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Abstract 

This thesis consists of two different parts, having in common the fact that in both, 

conformal invariance plays a central role. In the first part, we derive conditions for con­

formal invar~ance, in the large N limit, and for the existence of an infinite number of 

commuting classical conserved quantities; in the Generalized Thirring Model. Our treat­

ment uses the bosonized version of the model. Two different approaches are used to derive 

conditions for conformal invariance: the background field method and the Hamiltonian 

method based on an operator algebra, and the agreement between them is established. 

We construct two infinite sets of non-local conserved charges, by specifying either periodic 

or open boundary conditions, and we find the Poisson Bracket algebra satisfied by them. 

A free field representation of the algebra satisfied by the relevant dynamical variables of 

the model is also presented, and the structure of the stress tensor in terms of free fields 

(and free currents) is studied in detail. In the second part, we propose a new approach for 

deriving the string field equations from a general sigma model on the world sheet. This 

approach leads to an equation which combines some of the attractive features of both the 

renormalization group method and the covariant beta function treatment of the massless 

excitations. It has the advantage of being covariant under a very general set of both local 

and non-local transformations in the field space. We apply it to the tachyon" massless 

and first mass'ive le~el, and show that the resulting field equations reproduce the correct 

spectrum of a left-right symmetric closed bosonic string. 
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Preface 

This thesis reports on work I did in collaboration with my advisor Professor 

Korkut Bardakci (and also with Nir Sochen, a postdoctoral fellow at the Berkeley 

Laboratory at the time, in the part concerning the integrability of the Generalized 

Thirring Model), and as such, it is also his work, and his views are present in almost 

every page. 

The thesis consists of two very distinct parts, as reflected in its layout, and it 

is possible to read them independently. In common, there is ~he~fact that in both 

parts conformal invariance plays a central role. In the first part we search for a 

conformal invariant theory, which can serve as the basis for string compactification, 

while in the second part, we go further and try to formulate string field theory in a 

background independent way. 
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I. Conformal Invariance. and Integrability 

of the 
Generalized Thirring Model 

1. Introduction 

The search of new conformal field theories and integrable models in two di­

mensions has been an active field of research for the last fifteen years. This is due 

to various reasons: (1) from a mathematical viewpoint, the study of these sub-," 

jects, besides being fascinating in itself, has revealed deep connection with other 

branches of mathematics; (2) conformal theories play an important role in string 

compactifications and correspond to ground states of st.ring theory [1]; (3) statistical 

mechanics systems in two dimensions are conformally invariant on large distance 

scales at a critical point [2,3]; (4) 2D integrable models share many features with 

4D gauge theories, and being exactly solvable models, can give deep insights on the 

physics of these theories, including non-perturbative phenomena, without relying 

on any approximation; and (5) matrix models formulations of string theory led to 

the appearance of hierarchies of classical integrable equations in the description of 

non-perturbative string amplitudes [4,5]. 

Here, we are going to study a fermionic model that we call the Generalized 

Thirring.Model (GTM). Both the Conformal Invariance aspect and the Integrability 

aspect of the model will be studied. 

This model is a natural generalization on the non-abelian Thirring model stud­

ied by Dashen and Frishman [6] in the early 70's, which was in turn a generalization 

of the original model studied by Thirring [7] in 1958. While the original Thirring 

model is equivalent to a free field theory, and a trivial example of a conformal the­

ory, the non-abelian model, with a four fermion interaction invariant under SU (n), 
has conformal invariance at quantized values 'of the coupling constant. Starting in 

\.. the late 80's there was a renewed interest [8,9,10,11] in the conformal properties of 
" the non-abelian Thirring model and of its relation to stri~g dynamics. This was mo-

tivated by developments in string theory and by suggestions that abelian fermionic 

Thirring models were appropriate candidates to describe all toroidal string compact­

ifications [12], while the non-abelian model was shown to led, through bosonization, 

to models with chiral bosons of importance for string phenomenology [13]. On the 

same lines, the original motivation for the work presented here, was the suggestion 

1 . 



[14J that the world sheet of the string theory resulting from QeD, may be described 

by a generalized Thirring model. 

