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Abstract

Despite numerous studies in the field of dementia and Alzheimer’s disease (AD), a

comprehensive understanding of this devastating disease remains elusive. Bulk tran-

scriptomics have provided insights into the underlying genetic factors at a high level.

Subsequent technological advancements have focused on single-cell omics, encom-

passing techniques such as single-cell RNA sequencing and epigenomics, enabling the

capture of RNA transcripts and chromatin states at a single cell or nucleus reso-

lution. Furthermore, the emergence of spatial omics has allowed the study of gene

responses in the vicinity of amyloid beta plaques or across various brain regions. With

the vast amount of data generated, utilizing gene regulatory networks to comprehen-

sively study this disease has becomeessential. This reviewdelves into some techniques

employed in the field of AD, explores the discoveriesmade using these techniques, and

provides insights into the future of the field.
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1 INTRODUCTION

Dementia is a complex condition characterized by cellular dysfunction

in the brain, leading to the loss of synapses, cell death, inflamma-

tion, gliosis, and disruption of memory and cognitive processes.1

Alzheimer’s disease (AD) is the most prevalent form, accounting for

60% to 80%of cases.2 One in three seniors pass awaywith Alzheimer’s

or another form of dementia, surpassing the combined mortality of

breast and prostate cancer.2 The economic burden attributed to AD

and related dementias in 2023 amounts to a staggering $345 billion

for the nation, a figure that does not even encompass the substantial

value of unpaid caregiving.2 The costs associated with healthcare and
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long-term care for individuals afflicted by dementia are notably high,

rendering it one of the most financially burdensome conditions soci-

ety faces.2 Hence, from the perspectives of maintaining a sustained

quality of life and alleviating the substantial financial encumbrances,

there exists an urgent imperative to comprehensively comprehend and

effectively address this debilitating disorder.

Neuronal loss and damage are the hallmarks of AD.3 The “amyloid

cascade hypothesis” introduced an amyloid beta (Aβ)-centric mech-

anism for AD pathology, where the accumulation of Aβ plaques in

parenchyma leads to cerebral amyloid angiopathy, neurofibrillary tan-

gles, and glial responses, alongside the absence or degradation of

neurons and synaptic connections.4 Anti-Aβ monoclonal antibodies
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have been developed as major therapeutic interventions against AD.

Lecanemab is one such drug recently approved by the Food and Drug

Administration, a humanizedmonoclonal antibody that bindswith high

affinity to Aβ-soluble protofibrils and removes them.5 In individuals

with early AD, this drug was associated with reduced brain amyloid

levels and slowed cognitive decline over 18 months but was also asso-

ciated with adverse events.5 Therefore, further research and longer

trials are necessary to determine the safety and efficacy of these

interventions.6 The precise mechanisms underlying neuronal loss in

AD remain incompletely understood, despite a host of mechanisms

having been introduced. Among these mechanisms, the accumulation

of misfolded proteins, including Aβ and tau, leading to the forma-

tion of toxic aggregates causing neuronal damage and eventual cell

death, stands as a pivotal contributor.7 Oxidative stress, arising from

an imbalance between the production of reactive oxygen species

and the body’s antioxidant defenses, represents another significant

pathway.8 Chronic inflammation in the brain, as well as excitotoxicity,

a phenomenon wherein neurons are overstimulated by neurotrans-

mitters, further contributes to neuronal depletion in AD.9 Moreover,

studies have demonstrated reduced cerebral blood flow and glucose

metabolism as well as an increase in brain’s vascular resistance both

in human AD patients and in mice overexpressing amyloid precursor

protein (APP) and apolipoprotein E (apoE)4 protein.10

In all of the suggested mechanisms, there is considerable interplay

between the genes involved, the transcription factors (TFs), splicing

factors, chromatin state, proteins, and other metabolites. These mech-

anisms can also interact with each other and lead to a complex cascade

of events that ultimately results in AD pathology and cognitive decline.

Gene regulatory networks (GRNs) and systems biology approaches

yield computational models of gene regulation in the form of net-

works, visually shown in topological graphs, helping to decipher the

complex molecular landscape of AD.11–15 In its simplest representa-

tion, a GRN maps the interactions between TFs and their potential

target genes, with nodes representing TFs and genes, and the edges

denoting the regulatory interactions between them.12 Bulk profiling,

while providing averaged signals across cell types in a tissue sample,

fails to distinguish regulatory programs specific to particular cell types

or states.12 Notably, transcriptomic data alone do not capture the

full scope of regulatory mechanisms, including the post-translational

modifications, genomic structure and accessibility, chromatin states,

and the abundance of TFs and cofactors. The incorporation of these

data can enrich GRNs to more accurately represent regulatory mech-

anisms in vivo. For instance, integrating chromatin accessibility data

refines TF-gene connections by accounting for gene “openness” and

factoring in cis-regulatory elements in GRN inference.12 Single-cell

multi-omics provide genomic, transcriptomic, and chromatin accessi-

bility information that can be leveraged to infer TF-gene interactions

across various cell types.12 Consequently, GRNs derived from single-

cell data offer insights into cellular responses to both intra- and

extracellular signals in AD. However, single-cell datasets present their

own set of challenges, such as cellular heterogeneity, variable sequenc-

ing depth across cells, significant sparsity from dropout events, and

influences from the cell cycle.16 Despite these challenges, more than a

RESEARCH INCONTEXT

1. Systematic review: In conducting this review, we

employed a methodology that integrated literature

search and data analyses from published Alzheimer’s

disease (AD) datasets, incorporating contributions from

esteemed institutions such as the Swarup lab, renowned

for their expertise in AD single cell/nucleus research.

Our approach involved a comprehensive exploration of

single-cell and multi-omics experimentations, specifi-

cally focusing on transcription profiles and epigenomic

changes, notably those identified through transposase-

accessible chromatin with sequencing (ATAC-Seq)

profiling. This allowed us to gain insights into crucial

transcription factors and their interactions with target

genes, examining whether these interactions lead to

transcription. This process ensured a robust foundation

for our interpretations.

2. Interpretation: This review underscores the importance

of the network analysis approach as an integrated

method. Conducting separate and joint network analy-

ses of single-nucleus (sn)RNA-seq and ATAC-seq modal-

ities provides a comprehensive understanding of dys-

regulated genes, genes with similar expression patterns,

and integrations between target genes of specific AD-

associated transcription factors. These approaches offer

holistic insights, allowing us to navigate the vast vol-

ume of high-throughput data generated, and further our

understanding of AD pathogenesis.

3. Future directions: The crucial and pivotal question that

remains unanswered iswhether the gene networks found

in AD mouse models are similar and translatable to

humans. This is of utmost importance in developing

mouse models that can accurately represent the dis-

ease as model organisms, thereby ensuring the reliability

of the results obtained from them. Furthermore, the

multi-omics field still needs to achieve true single-cell

resolution. Insights from AD studies have revealed that

cell types like microglia exhibit distinct states in disease

conditions. Studying these states at the single-cell level

enables us to better comprehend the genes contributing

to these conditions.

dozen methods for inferring GRNs from single-cell datasets have been

introduced.16 Choosing the most suitable method is complex, com-

pounded by the absence of universally accepted benchmark data for

methodvalidation and thevarietyof benchmarks employed toevaluate

and compare thesemethods.16

To understand the phenomena of neuronal loss and damage,

it is necessary to meticulously characterize cell types and their
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interactions, both intercellular and intracellular, within tissues and

among the cells themselves.17 For example, it is known that glial

cell types, such as microglia, normally function to protect the brain

environment.18 However, in AD this cell type transitions into other

states that exacerbate inflammation.19–21 Excitatory and inhibitory

neuronal cell types exhibit altered subpopulations in AD, accom-

panied by synaptic dysregulation.22–25 Studying these changes can

further elucidate the neuronal loss pathology. Additionally, cell-type

specific genetic variants in AD contribute to the dysregulation of

amyloid metabolism, tau protein function, synaptic activity, and

inflammation.26,27 A classic example is the APOE ε4 allele, known as

the strongest genetic risk factor for sporadic AD, which is reported

to be expressed predominantly in A1 reactive astrocytes.28 On the

other hand, the APOE ε2 allele is known to be the strongest genetic

protective factor against AD, as determined by multiple large-scale

genome-wide association studies (GWAS) and meta-analyses.26 Since

non-neuronal cells largely express the APOE gene, astroglia and

microglia are essential cell types that warrant further transcriptomic

investigation at single-cell or single-nucleus resolution.26

In this review, we summarize the advances made in single-cell

multi-omics and how these new methods have accelerated our under-

standing of the disease pathogenesis and molecular programs asso-

ciated with the disease at single-cell resolution. We also summarize

how newer methods like spatial transcriptomics and proteomics hold

promise to unravel novel disease biology by delving deeper into the

diseasemechanism.

