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A Predictive Density Approach to Predicting a Future Observable

in Multilevel Models!

David Afshartous
School of Business Administration, University of Miams,
Coral Gables, FL 33124-8237
Jan de Leeuw

Department of Statistics, Unwversity of California,

Los Angeles, CA 90095-155/,

ABSTRACT: A predictive density function ¢* is obtained for
the multilevel model which is optimal in minimizing a criterion
based on Kullback-Leibler divergence for a restricted class of pre-
dictive densities, thereby extending results for the normal linear
model (Levy & Perng 1986). Based upon this predictive density ap-
proach, three prediction methods are examined: Multilevel, Prior,
and OLS. The OLS prediction method corresponds to deriving a
predictive density separately in each group, while the Prior predic-
tion method corresponds to deriving a predictive density for the
entire model. The Multilevel prediction method merely adjusts
the Prior prediction method by employing a well known shrink-

age estimator from multilevel model estimation. Multilevel data is

!This research was supported by a grant from the National Institute for
Statistical Sciences.



A Predictive Density Approach to Multilevel Models

simulated in order to assess the performance of these three meth-
ods. Both predictive intervals and predictive mean square error
(PMSE) are used to assess the adequacy of prediction. The multi-
level prediction method outperforms the OLS and prior prediction
methods, somewhat surprising since the OLS and Prior prediction
methods are derived from the Kullback-Leibler divergence crite-
rion. This suggests that the restricted class of of predictive densi-
ties suggested by Levy & Perng for the normal linear model may

need to be expanded for the multilevel model.

KEY WORDS: prediction, predictive density, multilevel model

1 Introduction

A basic problem in predictive inference involves the prediction of a future
observable Z based on the observed data Y in some passed experiment. More-
over, Z need not arise from the same stochastic model as Y. One approach
to this problem is to attempt to “estimate” the stochastic model from which
7 arises. Given such an estimate, there exist several options for predicting
the future observable, e.g., the expected value of the stochastic process. Many
authors have investigated this approach, often labeled the predictive density
or predictive likelihood method. (Levy & Perng, 1986; Butler, 1986; Geisser,
1971). Another approach is to forgo density estimation and seek to minimize
some expected loss function, often within some prescribed class of predictors.
(Rao, 1987; Gotway & Cressie, 1993; Goldberger, 1962). Optimal predictors

for both approaches have been derived for the general linear model. Moreover,
2
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there exist extensions to the multivariate case (Guttman & Hougaard, 1985;
Keyes & Levy, 1996). The purpose of this paper is to extend the optimal
predictive density results to the multilevel model. The outline of this paper
is as follows: In section 1.1 we review the notation of the multilevel model,
in section 2 we present the predictive density approach and the main result
by Levy & Perng (1986) for the general linear model. In section 2.1 - 2.3 we
develop and apply this result to the multilevel model, thereby obtaining three
predictive densities with which to predict a future observation in a hierarchical
dataset. In section 2.4 we describe a simulation study to assess the predic-
tive performance of these three densities, in section 3 we present the results,
and finally in section 4 we provide a brief summary and directions for future

research.

1.1 The Multilevel Model

Multilevel modeling is a statistical technique designed to facilitate infer-
ences from hierarchical data. A given data point y;; represents the sth case
in the jth unit, e.g., the ¢th student in the jth school for educational data.
The multilevel model prediction problem—in its simplest form—consists of
predicting a future observable y,;, i.e., a future case of the jth group. For a
full review of the multilevel model see Bryk & Raudenbush (1992). We shall
restrict this discussion to the simple case of primary units grouped within sec-
ondary units and periodically refer to the applied example of students (level-1)
grouped within schools (level-2). For example, we may have J schools, where
the jth school contains n; students. The basic multilevel model has the fol-

lowing level-1 model equation:
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Y = X;B; +1j, (1)

Each X; has dimensions n; X p, and r; ~ N(0,0%¥;), with ¥; usually taken
as I,;. In multilevel modeling, some or all of the level-1 coefficients, §;, are

random variables, and may also be functions of level-2 (school) variables:

B = Wiy + uy, (2)

Each W; has dimension p x ¢ and is a matrix of background variables on the
jth group, and u; ~ N(0, 7). Clearly, since 7 is not necessarily diagonal, the
elements of the random vector 3; are not independent. For instance, there
might exist a covariance between the slope and intercept for each regression
equation.

