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REVIEW
 CURRENT
OPINION The influence of genetic factors on brain plasticity

and recovery after neural injury
www.co-neurology.com
a a a,b
Kristin M. Pearson-Fuhrhop , Erin Burke , and Steven C. Cramer
Purpose of review

The fields of clinical genetics and pharmacogenetics are rapidly expanding. Genetic factors have
numerous associations with injury and with treatment effects in the setting of neural plasticity and recovery.

Recent findings

Evidence is reviewed that established genetic variants, as well as some more recently described variants,
are related to outcome after neural injury and in some cases are useful for predicting clinical course. In
many cases, the interaction of genetics with clinical factors such as experience and therapy may be
important. As an extension of this, genetic factors have been associated with differential response to a
number of forms of therapy, including pharmacological, brain stimulation, psychotherapy, and meditation.
Genetic variation might also have a significant effect on plasticity and recovery through key covariates
such as depression or stress. A key point is that genetic associations might be most accurately identified
when studied in relation to distinct forms of a disorder rather than in relation to broad clinical syndromes.

Summary

Understanding genetic variation gives clinicians a biological signal that could be used to predict who is
most likely to recover from neural injury, to choose the optimal treatment for a patient, or to supplement
rehabilitation therapy.
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INTRODUCTION

Recent years have seen substantial investigation
into the relationship between genetic factors
and disease pathogenesis and treatment efficacy,
as well as, specifically, features of neural plasticity.
In several cases, findings have been reliably repli-
cated, for example, the association of the apolipo-
protein (ApoE) E4 allele with Alzheimer’s disease,
dopamine variants with schizophrenia and working
memory, serotonin polymorphisms with depres-
sion, and brain-derived neurotrophic factor (BDNF)
with cortical plasticity. Many more have been
studied, often with less consistent results. Although
genetic factors alone rarely have a major effect on
clinical state, such data may be useful in some cases
to improve clinical decision-making.

FORMS OF GENETIC VARIATION

Genetic variation takes several forms and can be
studied in many ways. A gene may be altered by
one nucleotide, which may result in an amino acid
change in the protein, or in altered transcription or
translation efficacy if the nucleotide change occurs
in a promoter region. Alternately, a segment of
the gene may be repeated, or a nucleotide may be
inserted or deleted. A genetic mutation is a form of
genetic variation that is rare in the population
and that causes significant functional alteration.
Examples include the single nucleotide mutation
that causes sickle cell anemia, or the CAG repeats
found in Huntington’s disease. When a genetic
variation occurs commonly and has a relatively
small effect on behavior or phenotype, it is termed
a polymorphism. A polymorphism may be a single-
nucleotide polymorphism (SNP), a variable number
of tandem repeats (VNTR), or an insertion/deletion
polymorphism.
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KEY POINTS

� Several genetic factors predict the level of recovery
following neural injury.

� Genetic factors have been associated with response to
various forms of treatment, including pharmacology,
psychotherapy, drug side effects and meditation.

� The association that genetic factors have with outcome
and with response to therapy might interact with a
number of clinical factors such as experience, therapy,
or sex.

� Genetic associations might be most accurately
identified when studied in relation to distinct forms of a
disorder rather than in relation to broad clinical
syndromes.

� Genetic factors might be associated with differences in
the neural signals obtained with neuroimaging
techniques such as TMS or fMRI.

Brain plasticity and recovery Pearson-Fuhrhop et al.
The most common approach to studying the
impact of genetic variation to date has been to
study single polymorphisms and their association
with disease, or with an endophenotype such as
brain function. A candidate gene approach may
be used in this context in which a polymorphism
is chosen a priori based on its likely association
with the condition of interest. Alternately, a
genome-wide association study (GWAS) may be
done, during which all known polymorphisms,
or some massive number of them, are assessed
[1

&&

]. Another approach utilizes a gene score that
sums the effects of multiple polymorphisms in the
same system [2,3,4

&

,5
&

]. Other approaches include
examination of exome sequencing, epigenetics,
and epigenomic and transcriptomic variation [6

&

].
MEASUREMENT OF BRAIN PLASTICITY IN
HUMAN PATIENTS

After neural injury, significant reorganization of
brain networks occurs to a variable extent and can
be associated with substantial behavioral recovery.
Animal studies have provided important insights
into the mechanisms of this plasticity, with mole-
cular and cellular findings based on direct examin-
ation of neural tissue. These molecular studies are
of pivotal significance, for example, for selecting
polymorphisms to investigate and for interpreting
results of human genetic studies. In human patients,
direct molecular study of tissue is rarely available.
Noninvasive neuroimaging methods are, therefore,
employed to understand nervous system structure
and function. Clinical neuroimaging also facilitates
1350-7540 � 2012 Wolters Kluwer Health | Lippincott Williams & Wilk
our understanding of plasticity mechanisms eluci-
dated in animal models of injury, as well as the
plasticity that occurs with subsequent treatment [7].