2 BACKGROUND

Since 1907, when Alois Alzheimer employed Bielschowsky’s silver

stainingmethod to observe the degenerating neurons characterized by

bundles of fibrils and miliary foci of silver-staining deposits scattered

throughout the cortex,29 the landscape of AD research has undergone

a remarkable transformation. Subsequent biochemical assays, includ-

ing electron microscopy, immunoblotting, and immunohistochemistry,

identified Aβ as a major component of the plaques observed earlier.

GWAS then identified several risk factors associated with late-onset

AD including APOE, CLU, PICALM, and BIN1.30,31 Majority of AD cases

are sporadic, and the associated triggers are complex and can be con-

nected to both genetics and environmental elements such as stress,

sleep abnormalities, and traumatic brain injury.32–34

The familial AD cases, accounting for approximately 0.6% of AD

cases, have been connected to the mutations in presenilin1 (PSEN1),

presenilin 2 (PSEN2), APOE ε4, and the amyloid precursor protein (APP)

genes.33,34 Mutations in these genes result in aberrant amyloid beta

productions and aggregation.32,33

Currently, AD is primarily characterized by two main pathologi-

cal features: extracellular Aβ plaques and intracellular neurofibrillary

tangles (NFTs) made of hyperphosphorylated tau protein in the brain

along with the presence of cognitive decline as individuals age.33,35

Essential to comprehending the initiation of Aβ pathology is under-

standing how Aβmonomers are generated, removed from the system,

and aggregated into oligomeric Aβ.33 Aβ pathology emerges from

the improper breakdown of APP, resulting in the formation of Aβ
monomers which then create oligomeric Aβ aggregates.36,37 These

oligomers eventually accumulate into Aβ fibrils and form plaques.

Although the role of APP is not fully understood, it is thought to play

a role in cellular health and growth.36 APP normal processing involves

nonamyloidogenic proteolysis of APP via a- and λ-secretases, gener-
ating soluble fragments. Erroneous APP processing with β-secretase
and λ-secretase leads to insoluble amyloid beta peptides, aggregat-

ing to form Aβ plaques.33,36,38 Faulty decomposition of APP results

in formation of Aβ42 amino acid long fibrils elevating the Aβ42/Aβ40
ratio, exacerbating plaque formation.4 Amyloid plaques thenaggregate

and cluster together in between neurons, interfering with communi-

cation between neurons, disrupting cellular functions, and triggering

harmful inflammatory responses in the brain.9 The exact role of Aβ in
the progression of AD pathology remains unclear, as Aβ plaques can

accumulate in the brain for up to a decade before any noticeable AD

symptoms or diagnosis occur.9 Because of this disconnect between

pathology and clinical diagnosis in ADpatients, understanding changes

in gene expression will delve deeper into the intricate nuances of

mechanisms giving rise to AD.39

Hyperphosphorylation of tau, a microtubule-associated protein

stabilizing microtubules, leads to NFTs—another fundamental AD

pathology.1,40,41 Normal tau phosphorylation is essential for regulat-

ing microtubule-dependent axonal transport by allowing tau to detach

frommicrotubules, facilitating intracellular trafficking.9 Dephosphory-

lation then allows the return of tau to the microtubules and stabilizing

their cellular structure. Conversely, abnormal phosphorylation of tau

contributes to neurodegeneration in AD by causing tau to dissociate

from themicrotubules, leading to the collapse ofmicrotubule structure

and subsequent disruption of cellular morphology.9,41 Hyperphos-

phorylated tau aggregates into tangles, giving rise to NFTs, which

disrupt cellular functions, lead to neuronal disruption, and eventually

result in apoptosis.41,42 Following this line of thought, high-throughput

sequencing methods provide insights into the heterogeneous nature

of AD, uncovering the critical juncture at which plaques and tau

processingmay transition into a toxic state.39

In the context of AD and neurodegenerative disorders, bulk tran-

scriptomic analysis has revealed distinct gene expression patterns

across different brain regions.38,43,44 In bulk-tissue sequencing stud-

ies, the gene expression profiles of interest are obtained by averaging

signals across all cells within a sample. This technique is advantageous

when assessing gene expression changes across brain regions, provid-

ing information on coherent cellular mechanisms that are associated

with cognitive decline and neuropathological changes.45 This approach

offers an unsupervised, tissue-specific perspective, identifying tran-

scriptional programs linked to disease phenotypes independent of

biases arising from prior research focused on specific genes and

pathways. For example, Neff et al. explored molecular heterogeneity

in AD across five brain regions.45 Their multiscale network analysis

reported subtype-specific drivers, including GABRB2 (neuronal),

LRP10 (astrocytes),MSN (microglia), PLP1 (oligodendrocytic gene), and

ATP6V1A (neuronal gene).45 Guennewig et al. examined tau deposition
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from the precuneus to the less affected primary visual cortex.38 By

combining up- and down-regulated genes for gene ontology (GO)

analysis, two major themes emerged among the enriched biological

pathways: exocytosis (eg, STXBP2 and NSF) and immune function.38

High-dimensional data from bulk-tissue RNA sequencing are analyzed

using correlation networks to identify interconnected expression

changes across cell types. This approach, termed weighted correla-

tion network analysis (WGCNA),14 identifies pairwise relationships

among gene transcripts and reports a set of genes that show similar

changes in their expression profiles, known as co-expressed modules.

These modules can be assigned to a particular cell type, given the

cell-type specific gene marker expression profiles.14 The resulting

co-expressed modules are then correlated with clinical pathologies,

cognitive decline, and amyloid pathology. This reveals cell type-specific

alterations linked to clinical phenotypes, thereby connecting clinical

diagnosis and pathology with cell type expression patterns. Our lab

conducted a consensus WGCNA analysis on combined single-cell

and bulk RNA sequencing (RNA-seq) data from early- and late-stage

AD cases, along with pathological controls with additional samples

from the Religious Orders Study and Memory and Aging Project

(ROSMAP).23 This analysis investigated shared expression profiles

across these brain banks, and found46,47 four co-expressed oligoden-

drocyte modules (OM1, 2, 4, and 5) that were significantly correlated

with AD.23 These findings underscore the need for more targeted

investigations into cell type–specific changes in AD.

Though cell type changes can be inferred using bulk RNA-seq,

this approach has limitations in accurately characterizing the intri-

cate biology of the brain, which consists of diverse neuronal and glial

cell types with distinct regional specificity. Moreover, bulk profiling

provides mixed measures across cell types and cannot distinguish reg-

ulatory mechanisms unique to cell types and states.12 To overcome

bulk RNA-seq limitations, single-cell RNA-seq (scRNA-seq) methods

employ nucleotide barcoding strategies to trace sequencing reads back

to their respective cells.48–50 Unlike bulk RNA-seq, which generates a

single data point per gene for each sample, scRNA-seq provides data

at the cellular level, resulting in hundreds to tens of thousands of data

points per cell, depending on themethodology.35,51

3 SINGLE-NUCLEUS TRANSCRIPTOMICS
ELUCIDATES CELL TYPE–SPECIFIC ALTERATIONS IN
AD

Recent advances in single-cell omics technologies have resulted in a

menagerie of datasets available from various modalities. Single-cell

transcriptomic data typically contains the transcriptional profiles of

thousands to millions of individual cells, with each cell expressing tens

of thousands of genes that may reveal regulatory mechanisms in a

cell type–specific manner. This substantial increase in data granular-

ity enables us to study how specific cell types respond to diseases,

especially in the context of neurological disease risk signals. How-

ever, this wealth of information has also created a confusing landscape

where common or critical mechanisms are obscured among the het-

erogeneous nature of each dataset, specific to a disease. The volume

and complexity of single-cell data require the development of robust

computational methods to accurately and holistically interpret the

data, extracting meaningful biological insights. These methods include

strategies for cell type identification, differential gene expression

(DGE) analysis, and integration of data from multiple samples and

various modalities.52–54

3.1 Single-nucleus RNA-seq

3.1.1 Methods in single-nucleus RNA-seq

Currently, two primary approaches are used for measuring the quan-

tity of mRNA transcripts per cell in single-cell and single-nucleus

RNA-seq (snRNA-seq) methods. The first approach is the plate-based

protocols, where cells are isolated onto plates. The other is droplet-

based techniques, such as those employed by 10x Genomics, which

use microfluidic partitioning to combine single cells, reverse tran-

scription (RT) reagents, gel beads with barcoded oligonucleotides, and

oil on a microfluidic chip to create reaction vesicles known as gel

beads-in-emulsion (GEMs) or, droplets. Ideally, each droplet contains

a single cell, a barcoded gel bead, and reagents including reverse

transcriptase, polymerase, and nucleotides. Within each GEM, the

cell is lysed, the gel bead is dissolved to release the identically bar-

coded RT oligonucleotides into solution so the reverse transcription of

the polyadenylated mRNA occurs. Next-generation sequencing (NGS)

libraries are created from these barcoded cDNAs and profiled by a sin-

gle cell profiler, such as the 10x Genomics Chromium Platform. The

mRNAreads, typically taggedwith cellular barcodes or a uniquemolec-

ular identifier (UMI), are aligned to the reference genome to trace back

to their cells of origin. The resulting output is a count matrix repre-

senting cells by genes, which serves as input for downstream analysis

(Figure 1A).