Combining equations (1) and (2) yields the single equation model:

Y, = X;Wiy + Xju; + 1 (3)

which may be viewed as a special case of the mixed linear model, with fixed
effects v and random effects u;.2 Thus, marginally, y; has expected value
X;W;~ and dispersion V; = X;7X;" + 0?I. Observations in the same group
have correlated disturbances, and this correlation will be larger if their predic-

tor profiles are more alike in the metric 7. (de Leeuw & Kreft, 1995). Thus,

2For an excellent review of the estimation of fixed and random effects in the general
mixed model see Robinson, 1991
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the full log-likelihood for the jth unit is
L(0%77) = — M log(2m) — ~log V)| — ~dVd 4
j(U’TafY)__i Og( 7T)_§Og‘ ]|_§ jiVj B ()

where d; = Y; — X;W;v. Since the J units are independent, we write the

log-likelihood for the entire model as a sum of unit log-likelihoods, i.e.,
L(c%7,7) =Y _ Lj(0® 7,7). (5)

Full or restricted maximum likelihood may be applied to this function to
produce estimates of o2, 7, and . These estimates may in turn be employed
in various approaches to to produce estimates of the the level-1 coefficients
B;.2 For a full review of estimation in multilevel models see Raudenbush &
Bryk (2002). Although multilevel model estimation is an important topic,
it is not the focus of this paper. The focus here lies in the prediction of a
future observable y,; and we shall employ a predictive density approach to

this problem.

2 Predictive Density Approach

Let f(y; @) denote the density function for Y and g(z|y, §) denote the den-
sity function of Z conditioned upon having observed Y. The forms of f and
g are assumed known, they are not necessarily the same, and they share the
common parameter # which belongs to some parameter space ©. Hence the
past experiment is informative for the future. A prediction function s(z;y) for

z is an estimator of g(z|y, #), and if s is a density we call it a predictive density.

3The term “estimation” is being used somewhat loosely when speaking of an estimate of
B; since ; is a random variable. One may consider an estimate of the random variable 3;
as an estimate of the mean of its distribution.

5
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Levy & Perng (1986) discuss this problem in the context of the general linear
model: Consider an n-dimensional random vector Y and the m-dimensional
random vector Z, where Y = X3+ ¢ and Z = W/ + 7, with the usual in-
dependence and constant variance variance assumptions for the error terms
(e ~ n(0,0%I,) and 7 ~ n(0?l,)). Here € Qs C RP is an unknown p x 1
vector of regression coefficients while 02 is an unknown but positive scalar. It
is further assumed that e and 7 are independent. Letting p,(y; X, 3,0?) and
Pm(2; W, 8,0%) denote the multivariate normal density functions of ¥ and Z,

respectively, we have

pu(y; X, B,0°) = n(XB,0°1,)

P2 W, 8,0%) = n(WB,0°I,)

Under Kullback-Leibler information loss,* Levy & Perng (1986) derive an
optimal estimator for the density of Z within a prescribed class of density
estimators. Levy & Perng restrict the collection of possible density estimators
to a subset of prediction densities, ¥, and the density within this subset which
minimizes the Kullback-Leibler measure is selected. Specifically, they consider

the statistics defined by

t=t(y,2) = (= = WB)/(n'/?) (6)

where 3 = (X'X)™'X'y and 62 = (y— X B)'(y— X 8)/n are the maximum like-

lihood estimates of /3’ and 62, respectively. Then V is defined as the collection

4Kullback-Leibler information measure was proposed by Atchinson (1975) as a general
prediction measure; a discussion of the motivations and properties of this criterion may be
found in Larimore (1983).
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of all predictive densities that are functions of the statistic t, i.e.,
U ={s(zW,y,X) : s(z: Wy, X) = g(t(y, 2)) }, (7)

where g is any probability density function. Two reasons for restricting atten-
tion to this class are provided: 1) It contains several commonly used predictors,
and 2) the statistic t(y, z) used to define ¥ results from a sequence of data
reductions by applying the invariance principle under reasonable groups of
transformations. They elaborate by demonstrating maximal invariance with
respect to specific groups of transformations; see Levy & Perng (1986, p.197)
for further details.

