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Desingularized propagating vortex equilibria

Stefan G Llewellyn Smith

Department of Mechanical and Aerospace Engineering, Jacobs School of Engineering,
UCSD, 9500 Gilman Drive, La Jolla CA 92093-0411, USA

E-mail: sgls@ucsd.edu

Abstract. The correction to the propagation velocity of point vortex equilibria
caused by allowing the vortices to have finite core size is calculated. A matched
asymptotic expansion in the small parameter ✏, given by the ratio of the core size to
the dimension of the equilibrium configuration, is carried out. The resulting velocity
correction is found to be of order ✏4 and arises from the interaction of second- and
third-order terms in the inner expansion, which are themselves forced by the strain
and strain derivatives of the outer field.

1. Introduction

Point vortices have been extensively studied since the original work of Helmholtz

(1858) and Kirchho↵ (1876), and many results are summarized in textbooks such as

Lamb (1932) and Sa↵man (1992). The evolution of systems of point vortices may be

viewed as a problem in the theory of dynamical systems, and hence the question of

equilibrium states of point vortices is a natural and important one. Here, equilibrium

refers to configurations that translate or rotate without change of shape. The simplest

configurations of point vortices, the translating and co-rotating pair, are equilibrium

states. Other configurations have been found. Many exploit symmetry, such as rotating

polygonal arrays (Thomson 1883), as well as infinite rectilinear arrays and vortex streets.

Many more complicated configurations, with and without symmetry, have also been

obtained. A detailed discussion is given in Aref et al (2003).

Point vortices are singular solutions of the Euler equations. The justification

of the dynamical equations governing their evolution is reviewed in Llewellyn Smith

(2011). An interesting related question is the desingularization of point vortex solutions:

constructing less singular solutions that reduce to point vortices in an appropriate limit.

Two families of vortices have received particular attention: vortex patches and hollow

vortices. The evolution of vortex patches can be obtained using contour dynamics. Some

of the earliest work on vortex patches studied equilibrium configurations: Pierrehumbert

(1980) found propagating dipole solutions, Wu et al (1984) found these and also co-

rotating pairs, and Sa↵man and Schatzman (1981) and other authors obtained vortex

street solutions. Dhanak (1992) examined the stability of polygonal vortex arrays.

Hollow dipoles were originally so named because the fluid inside the vortex boundary
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is at rest. Pocklington (1895) found propagating hollow vortex dipoles and this work

was revisited by Crowdy et al (2013), Baker et al (1876) found a linear array of hollow

vortices and Crowdy and Green (2011) found streets of hollow vortices. The above

equilibrium configurations are families that depend on a non-dimensional parameter

measuring the size of the vortices, and there is a limit that approaches the point vortex

configuration.

One can hence ask the following question: what is the general correction to the

velocity of an equilibrium point vortex configuration and how does it depend on the

desingularization used? We study this problem via the method of Matched Asymptotic

Expansions, using a small parameter ✏, the ratio of the core size to the size of the

array. We obtain an asymptotic expansion in this parameter and compute the resulting

velocity. For simplicity we limit ourselves to cases in which the configuration does not

rotate, although the same approach should work in the case of rotating configurations.

Neither do we consider generalizations to di↵erent geometries such as spheres or to

domains with boundaries.

The plan of the paper is as follows. In section 2 we outline the mathematical

problem. In section 3 we give properties of the radial Rayleigh equation that governs

the behavior of the vortex cores. In section 4 we go through the matching procedure.

This is a fairly lengthy section since we give all the details, but the underlying structure

is straightforward. Finally we conclude in section 5.

2. Problem formulation

We consider the motion of an incompressible, inviscid fluid containing vortices in an

equilibrium configuration. In a frame moving with the vortices, vortex m is at rest at

z = zm and there is a uniform flow at infinity. The vortex cores are all taken to have

the same structure, with compact vorticity support or exponentially decaying vorticity

away from the core. Hence far from the cores, a complex potential w = � + i exists.

The complex potential corresponding to the uniform flow at infinity is �Wz.

