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Detecting ultralight bosonic dark matter via absorption in superconductors
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and Berkeley Center for Theoretical Physics, University of California, Berkeley, California 94720, USA

(Received 6 May 2016; published 18 July 2016)

Superconducting targets have recently been proposed for the direct detection of dark matter as light as a
keV, via elastic scattering off conduction electrons in Cooper pairs. Detecting such light dark matter
requires sensitivity to energies as small as the superconducting gap of OðmeVÞ. Here we show that these
same superconducting devices can detect much lighter DM, of meV to eV mass, via dark matter absorption
on a conduction electron, followed by emission of an athermal phonon. We demonstrate the power of this
setup for relic kinetically mixed hidden photons, pseudoscalars, and scalars, showing that the reach can
exceed current astrophysical and terrestrial constraints with only a moderate exposure.
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I. INTRODUCTION

Since the first hints of dark matter (DM) nearly a
hundred years ago, the search has been on to understand
its nature. In the last thirty years, theoretical attention as
well as experimental development has focused, to a large
degree, on the weakly interacting massive particle (WIMP)
paradigm. An essential part of the experimental WIMP-
hunting program is the direct detection of relic dark matter
in the halo of the Milky Way. Existing efforts, such as
Refs. [1–3], have had immense success in constraining
dark matter in the GeV to TeV mass range, and ton-scale
detectors [4,5] will improve substantially on the current
reach in the near future.
These experiments are, however, limited in their reach of

light DM candidates due to their ∼keV energy thresholds,
corresponding to the kinetic energy of a ∼GeV mass DM
particle. Nonetheless, it is becoming increasingly clear,
both theoretically and experimentally, that well-motivated
and detectable DM candidates can be found with mass
below these thresholds. Examples include asymmetric DM
from a hidden sector [6], mirror DM [7,8], MeV-GeV mass
DM [9–14], and strongly interacting massive particles
[15,16]. At even smaller DM masses, candidates include
very weakly coupled particles such as hidden photons,
axions or axionlike particles, and scalars (see Ref. [17] and
references therein).
Detecting these lighter DM candidates in direct detection

experiments is challenging due to the smaller DM kinetic
energy available in the scattering, and, as the DM mass
drops below the nucleus mass, by the kinematics of
recoiling from a heavy target. The maximum energy
deposition by DM in an elastic scattering event off a target
of mass mT is q2=ð2mTÞ where the maximum momentum
transfer is q ¼ 2μrvX, with μr being the DM-target reduced
mass and vX ∼ 10−3 the DM velocity. Thus, 10 GeV mass
DM can deposit at most a few keVon a nucleus, while MeV

mass DM can deposit a mere meV of energy in such a
scattering, well beneath nuclear recoil thresholds.
Instead, once the DM mass drops below the nucleus

mass, electron targets are able to capture a larger fraction
of the DM’s kinetic energy. Electronic ionization in an
atom [18], and excitation to the conduction band in a
semiconductor [18–21], have both been proposed as
concrete mechanisms to detect DM by electron recoils, and
an analysis utilizing Xenon10 data has already been
performed [22]. These approaches are, however, inherently
limited by the energy gap for exciting an electron in the
systems, typically in the 1–10 eV range, which forbids
access to DM lighter than 1–10 MeV.
Thus, new technology must be found to detect DM with

sub-MeV mass. Recently, a proposal was made to utilize a
superconducting target as a means to detect DM X as light
as the warm dark matter limit, with mass mX ∼ keV
[23,24]. Such light dark matter carries little momentum,
j~qj ∼ ðmX=keVÞ eV, and even less kinetic energy,
ω ∼ ðmX=keVÞ meV. For detection of very light DM
via scattering processes, the superconducting detectors
carry three major advantages. First, the gap in a super-
conductor [of Oð0.3 meVÞ in a metal like aluminum] is
much smaller than the (approximately eV or more) gap in
semiconductors such as germanium and silicon. Second,
the electrons in a metal at zero temperature are Fermi
degenerate and have a velocity vF ∼ 10−2 that exceeds the
DM velocity. Kinematically, this feature is crucial for
being able to extract all the kinetic energy of the DM in
the scattering process. (While important for DM scatter-
ing, this second feature turns out to be unimportant for the
DM absorption process, which is the focus of this paper.)
Third, the small nonzero gap is essential to decoupling
the signature electron recoils from lattice vibrations of
the metal, essentially assisting in controlling the thermal
noise.
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The purpose of this paper is to show that superconduc-
tors are powerful not only as a means of detecting DM that
scatters off electrons, but also for absorbing ultralight
bosonic DM. Here, ultralight refers to DM with mass in
the meV to eV range.1 In this mass range, beneath an eV,
the density of DM particles exceeds their ðwave lengthÞ−3,
and the DM forms a coherent field. Assuming that this field
couples to electrons, a superconductor is then an excellent
absorber of the DM, in the same way that superconductors
and metals are excellent absorbers of electromagnetic
fields. For instance, we find that a kg-day exposure on a
superconducting target is sufficient to exceed the stellar
constraints for a hidden photon whose mass is obtained via
the Stuckelberg mechanism.
The outline of this paper is as follows. In Sec. II A we

