk Comparison over Different Error Distributions (n=500)

Uniform Normal Student-t Cauchy c? Rayleigh
OoLS 26.306 5.006 14.789 463971952.194 121.770 35.089
LAD 77.029 7.791 9.345 12.789 398.972 99.337
NRC 20.595 5.035 8.908 12,531 126.610 35.982
JSC 72.765 6.306 9.104 12.707 396.751 96.982
Oows 20.617 5.035 8.910 12.525 126.925 35.830
RIDGE 25.504 4974 14.471 433311022.768 115.666 33.612
GAR 27.241 5.103 15.216 463971921.290 126.777 36.226
NNGAR 26.311 5.006 14.789 463970894.151 123.116 35.090

It iswdl known that the performance of the median is worse than the sample mean when the error is
digtributed uniformly. As expected, the risk of the LAD estimator (77.029) is grester than the risk of the
OLS edimator (26.306) in this case. All combination methods give negative weight to the LAD
estimator. As a result, both the OWS estimator and the NRC estimator dominate the OLS estimator.
When the regresson error is norma, the OLS edtimator is asymptoticdly efficient. Not surprisingly, the
OLS edimator displays the best performance except for the Ridge estimator. However, the
deterioration of the OWS estimator and the NRC estimator relative to the OL S estimator is not large (-
0.57 %). As expected for the Student-t digtribution, the risk of the LAD estimator (9.345) is smaller
than the risk of the OL S estimator (14.789). All combination estimators have smdler risk than both the
LAD edtimator and the OL S estimator. The improvement of the combination estimators over the LAD
estimator and the OL S estimator is about 2 - 5 % and 38 - 40 % respectively. The Cauchy digtribution
represents a very heavy tailed distribution. The risk performance of the OLS egtimator is much worse
than that of the LAD edtimator (463971952 and 12.789 respectively). Neverthdess, combining the
LAD edimator with the OLS edimator makes an improvement over the LAD edtimator. The
improvements over the LAD estimator and the OLS estimator are about 0.6 - 2 % and 100 %
respectively.

The LAD estimator is out-performed by the OL S estimator in terms of risk (398.972 and 121.770)
for the Chi-sguare distribution. For the OWS estimator and the NRC estimator, the weight on the LAD
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estimator is very smal (about 0.080 - 0.096). On the other hand, the JSC estimator gives a large
positive weight to the LAD estimator (0.99), which clearly shows the inferiority of the JSC estimator
when the regression error is not symmetric. The failure can be explained by the bias in the congant
coefficient, which makes the distance between the two estimators very large (384.778). This in turn
makes the JS weight too large. All combination estimators are better than the LAD estimator, but worse
than the OLS edtimator. When the error has the Rayleigh distribution, the result is basicdly the same as
for the Chi-square ditribution. However, the skewness is smaler than for the Chi-square digtribution,
and as a reault, the bias in the congtant term is much smdler. The OWS estimator and the NRC
edimator now give asmal negative weight to the LAD estimator.

The performance of the stable estimators are shown in the same table. The Ridge estimator gives
gmadler risk than the OL S egtimator over dl error digtributions considered in the smulation including the
norma distribution. This is a well-known standard result based on the trade-off between variance and
bias. On the other hand, the other stable estimators (the Garrotte estimator and the Non-Negative
Garrotte estimator) are not better than the OLS estimator, which might at firs seem surprisng.
However, Breiman (1995, 1996) showed that the Garrotte estimator and the Non-Negative Garrotte
edimator give smdler prediction mean squared error than the OLS estimator when irrdlevant variables
gopear in the modd. Here none of our vaiables are irrdevant. Despite this, the additiona risk
associated with the Garrotte and Non-Negative Garrotte is small.