The solution for the equilibrium configuration of point vortices is

w0 =
X �m

2⇡i
log (z � zm)�W0z. (1)

A sum without subscripts runs over all the vortices. We view this as the leading-order

term in an asymptotic expansion in ✏, w = w0 + ✏w1 + · · ·, and the full propagation

velocity W will be expanded in the same fashion. We will see that W0 is obtained as

part of the matching procedure. The outer solution at O(✏p) is

wp =
1X

q=1

X
a(p)qm(z � zm)

�q �Wpz + C, (2)

where C is a constant.

We now consider regions close to each vortex: near vortex n we define a new variable

Z using z = zn + ✏Z, with Z = Rei✓. The governing equation for steady solutions is

J( ,r2
R ) = 0, (3)
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where  is the inner streamfunction, J is the Jacobian and

r2
R =

@2

@R2
+

1

R

@

@R
+

1

R2

@2

@✓2
. (4)

The leading-order inner streamfunction is determined by the model taken for the

vortex cores. Any radially symmetric inner core structure  0(r) with circulation �n

is acceptable. Then, for large R,

 0 = ��n

2⇡
logR +O(R�1), (5)

where the order term denotes terms that vanish faster than any negative power of R.

3. The steady radial Rayleigh equation

At O(✏) and higher, the governing equation (3) becomes the steady version of the linear

radial Rayleigh equation. This equation has been used to study the linear stability

of two-dimensional inviscid vortices (Gent and McWilliams 1986). The homogeneous

equation for azimuthal mode n of the streamfunction, fn, is (n > 0 without loss of

generality)

f 00
n +

1

R
f 0
n �


n2

R2
+

Q0

R⌦

�
fn = 0, (6)

where primes denote di↵erentiation with respect to R, ⌦ is the background angular

velocity and Q is the background vorticity. The origin is a regular singular point, so

we take the solution that is bounded there with fn ⇠ Rn. In general, the solution does

not then decay at infinity, and one has fn ⇠ Rn + �nR
�n, where �n usually has to be

obtained numerically.

Mode 1 is special: there is a known steady solution due to Michalke and Timme

(1967), f1 = R⌦. Llewellyn Smith (1995) and Llewellyn Smith (1997) discuss the

approach to this solution in the initial-value problem and its relation to matching

problems, respectively. The other, linearly independent, mode-1 solution is unbounded

at the origin and infinity.

Some higher terms in the inner expansion will satisfy inhomogeneous equations.

The interaction of  p = cpfp(R)eip✓+c.c. and  q = cqfq(R)eiq✓+c.c. forces modes ±p±q.

The corresponding vorticity is ⇣p = cpgp(R)eip✓+ c.c., where gp = f 00
p +R�1f 0

p�p2R�2fp.

The forcing terms are

�J( p, ⇣q)� J( q, ⇣p) = �R�1cpc
⇤
qe

i(p�q)✓ ⇥
[�iq(f 0

pgq � g0pfq) + ip(f 0
qgp � g0qfp)] + · · · , (7)

where the dots refer to other modes. When p = q, mode 0 is not generated.

4. Expansion

The large-R expansion of the inner streamfunction is irrotational. For mode n of the

inner solution at O(✏) or higher, we have, for large R for n > 1,

 = cnfne
in✓+c.c. ⇠ cn(R

n+�nR
�n)ein✓+c.c. = cn[Z

n+�n(Z
⇤)�n]+c.c.(8)
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for n > 0. Since �n is real, this shows that in the matching region,  is the imaginary

part of the meromorphic function 2i(cnZn + c⇤n�nZ
�n). We can hence carry out the

matching using complex potentials, which we denote $n in the far field. We will not

bother matching constant terms C or c in the potentials or streamfunctions, since they

are dynamically irrelevant.