Recall, if s(z; W, y, X) is a predictive density estimate for p,,(z; W, 3, 02),

then the Kullback-Leibler divergence is defined as:

Dyt (pmys) = / Paly: X, B, 0%) / Pun(z W, B, 0%)
n Rm
X logpm(z; W, B,0%)/s(z; W, y, X )dzdy

= Eyzloglpm(Z; W, B,02)/s(Z; W, Y, X)]

Thus, a predictive density s is considered optimal with respect to Kullback-
Leibler loss if s minimizes Dg,>» among all possible predictive densities uni-
formly with respect to 8 and o2.

Their main result is expressed as follows:

Theorem 1 Let ¥, Dg,> andt be defined as above. The prediction density
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g (zWy, X) = g'(ty, 2))

= stu(n—p,WB,n6*4/(n — p))

where A = I, + W(X'X) W', provides the unique minimum of Dg > among
B,

all s in U uniformly in B and o2.

The notation sty4(k, b, C') denotes a multivariate Student-t density function,
where d is the dimension, k£ the degrees of freedom, b the location parameter,

and C' the dispersion matrix, and density function as follows:

sty(k,b,C) = T[(k+d)/2]/[x¥’T[k/2]

X [det(kC)]Y21 + (2 — b)' (kC) 71 (2 — b)*T97).

As noted by Levy & Perng (1986), assuming a non-informative diffuse prior
for (8,0?), f(B,0?) o< 1/0?, the predictive density ¢g* may be interpreted as a
Bayesian predictive density.

Let us examine this predictive density further by using it to create a predic-
tive interval for z in the case where z has dimension one. For large values of n,
our predictive interval is centered around the mean of the predictive density,
2 = W 3, with margin of error taken as 1.96n62A4/(n — p), in this case a scalar
since we have A =1+ W(X'X)~'W. Upon closer examination, however, we
see that this interval is very close to the standard exact prediction interval in

linear regression. Specifically, the predictive density variance can be written
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as follows:

n6?A/(n—p) = — (62 +&W(X'X) W]

n—p

~

S [var(z) + var(W pB)]

n—p

= — p[var(z) + var(2)]

Thus, recalling that our usual exact predictive interval in linear regression has
margin of error t,_, q/o[var(z) + var(Z2)], the only difference we obtain by using

this predictive density to form a prediction interval is the adjustment of the

n

o in the expression above. Hence, the resulting interval based on this

term
optimal predictive density would be wider than the exact predictive interval.

We would like to extend this result to the multilevel model. We shall do
this in three different ways. First, we extend the theorem above to each of the J
groups in the multilevel model as independent OLS regression equations. Thus,
in each of the J groups, the prediction problem is identical to the presentation
above. This method is referred to as the OLS Prediction Method. Second, we
do not ignore the multilevel structure and write the network of J models as one
large model and derive the corresponding predictive density for this model. For
reasons that will become clear later, this is called the Prior Prediction Method.

Finally, we alter the Prior Prediction Method by utilizing a well-known result

for the multilevel model to yield the Multilevel Prediction Method.

2.1 OLS Prediction Method

In this case we emphasize that there is no level-2 model, i.e., we do not

model the level-1 §; coefficients as random variables regressed on level-2 vari-
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ables. Instead, we simply have J separate regressions:
Y; = X6 + 15, (8)
and desire to predict the future observation in the jth group, y.;:

Ysj = XujBj + Tujs 9)

If y,; were observed, X,; would represent a row of the X; design matrix and
we have 7,; ~ N(0,0?). Thus, we may immediately apply Theorem 1 above

to yield the predictive density for y,;:

(y*]aX*Ja}/]’X ) - Stl(n _pa X*]Bjﬁnd-\J2A]/(n _p)) (10)

where A; = 1+ X,,;(X;'X;)"*X,,’; B; and 6, are the usual OLS estimates for
slope and residual variance.

We employ this predictive density to construct a predictive interval by tak-
ing its expected value, X,; ,5’]-, as our point predictor for y,; and use its variance
to form our margin of error. Formally, we have the following prediction inter-

val:

X.jB; £ tap,or30,[nA;/ (n — p)]'/ (11)

where t,,_, 975 is the .975 critical value for a ¢ distribution with n — 2 degrees

of freedom.