discuss how metals can be efficient absorbers of low mass
particles. The process we consider involves absorbing all
the mass energy of the DM particle via an electron recoil,
with emission of an athermal phonon to conserve momen-
tum. We then describe in Secs. II B and II C our method to
determine the DM absorption rate from the optical proper-
ties of a metal. In Sec. III we present the reach of
superconducting detectors for ultralight DM that couples
to electrons, including hidden photons, pseudoscalars, and
scalars. We conclude in Sec. IV.

II. DARK MATTER ABSORPTION
WITH SUPERCONDUCTORS

We begin by describing the DM absorption process,
before computing its rate in a superconductor. We compare
our results for consistency against the standard Drude
theory for low-energy photon absorption in metals.
Then, in order to obtain accurate predictions at higher
(≳0.1 eV) energies, we relate the DM absorption rate to
measured photon absorption rates.

A. General principle: phonon emission

Absorption of low-energy particles in a superconductor
can proceed when the energy of the absorbed radiation (in
this case the mass of the DM particle) exceeds the super-
conducting gap. In the absorption process, a Cooper pair is
broken, and a pair of excitations is created. These excita-
tions have a long recombination and thermalization time
(of the order of a few milliseconds in aluminum), which
allows for their collection and measurement, as described in
Refs. [23,24]. Once the energy of the absorbed particle
significantly exceeds the superconducting gap, the absorp-
tion process is identical in the superconducting and normal
phases of a metal. There are several ways to absorb a
particle (be it a photon or DM) in a metal. One way is via

impurities, where an off-shell electron produced in the
absorption process becomes on shell through interaction
with an impurity. In the case of interest here, however, the
target superconductor must be ultrapure in order to enable
the collection and measurement of the created athermal
excitations, and so this possibility is not viable.
Instead, we make use of another process—that of particle

absorption on electrons through the emission of an athe-
rmal phonon in the final state, as shown in Fig. 1. The
emitted phonon is required for momentum conservation
of the target material. Consider an electron with initial

momentum ~ki and energy Ei ¼ ~k2i =ð2meÞ. Assuming the
electron absorbs a single particle of energy ω, the final

momentum of the electron is ~kf ¼ ~ki þ ~q and energy
conservation gives

ð~ki þ ~qÞ2
2me

¼
~k2i
2me

þ ω: ð1Þ

(Note that momentum on the lattice is conserved up to an
additive reciprocal lattice vector, ~K. For electrons, the
typical energy scale associated with transitions involving ~K
is K2=2me ∼ 10 eV, which is above the energies consid-
ered here.) Then the required momentum transfer to the

electron is j~qj ∼ ωðme=j~kijÞ ∼ ω=vF ∼ 100ω, where vF is
the Fermi velocity. This cannot be satisfied for an on-shell
DM particle in the halo, which carries momentum ∼10−3ω.
However, energy and momentum can still be conserved if a
phonon with momentum ∼ − ~q is emitted by the electron in
the final state; in other words, the electron recoils against
the lattice. The emitted phonon carries away a fraction
of the excitation energy, but can balance the large recoil
momentum of the electron.
In the Debye model, the dispersion relation of a phonon

with four-momentum ðΩ; ~QÞ is given by

Ω ¼ csj ~Qj; ð2Þ

where the speed of sound in aluminum is cs ≃
6320 m= sec∼2 × 10−5 in natural units. There is a maxi-
mum frequency ωD ¼ cskD for phonons, where the maxi-
mum wave vector for lattice vibrations kD ∼ 1=a is set by
the lattice spacing a. For aluminum, ωD ≈ 0.037 eV;

FIG. 1. Absorption process on electrons for an incoming relic
particle X, where a phonon Φ is emitted in the final state:
XðqÞ þ eðkÞ → eðk0Þ þ ΦðQÞ.