While single-cell studies offer amore nuanced understanding of cell

type–specific responses to AD, no single dataset can capture the full

heterogeneity of the disease. Our lab is addressing this challenge by

aggregating hundreds to thousands of samples, which involves collect-

ing datasets fromvarious sources, performing quality control (QC), and

integrating them for a comprehensive view.

3.1.2 Demonstration and walk-through of
snRNA-seq analysis approaches

For demonstrating the pipeline, we have merged snRNA-seq data

from the following publications in the field of AD and dementia asso-

ciated disorders: Morabito et al. (2020), Swarup et al. (2021), Mathys

et al. (2019), Leng et al. (2021), Miyoshi et al. (2023), and Seattle

Alzheimer’s Disease Brain Cell Atlas (SEA-AD),23,42,55–58 totaling 349

samples, 1.3 million cells, and 25k genes after the initial QC process

(Figure 1B). While analysis approaches are continually evolving, we

have adopted the following workflow for single cell/nucleus RNA-seq
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F IGURE 1 Schematic workflow of single-cell/nucleus data acquisition and analysis. (A)Workflow of snRNA-seq and spatial transcriptomics.
(B) Demonstrated tentative workflow of snRNA-seq data analysis utilizing Scanpy toolset.121 Publicly available datasets from six dementia and AD
studies initially go through CellBender59 to remove noise and are thenmerged. Data are next QC-filtered to control for highmitochondrial counts,
UMI counts, genes that are only expressed in very few cells, as well as the total number of transcripts in a cell, and are visualized using violin plots.
Resulting dataset contains 1.3million cells each harboring 25.5k genes. After normalizing the data, data are corrected for batch effects emerging
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studies, inspired by the guidelines by Luecken et al.54 Sequencing

can introduce random noise, potentially obscuring biological signals.

During QC, ambient RNA and technical artifacts are removed using

software including CellBender and SoupX.59–60 Technical variances in

sample and library preparation, biological phenomena, or a mix of the

two, can result in some cells having a low number of detected genes,

a high fraction of mitochondrial counts, or low count depth. These

cells are commonly classified as low-quality cells and are filtered out.

Additionally, empty droplets and doublets are identified by transcript

counts, or by using algorithms including scDblFinder61 and Scrublet62

that infer doublets by simulating doublets through combining counts

from random pairs of cells.61,62 Next, a k-nearest-neighbor (KNN)

classifier is built based on the observed cells and simulated doublets,

and the algorithm assigns a doublet score to each cell.61,62 Post-QC,

the data undergo normalization and scaling to ensure comparability

across cellular profiles, preparing them for subsequent analytical steps.

Datasets with multiple samples often contain technical variations that

may be mistaken as actual biological signals, which are mitigated

using tools including Harmony and Scanorama.63,64 For more complex

computations including integration and batch correction for bigger

datasets, deep learning tools include scANVI, scVI, and scGen are

employed.65–68 Dimensionality reduction techniques including princi-

pal component analysis (PCA) are applied to the data for visualization,

alongsidemethods including UMAP, t-SNE, and PHATE.69

Todiscernbiologically relevant clusters, cellswith similar expression

patterns are grouped together using Louvain and Leiden community

detection-based algorithms.70 These methods are applied to the KNN

graph, and depending on the chosen resolutions, varying numbers of

clusters are obtained. The Leiden algorithm is a successor of Louvain

and is recommended over Louvain.70 Clusters are annotated with cell

type identities based on specific gene markers, or through label trans-

fer from other references. Statistical tests such as generalized mixed

effect models including MAST are conducted to compare clusters, and

find differential gene expression patterns in various cell states. An

alternative approach in snRNA-seq in getting DGE involves aggregat-

ing counts per sample into creating pseudobulks, followed by bulkDGE

analysis using DEseq2, edgeR, or Limma.71–73 Downstream analysis

includes summarizing gene expression findings using gene set enrich-

ment analysis platforms like MSigDB, Gene Ontology, KEGG, or Reac-

tome to identify regulated processes in AD.74–77 Cell-cell communica-

tions across cell types and in different brain regions are inferred using

ligand-receptor databases such asCellChat, CellPhoneDB, CellTalkDB,

andSingleCellSignalR tounderstand cellular cross talks inAD.78–81 Sun

et al. consolidated data from the four databases to highlight interact-

ing cell pairs via ligand receptor signaling pathways.82 Changes in cell

expressions, as indicated by variations in gene marker expression pro-

files, can be used to identify co-expressedmodules associatedwith cell

types. To infer GRN in AD, high dimensional WGCNA (hdWGCNA),

developed by our lab, generates co-expressed networks and identi-

fies cell type–specific co-regulated modules that can be associated

with cognitive decline and AD pathology.13 This suggested pipeline

produces results that ultimately must be validated before drawing

substantive conclusions.

3.1.3 SnRNA-seq findings in human samples

Recent studies have used snRNA-seq from postmortem human brain

samples at various stages of AD to gain deep insights into cell type–

specific changes in the disease. We have summarized some of the

recent studies in Table 1.Otero–Garcia et al. reported on high through-

put profiling of NFT-bearing neurons compared to NFT-free somas

from the same sample tissue.40 Single soma RNA-seq in these sam-

ples revealed subpopulations of excitatory and inhibitory neurons

with varying susceptibilities to NFT formation, with subclusters of the

excitatory neurons showing higher propensity for NFT formation.40

Synaptic transmission was the common pathway in NFT-affected neu-

ronal cell types.40 Despite the neuropathological features known

today, the presence of the histopathology does not always directly

correlate with cognitive decline or an AD diagnosis.

Sustained inflammatory response fuels neurodegeneration in

AD.17,43 Glial cells, particularly microglia and astrocytes, profoundly

contribute to this inflammatory response by dysregulating neu-

ronal Ca2+ homeostasis, Aβ clearance, and overall brain function.17

Depending on the disease stage and regional location, these cell

types can exhibit multiple reactive phenotypes, both neurotoxic

and neuroprotective. Olah et al. explored microglial heterogeneity

using scRNA-seq and reported clusters enriched for disease-related

genes and signatures.14 Additionally, vascular factors contribute to

AD through arterial hardening, known as atherosclerosis, leading to

reduced blood flow and oxygen. The decomposition of the blood-brain

barrier (BBB) impairs the clearance of toxic aggregates and disrupts

glucose supply. Consequently, loss of neuronal connections and cell

death results in brain atrophy and volume loss.83

RNA in situ hybridization results have demonstrated a reduction

in excitatory neurons and the downregulation of NTNG1, which is

involved in the regulation of neurite outgrowth reported by Mathys

et al.56 AD transcriptomics studies have also shown an upregula-

tion of LINGO1, which is a negative regulator of myelination.56 Lipids,

critical for membrane structural integrity, are a known risk factor

from integrating samples across different studies. Next, data are clustered using the Leiden algorithm,70 resulting in 32 clusters, which are then
annotated for cell types using known genemarkers. Overlayingmetadata including diagnosis (AD vs control) and sex on the clusters can provide
insight into which cell types are enriched in AD versus control. Downstream analysis includes finding control versus AD cell type–specific
differentially expressed genes, gene regulatory network analysis, trajectory analysis, and GO enrichment to further understand the AD associated
changes and cell states transitioning from control to AD. AD, Alzheimer’s disease; DGE, differential gene expression; GO, gene ontology; GRN,
gene regulatory networks; hdWGCNA, high dimensional weighted correlation network analysis; NGS, next-generation sequencing; QC, quality
control; snRNA-seq, single-cell RNA sequencing; UMI, uniquemolecular identifier.
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TABLE 1 Recent transcriptomics, multi-omics, and spatial single nuclei RNA-Seq studies.