A number of approaches to neuroimaging have
been pursued in the study of plasticity. A prime
example is functional MRI (fMRI), which has very
good spatial resolution, but temporal resolution
can be limited, and the blood oxygenation level-
dependent (BOLD) contrast often used in fMRI
studies is vulnerable to effects of vascular disorder,
altered cerebral blood flow (CBF), and head motion.
MRI techniques can also be used to study CBF,
network connectivity, white matter integrity, trac-
tography, and more. Positron emission tomography
(PET) measures brain activation, as well as CBF,
metabolism, neurochemistry, receptor kinetics,
and more. However, PET involves some exposure
to ionizing radiation, temporal resolution is gener-
ally low, and many forms of investigation require
proximity to a cyclotron. A method receiving
increased attention to study brain function and
plasticity is dense array electroencephalography.
Although this method examines signals from only
the cerebral cortex and has some limitations in
spatial resolution, the technique provides excellent
temporal resolution, it is relatively tolerant to
patient movement, it carries a low cost, and it can
be easily implemented in complex clinical settings.
Transcranial magnetic stimulation (TMS) is a useful
probe of neurophysiology, particularly in the motor
system. TMS has excellent temporal resolution,
but motor-evoked potentials (MEPs) can be difficult
to obtain in patients with neural injury, and
TMS generally evaluates only a small portion of
the cerebral cortex. Other techniques used to
study brain plasticity in human patients include
single-photon emission computed tomography,
near-infrared spectroscopy, and magnetoencepha-
lography. As no single method is sufficient to
examine all aspects of neuroplasticity, multiple
neuroimaging modalities can be used in order to
achieve the most robust understanding [7].
GENETICS OF NEURAL PLASTICITY AND
RECOVERY

Various genes have been associated with brain
plasticity and recovery from neural injury (for
review, see [8]). One highly studied genetic variant
is a polymorphism in the gene for BDNF, a growth
factor important to many forms of development,
plasticity, and repair. A valine is replaced with
methionine at position 66, which results in 18–
30% less activity-dependent secretion of the BDNF
protein [9,10]. Another highly studied genetic
variation is in ApoE, which is the most abundant
ins www.co-neurology.com 683
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brain lipoprotein. A combination of polymorphisms
results in the ApoE2–ApoE4 genotypes [11], which
are associated with differences in several neural
repair processes as well as to the risk of Alzheimer’s
disease. A third major genetic variant is the inser-
tion/deletion polymorphism in the promoter region
of the serotonin transporter gene (5-HTTLPR),
which has a 44-bp insertion/deletion, and thus
occurs in either a short (s) or long (l) form that
modulates expression of the gene. The short form
is associated with vulnerability to stress and depres-
sion including poststroke depression [12,13]. Several
dopamine-related polymorphisms are being studied,
including a valine-to-methionine amino acid change
at position 108/158 of the catechol-O-methyltrans-
ferase (COMT) enzyme. This amino acid change
results in a protein with 3–4 times less enzymatic
activity, and thus higher synaptic dopamine
availability [14]. Variation in these and related genes
have been associated with differences in recovery
following neural injury.

Several of these polymorphisms have been
associated with differences in outcome after neural
injury. For example, a study of 255 acute stroke
patients found that the presence of the ApoE4
allele and BDNF Met allele were each associated
with poorer recovery and greater disability post-
stroke [15], similar to prior findings in subarachnoid
hemorrhage. In a rehab sample of 648 patients
with traumatic brain injury (TBI), ApoE4 genotype
predicted long-term functional outcome, with
E4 carriers exhibiting worse outcomes 1 year post-
injury. Additionally, a gene by sex interaction was
seen, as the negative effect of the E4 allele was
greater in women than men [16].