1In a separate publication, we explore absorption of DM via
semiconductor targets, in the complementary eV to keV DM
mass range [25].
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therefore, the maximum phonon energy is relatively low,
but the maximum momentum can be much higher,
ωD=cs ≈ keV.

B. Dark matter absorption

We now turn to computing the rate of DM absorption in a
material. The total DM absorption rate per unit mass per
unit time R is

R ¼ 1

ρ

ρX
mX

hneσabsvreli; ð3Þ

where σabs is the absorption cross section on electrons,
ρ is the mass density of the target material, and ρX ¼
0.3 GeV=cm3 is the local mass density of DM.
Treating the target as a free electron gas with Fermi

energy EF, the rate for the 2 → 2 process of XðqÞ þ eðkÞ →
eðk0Þ þ ΦðQÞ (with Φ being a phonon) is given by

hneσabsvreli ¼
Z

d3Q
ð2πÞ3

hjMj2i
16E1E2E3E4

Sðq;QÞ;

Sðq;QÞ ¼ 2

Z
d3k
ð2πÞ3

d3k0

ð2πÞ3 ð2πÞ
4δ4ðkþ q − k0 −QÞ

× fðEÞð1 − fðE0ÞÞ; ð4Þ

where hjMj2i is the averaged and summed matrix element
squared for the process. The functions fðEÞ are electron
occupation numbers, with ð1 − fðE0ÞÞ characterizing
Pauli blocking effects. The four-momentum of the absorbed
particle is q ¼ ðω; ~qÞ, while the emitted phonon has

Q¼ðΩ; ~QÞ with Ω¼csj ~Qj. For T¼0 and j~qj ≪ ω ≪ EF,
the integral over the initial and final electron phase

space Sðq;QÞ ≈ Sðω; ~QÞ reduces to a simple Heaviside
theta function of allowed kinematic configuration, with
amplitude

Sðω; ~QÞ≃ ðm�
eÞ2ðω −ΩÞ=ðπj ~QjÞ: ð5Þ

Here m�
e is the effective electron mass in the metal.

For each of the DM models we consider in Sec. III, we
compute hjMj2i for DM absorption via phonon emission,
treating the phonon as a scalar field Φ and assigning the
electron-electron-phonon vertex with the dimensionless
coupling

yΦ ¼ CΦj ~Qj= ffiffiffi
ρ

p ð6Þ

(we refer the reader to Appendix J of Ref. [26] for a
derivation of this result). The parameter CΦ has units of
energy and is of order EF, but must be determined by
matching onto data.
In order to check the validity of this procedure and to fix

the electron-phonon coupling using existing data, we must

turn to photon absorption. Photon absorption proceeds
by a similar two-to-two process as DM absorption, and
has been measured in aluminum over a range of energies.
By comparing the data with the photon absorption rate
computed with Eq. (4), we can then obtain the coupling
constant CΦ. Equivalently, we find that the DM absorption
rate can be written in terms of the photon absorption rate,
and this relation holds even at larger ω, where the free-
electron approximation breaks down.We note that although
the spatial momentum j~qj of massive DM differ from that of
the photon, this difference is unimportant for the absorption
process. The reason is that the momentum of both the
absorbed photon and DM particle is negligible compared to
the electron momenta.
We first calculate the rate for photon absorption at low

energies. Summing over the diagrams shown in Fig. 1,
and averaging over incoming electron spin and photon
polarizations, we find that the matrix element squared in the

limit of ω ≪ j ~Qj is given by

jMγj2 ≈
4e2

3

C2
Φ

ρ

j ~Qj4
ω2

: ð7Þ

The total rate for photon absorption is then (for ω ≪ EF,
where EF ¼ 11.7 eV in aluminum)

hneσabsvreliγ ≃ nee2

m�
eω

2

�
2π

ω

Z
dΩðω − ΩÞΩ4

3ð2πÞ4
C2
Φ

c6sρ
m�

e

ne

�

≡ nee2

m�
eω

2

1

τðωÞ : ð8Þ

The integral over Ω is restricted to energies either below ω
(due to energy conservation) or below ωD (due to the cutoff
in phonon momenta), whichever is smaller. Above, we have
suggestively defined the ω-dependent parameter τðωÞ as
the quantity in parentheses in the first line of Eq. (8), in
order to compare this result to the standard theory for
absorption of electromagnetic (EM) fields in metals, the
Drude theory. We will see next that τðωÞ is a time scale for
phonon emission.