In parallel with the search of new conformal models has been the search of new 

integrable models. Although the quest for such models is older than string theory, 

in the last decade it received great impetus from its relation with the latter. The 

initial interest l of quantum field theorists in integrable two-dimensional theories 

arose from the fact that certain models share many features with 4D gauge theories 

[16,17]' while being simpler at the same time. This interest led to the discovery 

by Luscher and Pohlmeyer [18J of an infinite number of conserved charges in non­

linear sigma models. In principal chiral models these charges were shown to satisfy a 

Kac-Moody algebra [19J. The non-abelian Thirring model was studied by de Vega, 

Eichenherr and Maillet [20J in the early 80's. They showed that the model was 

integrable with non-local charges that obeyed a quadratic Poisson Bracket algebra. 

Here, we want to study the integrability of the bosonized version of the GTM, 

where by integrability we mean the existence of an infinite number of conserved and 

commuting dynamical variables. Whether these variables are sufficient in number 

to make the model truly solvable will not be discussed, although we will mention 

some similar issues encountered in the study of the non-linear sigma model on a 

half line [21 J. 

No attempt will be made to relate the conditions coming from conformal invari­

ance with the ones coming from integrability, although that would be interesting 

and desirable, as was done in some other models (Toda field theory [22J, T = Tc 

Ising model [23J) 2. The fact that the conditions for integrability were obtained 

only at the classical, not quantum, level, is not really an issue here. In fact, the re­

lation between string theory and quantum integrable systems is not as clear as with 

classical integrable systems [26J. However, since the Yang-Baxter equation seems 

to play such an important role in establishing such relationship, and we never make 

use of it, it is possible that such relationship may be out of question at this stage. 

In the rest of this section we introduce the Generalized Thirring Model (GTM), 

including the, Poisson Bracket structure satisfied by the conserved currents and an 

extra set of variables introduced to form a complete set. In section 2 we derive 

the conditions for conformal invariance using two different approaches. In the first 

approach we use the background field method and use as criterion for conformal 

invariance the existence of a vanishing beta function. The second approach is based 

1 For a brief history of the study of integrable two-dimensional models see [15]. 

2 See [24] for a pedagogical discussion and [25] for more examples. 
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in operator methods and uses as criterion for conformal invariance the existence of 

a chirally conserved stress tensor. In both cases the results are valid to first order 

in liN, where N is the number of fermion flavors. We finish the section by finding 

some solutions of the conditions derived, and with an appendix on the background 

field approach. In section 3 we derive the conditions for integrability, where by 

that we mean the existence of an infinite number of conserved and commuting 

variables, and find some simple solutions of those conditions. We also construct the 

conserved "charges" with periodic and open boundary coilditions and compute the 

respective Poisson Bracket's. In section 4 we present a (non-local) representation of 

the Poisson Bracket algebra of the GTM, introduced below, in terms of free fields. 

We conclude with a discussion of the results. 

1.1. The Generalized Thirring Model 

The Generalized Thirring Model (GTM) is a model of several massless fermions 

interacting through the most general Lorentz invariant four fermion couplings, in­

cluding parity violating interactions [27,28]: 

/ 

(1.1 ) 

where Rand L refer to the right and left chiral components of W, and ta are the 

trace orthogonal generators of SU( n) in the adjoint representation~: 

The coupling constant (a-1 )ab is an invertible not necessarily symmetric matrix, 

resulting in parity violation, and W is a Dirac fermion in the fundamental repre­

sentation of SU(n), (flavor group), and in the fundamental of U(N), (color group). 

The flavor group is in general broken by the coupling constant matrix a, but the 

color group is an exact symmetry of the model: The color indices are contracted in 

the fermion biliniares in (1.1) to form singlets. The non-abelian Thirring Model of 

Dashen and Frishman [6], is recovered with N = 1 and gva ~ 41, where 1 is the 

identity matrix and gv is the coupling constant as defined in [6]. In what follows, 

the large N limit will be helpful in making the model tractable. 