Overdl, we see that our combination estimators, and especidly the NRC and OWS, perform

congstently well across our various examples. Each of the other estimators behaves much less rdigbly.
6. EMPIRICAL STUDY: OUT-OF-SAMPLE PREDICTION
In this section we investigate the out-of-sample predictive ability of the combination estimators using
actual data. Let y bea T~ 1 vector of out-of-sample actual valuesand let € bea T * 1 vector of the

prediction errorswhere T is the number of out-of-sample observations. In order to evaluate forecasting

performance, we use the following forecasting error messurements: prediction mean squared error

§
PMSE(e) © ee/T and prediction mean absolute error PMAE(e) © T § |e |- We dso use R?

t=1

type prediction messures R*° 1- PMSE(e)/S*(y) and R:° 1- PMAE(e)/ MAE(y) where
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S?(y) isthe sample variance of y and MAE(Y) is the mean absolute error of y. The data set
contains daily stock market returns for ADC TeleCom Co. and HomeStake Co., stocks that have been
randomly chosen from the DATASTREAM database. The sample period covers January 1, 1990
through March 31, 1996 which gives us 1630 observations. We modd daily excess returns, computed
by subtracting the 3-month US T-bill rate from daily returns. Table 3 provides summary statistics.

Table 3. Summary Statistics for Daily Excess Stock Returns (in percent)

Mean Median Max Min Std. Dev.  Skew.  Excess
Kurtosis
ADC TeCom 0.15 -0.01 11.92 -22.13 2.94 -0.17 3.93
HomeStake 0.01 -0.02 11.25 -12.45 2.52 0.08 1.96

Our forecasting mode for excessreturnsis
ke Ky
O (o]
h=a +a b, +a il *e&
i=1 i=1
where r,, isthe daily excessreturns on the S& PS00 index and k;, =k, =1. The smple efficient market
hypothesisrequiresthat a =b =g =0, 0 that the best predictor is zero. We call this the Random Walk

predictor and we include this in our comparison sudy. We use a fixed rolling window method to
estimate the coefficients, and set the Sze of estimation window to be 520, which is about a two year
sample period. We repest the entire exercise identically for each of the 8 estimators and for each of the
target variables.

The outcomes are summarized in Figures 2 and 3. We can represent an estimator as a point in
PMAE-PMSE space. In these diagrams, we prefer estimators located closer to the origin because the
PMAE and the PMSE can be treated as “bad” commodities. We represent combination and stable
esimators by their firg initia in PMAE-PMSE space except that the NRC estimator is denoted by “c”
and the Random Walk predictor denoted by “w”. For example, "r" stands for the Ridge estimator, “g”
for the Garrotte estimator, and so on. In the case of ADC TdeCom (Figure 2), adl combination
estimators outperform both the LAD and the OLS estimators in terms of PMSE, but the improvement
over the LAD edimator is very small. The performances of the NRC and OWS are dmogt identicdl.
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They dso achieve better performance than the stable estimators. Interestingly, al our estimators best the
Random Walk predictor in terms of PMSE, but the Random Walk predictor beats al estimators in
terms of PMAE, which indicates tha there seems to exist some forecadtibility. Neverthdess, if the
andyd’sloss function is the sum of absolute deviations, then the random walk predictor is preferred.

The out-of-sample prediction results for HomeStake stock are given in Figure 3. The Non-negative
Garrotte, Garrotte, Ridge and JSC estimators outperform dl other estimators in terms of both PMSE
and PMAE. The behavior of the Random Wak predictor is smilar to the results seen for ADC
TdeCom gtock. The combinations estimators generdly achieve better performance than the LAD and
OLS egimators but the magnitude of improvement is very smal.

Prediction performance measured by prediction R? is summarized in Table 4. The prediction R? is
not necessarily positive because out-of-sample predictions are not guaranteed to be orthogona to out-
of-sample residuas. The prediction R? compares the performance of a predictor to the imaginary
gtuaion where we know in advance the sample mean of the target varidble over the entire out-of-
sample period and use it as our predictor. Therefore, a postive prediction R* indicates that the
predictor is better in terms of PMSE than the sample mean assumed known in advance. According to
the summary datigtics in Table 4, the return on ADC TeleCom Co. is more difficult to predict than that
for HomeStake Co.. Neverthdess, al combination estimators and the LAD estimator give postive
prediction R?’s,