The outer solution wp becomes, in terms of the inner variable,

wp =
1X

q=1

(
a
(p)
Mn(✏Z)

�q +
0X
a(p)qm(zn � zm)

�q

✓
1 +

✏Z

zn � zm

◆�q
)

�Wp(zn + ✏Z) + C, (9)

where the prime indicates that the sum over m does not include the term in n. To carry

out the matching, we use van Dyke’s rule in the form $(m,n) = w(n,m) where the notation

is as follows (Crighton et al 1991): the first superscript indicates the order of truncation

of the expansion considered; then the inner and outer expansions are rewritten in terms

of the outer and inner variable, respectively, and truncated at the order given by the

second superscript. When the second superscript is absent, the solution is not truncated

in the ‘wrong’ variable.

The O(1) matching is almost automatic. From (1) we find

w(0,.) =
�n

2⇡i
log ✏Z +

0X �m

2⇡i

1X

k=1

(�1)k�1 (✏Z)k

k(zn � zm)k
� ✏W0Z + C. (10)

From (5)

$(0,.) =
�n

2⇡i
log (z � zn) + c, (11)

neglecting terms that decay faster than any power. There is also an O(log ✏) term in

the inner expansion, but it is dynamically irrelevant and hence suppressed. One finds

$(0,0) = w(0,0), as expected.

The outer solution to O(✏) gives

w(1,.) =
�n

2⇡i
log ✏Z+

0X �m

2⇡i

1X

k=1

(�1)k�1 (✏Z)k

k(zn � zm)k
�✏W0Z+C+✏w1.(12)

The O(✏) inner problem is homogeneous, so

$(1,.) =
�n

2⇡i
log (z � zn) + c

+ ✏

"
✏b

(1)
1

z � zn
+

1X

m=2

(
b(1)m

✓
z � zn
✏

◆m

+ b(1)⇤m �m

✓
z � zn
✏

◆�m
)#
(13)

and

$(1,1) = · · ·+ ✏
1X

m=2

b(1)m

✓
z � zn
✏

◆m

, (14)
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where the ellipsis corresponds to terms that have already been matched and constants

have been included in it. By the matching principle, $(1,1) is equal to

w(1,1) = · · ·+ ✏

" 0X �m

2⇡i

Z

zn � zm
�W0Z +

1X

q=1

a(1)qn (✏Z)
�q

#
. (15)

The matching gives a(1)qm = 0 for q > 0 (this is true for vortex n and hence for all vortices

m), b(1)m = 0 for m > 1 and

W0 =
0X �m

2⇡i

1

zn � zm
, (16)

the expected leading-order velocity of the point vortex limit. Note that b(1)1 is unspecified

at this point. We take it to be zero for a number of reasons. First this gives the correct

matching subsequently. Second there is no outer term for it to match at this or higher

orders; hence it cannot be dynamically important and must be set to zero. Finally if one

considers the linearized stability problem for a general circular vortex, Llewellyn Smith

(1995) shows that the mode-1 response tends to the r⌦ solution mentioned above with

amplitude proportional to the initial vorticity in mode 1. There is an arbitrary degree

of freedom, so we take it to be zero until O(✏4) when the mode-1 problem is no longer

homogeneous. As a result,  1 is just a constant and dynamically irrelevant.

At O(✏2), the outer solution becomes

w(2,.) =
�n

2⇡i
log ✏Z+

0X �m

2⇡i

1X

k=2

(�1)k�1 (✏Z)k

k(zn � zm)k
+C�✏2W1Z+✏

2w2.(17)

The problem for the inner streamfunction is again homogeneous, so

$(2,.) =
�n

2⇡i
log (z � zn) + c

+ ✏2
1X

m=2

(
b(2)m

✓
z � zn
✏

◆m

+ b(2)⇤m �m

✓
z � zn
✏

◆�m
)
. (18)

Now truncate:

$(2,2) = · · ·+ ✏2
1X

m=2

b(2)m

✓
z � zn
✏

◆m

, (19)

and match to

w(2,2) = · · ·+ ✏2

"
�

0X �m

2⇡i

Z2

2(zn � zm)2
�W1Z +

1X

q=1

a(2)qn (✏Z)
�q

#
. (20)

This gives almost the same matching problem as before, with a
(2)
qm = 0 for q > 0 and all

m, b(2)m = 0 for m > 2, W1 = 0 and

b
(2)
2 = a2 = �

0X �m

2⇡i

1

2(zn � zm)2
. (21)
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This is the strain induced by the other vortices at the location of point vortex n. There

is no O(✏) correction to the propagation velocity since W1 = 0. The inner solution is

hence, up to a constant,

 2 = � i

2
a2f2(R)e2i✓ + c.c. (22)

The O(✏3) matching will follow exactly the same pattern as before, since the inner

problem is homogeneous. The result is a(3)qm = 0 for q > 0 and all m, W2 = 0,

b
(3)
3 = a3 =

0X �m

2⇡i

1

3(zn � zm)3
(23)

and b
(3)
m = 0 otherwise. As above, we find

 3 = � i

2
a3f3(R)e3i✓ + c.c. (24)

The di↵erence at O(✏4) is that the inner problem is no longer homogeneous. It is

forced by the self-interaction of the O(✏2) solution. The interaction terms, which are

quadratic, give modes 0 and 4, but, as shown previously, the forcing terms for mode

0 vanish. For mode 4, we generalize our earlier notation to allow �4 to include the

self-interaction term. The other di↵erence is the presence of the b(2)2 Z�2 term. We have

w(4,.) =
�n

2⇡i
log ✏Z+

0X �m

2⇡i

1X

k=2

(�1)k�1 (✏Z)k

k(zn � zm)k
+C�✏4W3Z+✏

4w4(25)

for the outer problem. For the inner problem

$(4,.) =
�n

2⇡i
log (z � zn) + c

+
3X

p=2

✏p

"
ap

✓
z � zn
✏

◆p

+ a⇤p�p

✓
z � zn
✏

◆�p
#

+ ✏4
1X

m=2

(
b(4)m

✓
z � zn
✏

◆m

+ b(4)⇤m �4

✓
z � zn
✏

◆�m
)
. (26)

Hence

$(4,4) = · · ·+ ✏4

"
a⇤2�2(z � zn)

�2 +
1X

m=2

b(4)m

✓
z � zn
✏

◆m
#
. (27)

Match to

w(4,4) = · · ·+ ✏4

"
�

0X �m

2⇡i

Z4

4(zn � zm)4
�W3Z +

1X

q=1

a(4)qn (✏Z)
�q

#
. (28)

This gives a(4)qm = 0 for q = 1, q > 2 and all m, W3 = 0,

a
(4)
2n = a⇤2�2, b

(4)
4 = a4 = �

0X �m

2⇡i

1

4(zn � zm)4
, (29)

and b
(4)
m = 0 otherwise.
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At O(✏5) the inner problem is not homogeneous and is forced by interactions

between modes 2 and 3. We care about the resulting mode 1 response. The coe�cient

�m will contain contributions from the inhomogeneous term, leading in particular to a

�1 term which did not exist for previous orders. As usual,

w(5,.) =
�n

2⇡i
log ✏Z+

0X �m

2⇡i

1X

k=2

(�1)k�1 (✏Z)k

k(zn � zm)k
+C�✏5W4Z+✏

5w5.(30)

For the inner problem

$(5,.) =
�n

2⇡i
log (z � zn) + c

+
4X

p=2

✏p

"
ap

✓
z � zn
✏

◆p

+ a⇤p�p

✓
z � zn
✏

◆�p
#

+ ✏5
1X

m=1

(
b(5)m

✓
z � zn
✏

◆m

+ b(5)⇤m �m

✓
z � zn
✏

◆�m
)
. (31)

Hence

$(5,5) = · · ·+ ✏5
1X

m=1

b(5)m

✓
z � zn
✏

◆m

, (32)

which, by matching, is equal to

w(5,5) = · · ·+ ✏5

" 0X �m

2⇡i

Z5

5(zn � zm)5
�W4Z +

1X

q=1

a(5)qn (✏Z)
�q

#
. (33)

The matching gives a(5)qm = 0 for q > 1 for all m,

b
(5)
5 = a5 =

0X �m

2⇡i

1

5(zn � zm)5
, W4 = �b

(5)
1 (34)

and b
(5)
m = 0 otherwise.