Study (Author, Year) Cohort size+Assay Brain region Main takeaways

(Mathys et al., 2019) 48 individuals,

snRNA-seq

Prefrontal cortex

(PFC)

Profiled 80,660 single nucleus transcriptomes. Suggest a

myelination-related processes in AD pathogenesis. Sex-specific

differential transcriptional response to AD pathology.Males and

Females differed in EX andOLIG responses to AD pathology. Significant

association between the volume of whitematter lesions in females and

lower cognition.

(Grubman et al., 2019) 12 individuals,

snRNA-seq

Entorhinal cortex Profiled 13,214 nuclei. In AD individuals, APOE is repressed in OPC and

AST, upregulated inMIC in AD. High expression of LINGO1 andNEAT1
in AD subclusters. TFEB gene, upregulated in diseased astrocytes, acts
upstream of ten GWAS loci for AD (BIN1, CLDN11, POLN, STK32B,
EDIL3, AKAP12,HECW1,WDR5, LEMD2, andDLC1).

(Del-Aguila et al., 2019) Three individuals,

snRNA-seq

Parietal lobe Single-nuclei molecular atlas of AD brains carrying pathological mutations

in PSEN1 and related sporadic AD. Shows a decrease in EX neurons in

brain carrier of PSEN1

(Zhou et al., 2020) 32 individuals,

snRNA-seq

Dorsolateral PFC Analyzed 66,311 nuclei from human brain AD. NEFL andNEFMwere

underrepresented in AD compared to normal samples. Higher AST in

AD. Upregulation of SORL1, A2M, CHI3LI, IRF8, IBA1, CD68,HLA-DR,
and homeostatic genes (TMEM119, CX3CR1, P2RY12) in AD. Signature
of human glial cells in AD is distinct fromDAM in 5XFADmodel.

Downregulation of genes promotingmyelination in AD, for example,

STMN4, SEMA3B,MIR219A2

(Morabito et al., 2020) Five individuals,

snRNA-seq

Frontal cortex Profiled 27,321 nuclei on healthy aged human brains, excitatory, and

inhibitory neuronal subpopulations significantly decreasedwith late

stage pathology

(Leng et al., 2021) 10 individuals,

snRNA-seq

Caudal entorhinal

cortex (EC) and

superior frontal

gyrus (SFG)

Profiled 42,528 cells from the EC and 63,608 cells from the SFG. A

specific subpopulation of excitatory neurons in the entorhinal cortex,

characterized by RORB expression is highly susceptible to AD. Also
found an AST subpopulation in ADwith decreased homeostatic gene

expression (reactive AST).

(Lau et al., 2021) 21 individuals,

snRNA-seq

PFC Profiled 169,496 nuclei.

Reduced proportions of neuroprotective astrocytes and oligodendrocytes

as well as the increased proportions of endothelial cells. Dysregulated

pathways in endothelial cells are associated with angiogenesis and

antigen presentation.

(Davila-Velderrain et al.,

2021)

112 individuals,

snRNA-seq

Hippocampus and

entorhinal cortex

Profiled 489,558 nuclei. Early stage AD is characterized by dysregulation

of cellular and cholesterol metabolism and is a diverging stage. Late

stage AD is characterized by alterations in neurotransmission, cellular

stress, apoptosis, and DNA damage across cell types. CA1 pyramidal

neuronsmost transcriptionally altered, CA3 and dentate gyrus granule

neurons the least.

(Yang et al., 2022) 17 individuals,

snRNA-seq

Hippocampus and

superior frontal

cortex

Profiled 143,793 nuclei. Defined two subtypes of human pericytes,

marked by solute transport and ECMorganization. Selective

vulnerability of ECM-maintaining pericytes and gene expression

patterns that implicate dysregulated blood flow in AD. Vascular cells

having an auxiliary role through shared endocytosis and inflammatory

pathways

(Otero-Garcia et al.,

2022)

Eight individuals,

snRNA-seq

PFC NFTs represent a cellular response rather than a direct cause of cell death

(Alsema et al., 2020) 27 individuals,

snRNA-seq

Superior parietal lobe

superior frontal gyrus

Transcriptomic differences between AD and controls were not detected

but were present between AD and controls with Aβ plaques and/or
hyperphosphorylated tau

(Marinaro et al., 2020) 16 individuals,

snRNA-seq

PFC Studiedmonogenic AD, found reduction in neurons (NeuN+) in

monogenic AD patients with PSEN1 or APPmutations, lowermRNA of

neuronal and glial nuclei. CLU, PTK2B, ABCA7, BIN1, upregulated, and
SORL1, APP, PICALM, CNTNAP2,MEF2C downregulated in neurons.

(Continues)
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TABLE 1 (Continued)

Study (Author, Year) Cohort size+Assay Brain region Main takeaways

(Gerrits et al., 2021) 18 individuals,

snRNA-seq

Occipitotemporal

cortex

and fusiform gyrus

Profiled 482,472 nuclei. 2500 AD-associated differentially expressed

genes inmicroglia. Two distinct AD-associatedmicroglia profiles were

identified that are associated with either amyloid-β (AD1) or
hyperphospho-tau (AD2). AD1-microglia are similar to

phagocytic/activated profiles in amyloidmousemodels.

AD2-microglia have not been identified before andmay be tissue

supportive or responsive to neuronal loss.

(Olah et al., 2020) 17 individuals,

snRNA-seq

14Dorsolateral PFC

and 3 temporal

cortex

Exploredmicroglial heterogeneity from 16,242 cells, resulting in nine

microglial subpopulation, with 1 subtype showing altered frequency in

AD histologically. Unlikemanymousemodels with accelerated amyloid

or tau proteinopathy, there does not seem to be a strong proliferative

component tomicroglia in AD based on histological studies

(Xu et al., 2021) Five individuals,

snRNA-seq

PBMCs Profiled 36,849 peripheral bloodmononuclear cells fromAD patients

with amyloid-positive status and normal controls with amyloid negative

status. Speculated that the peripheral adaptive immune response,

especially mediated by T cells, may have a role in the pathogenesis of

AD

(Gate et al., 2020) 18 individuals,

snRNA-seq

Peripheral CD8+

TEMRA;

CSF cells

Identified an adaptive immune signature of AD that consists of increased

peripheral CD8+ TEMRA cell.

(Smith et al., 2019) 12 individuals,

snRNA-seq

Entorhinal and

somatosensory

cortex

Profiled 52,706 astrocytes and 27,592microglia. Soluble biomarkers of

AD in astrocytes (CLU) andmicroglia (GPNMB). Astrocytes and
microglia involved in pathological protein clearance and inflammation.

Also showed glial transcriptional diversity in AD.

(Dileep et al., 2023) 47 individuals,

snRNA-seq

PFC Profiled 5821 cells post filtering. DNA double-strand breaks lead to

mosaic genome structural variations and the disruption of 3D genome

organization in neurons. Observed increasedmosaic gene fusions

caused by genome structural variations in excitatory neurons

associated with increased cohesin, DNA damage, and senescence-like

gene expression in AD.

(Mathys et al., 2023) 427 individuals,

snRNA-seq

PFC Profiled 2.3million nuclei. Coordinated increase of the cohesin complex

andDNA damage response factors in AD. Somatostatin inhibitory

neuronal subset depleted in AD, while another inhibitory neuronal

subtype linkedwith preserved cognitive in aged individuals.

(Corces et al., 2020) 39 individuals,

Multi-omics

Isocortex, striatum,

hippocampus, and

substantia nigra

snATAC-seq+H3k27ac HiChIP+Bulk ATAC-seq

Analyzed profile accessibility of 70,631 individual cells. Provided

epigenetic characterization of the role of inherited noncoding variation

in AD and PD. Predicted functional SNPs, nominated gene and cellular

targets for each noncoding GWAS locus such as BIN1 in AD and STAB1
in PD. Epigenomic analysis of theMAPT locus showed a long-distance
putative regulatory element located 650 kb upstream of theMAPT gene
that showed elevated interactionwith theMAPT promoter specifically

in the H1 haplotype. They also identified H2-specific 3D interactions

between a putative domain boundary upstream ofMAPT and the region
surrounding the KANSL1 promoter located 330 kb downstream of

MAPT

(Morabito et al., 2021) 20 individuals,

Multi-omics

PFC snRNA-seq+

snATAC-seq

Multi-omics profile of 191,890 in late-stage AD. Identified cCREs and

associated target genes in AD in a cell-type specific manner. Observed

differential enrichment of SREBF1motif with decreased accessible

binding sites in AD and decreased gene expression of SREBF1 in
oligodendrocytes.