C. Photon absorption and superconductor response

In order to make a connection between our calculation of
the photon absorption rate, Eq. (8), and the Drude theory,
we begin by noting that the absorption rate of photons can
be related to the polarization tensor of the EM field Π via
the optical theorem,

hneσabsvreliγ ¼ −
ImΠðωÞ

ω
; ð9Þ

where in the local limit of j~qj ≪ ω the transverse and
longitudinal modes of the polarization tensor are of equal
size, which we denote by ΠðωÞ. This Π is related to the
complex conductivity σ̂ðωÞ≡ σ1 þ iσ2, describing the
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frequency-dependent response of electrons to an EM
perturbation, by

ΠðωÞ ≈ −iσ̂ω: ð10Þ

(See the Appendix and, e.g., Ref. [24] for further details.)
As is evident, the real part of the conductivity σ1 is the
absorption rate for excitations of energy ω, and is related to
the absorption cross section of photons by

σ1 ¼ hneσabsvreliγ; ð11Þ

making clear from Eq. (3) that large nonzero σ1 is crucial
for absorption.
We can now compare the rate in Eq. (8) to the

conductivity derived from the Drude model. The Drude
model describes the conductivity at energies above the
superconducting gap and below the gap for direct tran-
sitions between bands (∼eV) [27]. The Drude theory gives

σ̂ðωÞ ¼ nee2τ
m�

e

1

1 − iωτ
; ð12Þ

with real and imaginary parts

σ1ðωÞ ¼ ω2
pτ

1

1þ ω2τ2
≈

ω2
p

ω2τ
; ð13Þ

σ2ðωÞ ¼ ω2
pτ

ωτ

1þ ω2τ2
≈
ω2
p

ω
; ð14Þ

where the last approximation is in the ωτ ≫ 1 limit, and the
plasma frequency ωp is

ωp ¼
�
nee2

m�
e

�
1=2

: ð15Þ

We immediately see the correspondence between σ1 in the
Drude theory and the result Eq. (8), once τ is determined in
the Drude theory. In what follows we use ωp ¼ 12.2 eV for
aluminum [28].
The parameter τ represents an electron scattering time

in the medium. In general, τ is both temperature and ω
dependent. In the ω → 0 limit and at low temperatures,
τ is primarily set by the impurities of the system and
determines the direct current conductivity. However,
in the ω ≫ T limit relevant to us [the operating temper-
atures of the proposed superconducting detectors are
Oð10 mKÞ ∼ μeV], τ is set by electron interactions with
athermal phonons. Using the simple Debye model for
the phonon dispersion, the phonon-electron interactions
give τ ¼ τΦ, where the rate for the electron to emit the
phonon is [29]

1

τΦ
¼

8<
:

4
5
πλtrωD

�
1 − 5

6
ωD
ω

�
; ω ≥ ωD

2
15
πλtr

ω5

ω4
D
; ω < ωD

: ð16Þ

For aluminum, ωD ≈ 0.037 eV, and the measured high-
temperature resistivity gives λtr ¼ 0.39 [30]. Then ωτ ≫ 1
and we see that Eq. (8) thus gives the same result as the
Drude model, Eq. (13), which can be used to fix CΦ.
In practice we will use the Drude model, normalizing τΦ
by comparing directly with data.
The Drude theory, from a strict point of view, applies

only for a metal in the normal (nonsuperconducting) phase.
For the case of absorption, however, the difference between
an ordinary metal and a superconductor is only relevant
when the absorbed particle energy is close to twice the
superconducting gap, 2Δ, which is the minimum energy
required to break a Cooper pair. Once the absorbed energy
is much larger than 2Δ, the system is once again described
by the free electron model of a metal. Near the gap, the
modification of the absorption rate in a superconductor
relative to that of a metal can be encoded in a so-called
coherence factor. Following Ref. [29], we include this
effect on the rate by using a different τSΦ in the super-
conducting phase, which is related to the normal metal
phase τNΦ close to the gap by