The above studies examined recovery, using
scales that examine function in a broad sense, but
the study of genetics of recovery also benefits from
examination of more specific associations. Recovery
generally entails change in a complex array of indi-
vidual brain regions and behaviors. For example,
depending on the severity and nature of the injury,
successful recovery may necessitate the return of
consciousness, language, motor function, mood
stability, or cognitive function. The most common
consequence of TBI is cognitive impairment in
domains such as executive function, memory, atten-
tion, impulsivity, and emotional control. Genetic
polymorphisms in the genes for COMT and BDNF
have been found to influence these processes in
healthy individuals, and likely also influence the
recovery of these processes after neural injury [17].
In a study including patients with Alzheimer’s dis-
ease or dementia, the COMT Val allele, associated
with lower synaptic dopamine, was associated with
reduced gray matter in several dopamine-related
684 www.co-neurology.com
structures [18
&

]. It is unclear whether the Val allele
exacerbates neurodegenerative disorders or whether
the Met allele is protective, but the results show
that an alteration in the COMT enzyme affects
degeneration specifically in dopamine-innervated
structures. In a study of patients 1 month following
mild nonpenetrating TBI, the BDNF Met allele
was associated with slower processing speed [19].
It is important to note, however, that some genetic
variants may play a different role in the injured
versus healthy brain, or may be specific to one
cognitive domain or injury severity. This has been
specifically examined for the BDNF Val66Met poly-
morphism [20

&

]. A study of patients with penetrat-
ing TBI in the chronic phase found that the BDNF
Met allele was correlated with improved executive
function, compared with the Val allele. [21]. Thus
the stability provided by the Met allele may confer
some advantage after TBI, in contrast to studies in
healthy individuals that find the Val allele provides
an advantage through enhanced brain plasticity.
Such studies suggest that associations with poly-
morphisms identified in healthy patients might
not directly extend to pathological/clinical contexts
such as neural injury.

Many genetic differences are not apparent
at baseline but emerge as an interaction with experi-
ence and training, or when examined in the
long term. This has been suggested in many studies
of 5-HTTLPR and with the classic studies of genetic
variation in monoamine oxidase-A and antisocial
behavior. In the case of ApoE, the E4 allele is
associated with long-term functional outcome,
but not initial injury severity, following stroke
[15] or TBI [16]. This suggests that ApoE influences
the neural plasticity related to recovery rather than
initial response to injury. Similarly in healthy
adults, a dopamine gene score was not related to
baseline motor performance but was significantly
associated with acquisition of a motor skill [22].
These studies highlight the important point that
genetic variation might be maximally apparent
when studied in relation to experience. Experience
includes acute care, rehabilitation therapy, home
life, and many psychosocial factors, and these
may differ greatly across various neural afflictions.
IDENTIFICATION OF NEW GENETIC
VARIANTS

Other polymorphisms, in addition to commonly
studied genetic variants such as BDNF and ApoE,
have been implicated in stroke recovery. Some are
related to acute injury and its relationship to early
repair events. For example, recent evidence suggests
an important role of inflammation-related genes in
Volume 25 � Number 6 � December 2012
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stroke outcome. Marousi et al. [23] found that SNPs
in interleukin 4 and interleukin 10 were correlated
with likelihood of a recurrent ischemic event
and predictive of functional outcome, respectively.
Inhibition of the cyclooxygenase-2 (COX-2) gene
has been associated with reduced brain injury after
stroke in ischemic animal models, and the presence
of the COX-2 rs5275C allele and the COX-2
rs20417C allele was associated with better outcome
90 days poststroke [24]. One new polymorphism
that may greatly affect stroke recovery and post-
stroke plasticity is found in the gene for tissue-type
plasminogen activator (t-PA). The t-PA protein,
known for its role for acute reperfusion after stroke,
is also thought to be highly involved in neuro-
transmission and cortical plasticity [25]. A study
of postmortem human brains found a large differ-
ence in t-PA mRNA between carriers of the 7351C
and T alleles [26

&&

]. Thus far this polymorphism
has not been studied for its relationship to cortical
plasticity in humans, but evidence from animal
and postmortem studies suggests that it might
significantly affect poststroke neural plasticity.
More research is needed to determine the exact
biological consequences of these genetic variations.