Table 4. Out-of-Sample Prediction Performance

ADC TeleCom Co. HomeStake Co.
R? R? R? RZ
OLS -0.001410  0.000879 0.005622  -0.00955
LAD 0.001613  0.003402 0.004698 -0.00674
NRC 0.001871  0.002967 0.006569 -0.00878
JSC 0.001782  0.003366 0.006987 -0.00663
OWSs 0.001858 0.002964 0.006606 -0.00875
RIDGE -0.000540  0.003894 0.006282  -0.00561
GAR -0.001280  0.002069 0.007043 -0.00616
NNGAR -0.000320 0.002136 0.010452 -0.00405
Random Walk -0.001999  0.004883 -0.000147  -0.00149

7. CONCLUSION
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We have proposed an extension of JS type estimators in a direction that preserves their risk

improvement when the sample size goes to infinity. This extenson supports use of JS type estimators

when one has a moderate or large number of observations. Thisis important because large data sets are

becoming more and more widdy avallable. We permit the data-dependent point towards which we

ghrink our base edimator to be asymptoticaly biased or asymptoticaly corrdated with the base

estimator, in contrast to previous work. Many interesting estimators are vaid candidates for use as a

data-dependent point. Our results thus suggest that a wide range of estimation and forecasting

improvements over standard techniques are readily available usng our gpproach.
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APPENDIX

d
Proof of Theorem 1. One can dso show using Assumption 2 that n"?(d;°(b,,g,)- b°) ®

{1I-c/||U, - U, ||I3U,-U,)+U, © chlS(Ul,Uz). This implies that L(d;s(bn,gn),bo) (F%

llde>(U,,U,) - OF. Therefore, AR({d;(b,,9,)},b°) = wcl - e +k. The first and second
derivatives of the asymptotic risk with respect to ¢, are 2(wc,-n) and 2w. Since w > O,
AR({d;>(h,,9,)},b°) isdrictly convex in c,. By setting the first derivative to zero and solving for
c,, wehave c, =n/w. Sincew=1/ZM,Z andn=2ZM,Z/ZM,Z , adraghtforward gpplication
of Lemma 2 in Ullah (1990) delivers the expressions for w and n in (). Plugging ¢, into the
asymptotic risk, we have the minimum asymptotic risk AR({d;S(bn,gn)}, b°) = -n?/w+k . Since
k¢ AR{b},b%), AR({dCJIS(bn,gn)},bo) £ AR({Db.},b°), where the equality holds only when n

= 0. Thereault in (iv) is obtained from the gtrict convexity of the asymptotic risk. The last result follows
from an gpplication of Lemma 2 in Ullah (1990). QED.

Proof of Theorem 3. It follows from Lemma 3 that AR{d’"(b,,g,)}.b°) = al?- 2rl +
, o & ou . .
21,1 ,+wl ;- 20l ,+k. The Hessan is given by g) ol which is podtive definite. Hence,
u

AR{d ™ (b,,g,)},b°) isdrictly convex in | . By satting the first derivative to zero and solving for
|, wehave | ;=(@w- 1)"*(rw-n) and | ,=(aw- 1)"*(an- r).Pugging |~ into the asymptotic
rik, we hae the minimum  aymptotic  risk AR({dl‘?W(bn,gn)},bo) =
(aw-1)%{-ar’w?- (2arn-an?+r?)w+(@n?- 2rn)}+k. For the last result, we define
hw)° - {-arw?- (2arn-an?+r ?)w+(@n?- 2rn)}. Wewant to show h(w) 3 Oforal w,
which ddlivers the desred result. (Casel) r =0 and n =0. Then h(w) =0. (Case2) r =0 ad
n10. Then h(w) = an®(aw- 1)>0 becausea >0, n* 0 and aw>1. (Case3) r * 0 ad
n=0. Then h(w) = r*w(@w- 1)>0 becausew >0,r : 0 and aw>1. (Case4) r 1 0 ad

nto. Define  w' 1 {w [h(w) =0}. Suppose that an-r =0. Then
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w =-@n?-r?-2arn)/2ar?. It can be shown that w >w’, because aw>1 and r ! O.
This implies that h(w) 3 0 for dl w. Now consider the case that an-r * 0. Define w’ ©
n2r -a)/r?andw. ° 1/a.ltfollowstha w <w, and w, <w because aw >1. Thisimplies
that h(w) 3 Ofor dl w. Agan, the last result follows from an gpplication of Lemma 2 in Ullah (1990).
QED.