(Continues)
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TABLE 1 (Continued)

Study (Author, Year) Cohort size+Assay Brain region Main takeaways

(Anderson et al., 2023) 15 individuals,

Multi-omics

Dorsolateral

prefrontal cortex

snRNA-seq+

snATAC-seq

Multi-omics profile of 105,332 nuclei in AD. Identified cell-type specific

peak-gene TF trios to identify key TF’s driving AD and identified ZEB1
andMAFB in AD specific trios in neurons andmicroglia respectively.

(Gabitto et al., 2023) 28 individuals,

Multi-omics

Middle temporal

gyrus

snRNA-seq+

snATAC-seq

Report high-quality expression profiles for roughly 1.2million nuclei (14k

per donor), chromatin landscapes for 580,000 nuclei (7k per donor), and

combined expression and epigenomic profiles for 140,000 nuclei (5k

per donor). Results suggest that SA donors undergo global chromatin

repression and shutdown of transcription, consistent with previous

reports studying familial AD in which chromatin re-organization

triggered neuronal identity repression and dedifferentiation

(Sun et al., 2023) 557 individuals,

Multi-omics

PFC, mid-temporal

cortex, angular

gyrus, entorhinal

cortex, thalamus,

and hippocampus

snRNA-seq+

snATAC-seq

Reported that microglia may retain a relatively permissive chromatin

landscape that is crucial to allow dynamic state transitions in response

tomicroenvironment changes. Transitions can bemediated via the

transcriptional activity of master regulator TFs. Poor capture of

microglia transcriptional state diversity by chromatin accessibility

(Xiong et al., 2023) 92 individuals,

Multi-omics

PFC snRNA-seq+

snATAC-seq

Multi-omics profile of 850,00 nuclei in AD. Showed enrichment of AD-risk

loci in microglial enhancers with specific TFs such as SPI1, ELF2, and
RUNX1. Demonstrated the loss of cell-type identity driven by

epigenomic erosion in late-stage AD

(Miyoshi &Morabito

et al., 2023)

Human: 39

Mice: 80,

Spatial

Transcriptomics

Human: cortex

Mice: coronal

sections of brain

hemisphere

Using 10x Genomics Visium, authors studied spatial and temporal

dynamics of gene expression in the disease pathogenesis of both

sporadic AD and AD in DS by using spatial transcriptomic. Found

systems-level differences in the transcriptome between female and

male.

(Chen et al., 2020) Mice: 12

Human: 3 end stage

AD and 3

non-demented,

Spatial

Transcriptomics

Mouse: sequential

10-μmcoronal

sections

Human: Superior

Frontal Gyrus

Using reverse transcription followed by sequencing, this paper

characterizes two gene co-expression networks responsive to Ab

deposition. (1) The 57 plaque-induced genes (PIGs) are involved in

complement, endosomes, oxidation-reduction, and inflammation.

(2) Oligodendrocyte genes (OLIGs) are involved inmyelination and are

depleted in high amyloid accumulation.

(Choi et al., 2023) Mice n= 4,

Spatial

Transcriptomics

10-μmcoronal

sections

Using 10x Genomics Visium, the authors reported gene patterns that

change according to disease progression in each brain region. Initial

molecular changes related to glial cell activation inWMbefore the

changes in GM.

(Chen et al. 2022) Human: 3 Control, 3

AD,

Spatial

transcriptomics

Middle temporal

gyrus

Using 10x Genomics Visium, authors reported anatomical architecture of

cortical laminae and theWM, identified unique gene signatures and

biological pathways that may contribute to the vulnerability of various

AD pathology.

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; AST, astrocytes; cCRE, candidate cis-regulatory element; CSF, cerebrospinal fluid; DAM,

disease-associated microglia; DSBs, double stranded breaks; EX, excitatory neurons; GM, gray matter; GWAS, genome-wide association studies; MIC,

microglia; NEFL, Neurofilament Light chain; NEFM, Neurofilament Medium Chain; NFT, neurofibrillary tangle; OPC, oligodendrocytes; PD, Parkinson’s dis-

ease; SA, severly affected; SNP, single nucleotide polymorphism; snRNA-seq, single-nucleus RNA-sequencing; TEMRA, effectormemory T cells re-expressing

CD45RA; TF, transcription factor;WM,Whitematter.

in neurodegenerative disease as disruptions in lipid metabolism can

adversely affect myelin homeostasis.84 A commonly referred risk fac-

tor in AD is the APOE gene, mainly expressed by astrocytes and

microglia. Apolipoproteins, such as apoB, apoE, and apoJ, as well as

apoC3 and apoA1, combine to form soluble lipoproteins such as high-

density lipoprotein (HDL), playing a vital role in lipid transport in the

blood and cerebrospinal fluid (CSF).85

GWAS have identified the ε4 allele of APOE as a genetic risk factor

for sporadic late-onset AD,26 while the APOE ε2 allele has emerged

as a strong genetic protective factor from extensive large-scale
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meta-analyses.26 NPC intracellular cholesterol transporter 1 (NPC1),

which encodes a cholesterol transporter, has been implicated in AD.

Loss of NPC1 triggers enhanced phagocytic uptake and impaired

myelin turnover in microglia that precede neuronal death.86 AD is also

characterized by DNA damage at neuronal enhancers and promoters.

Immune-related genes including TREM2 (involved in lipid metabolism

in microglia), CD33, and HLA-DR as well as microglia with disease-

associated microglia (DAM) transcriptional profiles that are localized

to plaques also are highlighted in AD. Zhou et al. (2020) found that

certain genes, such as HLA-DR and APOE in microglia, and QDPR, CA2,

and SLC38A2 in oligodendrocytes—previously noted by Mathys et al.

as upregulated—also showed increased levels in their AD samples.51,56

The consolidated findings from Lau et al., Mathys et al. (2019), and

Grubman et al. (2019), suggesting that despite differences in study

cohorts, brain regions sampled, preparation methods, and sequencing

techniques, there is a consistent observation: Dysregulated path-

ways in neurons are commonly associated with synaptic signaling,

while those in oligodendrocytes frequently pertain to myelination

issues.49,56,87

Additionally, some microglia in AD display binding affinity for

SPI1, which encodes the transcriptional repressor PU.1. In brain

endothelial cells forming the BBB, genes like CLDN5 and SLC2A1,

along with various adhesion molecules, exhibit altered expressions.

The contractility of pericytes, which controls vascular dynamics, is

also implicated in the reduced cerebral blood flow associated with

AD.20

3.1.4 SnRNA-seq findings in mouse models

Mousemodels have been fundamental in advancing our understanding

of AD and are typically developed using transgenes that overexpress

human AD associated genes. Mathys et al. used CK-p25 mouse mod-

els, which exhibit a predictable pattern of neurodegeneration within

a compressed time frame.88 Two weeks post p25 induction, in these

mice show DNA damage and increased Aβ levels, progressing to neu-

ronal and synaptic loss with cognitive impairment by 6 weeks, with

NFT-like pathology 27 weeks post p25 induction.88 The authors used

this mouse model to study the microglial response to neuronal cell

death since the p25 transgene is strictly expressed only in excitatory

neurons.88 The authors identified two distinct neurodegeneration-

associatedmicroglia cell states that differ from those in a healthy brain:

an early-response state and a late-response state.88 Late-response

microglia express elevated gene expression levels in several genes

that were also observed to be upregulated in DAM including Cd9,

Itgax, Clec7a, Cd63, Spp1, Fth1, Axl, Lpl, Cst7, Ctsb, Apoe, that is also

accompanied by morphological changes.88 Of the 278 genes signifi-

cantly upregulated in DAM, 202 were also significantly upregulated

in late-response microglia, suggesting a notable overlap between the

expression profiles of DAM and late-response microglia. This observa-

tion is consistent with the idea that theDAMprogrammay be a primed

set of genes that is expressed in response to various homeostatic

disturbances.88

Loss of TREM2 function inADmousemodels hampers themicroglial

ability to surround Aβ plaques, proliferate, and transition to the DAM

state.51 The DAM subtypewas introduced using the 5xFAD transgenic

mouse model, which harbors five mutations in APP and PSEN1 human

genes resulting in excessive amyloid pathology, but no tangles.44,89

Using this mouse model, Zhou et al. investigated gene-expression

changes in AD pathology and TREM2 using snRNA sequencing.51 They

discovered a Trem2-dependent DAMand a novel reactive oligodendro-

cyte population characterized by Serpina3n+C4b+ markers in mice,

with implications for axonal myelination and metabolic responses to

neuronal degeneration.51 Astrocyte profiles suggested a disruption in

metabolic coordination with neurons.51 Moreover, TREM2-R47H and

TREM2-R62H carriers displayed a diminished reactive microglia phe-

notype, highlighting TREM2’s role in ADacross bothmouse and human

species.51 Overall, scRNA-seq and related techniques have revolution-

ized our understanding of AD by providing a granular view of cellular

behavior, heterogeneity, and spatial context. These findings hold the

potential to propel forward diagnostics and therapeutic strategies,

ultimately improving patient outcomes.