GWAS is particularly helpful for identification
of new genetic associations [1

&&

]. A large GWAS has
found and replicated an association of an HDAC9
gene variant with large vessel ischemic stroke [27].
The mechanism is not known, and therefore this
association would not have been found with a
candidate gene approach. This study also replicated
previously discovered associations of gene polymor-
phisms with specific stroke subtypes, and highlights
an important point: genetic associations might be
most accurately identified when studied in relation
to distinct forms of disorder. Numerous, divergent
disease states can produce the clinical syndrome of
stroke, but identification of genetic associations
might necessitate studying these different disease
states separately. The need to consider that a single
clinical diagnosis can arise from many distinct
pathological states likely extends to other forms
of neural injury beyond stroke.

Gene expression studies are also useful for
identifying new variants. For many forms of neural
injury, there has been limited clinical trial success
in pharmacologically improving outcome. There
remains a great need to develop novel ways to treat
neural injury and its sequelae. One such way is to
use gene expression profiling from peripheral whole
blood to identify unique gene expression patterns
that are associated with neurological diseases/
disorders and among their phenotypic subtypes
[28]. Evidence from an animal TBI model suggests
that gene expression regulation could help monitor
1350-7540 � 2012 Wolters Kluwer Health | Lippincott Williams & Wilk
injury progression, and thereby help identify novel
protein targets for future pharmacotherapy develop-
ment [29].
RELEVANCE OF GENETIC
POLYMORPHISMS

Knowledge of plasticity-modulating polymorphisms
may help predict the natural course of recovery, but
the greatest clinical benefit from genetics research
might come from identification of polymorphisms
in order to guide details of treatment, for example,
choice, dose or duration. Such an approach is
being used in oncology in which the BRCA1 and
2 mutations are used to direct the management
of some patients’ breast cancer [30]. Similarly,
variations in the CYP2C19 gene, coding for the
cytochrome P450 2C19 protein, may be considered
when prescribing the platelet aggregation inhibitor
clopidogrel [31,32

&&

,33].
A number of potential opportunities exist

whereby genetic factors might influence pharmaco-
therapy after neural injury. Several drugs are com-
monly used following neural injury, including the
dopamine precursor levodopa, selective serotonin
reuptake inhibitors (SSRIs), serotonin–noradrena-
line reuptake inhibitors (SNRIs), and acetylcholin-
esterase inhibitors [34]. Genetic variations have
been shown to interact with many of these [8].
One recent study found that the effects of levodopa
on skilled motor learning and motor cortical plasti-
city were modulated by dopamine genetics [22].
SSRIs and SNRIs are given primarily to treat comor-
bid depression [34], but some studies suggest that
they favorably influence rehabilitation as well
[35

&&

]. The 5-HTTLPR s/l polymorphism, along with
others, modulates response to antidepressant drugs
in major depressive disorder [36] and may have
an impact on SSRI and SNRI response in poststroke
depression and rehabilitation. There are genetic
variations in drug metabolizing enzymes that
have been shown to alter drug responses to a wide
variety of pharmacological agents, including most
antidepressants [37]. In addition to modulating
drug efficacy, genetic variation has been found to
influence the likelihood of medication side effects
in conditions such as epilepsy [38], diabetes [39],
rheumatoid arthritis [40], cancer [41], and depres-
sion [36]. The increased likelihood of side effects
due to genetic variation will be a consideration
during the development of drug treatments for
neural injury. Particularly, in conditions when
multiple drugs or classes of drugs could potentially
be used, pharmacogenetics might shorten the
process of finding the best drug for the patient,
and thus reduce the number of drugs the patient
ins www.co-neurology.com 685
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must be exposed to before settling on the appropri-
ate treatment [42

&

]. However, several ethical con-
cerns exist including, but not limited to, obtaining
informed consent from patients who are not
competent, maintaining confidentiality of such
sensitive data, and understanding the uncertainty
of genetic associations [42

&

].
An understanding of genetic factors might

also influence treatment of neural injury through
nonpharmacological forms of intervention. For
example, several forms of brain stimulation, whereby
cortical excitation is focally modulated, are under
investigation for the treatment of wide-ranging
conditions such as stroke [43–45], Parkinson’s
disease [46], Alzheimer’s disease [47,48], and TBI
[49]. Polymorphisms in genes coding for import-
ant plasticity-mediating proteins could influence
response to such treatment. Polymorphisms in the
NMDA NR1 and NR2B subunit genes have been
shown to affect TMS-induced cortical excitability
and plasticity [50]. Additionally, recent evidence
has found a significant positive relationship between
homozygosity of the G allele in a common SNP of
the transient receptor potential vanilloid 1 channel
gene and increased cortical excitability [51