We have completed the matching. If W4 is not the same for all vortices, we have not

found an equilibrium correction and this approach fails. To compute the correction to

the propagation velocity, we calculate w0, a2 and a3 from the equilibrium configuration.

The first term gives the propagation velocity of the point vortex equilibrium. We

then solve the homogeneous inner radial Rayleigh problem for modes 2 and 3, giving

f2(R) and f3(R). The inner solution at these orders is  2 = �1
2 ia2f2(R)e2i✓ + c.c. and

 3 = �1
2 ia3f3(R)e3i✓ + c.c. We then solve the mode-1 inner problem at O(✏5), for which

the forcing term F is, from (7) with p = 3 and q = 2,

 00
1+

1

R
 0
1�


Q0

R⌦
+

1

R2

�
 1 =

ia3a⇤2
4R⌦

[�2i(f 0
3g2�g03f2)+3i(f 0

2g3�g02f3)].(35)

The solution to this equation that is bounded at the origin can be found in closed form.

The operator on the left-hand side has the solution f1 = R⌦ that is bounded at 0 and

1, as mentioned before, and also the unbounded solution

g1 = R⌦

Z
du

u3⌦(u)2
⇠ ⇡R

�
as R ! 1. (36)
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We can find a Green’s function bounded at the origin in the form

G(R, ⇠) =

(
a(⇠)f1(R) for R < ⇠,

b(⇠)f1(R) + c(⇠)g1(R) for R > ⇠.
(37)

The continuity and jump conditions on G give

af1(⇠) = bf1(⇠) + cg1(⇠), bf 0
1(⇠) + cg01(⇠)� af 0

1(⇠) = 1, (38)

leading to c(⇠) = f1(⇠)W (⇠)�1 = ⇠f1(⇠) = ⇠2⌦(⇠), where W (⇠) = f1(⇠)g01(⇠) �
f 0
1(⇠)g1(⇠) = ⇠�1 is the Wronskian. The solution is

f1(R) =

Z 1

R

a(⇠)F (⇠) d⇠ +

Z R

0

[b(⇠)f1(R) + c(⇠)g1(R)]F (⇠) d⇠. (39)

where F (⇠) is the right-hand side of (35). The coe�cient of Z in the far field is then

W4 = �2⇡i

�

Z 1

0

R2⌦(R)F (R) dR. (40)

5. Conclusions

We have found the correction to the velocity of steadily translating vortex arrays. It

enters at O(✏4), where ✏ is the ratio of vortex core size to array dimension. The correction

is proportional to the second and third derivatives of the regularized complex potential

at the vortex cores. The case of configurations that rotate as well as (or instead of)

translating should be amenable to the same approach, although one will no longer have

the luxury of working in an inertial frame moving with the array. If the vortices have

di↵erent interior core structures or sizes, each will feel a di↵erent strain and strain

derivative from the others. These must be related in just such a way as to give the same

correction W4 for all vortices, yielding a steadily propagating array.

The analysis given here is reminiscent of that of Ting and Klein (1991), who showed

that the motion of a point vortex can be found by ignoring the divergent part of the

velocity field that it induces, by matching the evolution of a Rankine vortex core to a

far field. In our notation, this corresponds to obtaining W0 in the time-dependent case,

while our goal was to compute the higher-order corrections to the velocity of steadily

propagating equilibria for arbitrary core profiles. The results here also show that the

MAE approach works for arbitrary core structures for obtaining the steady propagation

velocity at O(1), and that the details of the core structure do not matter, as one might

have expected.

More work remains to be done, in particular relating the results to numerical

solutions and investigating rotating cases, starting with the co-rotating vortex pair for

which vortex patch solutions have previously been obtained but for which no hollow

vortices have been found.
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