3.2 Spatial transcriptomics reveal the role of
cellular interactions and spatial heterogeneity in AD

In AD, microglia and astrocytes undergo abnormal proliferation and

morphological changes giving rise to gliosis, another prominent AD

histopathology.20 Following this ideation, isolation of single cells and

cell types allow for understanding specific cell type responses and reac-

tions to AD pathology. A successful scRNA-seq experiment requires

the isolation of cells from whole tissue, a challenging task due to

the need to avoid cellular stress or death. Neurons, astrocytes, and

oligodendrocytes require specialized tissue dissection protocols for

isolation compared to microglia; however, single-nucleus approaches

have emerged as a viable alternative.49 A major limitation of single-

nucleus studies is the loss of spatial and environmental context. This is

particularly relevant when examining the impact of amyloid plaques on

the surrounding cells, which is not discernible once nuclei are isolated

from their native environment.90 The role of plaque-associated glial

responses in AD is an ongoing area of study. A study by Serrano-Pozo

et al. suggested that the microglial response is proportional to the size

of dense-core plaques, indicating a potential chemotactic effect of Aβ
on microglia. By contrast, the size of these plaques does not appear to

have a similar influence on the astrocyte response.91 The authors also

reported a significantly increaseddensity of astrocytes andmicroglia in

the vicinity of dense-core plaques, compared to regions located further

away (more than 50 μm).91 Considering the importance of molecular

proximity and its effects on interactions, performing transcriptomics

on intact tissues would yield a more accurate understanding of cell

changes in response to environmental cues such as the plaques and

toxic aggregates.Methods that enable extractionof spatial information

in intact tissue are referred to as spatially resolved transcriptomics,

or spatial transcriptomics (ST). Capturing information about cell posi-

tion and its location relative to neighboring cells and tissues provides



RAHIMZADEH ET AL. 3597

valuable insight for understanding the cell state. In the field of neuro-

science, ST removes the need for tissue dissociation of neurons, and

preserves the spatial information of cells.

3.2.1 Methods in ST

Currently, there are two common methods to profile transcriptomes

while preserving spatial information. The first is by imaging mRNAs

in situ via microscopy. This is the foundation of imaging-based spatial

transcriptomics technologies. In situ imaging of mRNAs necessitates

a strategy for differentiating among various mRNA species, for which

there are two primary methods. One is hybridization of mRNAs to

fluorescently labeled, gene-specific probes. Hybridization refers to

polymerization of single-stranded mRNAs to single-stranded probes

with a complementary sequence. This spatial transcriptomics tech-

nique is thus called in situ hybridization (ISH). The other is in situ

sequencing (ISS) of amplified mRNAs, in which transcripts are directly

sequenced inside a tissue block or section by sequencing by liga-

tion (SBL) technology. Among imaging-based technologieswe highlight

ISH-based methods and ISS-based methods. Second, the other broad

method of spatial transcriptomics is to extract mRNAs from the tissue

while preserving spatial information and subsequently profile mRNA

species via NGS techniques. This is the foundation of sequencing-

based spatial transcriptomics technologies (sequencing referring to

NGS rather than ISS). Common methods of preserving spatial infor-

mation are (1) via direct capture and recording of location, such as via

microdissection andmicrofluidics; and (2) via ligation ofmRNAs to spa-

tially barcoded probes in amicroarray. An important goal in the field of

neurodegenerative research and single-molecule analysis is to achieve

true single-cell resolutionand to capture theentire genomicexpression

profile. Table 2 represents currently available and widely used spatial

technologies.

Current spatial analysis methods are limited to DGE compar-

isons between conditions and clusters.52 To overcome patient-specific

heterogeneity observed in clustering analysis, non-negativematrix fac-

torization (NMF) was utilized to identify shared expressionmodules.92

Althoughmatrix factorization is commonly used in scRNA-seq analysis,

the most suitable approach for inferring biologically meaningful gene

expressionprograms remains unclear. Amethod called consensusNMF

(cNMF) accurately inferred identity and activity programs, including

their relative contributions in each cell.92 Additionally, Morabito

et al. introduced the hdWGCNA method to identify co-expression

networkmodules,13 showcasing its application in amouse brain spatial

dataset. In sequencing-based spatial transcriptomics, expression

profiles are localized to spots, each of which may contain more than

one cell. The study addressed the issue of data sparsity in single-cell

and spatial transcriptomics by using “metacells,” which are created

by aggregating transcriptionally similar cells. In a parallel approach,

“metaspots” are formed by aggregating adjacent spatial transcriptomic

spots.13 Module eigengenes (MEs) were used as metrics to sum-

marize the gene expression of a given co-expression module. Other

analyses included using CellChat78 to gain better insights into the

functional communication between cell types and their surrounding

locations.

3.2.2 Findings from ST studies

An important question in AD is the relationship between the neu-

rodegeneration process in AD and amyloid plaques, and whether

proximity would induce trigger the pathogenic response by Aβ depo-
sition. Chen et al. used a combination of spatial transcriptomics and

in situ sequencing on mouse and human brain to demonstrate multi-

cellular gene co-expression networks in AD.90 In detail, the authors

obtained three adjacent coronal sections by cryo-sectioning mouse

brains from APPNL-G-F and C57BL/6 mice 3, 6, 12, and 18 months

of age. Every coronal section contained more than 500 transcrip-

tomic profiles of individual tissue domains (TDs), adding up to 10,327

transcriptomic profiles over 20 coronal sections. Each TD was anno-

tated with spatial, pathological, and cellular information. With ST, the

authors measured in situ in hundreds of small TDs genome wide tran-

scriptomics changes induced by amyloid plaques. An orthogonal in

situ sequencing method visualizing hundreds of selected transcripts

with cellular resolution was also performed. The analysis showed

two gene co-expression networks highly responsive to accumulating

amyloid plaques. Utilizing WGCNA analysis, the authors identified

57 plaque-induced genes (PIGs) over multiple cell types including

microglia and astroglia and in pathways related to oxidation-reduction

and inflammation.90 PIGs are gradually co-expressed with increasing

Aβ load inAPPNL-G-F mice. The second network, oligodendrocyte genes

(OLIGs), included genes involved in myelination and mainly expressed

by oligodendrocytes. An OLIG is activated under mild amyloid stress

but becomes depleted in microenvironments with high amyloid accu-

mulation. This study corroborates the association between DAM and

amyloid plaques. The authors detected 31,283± 7441 uniquemolecu-

lar identifiers and 6578± 987 unique genes per TD. They aligned each

coronal section with 14 anatomical brain regions defined by the Allen

Brain Atlas. Each TD was assigned to one of them. The number of TDs

varied between 112 (entorhinal cortex) and 2114 (thalamus).90 Their

spatial transcriptomics analysis therefore shows that that proximity

to amyloid plaques induce gene expression in inflammation, lysosomal

degradation, and endocytosis. Authors also report oligodendrocytes

specific changes, specifically, increase in myelination gene expression

in response to proximity with plaques.90

In a study conducted by Lu et al., scRNA-seq and spatial transcrip-

tomics on mouse brain tissue were conducted to investigate transcrip-

tional changes in major brain cell types and regions in response to

acute peripheral inflammation.93 Their findings reveal cell type and

spatial-specific molecular responses, suggesting dysregulation of the

BBB and blood-CSF barrier, aswell asmolecular alterations in the amy-

loid plaquemicroenvironment. Spatial transcriptomics unveiled locally

specific transcriptional signatures in the APP/PS1 mouse brains, with

notable gene expression responsiveness to staph infection observed in

the ventricular surroundings. The data further demonstrated that the

choroid plexus (CP) and its ventricular microenvironment responded
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TABLE 2 Spatially resolved transcriptomics platforms.