3 The metric in group space is just Dab and so there is no distinction between upper 
, .' 

and lower indices. 
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In one version of bosonization [27,29,10]' this gives 

where Xa stands for Tr(taX), g and h are group elements expressed in the adjoint 

representation, and 

(1.3) 

where N is the number of fermion flavors (N) shifted by the Casimir of the group 

and W is the WZW action 

Here we have assumed that (G-I) is an invertible matrix. From now on N stands for 

N. In the absence of sources the equations of motion are equivalent to conservation 
of two currents: 

where 
N 

J+ = i- (-o+hh- 1 + htah-1Grb(g-lo+g)b) , 
47[" 
N 

J_ = i 47[" (_o_gg-l + gtag-lGab(h-lO_h)b) . 

These currents are conserved by virtue of invariance of the action under 

where x± = t(xo =t=Xl) and u±(x±) are arbitrary functions. 

(1.5) 

(1.6) 

Treating x+ as time and x_ as space, the Poisson Bracket between two J_'s 

are easily evaluated [27]: 

where x and yare the space coordinates. These conserved currents satisfy an affine 

Lie algebra. However, they are not in sufficient number to span the spafe where 

the fields g and h are defined and must be supplemented 'by additional variables in 

order to be ~ble to quantize the model. The extra set of variables was chosen [27] 
to be 
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where H_ = 1 - GTG. The new Poisson Bracket's are 

(1.8) 

and [27,28] 

(1.9) 

where 

(1.10) 

and 

(1.11) 

where H+ = 1 - GGT and the matrix A+e has elements 

The algebra (1.9) satisfied by the M_ 's is non-linear and also non-local. In section 

4 we present a non-local representation of this algebra in terms of free fields. One 

reason for finding such a representation was to see whether the above model could be 

mapped into a well-known c~nformal theory, perhaps admitting an affine Sugawara 

construction (for a review of the affine Sugawara construction see [30] and references 

therein). As we will show, that doesn't seem to bethe case, which suggests the 

possibility of a new conformal structure. 

2. Conformal Invariance 

The non-abelian Thirring model, with the four fermion interaction invariant 

under some Lie group, was shown [6] to be conformal invariant at quantized values 

of the coupling constant and to possess a stress tensor that at the conformal points 

is given by the· affine Sugawara construction. The aim of this section is to find 

similar results for the classical scale invariant GTM, but we will delay the problem 

of whether the stress tensor admits an affine Sugawara construction until section 4. 

5 



2.1. Background Field Method and Conformal Invariance 

In this section we use the background field method to investigate conformal 

invariance of the GTM. The criterion for conformal invariance is the vanishing of 

the beta function, which will be evaluated to first order in 1/ N. Two implement 

the background field method, we add a term to the action which represents the 

coupling of two external sources K ± to two suitable currents: 

The next step is to define classical fields by solving the equations of motion in the 

presence of sources. A special solution we are going to use is 

(2.2) 

These sources K± can be substituted back in S to give the classical action S(O). This 

defines the classical (background) fields gclas. and hclas. around which we expand the 

full quantum fields 9 and h. In the appendix, we use background field perturbation 

theory to derive, to one loop order, the conditions that the coupling constants Gab 

must satisfy to have conformal invariance. This is done by first expanding the 

action S around S(O), and by calculating the one loop divergent contribution to the 

action. This calculation is fairly standard [14], and for the sake of completeness, it 

is sketched in the appendix at the end of this section. The result to one loop order 

IS 

(2.3) 

where S(2) is logarithmically divergent. Here <P (which stands for both <P and ¢» is 

the field used to parameterize 9 (and h is parameterized by ¢», and <Pclas. is defined 

by gclas. = g( <Pclas.). The divergent piece can be written as (from now on <P stands 

for <Pclas.) 