10
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2.2 Prior Prediction Method

In this case we do not ignore the structure of the data; Instead, we adopt
the setup of the multilevel model as discussed earlier. However, we first need
to do some re-arranging. We shall manipulate the notation in the multilevel
model such that it is presented as a special case of the general linear model.
By appropriately stacking the data for each of the J level-2 units, we may

write the model for the entire data without subscripts. Thus, we have:

Y=Xp+r (12)

with 7 normally distributed with mean 0 and dispersion ¥ where

Y = (Y],Y,,...,Y)),

B = (8,83 .8y

ro= (ry,ry,...,ry)
and
[ x, 0 .. 0 (\1110...0\
0 Xy ... 0 0 T ... 0
X = Jy =
\0 0 X, \o 0 ... )

11
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where W, is usually O'QInj. We may also write the level-2 equation in no-

subscript form through similar stacking manipulations:

B=Wry+u (13)

where u is normally distributed with mean 0 and covariance matrix 7" where

W o= (W, W,, ..., W),

u = (uy,uy,... uy),
(7’ 0 0
0 7 0

T =
KO 0O ... 7

Combining equations, the entire model may be written as:

Y=XWy+Xu+r (14)

where we note that E(y) = XW+y and Var(y) = XTX' + 0.

Now, consider a future observable y,;, i.e., a future observation in the jth
unit. As before, let the level-1 data corresponding to this observation may be
denoted as X,;, a 1 x p row vector. To make the analogy with Levy & Perng

(1986) explicit, recall that for the general linear model we had the following

12
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distributions:

pa(y; X, B,0°) = n(XB,0°I,)

Pm(z W, B,0%) = n(Wp,0°l,)
Similarly, for the multilevel model in stacked form, we now have:

py(y; X, 7,0°) = n(XWry, XTX' +0) (15)
15

P1(Ysj; Xujs 7> 0%) = n(X,;W;7, Vi)

where V, = X,;7X,;/ + 0% and N = 25:1 n; equals the total number of
cases (students) across all the units or groups (schools). The corresponding
parameter estimate for the multilevel model is now ~ instead of  and may be

estimated as follows:

J J
o= O _ WX/ VX w) Ty WXV
7j=1 7j=1

V, = var(y)) = X;7X;' + 6%

where 7 and 62 must be estimated iteratively via full or restricted maximum
likelihood. ® The estimate above for the fixed effects v may be interpreted
as a generalized linear model (GLM) estimator.®. If the dispersion matrix in

the multilevel model was diagonal as in the of the normal linear model, we

5Procedures such as Fisher Scoring (Longford, 1987), iteratively reweighted generalized
least squares (Goldstein, 1986), or the EM algorithm (Dempster, Laird, & Rubin, 1977)
manifest themselves in several software packages: HLM (Raudenbush et al., 2000), MIXOR
(Hedeker & Gibbons, 1996), MLWIN (Rabash et al., 2000), SAS Proc Mixed (Littell et al.,
1996), and VARCL (Longford, 1988). In addition, the software package BUGS (Spriegelhal-
ter et al., 1994) incorporates fully Bayesian methods that have been introduced (Gelfand et
al., 1990; Seltzer, 1993).

6de Leeuw & Kreft (1995) discuss how alternative estimates of the fixed effects may be
obtained via a two-step procedure, where one first obtains the OLS estimates of the §; and
then regresses these values on the W; values.

13
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could directly apply the result of Levy & Perng to obtain the corresponding
predictive density for the multilevel model. However, as can readily be seen
from equation 15 above, the dispersion matrix has a complicated structure.
This problem may be solved, however, by making use of some transforma-
tions. In order to simplify presentation, we shall first extend Levy & Perng’s
assumptions in the case of the normal linear model, and then directly apply
this result to the multilevel model. Formally, let us generalize Levy & Perng’s

case to that of the following:

pu(y; X, 8,0%) = n(XB,0°%)

Pm(z W, B,0%) = n(Wg,o°A)

Assume that ¥ and A are known matrices of rank n and m, respectively. Let
G be an n x n matrix of rank n such that ¥ = G'G. Similarly, let H be
an m X m matrix of rank m such that A = H'H. Let § = G’ 'y and let
Z = H' 'z. Similarly, let X = G'"'X and let W = H'"'W. Thus, the models

above have now been transformed as follows:

(X, 8,0%) = n(XB,0°L,)

Pm(Z W, B,0%) = n(WB,0°L,)

Hence, we are back in the original format of Levy & Perng’s problem and
may apply the main result to the transformed variables § and Z in order
to produce the optimal predictive density for Z. Note that our correspond-
ing maximum likelihood estimates in the transformed model are now B =
(X'X)1X'j and 62 = (§j — XB)'(§j — XB)/n. However, it can be readily
shown that § = (X'X)1X'§ = (X'S"1X)~1X'S1y (Graybill, 1976, p.207).