τNΦ
τSΦ

¼
R
ω−2Δ
0 dΩðω −ΩÞΩ4E½ð1 − 4Δ2

ðω−ΩÞ2Þ1=2�R
ω
0 dΩðω −ΩÞΩ4

; ð17Þ

where E is the complete elliptic integral of the second kind.
The inclusion of this factor only modestly affects our
results near threshold.
For higher energies (ω ∼ 0.5 eV in aluminum), interband

transitions are possible, and the Drude theory is incomplete.
In principle, the integral in Eq. (4) over electron momentum
states must be modified to take into account the full band
structure of the material. Fortunately, measurements of
photon absorption in aluminum are available in this energy
range and, where possible, we directly obtain σ1 from the
data. As long as we can simply relate the matrix element
squared of DM absorption to photon absorption, we are free
to use measured σ1 to normalize absorption rates, rather
than performing the many-body calculation.
To summarize, we determine σ1 over the meV to 10 eV

energy range through a combination of theoretical calcu-
lation and experimental measurements. Our resulting σ1 for
aluminum is shown in Fig. 2. At the lowest energies, we use
the analytic result in the Drude theory, Eqs. (13) and (16),
including the coherence effects close to the superconduct-
ing gap at Δ≃ 0.3 meV using Eq. (17). We fix the overall
normalization of τΦ by matching onto low-temperature data
on σ1 in the 0.2–3 eV energy range [31]. From 3 to 10 eV,
we extrapolate σ1 with an ω−3 power law; we note that
for these energies, σ1 is expected to be approximately
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independent of temperature and our extrapolation closely
follows σ1 measured at room temperature [32,33].
In what follows, we use the results of this section to

relate the DM absorption rate to that of a photon, and then
apply the combined solid σ1 curve of Fig. 2 to derive the
sensitivity of a superconducting aluminum target to various
DM candidates.
For the hidden photon model described next, we will also

require knowledge of σ2 at low temperatures; here we
simply use the result in the Drude theory, Eq. (14), over the
whole energy range. We have verified the validity of this
approximation by comparing with measurements of σ2 at
room temperature [32,33], finding at most ∼50% difference
with the Drude theory.

III. RATES AND CONSTRAINTS

Utilizing the results of the previous section, we now turn
to ultralight bosonic DM—hidden photons, pseudoscalars,
and scalars—in each case assuming that the candidate
composes all of the DM.

A. Dark photons

Consider a hidden photon that is kinetically mixed with
the hypercharge gauge boson, leading to kinetic mixing
with the photon,

L ⊃ −
κ

2
FμνVμν; ð18Þ

where FuνðVμνÞ are the field strengths for the photon
(hidden photon). For the parameter space considered here,
this hidden photon may be all of the DM, where the origin
of the relic abundance is set by a misalignment mechanism
during or before inflation [34–36].

Performing a field redefinition of the photon Aμ → Aμ −
κVμ leads to the canonical basis, where the electromagnetic
current JμEM picks up a dark charge, κeVμJ

μ
EM in vacuum.

However, this mixing angle can vary substantially from κ
due to in-medium effects, which affect the polarization
tensor Π [related to the conductivity σ̂ via Eq. (10)]. In a
metallic target such as aluminum, the effective mixing
angle is suppressed by powers of the plasma frequency,

κ2eff ¼
κ2m4

V

½m2
V − ReΠðωÞ�2 þ ½ImΠðωÞ�2 ≃

κ2m4
V

ω4
p

; ð19Þ

where we used Eqs. (10), (13), and (14). Since ReΠ ≈ ωσ2
is larger than both ImΠ ≈ ωσ1 and m2

V ≃ ω2 in our region
of interest, we have κeff ≪ κ. Note that the suppression
by the plasma frequency is different than the electron-
scattering case explored in Refs. [23,24], where the
Thomas-Fermi screening length was relevant for determin-
ing κeff . The reason is that the absorption process occurs
when the momentum transfer is much smaller than the
absorbed energy, j~qj ∼ 10−3m ≪ ω, whereas scattering in
the nonrelativistic limit occurs when j~qj ≫ ω. (See Sec. 5.2
of Ref. [24] for a discussion of the ðq;ωÞ dependence of the
screening mass.)
For absorption of the kinetically mixed hidden photon,

the matrix element squared is simply related to that of the
photon by jMj2 ¼ κ2eff jMγj2. Then the rate in counts per
unit time per unit target mass, Eq. (3), is found to be