(2.4) 

where 

(2.5) 
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and 

with 

Y;i1 ) = -Tr[GH.=l GT faH+1 fb] yS 2
) = Tr[H.=l GT faH+1 G fb] 

y;;I) = Tr[GH.=l f aGTH+l Ib] Ya(;2) = -Tr[H.=l faGT H+IGfb], . 
(2.6) 

(2.7) 

and the matrices fa are defined by (fa he = fabe, where fabe are the structure 

constants of the group. The Eaa's are the vielbeins defined by 

(2.8) 

with similar definitions for Eaa?s in terms of h's. Now compare this divergent piece 

with the original Lagrangian, expressed in terms of classical fields 

(2.9) 

Of the four distinct divergent terms that appear in (2.5), three correspond to wave 

function renormalizations and can be eliminated by field redefinitions. Conformal 

invariance is then imposed by requiring that the remaining divergence. (the beta 

function) vanish. The field redefinitions that eliminate the spurious divergences are 

given by 

( . -l~) (. -1~) ,(11)(. -1~) \(12)(·h-l~ h) zg u+g a ---+. zg u+g a + Aab zg u+g b + Aab 'I, u+ b, 

(ih-1a_h)a ---+ (ih-1a_h)a + >.~~l)(ih-la_h)b + >.~~2)(ig-la_gh, 
(2.10) 

where the ).'s are first order in liN. This corresponds, in the Polyakov-Wiegman~ 
bosonization, to making the identification· 

instead of 

A+a = (8ab + >.~~1))(ig-la+9)b + >.~lb2)(ih-la+h)b' 
A-a = (8ab + >.~~2))(ih-la_hh + >.~~1\ig-la_9)b' 

7 
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The same result can be obtained by introducing additional sources L±, 

(2.13) 

which are zero to lowest order, and by transforming K±, L± linearly among them­

selves (source renormalization). 

Under these field redefinitions the first order correction to S(O)[¢>] is 

.6.S(O) = - :: J d2x ((.:\(21) + (.:\12f)abEaaEb(3a+<i/' a_¢>(3 

-( (.:\ (1l))T G + G.:\ (22»)abEaaEh(3a+ ¢>aa_ <i/ 

+( (.:\ (11) f - G.:\ (21) )abEaa E b(3a+ ¢>a a_ ¢>(3 
(2.14) 

+(.:\(22) _ (.:\(12»)TG)ab EaaEbI3a+¢>aa_<i/). 

We now try to eliminate the divergent terms, and this leads to the matrix equations 

_y(ll) + ::((.:\(ll»)T _ G.:\(21))'= 0, 

_y(12) _ N ((.:\(ll»)TG + G.:\(22») = 0, 
47r 

_y(22) + N (.:\(22) _ (.:\(12)fG) = 0, 
47r 

_y(21) + N (.:\(21) + (.:\(12»)T) = 0. 
47r 

(2.15) 

At first, one might think that these equations can be solved for the unknown A's. If 

this were true, all the infinities would be absorbed by field redefinitions and confor­

mal invariance would be automatic! In fact, the equations are linearly dependent, 

and for a solution to exist, the V's must satisfy the following condition: 

(2.16) 

This condition is therefore equivalent to the vanishing of the beta function. Written 

out explicitly, this leads to the following equation between the coupling constants: 

Tr[H=lGT faH+1Gfb] + GaaIGblbTr[GH=l faIGTH+1 fbI] 

-GaaITr[H=l faIGTH+IGfb]- GblbTr[GH=lGT faH+1 fbI] = 0, 

8 
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Eq. (2.17) is therefore the condition that determines the conformal points in the 

coupling constant space. For G = GT, it agrees with the result obtained in [31], 

where the Q defined there is related to our G by 

Q = 21 - G. (2.18) 

We end this section by noticing that this equation is invariant under G -+ G-1 and 

under G -+ Or G02 , where 0 1 and O2 are orthogonal transformations generated 

by rotations in group space. The first one is the standard duality transformation 

(for a review see [32]), already noticed in a classical context in [33J. The second set 

of transformations are generated by independent group rotations of left and right 

fermions: 

(2.19) 

2.2. The OPE and Conformal Invariance 

In this section, we shall reexamine the conformal invariance of the theory from 

the operator point of view, and show that again the same result as in the last section 