14
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Following along similar lines as Levy & Perng’s original development, define
t = (—Wp)/(n*/?6) and restrict the set of candidate optimal predictive den-
sities for z to ¥ = {s(z; W, 9, X) : s(% W, 5, X) = g(£(7, 2))}. Thus, applying
Theorem 1, we have the optimal predictive density ¢g* for Z over the restricted

set U as follows:

g EW,5,X) = (U7 2))

— st — p,WB,n5?A/(n — p))

where A = I, + W(X'X)~"W", provides the unique minimum of Dg »2 among
all s in ¥ uniformly in 8 and o2.

Of course, we are interested in the optimal predictive density of z, not Z,
so we must transform back to the original units. Since we have Z = H' 1z,

this implies that z = H'Z. Thus, our predictive density for z is as follows:

g (W, y, X) = g*(t(y, 2))

= stm(n — p,WB,n6*AA/(n — p))

(16)

where once again we emphasize that the estimates of B and 62 above are not
the same as that in the original development. Recall that previously we showed
that the dispersion term derived by Levy & Perng for the normal linear model
may be written as an adjusted exact prediction interval, where the adjustment

factor was n"Tp. Now, with a little bit of algebra, we demonstrate a similar

15
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result for our more general case:

FPAA ngPA,
DT 2E SN S W)W
n—op n—op
= " [32A + AW (X' X) W]
n—p

S [var(z) + Avar(2)]
n—p (17)

= — p[vér(z) +var(H'™ 2)]

= p[vér(z) + A7 var(2)]

= p[vér(z) + var(z)]

Thus, as in the general case, this illustrates the dispersion of the predictive
density with respect to an adjustment to the margin of error in an exact
prediction interval. Let us apply this result to our multilevel model such that
we may produce a predictive density for y,,;. The only difference in assumptions
is that certain components (0 and 7) of the dispersion matrices (XT X'+ ¥
and V,) for y and y,; are unknown and must be estimated. Directly applying
the results from equations 16 and 17 above yields the following predictive

density:

. N

where ¢ is the length of v and B; = var(y.;) + var(g.;) and may be written

as:

= X X, + 6, + var(X,;W;A)

= X, 71X, + 6%+ X ;Wvar(9)W,' X,
J
= Ve 657+ Xy W, (O Wi XV GW5) W X!
j=1

16
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Comparing the main result here with that from the previous section, the
center of the prediction density is now X,;W;¥ instead of X,; Bj. One may view
v as analogous to Bj with respect to the application of the theorem, noting
that maximum likelihood is satisfied via GLM in the former and OLS in the
latter. As before, we employ this predictive density by taking its expected
value, X,;W;%, as our point predictor for y,; and use the variance to form our

margin of error. Formally, we have the following prediction interval:
XojWiA £ tn—g.om[NBj/ (N — q)]'/* (19)

Readers familiar with multilevel models will recognize that this corre-
sponds to employing the prior estimate of £3;, BJP rior = W;4, in forming
Guj = X*jBJP rior- Hence the term Prior Prediction Method. Similarly, in the
previous section we employed the OLS estimate for 3; and obtained the OLS
Prediction Method. Although the predictive density above corresponding to
the Prior Prediction Method is the optimal predictive density in the sense of
Levy & Perng (1986), it behooves the researcher to investigate the effect of
using the popular multilevel estimate of 3; in place of either the OLS or prior

estimate.