Proof of Corollary 1. Because of drict convexity, AR{d’"(b,,g,)},b°) £
AR{d”™(b,,9,)},b® for ay | . Choose | =(0,1,)¢ Then, AR{d (b, ,g,)},b°% =
- n?/w+k , which isAR({dCJIS(bn,gn)}, b°). Since | * is the unique and globa solution, the strict
inequaity holds if |} is not equa to zero. For the second clam, choose | =(1;,0)¢ Then,
AR{d* (b ,0,)},b°% = -r?/a+k, which is equd to AR({dCE‘R(bn,gn)},bO) . The same

argument appliesto the dtrict inequality. QED.

Proof of Lemma 4. Itistrivid to show tha |a | <¥ and |r |<¥ because these are obtained by

adding variances and covariances of norma random variables. In order to show that |w | < ¥ , we note

thatW:i z¢ . It can be shown that i£ z¢ £i where | ,, and | , are the largest
Z¢ Z81,Z 1, Z8,Z |
1 _élu 1 _élu
and smdlest egenvadues of M, . This implies that —E_'EWE—E—' If k>2, then
I, &zef I, &zal
1

. ;
—_— ——— . For the last daim, note that n* £ E[(Z#,Z E
k-2 E Ty (clfag - ze 2)2“by

Cauchy-Schwarz inequdity. Since Z is a norma random variable, E[(Zd&/IzZ)ZJ < ¥. Hence, we

1 é 1 u é 1 u_ 1 e 1 u
have—— E f£Ea ‘£
&ze)?l” “&zm,z)? ") 2 e(z<2>2LJ

Iy

If k >4, then

1 ¢ 1 U 1

5 £ Eg S0E— by Theorem A.2.20 in Judge and Bock
L (k- 2)(k-4)  &Z8,2)"g |, (k- 2)(k- 4)

(1978). Therefore, [n| < ¥. QED.
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Proof of Theorem 4. Since trace is a continuous function, &, © tr[(A, - D, - D¢+ B.)Q,] is

consigtent. By the same reasoning, r ° tr[(A1 - [A)Q)QAn] is consstent. The argument for w, and N is

n

more involved. We define g(M,t) © det(l + 22M,) %, We want to show that there exists a

dominating function d(t) such that (i) |g(M,,t) | £ d(t) fordl S,, and Q in a compact parameter

¥

space and (i) (¥l(t)dt < ¥. Using the rlationship between determinant and eigenvalues of a matrix, we
0

vk .. 12
can express g(:) interms of egenvaues g(M,,t) = iOliz where | ; is an eégenvdue of the
=1
can

inverse matrix of | +2tM,;. Using some linear agebra, we obtain an upper bound given by

k

] 1 @ . . . .
gM,t)* £ 12|k_|t+1g where K is the minimum (in absolute value) eigenvaue of M,  Hence the
|
i1 0
natural candidate for the dominating function is d(t) :12|k_|t+1g . Aslong as k>2, the
|

¥

dominating function d(t) will satisfy the second condition, Cyl(t)dt < ¥ . Hence we have the desired
0

result. The proof for the consistency of 1 is more complicated, but the key step is again to find a

dominating function. Since the agument is gmila, we just gve the dominating
L kL

function: D(t) = 2k |x |{ L g where K isthe minimum eigenvalue (in absolute vaue) of M,

2|k |t+1

and x  isthe maximum (in absolute value) eigenvaueof M2, QED.

Proof of Corollary 2. BothIA1n and IAZnare continuous function of the consistent estimators. Since the

limit of continuous function of condgent etimators is the vaue of function evduated a the limit of the

~ P ~ P, )
consstent estimators, we have the desred results. |, ® |, and | ,,® | ,. The consstency of the



d
estimated weights together with the Slutsky Theorem ddivers n?(d*¥(b,,g,)- b°) ®

d2"(U,.U,) whichintumimpliesthat AR{d " (b,,g,)},b°) = AR{d " (b, g,)}.b°). QED.



21

REFERENCES

Arthanari, T. S. and Dodge, Y. (1982), Mathematical Programming in Satistics, New York: John
Wiley.