(eq. (2.17)) is obtained. Our criterion for conformal invariance is the existence of 

a chirally conserved stress tensor: it is well known that this is equivalent to the 

absence of the trace anomaly in the stress tensor [34J. Our approach will be to 

solve the equations of motion for the quantized fields as a power series in 1/ N, and 

then use this result to construct the stress tensor explicitly. We. will then see that 

there is an anomalous term which violates chiral conservation. Conformal invariance 

is restored by demanding that this term vanish, and the resulting condition on 

the coupling constants agrees with the result derived in the last section using the 

background field method. Before discussing the quantum mechanical complications, 

we will first briefly review the classical situation. The two chiral components of the­

classical stress tensor, defined by 

(2.20) 

(2.21) 
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satisfy the conservation laws 

o+T_(t, x) = 0, ---+ T_(t, x) = T_(x), 

o_T+(t,x) = 0, ---+ T+(t,x) = T+(t), 

and also satisfy the classical (without central charge) Virasoro algebra [27]: 

1 
T_(x)T_(y) rv ( )2 (T_(x) +T_(y)). 

x-y 

(2.22) 

(2.23) 

Now, in the quantum version of the stress tensor we replace the classical expression 

by (we will work with the M_a(t,x)'s, but the same applies to the M+a(t,x)'s), 
7r . 

T_(t,x) = 2" lim (CabM-a(t,x)M-b(U,y) - sing.terms), (2.24) 
a y,u->x,t 

where Cab is a constant matrix which starts with classical value 8ab , and has higher 
order corrections given by 

00 

Cab = 8ab + L anc~~), (2.25) 
n=2 

due to renormalization. We will determine it by requiring that the stress tensor 
T _ satisfy the Virasoro algebra. To do this, and to find the singular terms to be 
subtracted, we need the OPE's (operator product expansion) between two M_ 'so 
So we will expand 

00 

M_a(t,x) = L anM~';!(t,x), (2.26) 
n=O 

and carry calculations up to second order. The strategy for computing OPE's is the 
following. We first define M~n),s at a fixed t, say t = 0: M~nj(x) = M~nj(t = O,x). 
The OPE's depend only on x and they can be deduced from the Poisson Bracket's 
at fixed t [27]. The OPE's between the M_ 's follow from the Poisson Bracket's (eq. 
(1.9)) and are given by [27,28]: 

(O)() (0) rv 1 M_ a x M_ b (y) = - 2 ( )2 8ab, 7rX-y 
1 
~ (n)() (l-n) '" 1 ( (0») (0»)) ~ M_ a x M_ b (y) = - 47r(x _ y) F-abc M_ c (x + M_ c (y , 

2 

~ M(n)(x)M(2-n)(y) rv _ 1 F (M(l)(x) + M(l)(y)) 
~ -a -b 4 ( ) -abc -c -c 
n=O 7r X - Y 

(2.27) 

1 (0) ) (0) ) + 27r E-ab,cd log(x - y)M_c (x M_ d (y , 

10 



;' 

where 

(2.28) 

and the constants A-abc and F-abc were defined before (eq. (1.10)). The M~~'s 
obey similar OPE's, obtained from the above ones ~nder G -t GT , with the ne~ 
constants A+abc and F+abc, and E+ab,cd = A+caeA+bde. If we define G+ = GT and 

G _ = G then these constants can be written compactly as 

(2.29) 

and 

Note that A±abc is antisymmetric in its first two indices. 

To extend these OPE's to t =1= 0, we solve the equations of motion up to second 

order, and express the M_ 's and M+ 's at arbitrary t in terms of the same variables 

at t = O. Since the OPE's at t = 0 are already known, they are then easily extended 

to t =1= o. From 

(2.30) 

we have 

(2.32) 

The model is invariant under the gauge transformations h -t u+( x+ )h; using this 

gauge invariance, we can set J+ = 0 (8_J+ = 0, so J+ depends only on x+ = t). (, 

This gives us a special solution to the equations of motion; the general solution is 
. f 

obtained by applying the inverse transformation. It is interesting to notice that the . 

equations of motion can then be written as flatness conditions for two vector fields 

V and W: 
8+ V_ - 8_ V+ - i[V+, V-J = 0, 

8+,W_ - 8- W+ - i[W+, W-J = 0, 

11 
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where, 

These can be cast in a more useful form in terms of 

1 

M+a = (H~)abW+b, 

defined before. The equations of motion are then 

8_M+a + A+abcM+bM-c = 0, 

8+M-a + A-abcM-bM+c = 0, 

(2.34) 

(2.35) 

(2.36) 

The conservation laws of the (classical) stress tensors follow at once from these 

equations due to the antisymmetry of A±abc in the first two indices. 