&

]. Many
investigators have found differences in experi-
mentally induced motor cortex plasticity between
BDNF Val66Met Met carriers and noncarriers. Most
recently, Cirillo et al. [52] found that individuals
homozygous for the BDNF Val allele had greater
TMS MEPs following paired associative stimulation
(PAS), simple motor training, and complex motor
training. Met allele carriers experienced increased
MEP amplitude with only the simple motor training
task, and Met/Met homozygotes had reduced MEP
amplitude with complex motor training. These find-
ings suggest differential cortical plasticity patterns
across BDNF genotype groups, and warrant further
work studying the effect of BDNF genotype
on cortical plasticity and motor task performance
in neurologically compromised populations. As
methods for modulating cortical excitation receive
increased study as a treatment for neural injury,
the need to study genetic variants related to neural
plasticity will increase. It is likely that plasticity-
related genetic variants could differentially affect
treatment response.

Although much research has gone into studying
the effects of common genetic variants on cortical
plasticity, little is known about the effects of SNP
interactions. Witte et al. [53] studied the combined
effects of the BDNF Val66Met and COMT Val158Met
polymorphisms on PAS-induced short-term motor
cortex plasticity. PAS-induced cortical plasticity was
greater in patients that were homozygous for the
BDNF Val allele and heterozygous for the COMT Met
686 www.co-neurology.com
allele. These patients also exhibited better implicit
learning. Findings from Manso et al. [54] suggest
that there might be effects of genetic interactions
on stroke recovery as well, albeit in the absence of
an intervention. They found interactions between
three trophic factor SNPs that predicted stroke out-
come, although no SNP independently correlated
with outcome. Genetic interactions are difficult to
study but important to consider.
OTHER FACTORS THAT INFLUENCE
PLASTICITY AND RECOVERY

In addition to influencing recovery itself, genetic
factors modulate covariates and other processes that
are directly involved in recovery such as depression,
vulnerability to stress, CBF, and cognitive impair-
ment. Depression has a serious negative impact on
stroke recovery [55] and is modulated by several
genetic and environmental factors [56,57

&

].
The 5-HTTLPR s/s genotype has been robustly

associated with an increased risk for depression [56],
including poststroke depression [13]. Studies of
this polymorphism with treatment response have
found that the s allele, compared with the l allele, is
associated with poorer response to antidepressant
drugs [36] but improved response to psychosocial
therapy [57

&

]. This makes knowledge of a patient’s
5-HTTLPR genotype a valuable contributor to
the management of poststroke depression. Patients
with genetic susceptibility to depression might
benefit most from in-person rehabilitation therapy
and might also be less likely to comply with self-
motivated telerehabilitation.

Stress is a key environmental variable brought
on by the recovery process following neural injury.
Vulnerability to stress has been found to have a
genetic component [56]. Experimental stress para-
digms resulted in worse working memory perform-
ance for COMT Met/Met homozygotes than COMT
Val/Val homozygotes [58,59]. Potentially explain-
ing these results is a study in children that found
that the COMT Met allele is associated with a higher
cortisol response to stress [60

&

]. Patients experienc-
ing stress following brain injury might include
meditation in their daily routine. Animal studies
find that the BDNF Met allele confers significant
vulnerability to stress [61], and one study suggested
that indeed meditation might be more helpful for
BDNF Met carriers [62].

CBF is affected by functional variants in the gene
for nitric oxide synthase [63], and individuals with
such polymorphisms may have a decreased ability
to maintain adequate CBF following TBI [64]. Using
PET, it has recently been found that the BDNF
Val66Met polymorphism increased resting CBF in
Volume 25 � Number 6 � December 2012
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the prefrontal cortex and hippocampus [65
&

]. These
results could have important implications if func-
tional imaging methods such as BOLD fMRI or PET
CBF are being used to monitor treatment response
after neural injury.
CONCLUSION

With numerous studies showing that certain
genetic polymorphisms decrease the likelihood
of recovery following neural injury, the question
becomes ‘what can we do for these groups of
patients?’ Pharmacogenetics gives clinicians more
information in the search for the best therapy –
pharmacological or otherwise – for each patient.
Understanding the involvement of genetics in
comorbid conditions such as depression can help
in treatment or in the prevention of such compli-
cations. The ever-increasing knowledge of genetic
variants gives clinicians andresearchers an important
avenue of insight for defining the best treatments
following neural injury for individual patients.
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