R ¼ 1

ρ

ρDM
mDM

κ2effσ1: ð20Þ

The projected reach for a hidden photon is presented in
Fig. 3, assuming the particle comprises all of the DM and a
kg-day (thin solid black curve) or kg-year (thick solid black
curve) exposure. Considering energy depositions between
1 meV to 1 eV, this corresponds to 3.6 events at 95% C.L.,
since the solar neutrino background is expected to produce
fewer than an event in a kg year [24]; for DM masses in
the eV to 10 eV energy range, we similarly assume zero
background for simplicity since the absorption signal is
monoenergetic. Note also that a higher energy threshold for
the experiment would correspond simply to cutting off the
reach at lower DM masses, leaving the high-mass region
unaffected.
Direct detection constraints on relic vector DM via an

absorption process have been derived in Ref. [38,40] for
masses above 12 eV, using low-threshold Xenon10 data
(depicted in Fig. 3 in shaded red), and above 1 keV, using
Xenon100 data. For masses in these ranges, absorption
on semiconductor targets such as germanium and silicon
should be competitive, and is presented elsewhere [25].
Constraints from stellar emission in the Sun and HB stars
on masses below a few 10’s of keV are relevant as well
[37,41], and are shown in Fig. 3. The dominant emission

FIG. 2. Absorptive part of conductivity in low-temperature
aluminum: below ω ¼ 0.2 eV, we use the analytic Drude theory,
Eqs. (13) and (16), here shown in the normal metal phase (dashed
blue curve) and with the inclusion of coherence effects [Eq. (17)]
in the superconducting phase (solid blue curve); we match this
onto low-temperature data [31] (solid thick red curve), and then
extrapolate to higher energies.
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process varies depending on whether a dark Higgs boson is
present in the theory or not. In the former case, the bounds
depend on the charge of the dark Higgs boson under a dark
Uð1Þ (denoted e0, with e0κ constrained), while in the latter
case there is no such dependence; see Refs. [37,41] for
details. These constraints are depicted in Fig. 3, marked as
Higgs (dashed purple) and Stuckelberg (shaded orange)
accordingly.
A recent proposal to detect the hidden photon field with

resonant LC circuits [39] estimates strong sensitivity below
3 meV (and extending as far down as 10−12 eV). These
projections are depicted by the gray solid curve in Fig. 3.
A multiplexed version of this experiment could potentially
reach mixings of κ ∼ 10−16 for meV masses.
We learn that the reach of an aluminum superconductor

target with a kg-year exposure exceeds stellar constraints
over the entire mass range of interest, from 1 meV to 10 eV,
if the hidden photon obtains its mass via a Stuckelberg
mechanism. If a dark Higgs boson is present, supercon-
ducting targets with a kg-year exposure are stronger probes
than horizontal branch stars for vector masses heavier than
about 20 meV, for e0 ∼ 0.1. Since stellar emission depends
on the stellar environment and as such is model dependent,
direct detection provides a strong orthogonal probe to such
constraints.

B. Pseudoscalars

We now proceed to pseudoscalars X ¼ a coupling to
electrons,

L ⊃
gaee
2me

ð∂μaÞēγμγ5e: ð21Þ

While a candidate for a is the QCD axion, the relic density
for the QCD axion cannot saturate the observed DM relic
abundance in the mass range we consider, at least in the
standard cosmology. More exotic mechanisms may be
required for QCD axions to be all of the DM; alternatively,
the pseudoscalar may be an axionlike particle [35].
Comparing the pseudoscalar matrix element squared

to the case of a photon, we find the same leading ~Q
dependence, jMj2 ≈ 3ðgaee=2meÞ2ðω=eÞ2jMγj2. Then the
DM absorption rate is related to the conductivity as

R ¼ 1

ρ

ρX
mX

3m2
a

4m2
e

g2aee
e2

σ1: ð22Þ

The expected reach into the parameter space of pseu-
doscalar DM via absorption on an aluminum superconduct-
ing target is shown in Fig. 4, for a kg-day (thin solid black
curve) and kg-year (thick solid black curve) exposure.
Stellar constraints on light pseudoscalars are shown as
well—the electron coupling allows for emission of the
pseudoscalar in the mass range of interest within electron-
dense environments such as white dwarfs. The cooling
curves of white dwarfs give the strongest constraints on the
electron coupling over our entire mass range [42]. It has
been argued that some of the data are in favor of a new

FIG. 3. Estimated reach of an aluminum superconductor target
for 1-kg-year (thick solid black) and 1-kg-day (thin solid black)
exposures, assuming solar neutrino backgrounds only, for
absorption of hidden photon relic dark matter. For comparison,
we show solar and horizontal branch (HB) constraints for the
Stuckelberg (shaded orange) and Higgs cases (dashed purple)
[37], Xenon10 bounds (shaded red) [38], and the projected reach
for an LC circuit experiment (solid gray curve) [39].