Barrodde, |. and Roberts, F.D.K. (1974), “Algorithm 478: Solution of an Over-Determined System of
Equationsin the L; Norm,” Communications of the Association for Computing Machinery, 17,
319-320.

Bates C. E. and White, H. (1993), “Determination of Estimators with Minimum Asymptotic
Covariance Matrices,” Econometric Theory, 9, 633-648.

Breman, L. (1995), “Better Subset Regression Using the Nonnegative Garrote,” Technometrics, 37,
373-384.

Breiman, L. (1996), “Heurigstics of Ingability and Stabilization in Modd Selection,” The Annals of
Statistics, 24, 2350-2383.

Cohen, A. (1976), “Combining Egtimates of Location,” Journal of the American Satistical
Association, 71, 172-175.

Green, E. J. and Strawderman W. E. (1991), “James-Stein Type Estimator for Combining Unbiased
and Possibly Biased Estimators” Journal of the American Satistical Association, 86, 1001-
1006.

James, W. and Stein, C. (1960), “Edtimation with Quadratic Loss,” Proceedings of the Fourth
Berkeley Symposium on Mathematical Satistics and Probability (vol. 1), Berkeley, CA:
Univergty of California Press, pp. 361-379.

Judge, G. G. and Bock, M. E. (1978), The Satistical Implications of Pre-Test and Stein-Rule
Estimators in Econometrics, Amsterdam-New Y ork-Oxford: North-Holland Publishing Co.

Laplace (1818), Deuxieme Supplement ala Theorie Anaytique des Probabilites.

Sdeh, A. K. M. E. and Sen, P. K. (19853), “On Shrinkage M - estimators of Location Parameters,”
Communications in Satistics: Theory and Methods, 14, 2313-2329.

Sdeh, A. K. M. E. and Sen, P. K. (1985h), “On Some Shrinkage Estimators of Multivariate L ocation,”
The Annals of Satistics, 13, 272-281.



Sdeh, A. K. M. E. and Sen, P. K. (1986), “On Shrinkage R- Edimation in a Multiple Regresson
Modd,” Communications in Statistics: Theory and Methods, 15, 2229-2244.

Sdeh, A. K. M. E. and Sen, P. K. (1987a), “Réative Performance of Stein-Rule and Preliminary Test
Edtimatorsin Linear Modds : Least Squares Theory,” Communications in Satistics: Theory and
Methods, 16, 461-476.

Sdeh, A. K. M. E. and Sen, P. K. (1987b), “On the Asymptotic Distributional Risk Properties of Pre-
Test and Shrinkage L, - Edimators” Computational Satistics & Data Analysis, 5, 289-299.

Sdeh, A. K. M. E. and Han, C. P. (1990), “ Shrinkage Estimation in Regresson Anadyss,” Estadistica,
42, 40-63.

Schmoyer, R. and Arnold, S. (1989), “ Shrinking Techniques for Robust Regression,” in Contributions
to Probability and Statistics: Essays in Honor of Ingram Olkin, ed. L. J. Gleser, New Y ork:
Springer-Verlag, pp. 368-384.

Sen, P. K. and Sdleh, A. K. M. E. (1987), “On Preliminary Test and Shrinkage M-estimation in Linear
Modes,” The Annals of Statistics, 15, 1580-1592.

Stein, C. (1955), “Inadmissibility of the Usud Estimator for the Mean of a Multivariate Didribution,”
Proceedings of the Third Berkeley Symposium on Mathematical Satistics and Probability
(vol. 1), Berkeley, CA: University of Cdifornia Press, pp. 197-206.

Taylor, L. D. (1974), “Edimatiion by Minimizing the Sum of Absolute Errors” in Frontiers in
Econometrics, ed. Zarembka, P., New Y ork: Academic Press.

Ullah, A. (1990), “Finite Sample Econometrics A Unified Approach,” in Contributions to
Econometric Theory and Application: Essays in Honour of A.L. Nagar, eds. R. A. L. Carter,
J Duitta, A. Ullah. New Y ork: Springer-Verlag, pp. 242-292.



Figurel. Bias and Risk Comparison
(k =5and d =0)
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Figure 2. Out-of-Sample Prediction Performance for ADC TeleCom.
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Figure 3. Out-of-Sample Prediction Performance for HomeStake.
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