2.3 Multilevel Prediction Method

One of the main results in the multilevel model literature is the shrinkage
estimator for (;, which may be expressed as a weighted combination of the
OLS and prior estimate. Intuitively, the higher the reliability of the OLS

estimate the the larger the weight attached to the OLS estimate, and vice

17
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versa. Formally, the multilevel model estimate Bj* may be written as follows:
B =8B+ (I — 6)Wii (20)
where
§; = #[F + o2(X;'X;) 71 (21)

is the ratio of the parameter variance for §; (7) relative to the variance of
the OLS estimator for 8; (02(X,'X;)~!) plus this parameter variance matrix.
Thus, if the OLS estimate is unreliable, Bj* will pull Bj towards W%, the
prior estimate. See Bryk & Raudenbush (2002) for further details on these
shrinkage concepts. Once again, the variance components 7 and ¢? must be
estimated iteratively and 7 is estimated via the GLS equation of the previ-
ous section. The shrinkage estimator above for 3; above which employs the
estimator of equation (X) yields the minimum mean square linear unbiased
estimator (MMSLUE) of 3; (Harville 1976).

One may also write the multilevel estimate as Bj* = W;¥ + u;, where we
recall that u; may be interpreted in the mixed model sense as the random
effect of the jth group. With respect to the prediction of y.;, we will now
take our predicted value of y,; to be X*jﬁj*, which may also be written as
Uiy = XoiW;y + X,ju;. Taking this one step further, we note that Harville

(1976) showed that this may also be written as follows:

Gy = X Wi + Vi Vi H(y; — X;W54) (22)

7One must restrict oneself to the class of unbiased estimators sine a MMSLE does not
exist for the unknown v case (Pfefferman 1984).

18
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where ‘A/;j = cov(Yuj, yj) = Xu;7 X, +62. We note this last representation since
it illustrates our prediction as the conditional expectation of y,; given the data
Y. Furthermore, Rao (1973, p.522) showed that 7., is the best predictor of
Y«j With respect to the minimum mean square error criterion.

Getting back to our predictive density, we now simply center this predictive
density around X*ij* and form its dispersion in a manner analogous to the

previous sections, yielding:

~x N
t(Wjs Xujr y, X, W) = sty (N — ¢, X, 55 amcj) (23)

where ¢ is the length of v and C; = var(y.;) + var(y.;) and may be written as:
Cj =y + M;(var(y)) M’

where Q,; =V, —|—V*jVj_1V}* and M; = X,;W; — V*j‘/}_lXjo.s As before, we
will form our predictive interval for y,; by centering it around the distribution’s
mean and using its variance to form the margin of error. Formally, we have

the following prediction interval:
X.iB & tn—g,0m[NC;/ (N = )]/ (24)

We investigate the difference between the OLS, Prior, and Multilevel Pre-
diction methods mentioned above through a simulation study. The design of

the simulation study is explained in the next section.

8 This expression is derived in Liski & Nummi, 1996.

19
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2.4 Simulation Study

Multilevel data is simulated under a variety of design conditions, closely
following the simulation study of Busing (1993). As a simplification, we con-
sider a simple 2-level multilevel model with one explanatory variable at each
level and equal numbers of units in each group. A two-stage simulation scheme
is employed. At the first stage the level-1 random components are generated

according to the following equations®:

Boj = Yoo+ Y01 W + uo;

Bii = o+ yuWj;+u

The 7’s are the fixed effects and are set to a predetermined value; We set
them all equal to one as in Busing (1993). The scalar W is a standard normal
random variable, while the error components, ug; and u;, have a bivariate
normal distribution with mean (0,0) and a 2 x 2 covariance matrix 7. We set
the two diagonal elements of 7, 799 and 71, to be .125 and the off-diagonal
covariance term 7y, at .03, following one of Busing’s major design conditions.
This yields in intraclass correlation p of 0.2.1°

The second stage of the simulation concerns the first level of the multilevel

model, where observations are generated according to the following equation:

Yij = Boj + B Xij + € (25)

9There is a slight abuse of notation here. Previously W; represented a matrix while here
it represents a scalar.

10The intraclass correlation is defined as follows: p = Tog$’02 and thus measures the degree

to which units within the same unit are related.