FIG. 4. Estimated reach of an aluminum superconductor target
for 1-kg-year (thick solid black) and 1-kg-day (thin solid black)
exposures, assuming solar neutrino backgrounds only, for
absorption of pseudoscalar relic dark matter. For comparison,
we also show constraints from absorption of solar axions in
Xenon100 (shaded pink) [44], stellar emission from white dwarfs
(shaded orange) [42], as well as the QCD axion relation (shaded
gray). Dashed lines show constraints from a loop-induced photon
coupling given by Eq. (23), which assumes the pseudoscalar does
not couple to other charged particles. Such constraints include
emission from HB stars (shaded purple) [42], the CAST experi-
ment (shaded blue) [45], and decays into photons (shaded green)
[46]; these constraints are taken from studies that assume only a
photon coupling.
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weakly coupled particle [43], and the limits shown are
subject to a factor of a few uncertainty. We also show
constraints from Xenon100 [44] (shaded pink) on DM
emitted from the Sun, which have keV energies and can be
detected via an absorption process.
For completeness, we also show the relation between

mass and fa for the QCD axion, ð0.60 meV=maÞ ¼
ðfa=1010 GeVÞ. Then the effective coupling can be written
as gaee ¼ Ceme=fa, where for Dine-Fischler-Srednicki-
Zhitnitsky axions, Ce ¼ 1

3
cos2 β, and for Kim-Shifman-

Vainshtein-Zakharov axions with only a loop-induced
electron coupling, Ce ∝ α2. In the shaded gray region,
we take as an upper bound Ce ¼ 1=3.
Given an electron coupling, a loop-induced coupling of

the pseudoscalar to photons arises,

α

8π

gaee
me

aFμν
~Fμν: ð23Þ

If the pseudoscalar couples to other charged particles, this
coupling will be modified by an Oð1Þ factor. Assuming
only the induced photon coupling above, we can place
constraints on gaee from CAST [45] (shaded blue), cooling
of HB stars (shaded purple), and the a → γγ decay time
[46] (shaded green). (The IAXO experiment is expected to
improve on the constraint from CAST by at least an order
of magnitude [47].) While a kg-year exposure can cut into
the QCD axion parameter space, stellar constraints remain
stronger. Superconductor targets are a strong alternative,
however, to model-dependent stellar constraints.

C. Scalars

We now consider scalar DM X ¼ ϕ coupling to
electrons via

L ⊃ dϕee
ffiffiffiffiffiffi
4π

p me

Mpl
ϕēe; ð24Þ

where we follow the normalization of Refs. [48,49].
Similar to the hidden photon and axion, the relic
abundance of scalar DM can be set by a misalignment
mechanism [50].
The dominant piece of the matrix element squared for the

absorption of a scalar is

jMj2 ≈ 3

α

�
dϕeeme

Mpl

�
2 ω2

j ~Qj2
jMγj2; ð25Þ

and thus differs in ~Q dependence from the photon case,

suppressed in comparison by ω2=j ~Qj2. Performing the
integration in Eq. (4) and comparing with the photon
rate in Eq. (8), we thus obtain a ω-dependent mapping
from σ1 to the scalar case. We arrive at a rate for scalar
absorption of

R ¼ 1

ρ

ρX
mX

3

α

�
dϕee

me

Mpl

�
2

σ1

×

8<
:

5
2
c2s ; ω < ωD

5
3
c2sω2

ω2
D

ð1−3ωD
4ω Þ

ð1−5ωD
6ω Þ ; ω > ωD:

ð26Þ

We use this result over the entire ω range shown, even
though it does not account for interband transitions that
are relevant above ω≳ 0.5 eV. Nevertheless, at least for
phonon-assisted absorption, we expect Eq. (26) to be a
reasonable proxy because the phase-space volume factor
favors large phonon energies near the upper limit of ωD,
where the suppression factor appearing in Eq. (25) is well

captured by ω2=j ~Qj2 ∼ ω2=j ~QDj2 with j ~QDj ¼ ωD=cs, up
to an Oð1Þ factor.
The projected reach of a superconducting aluminum

target for scalar DM absorption is presented in Fig. 5, for a
kg-day (thin solid black curve) and kg-year (thick solid
black curve) exposure. For comparison, we present the
fifth-force constraints of Ref. [48] (shaded blue and solid
red curve), using the translation jαmodj ¼ ðdϕeeQeÞ2 where
Qe ≈ 1=4000 is the fractional rest mass in electrons.
For masses above 0.1 eV, the derived constraints come
from Casimir force experiments, and are not as rigorous.
We also plot HB cooling constraints (shaded purple),
applying the limit gϕee ≲ 1.3 × 10−14 [51,52] and setting
gϕee ¼ dϕee

ffiffiffiffiffiffi
4π

p me
Mpl

. Similar to the pseudoscalar case, the

loop-induced coupling to photons

α

3
ffiffiffi
π

p dϕee
Mpl

ϕFμνFμν ð27Þ

FIG. 5. Estimated reach of an aluminum superconductor target
for 1-kg-year (thick solid black) and 1-kg-day (thin solid black)
exposures, assuming solar neutrino backgrounds only, for
absorption of scalar dark matter. For comparison, we also show
constraints from fifth force (shaded blue and solid red curve) [48],
HB cooling (shaded purple) [51,52], and decays into photons
(dashed green outline) [46].
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yields limits on dϕee from the ϕ → γγ decay time compared
to telescope searches [46], which we plot as well (dashed
green outline). We find that the potential reach of the
superconducting detector is stronger than existing limits
above 30 meV. Finally, we note that the entire unexplored
portion of the parameter space shown is technically natural,
in that the ϕ mass correction due to the electron coupling
leads to δm2

ϕ=m
2
ϕ < 1.

IV. CONCLUSIONS

We have explored the prospects of detecting ultralight
DM, with mass in the meV to 10 eV range, via absorption
in an aluminum superconductor. We find that even with
modest exposure, and with the assumption of negligible
experimental backgrounds, the reach of superconductors
for hidden photon DM can easily supersede stellar con-
straints. In the case of a light pseudoscalar, absorption on a
superconducting target can also cut into the QCD axion
parameter space. Likewise, superconductors can probe
scalar DM parameter space beyond constraints from stellar
emission and fifth-force searches. Our results are summa-
rized in Figs. 3–5. Strikingly, the excellent reach of the
superconducting targets is obtained despite the fact that
the proposed detection method does not make use of DM
coherence effects in the absorption process.
In fact, the DM mass range accessible to a super-

conducting absorber is exactly the mass range where the
behavior of light bosonic DM transitions to that of a
classical field, at masses of an eV. For masses well below
this range, experimental techniques can rely on the coher-
ence of the DM field to probe extremely small couplings.
Our method, however, does not require a long coherence
time of the DM field. The DM signal is a single-particle
monoenergetic absorption, which takes advantage of the
superconductor sensitivity to an excitation with energy as
low as ∼meV.
In a future publication, we will present the sensitivity of

semiconducting targets to DMwith masses above an eV via
a similar absorption process, where we expect excellent
reach [25].
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APPENDIX: ELECTRODYNAMICS OF SOLIDS

For an isotropic medium, the dielectric constant ϵ̂ is
related to the complex index of refraction ~n and is given in
terms of the conductivity σ̂,

ϵ̂ ¼ ~n2 ¼ 1þ iσ̂
ω
; ðA1Þ

where we assume Lorentz-Heaviside units. The conduc-
tivity is directly related to the in-medium polarization
tensor Πμν ¼ e2hJμ†EM; JνEMi,

Πμνð~q;ωÞ ¼ ΠðωÞ
X
i¼1;2

ϵTμi ϵT�νi þ ΠðωÞϵLμϵLν; ðA2Þ

where ϵL; ϵT are longitudinal and transverse polarizations
vectors. As described in Sec. 5.2 and Appendix A of
Ref. [24], Πμν is related to the dielectric constant, and for a
nonmagnetic medium,

ðω2 − ~q2Þð1 − ~n2Þ ¼ ΠL;

ω2ð1 − ~n2Þ ¼ ΠT: ðA3Þ

In the local limit of j~qj ≪ ω the longitudinal and transverse
ΠL and ΠT can both be written as Eq. (10),

ΠðωÞ ≈ −iσ̂ω: ðA4Þ
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