Platform Capture/ Profile area Tissue Type Advantages and limitations

VizgenMerscope 1 cm2 Frozen/FFPE In situ imaging - Up to 500 targets

- mFISH

- Single cell resolution

- Not whole genome

NanoString CosMx 1.5 cm2 Frozen/FFPE In situ imaging - 1000 RNA and over 60 proteins

- mFISH

- Single cell resolution

Akoya Biosciences

(Codex)

Resolution of 260 nm FFPE In situ imaging - Ab-based

- RNA and protein detection

- 50+ cellular markers at the single-cell level

Rebus Biosystems 3 cm2 Frozen In situ imaging - mFISH

- Up to 30 genes simultaneously

- No proteinmarkers

10x Xenium 12× 24mm2 Frozen/FFPE In situ imaging - RNA and protein detection

- mFISH

- single cell resolution

10x Visium 6.5mm2

(5000 spots)

Frozen/FFPE Spatial NGS - Whole TranscriptomeMapping

- RNA and protein detection

- Not single cell resolution.

Curio 3mm2 Fresh frozen Spatial NGS - Whole genome

- single cell resolution

NanoString GeoMX 5 μm2 to amaximum of

660× 785 μm2

Frozen/FFPE Spatial NGS - Simultaneous ST (thousands to tens of

thousands of genes) and SP (1 nuclear and 3

surfacemarkers)

Abbreviations: FFPE, Formalin-Fixed Paraffin-Embedded; mFISH, multicolor fluorescence in situ hybridization; NGS, next-generation sequencing; SP, spatial

proteomics; ST, spatial transcriptomics.

to acute staph inflammation, displaying upregulated specialized CP

epithelial cell-related genes and ion transport genes.93

Understanding regional susceptibility in AD has become possible

by the means of spatial RNA-seq. In a recent publication by Miyoshi

& Morabito et al., researchers conducted a comprehensive transcrip-

tomic survey of ADusing ST and snRNA-seq techniques. They analyzed

cortical samples from various AD stages, including early-stage AD,

late-stage AD, and AD in individuals with Down syndrome.58 Their

study spotlighted significant changes in ANGPTL and CD99 signaling,

revealing how astrocytes influence brain vascular integrity in AD. By

pinpointing downstream targets of AD-related astrocyte changes, the

researchers shed light on the modulation of astrocytes in AD. Utiliz-

ingmultiscale co-expressionnetwork analysis, they identified166gene

modules across different cortical layers, which they further condensed

into 15 cortex-wide “metamodules.” Crucially, these modules not only

revealed spatial patterns of gene expression but also unveiled tempo-

ral patterns.58 To enhance cross-species comparisons, the researchers

performed ST on 5xFAD and wild-type mouse models. These com-

parisons illustrated dysregulated transcriptomic programs common to

different species in AD. The researchers identified an upregulation

of the glial metamodule M11 in the cortical upper layers during the

disease progression. This module contained DEGs shared between

sporadic AD and AD in individuals with Down syndrome. Cell sig-

naling analysis revealed CD99 and ANGPTL4 as hub genes in M11.

Furthermore, the study highlighted the presence of M11 in regions

with amyloid deposition in bothmouse andhuman samples. This under-

scores the pivotal role of M11’s associated biological processes and

genes in AD pathophysiology.58

3.3 Single-nuclei multi-omics approaches uncover
complex regulatory mechanisms in AD

In the quest to understand the basis of AD, the analysis of snRNA-seq

has been instrumental in elucidating aberrant gene expression pro-

files particularly in the context of different cell types in the brain.56

While snRNA-seq has been helpful in this aspect, it does have lim-

itations in providing a more comprehensive understanding of the

underlying mechanisms responsible for driving these gene expression

changes. Interestingly, a large proportion of genetic variants identi-

fied through GWAS for AD are located within the noncoding regions

of the genome and might exert phenotypic effects by disrupting gene

regulatory elements such as promoters, enhancers, and silencers. For

instance, the intronic variant rs405509 within the promoter region

of the APOE gene, the major risk gene for AD, is associated with

an increased risk for AD in different populations.22,27,94,95 Conse-

quently, there has been an increasing emphasis on using single-nucleus

assay for transposase-accessible chromatin sequencing (snATAC-seq),

a sequencing technique that captures chromatin accessibility that con-

tain active regulatory elements, to study AD. In a study byCorces et al.,
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snATAC-seq was performed on samples spanning different regions of

the brain, uncovering AD-associated single nucleotide polymorphisms

(SNPs) enriched in microglia-specific chromatin accessible regions.25

This finding lends further support to the increasingly recognized role

of microglia in AD.20,96 Furthermore, studies on mouse models of AD

have also proposed that alterations in chromatin accessibility may be

a driver for AD pathogenesis.97 While ATAC-seq can be instrumental

in identifying genomics loci that might be linked to AD, it falls short in

identifying downstream gene targets.

The integration of multiple single-cell omics modalities, commonly

referred to as single-cell multi-omics (scMulti-omics), is essential

towards uncovering intricate relationships and interactions between

different molecular layers providing valuable insights into the regu-

latory networks of diverse cell types and cell states. In the realm of

AD research, the most prevalent multi-omics approach involves the

concurrent capture of gene expression (via snRNA-seq) and chromatin

accessibility (via snATAC-seq) from the nucleus of the same cells or

similar cell populations as shown in Figure 2. The complementary infor-

mation of snRNA-seq and snATAC-seqhelps capture distinct aspects of

cellular biology and this combination provides a more holistic view of

regulatory mechanisms at the cell-type level. Several advantages arise

from an integrative analysis of the two modalities such as the ability

to correlate gene expression and chromatin accessibility in the same

cell, which provides insights into regulatory mechanisms driving gene

expression. Studies have also shown improved abilities in cell-type

annotation and identifying finer cell subtypes using both snRNA-seq

and snATAC-seq.98 With snRNA-seq, the clusters are annotated based

on expression levels of known cell-type marker genes, whereas in

snATAC-seq the clusters are annotated based on chromatin accessi-

bility at the promoter regions of the known cell-type marker genes,

and combining the two contrasting approaches leads to more robust

cell-type annotations.

ScMulti-omics datasets are generally classified into two cate-

gories: matched and unmatched. In matched datasets, multiple omics

modalities are simultaneously captured from the same individual

cells, whereas in unmatched datasets, different omics modalities

are obtained separately from different but comparable samples.

Unmatched datasets exhibit a higher variability compared to matched

datasets, since different omics layers are obtained from distinct cells

and experimental protocols. Yet, analysis of unmatched datasets is a

popular approach due to the substantial volume of published single

modality data that can be leveraged to unravel meaningful biological

insights.

The first attempt to use both snATAC-seq and snRNA-seq on theAD

brain to characterize diseases-associated cellular dysregulation was

done by our group.23 Through an integrated analysis of both modal-

ities, we identified target genes of candidate cis-regulatory elements

(cCREs) by curating a subset of co-accessible peaks in which one of

the peaks was situated within a promoter element. By further cor-

relating the expression of the candidate target gene to chromatin

accessibility for the subset of co-accessible links, we curated a set of

gene-linked cCREs (gl-cCREs). From our analysis, a substantial over-

lap between cCRE-linked genes and genes upregulated in AD within

specific cell types was observed, highlighting a potential role of CREs

in disease-related gene expression changes. Additionally, we con-

structed cell-type specific TF-gene networks to get a more holistic

view of the regulatory landscape and identified several genes, espe-

cially SREBF1 whose motifs were significantly reduced in AD and the

gene expression to be downregulated in AD oligodendrocytes. Ander-

son et al. (2023) recently published a matched multi-omics study of

snRNA-seq and snATAC-seq on both control and AD samples and

introduced an approach called peak-gene-TF “trios” that involves (1)

establishing a correlation between accessibility of a linked peak and

expression of associated genes, (2) correlating accessibility of linked

peak to expression of TF whose motif resides within that peak, and

(3) correlating expression of the TF and the linked gene.99 Using

this approach, cell type–specific and AD-specific trios were identified

and interestingly ZEB1 and MAFB were found to be enriched in AD-

specific trios in neurons and microglia respectively. Additionally, they

performed stratified linkage disequilibrium score (sLDSC) regression

and identified that AD-specific microglia-linked peaks were enriched

for AD-associated SNPs. Xiong et al. similarly observed a significant

enrichment ofmicroglial enhancers atAD risk loci containing increased

binding sites for two microglial transcriptional regulators, RUNX1 and

SPI1.100 More interestingly, they reported significant loss in cell iden-

tify in late-stage AD characterized by epigenetic alterations such as

decreased enrichment at transcription start sites.