20
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Table 1: Simulation Specification

ot=15

Too — T11 = 125
T01 = .03

W, ~ N(0,1)

J = (25,50, 100)
n = (10, 25, 50)

The level-2 outcome variables, the 3’s, were determined at the first stage of the
simulation. The level-1 explanatory variable, Xj;;, is simulated as a standard
normal random variable, while the level-1 error ¢;; is a normal random variable

with mean 0 and variance o2

specified as .5. In summary, our parameter
specification for simulating multilevel data are as follows:

The multilevel data is simulated under a variety of specifications for the
number of groups (J) and number of units per group (n). Once again following
Busing (1993), the number of groups studied are 25, 50, and 100, while the of
units per group are 10, 25, and 50. Moreover, one additional “future” obser-
vation is generated for each of the J groups. Thus, for the J=100, n=25 design
specification, 100 additional observation are generated and set aside. These

are the observations that will be predicted; They are not used for estimative

purposes.

2.5 Prediction Results

The adequacy of prediction was checked in two ways: predictive intervals
and predictive mean square error (PMSE). The predictive interval method is
performed as follows. For each of the future observations to be predicted, a
predictive interval is formed from the respective predictive distribution and

we check whether or not the observation lies in this interval. Thus, for J = 50
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Table 2: Mean Fractional coverage for Multilevel, Prior, and OLS Prediction
Intervals

J n=10 n=25 n=>50

25 | .949, .946, .984 | .961, .951, .973 | .952, .950, .952
50 | .956, .952, .989 | .956, .953, .96 | .951, .951, 955
100 | .960, .948, .987 | .953, .953, .966 | .956, .947, .959

we will have a possible range of 0 to 50 correct predictive intervals. More-
over, to check the variability of such coverage, each of the nine J x n design
conditions are simulated 100 times, each time checking the percent of correct
intervals. The data simulations were performed in XLISP-STAT while the
multilevel model estimation was performed with TERRACE-TWO.!! Regard-
ing computing time, it took 14.1 minutes to simulate one hundred J=25, n=10
data sets, estimate the models, and form the desired predictions. The corre-
sponding time for the one hundred J=100, n=>50 data sets was one hour and
46 minutes; all computations were performed on a SUN Sparc 10 workstation.

The predictive interval results are given in Table 2.5 below, where we give
the mean of the fraction of correct intervals over 100 simulations for each design
specification. For instance, the entries in the top left cell shows that for the
J=25, n=10 design condition the mean fractional coverage for the multilevel,
prior, and OLS predictive intervals were .949, .946, and .984, respectively, over
the 100 simulations.

For all three methods, the coverage rate is close to that expected from
a theoretical 95% prediction interval. Moreover, there isn’t much difference

between simple OLS and the multilevel intervals. One, this could be a result

1 An XLISP-STAT program written by James Hilden-Minton, which incorporates both
the EM algorithm and Fisher scoring for parameter estimation. See “Terrace-Two User’s
Guide: An XLISP-STAT Package for Estimating Multi-Level Models” by Afshartous &
Hilden-Minton for a full description of Terrace-Two. XLISP-STAT was developed by Luke
Tierney and is written in the Xlisp dialect of Lisp, which was developed by David Betz.
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of the wideness of our margin of error, and two, it could be a result of the
discreteness of the assessment approach we have employed. In order to get
around this problem, we also examine the popular predictive mean square
error (PMSE) approach to assessing predictive performance.

For the predictive mean square error (PMSE) approach, we employ the
standard technique of taking the average of the sum the squared errors (SSE)
of the observed and predicted values. The predicted values are taken as the ex-
pected value of our predictive density, varying according to our estimate of ;.
Once again, for each of the nine J x n design conditions, we calculate our re-
sult 100 times. The results are summarized in Table 3, where each entry is the
average of PMSE over 100 simulations. The multilevel method is clearly the
best, closely followed by the OLS method. As expected, the discrepancy be-
tween the multilevel and OLS method becomes less as n increases. Increasing
J should have no effect on the OLS method since this method forms predic-
tions separately for each group. On the other hand, an increase in J should
decrease PMSE for the multilevel method since the multilevel method uses
all of the data; However, this is not entirely confirmed in these simulations,
possibly because the increase in J is not large enough to make a difference.
Somewhat of a surprise, the prior prediction method performs the worst of
the three methods, increasingly worse as J increases. Although the multilevel
prediction rule is superior, the differential gain is not incredibly large and does
not increase dramatically as the design tends towards smaller J and n, i.e.,
specifications where we would expect the multilevel prediction rule to further

outperform the other methods.

These results are more clearly illustrated in Figure 1-3, where we display

boxplots of the distribution of PMSIQE for the three methods over the 100
3
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Table 3: Mean MSE over 100 Simulations for Multilevel, Prior, and OLS

Prediction
J n=10 n=25 n=50
25 | 0.2958, 0.4914, 0.3056, | 0.2591, 0.4691, 0.2610 | 0.2758, 0.489, .27666

a0
100

0.2963, 0.4817, 0.3128
0.3005, 0.5048, 0.3188

0.2644, 0.4785, 0.2674
0.2765, 0.5073, 0.2786

0.2558, 0.4839, 0.2567
0.2677, 0.5056, 0.2682

simulations. Consider Figure 1 where J = 25 is fixed. Starting from the left,
the first three boxplots correspond to the PMSE for the Multilevel Prediction
Method for n = 10,n = 25, and n = 50, respectively. The next three boxplots
correspond to the PMSE for the Prior Prediction Method for n = 10, n = 25,
and n = 50, respectively. And, finally, the last three boxplots correspond to
the PMSE for the OLS Prediction Method for n = 10,n = 25, and n = 50,
respectively. Figures 2 and 3 are arrayed similarly for J = 50 and J = 100,
respectively. The effect of group size n is clear as PMSE decreases within each
prediction method as n increases. An exception, however, occurs in Figure
1 for the Multilevel Method. And, once again, the poor performance of the
Prior Prediction Method is apparent as the corresponding boxplots have higher
medians in all design specifications. Moreover, as indicated by the boxplots,
examining the standard-deviation of PMSE over the 100 simulations confirms
that the Multilevel Predictive approach is also the least variable.!?

These results demonstrate that in spite of the fact that the OLS and prior
prediction rules are based on predictive densities which are optimal in the sense
of the Kullback-Leibler divergence criterion as employed by Levy & Perng
(1986), the predictive performance of the multilevel prediction rule is supe-

rior. Part of the reason for this result may arise from the fact that we have

2For the J=100, n=10 specification, the standard deviations of SSE for the multilevel,
prior, and OLS methods are 3.678, 5.357, and 3.982, respectively.
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restricted the collection of possible density estimators to a subset of prediction
densities. This restriction, although possibly useful for theoretical purposes of
density estimation, has clearly failed to produce the best density with respect
to predicting future observations. Indeed, Levy & Perng (1986) employ this
particular restriction in order to demonstrate their result with respect to sev-
eral other commonly used predictive densities that also belong to this restricted
set, of predictive densities; whether this set is a reasonably large collection of
predictive densities is not their main concern. For the multilevel model at

least, our results indicate that this collection needs to be larger.
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Figure 1: J=25; n=10,25,50 for Multilevel, Prior and OLS MSE over 100
Simulations
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Figure 2: J=50; n=10,25,50 for Multilevel, Prior and OLS MSE over 100
Simulations

3 Summary

A predictive density for the multilevel model has been derived in order fa-
cilitate the prediction of future observables in multilevel data. Based upon this
predictive density, three prediction methods have been examined: multilevel,
prior, and OLS prediction. The OLS prediction method corresponds to deriv-
ing a predictive density separately in each group, while the prior prediction
method corresponds to deriving a predictive density for the entire model. The
multilevel prediction method merely adjusts the Prior prediction method by

using a well known result from multilevel model estimation. The adequacy of
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Figure 3: J=100; n=10,25,50 for Multilevel, Prior and OLS MSE over 100
Simulations

prediction has been assessed through both predictive intervals and predictive
mean square error (PMSE). Based on simulated multilevel data, the multilevel
method is superior. This indicates that for the multilevel model the restric-
tion used by Levy & Perng (1986) in the context of the normal linear model
is possibly overly conservative.

The differential gain in prediction for the multilevel method, however, is
not incredibly large, nor does this differential gain increase appreciably as the
design conditions tend towards smaller J and n, i.e., specifications where we
would expect the multilevel method to outperform the OLS method. To be
sure, our results might vary if we widen the J x n space or change other design
parameters aside from J and n, e.g., the various parameters of Table 1. In the
sequel we explore this enhanced design space and also present a decomposition
of prediction error to assess the relative costs of missing data and parameter

estimation.
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