However, around 30% of the noncoding variants associated with

AD are located within known enhancers and function as expression

quantitative trait loci (eQTLs) for at least one gene.101 Interestingly,

the majority of these genes are differentially expressed in AD and

colocalize with their eQTL variants within the same topological asso-

ciated domains (TADs). Several tools have been developed to discern

long-range chromatin interactions such as Hi-C, ChIA-PET, Hi-ChIP,

and so on., that offer a critical lens into the intricate orchestration of

genomic functionality, specifically by pinpointing genes that are under

the influence of distal regulatory elements.102–104 To study the role

of cell type–specific promoter-enhancer interactions in the context of

AD, a study used a combination of epigenetic assays such as ATAC-seq,

PLAC-seq, and HiChIP.105 By deleting a microglia-specific enhancer

30 kb upstream of BIN1 promoter, they observed a reduced BIN1

expression in microglia, but not in neurons or astrocytes. In another

study, Hi-C was performed on AD brain samples and a notable enrich-

ment of chromatin loops upstream of the BIN1 promoter overlapping

AD risk variantswas reported, lending further support to the existence

of long-range regulatory mechanisms related to BIN1.106 In a very

recent study, analysis of snRNA-seq and Hi-C from AD brain samples

revealed increased somatic mosaic gene fusion events due to DNA

double stranded breaks (DSBs) in excitatory neurons. Regions with

altered 3D genome organization were enriched for DSBs leading to

genome instability, and alignwith gene expression changes, specifically

cohesin which is involved in chromatin looping andDSB repair.107

However, several challenges persist in the successful application of

scMulti-omics to study AD. First, multimodal data integration is one

of the major obstacles in accurate multi-omics analysis. The integra-

tion of multiple modalities, each with its own technical protocols and



3600 RAHIMZADEH ET AL.

F IGURE 2 Schematic workflow of scMulti-omics (RNA+ATAC) data acquisition and analysis. (A) Single cells are isolated from specific brain
regions and single-cell multi-omics sequencing is performed, followed by computational integration of the twomodalities. (B) ATAC peaks are
linked to target gene via correlation of chromatin accessibility and gene expression to subset a list of gl-cCREs. Further analysis to link aberrant
chromatin accessibility to differential gene expression across control and AD samples in individual cell types. (C) Cell type–specific GWAS
fine-mapping to identify variants that influence AD using computational and experimental approaches. (D) Gene-peak links are identified to
construct transcription factor gene networks in each cell-type. AD, Alzheimer’s disease; ATAC, assay for transposase-accessible chromatin; cCRE,
candidate cis-regulatory element; gl-cCRE, gene-linked cCRE; GWAS, genome-wide association studies; scMulti-omics, single-cell multi-omics;
snATAC-seq, single-nucleus ATAC sequencing; snRNA-seq, single-nucleus RNA sequencing; TF, transcription factor.

throughput levels, is particularly challenging.108 Effective integration

must address and reconcile these technical differences and batch

effects, while preserving the biologically relevant information. Addi-

tionally, certain modalities might be affected by confounding factors

across features which adds additional challenges. Integration strat-

egy can be broadly classified into vertical or diagonal depending on

whether the different data modalities are captured from either the

same (matched) cells or different (unmatched) cells. Vertical integra-

tion strategies leverage the clear correspondence between molecular

profiles within matched multimodal experiments. These strategies

establish certain cells or cell clusters as anchors to link the different

datamodalities. Examples of suchmethods include SCENIC+, scMVAE,

MIRA, and soon.109–111 Inunmatcheddatasets, there arenoanchors to

link either the cells or features in the high-dimensional space, making

diagonal integration more difficult to validate and interpret. Diago-

nal integration typically aims to construct a low-dimensional latent

space that captures the correlation between the data modalities, how-

ever even if gene expression and chromatin accessibility are correlated

there is no guarantee that the latent representation can capture this

information, making it a difficult endeavor. Commonly used diagonal
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integration methods include GLUE, LIGER, Cobolt, MultiVI, and Seu-

rat V5, to name a few.112–116 Second, current computational analysis

methods are limited in their ability to learn the intricate relationship

and cross talk between different data modalities. For instance, com-

putational methods for variant fine-mapping can potentially benefit

from incorporating multi-omics data; however, existing methods do

not leverage multi-omics information.117–119 This acts as a barrier in

the application of sc-multi-omics for inferring the underlying biologi-

cal mechanism, and their response to external stimuli. Third, as data

complexity increases, such as when dealing with multiple modalities

and multiple samples, the need for computational efficiency becomes

paramount. Ensuring scalability to effectively manage vast amounts

of data becomes imperative in such scenarios. The rising popular-

ity of large language models (LLMs) has spurred numerous efforts to

apply these models in developing computational methods for single-

cell multi-omics. An example is scGPT, a pretrained generative model

that utilizes a masked language model training strategy.98 When fine-

tuned, scGPT has surpassed state-of-the-art methods in various tasks,

including cell-type annotation and data integration, demonstrating

the potential of LLMs in genomic applications. Enformer presents

another use of language model, specifically tailored for predicting

gene expression from DNA sequences.120 The Enformer architec-

ture uniquely combines convolutional neural networks (CNNs) with

transformers to enhance computational efficiency. However, the appli-

cation of these models in genomics is not without its challenges. The

quadratic complexity inherent in transformer models, coupled with

their substantial requirements for graphics processing unit resources

and extensive training data, presents significant hurdles. Moreover, a

critical limitation of thesemodels lies in their current lack ofmechanis-

tic interpretability regarding their predictions, which is a vital aspect

for broader application and understanding in genomics. Despite these

challenges, it is important to recognize that the development of com-

putational methods for the analysis and integration of sc-multi-omics

is still in its infancy and represents an exciting and rapidly evolving

avenue, with the potential for significant improvements in the near

future.

4 CONCLUSION AND FUTURE DIRECTIONS

As we continue to learn about the complexities of AD and related

dementias, several areas of research can be explored to better capture

the disease. One area emphasizes the need for an integrative approach

that melds mouse and human cell type–specific data to improve the

representationofAD inmousemodels for translational research. Look-

ing forward, some key open questions to focus on include: (1) How

can we more accurately model human-specific AD changes in mouse

models to enhance translational validity? (2) What are the shared and

unique gene expression patterns between mouse models and human

AD, and how do these findings translate into human-specific patholog-

ical signatures? and (3) To what extent can module preservation and

weighted co-expression network analysis illuminate human-specific

changes, and how can these findings be validated using unexplored

datasets andwet lab experimentation?

As we aim to achieve true single-cell resolution with spatially

resolved transcriptomics and harness long-read sequencing to iden-

tify isoforms within tissue structures, the challenge is to refine these

technologies. Future directions should also aim to integrate spatial

long-read transcriptomics to unravel the role of alternative splicing

in AD pathology at a single-cell resolution. The burgeoning field of

spatial transcriptomics, despite its rapid expansion and influx of new

technologies and datasets, faces limitations in resolution, sensitivity,

throughput, and accessibility. Compatibility with paraffin-embedded

tissues opens a retrospective window into decades of biobanked sam-

ples, and future innovations may allow for the reconstruction of

3D organ-level atlases and real-time visualization of transcriptomic

changes.

Finally, a comprehensive understanding of AD will require the

integration of transcriptomics with epigenetics and proteomics at

single-cell resolution. Single multi-omics approaches, such as snATAC-

seq, sn-ChIP-seq, and innovative technologies like Paired-Tag, hold

promise for creating cell type–resolved maps of chromatin state and

interactions. Optimizing protocols to concurrently preserve RNA qual-

ity and chromatin state is a critical hurdle to overcome. Moreover,

spatial proteomics at single-cell resolution may elucidate how and to

what extent AD risk transcripts are translated into proteins and how

theseproteins interactwith pathological processes. These are the fron-

tiers that future studies should navigate to uncover the molecular

intricacies of AD and propel us towards effective interventions.
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