The next step is to solve the equations of motion iteratively, using the expansion 

in a (eq. (2.26)), and a similar expansion for M+. The zeroth and first order 
solutions are 

M~02(t, x) = M~o2(x), 

M (O) () (0) ( ) +a t, x = M+a t , 

M~12(t,x) = M~12(x) - A-abcM~o2(x) jtdt'M~O](t'), (2.37) 

M!:2(t, x) = M~12(t) - A+abcM~02(t) jX dx'M~O](x'), 

and to second order 

M(2)(t x) = M(2)(x) - A jtdt'M(O)(X)M(l)(t') -a , -a -abc -b +c 

+ A-abcA+cde jX dx' jtdt , M~02(x)M~Ol (x')M~Ol(t') 

- A jt dt' M(l)(x)M(O)(t') -abc -b +c· 

(2.38) 

t t' 

+A-abcA-bde j dt'j dtIM~Ol(x)M~O](t')M~Ol(t"). 

We will not need M~22(t, x). Therefore, M-a(t, x) can be expressed in terms of 

M~n;(x)'s and M~n;(t)'s, functions of only one variable. If we substitute the above 
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In the definition of T _ to second order, it is easy to see that classically all of 

the t dependent terms cancel, as they must, because we know from the equations 
of motion that this is true to all orders. However this does not happen in the 

quantum case, where M~n}(x), n = 0,1,2, become operators that satisfy the OPE's 

given earlier (eq.(2.27)). First of all, as it stands, the above expression for M-a(t, x) 
is not well defined, because we haven't defined yet the product of two or more M_ 's 
at the same point. These products should be understood as nonsingular "normal 

ordered" products. For instance, M~o2 (x )M~o2 (y) should be understood as 

-M(O)(x)M(O)(y)- = M(O}(x)M(O)(y) + Dab 
- -a -b - - -a -b 211"( x _ y)2 ' . (2.39) 

and the same applies for the M~n},s. The product of a M~:) and a M~n} gives 

no problem since they are functions of different variables and cQmmute with eac.h 
other. This guarantees that limy __ x :M~o2(x)M~o2(Y):, and consequently the above 

expression for M~22 (t, x) is well defin.ed. 
Next, we examine (2.24), to see what subtractions are needed to make the 

stress tensor well-defined, and whether it is t independent, as the conservation law 
(eq. (2.22)) demands. It turns out that to the order we are considering (second 
order in a), T _ can be made finite by making suitable subtractions, and that all of 

the terms in T_, with the possible exception of one term, are t independent. The 

critical term in question, up to a multiplicative factor of 11" / a 2
, is 

This term is finite as y -t X and needs no subtraction. However, it is t dependent, 
and therefore, if it does not vanish, it violates the conservation law (eq. (2.22)). 

It does not automatically vanish because, while A-~bc is antisymmetric in a and b, 
:M~o2(x)M~oJ(x'):M~o2(Y) + (x f-t y) is not symmetric due to the normal ordering 
of the two M_ 's. However, the completely normal ordered product 

is symmetric in a and b and vanishes when multiplied by A-abc. We now make use 
of the identity I' 

:M~o2(x )M~oJ (x'):M~o2(Y) = :M~o2(x )M~oJ (x')M~o2 (y): 

Dab M(O) (x') _ Dae M(O) (x) 
211"(x - y)2 -e 211"(x' - y)2 -b ' 

(2.40) 
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to find 

lim T -crit. = - lim A-abcA+cde jt dt' MiO) (t') x 
y-+x y-+x 

(j
X d , Dae M(O)() jYd' Dae M(O)()) 

. x 2rr(x' _ y)2 -b X + X 2rr(x' _ x)2 -b Y 

( 
M(O)() M(O)()) t 

- - l' A A _~ -b x - -b Y j dt'M(O)(t') 
- 1m -abc +cde 2 +d 

Y-+X rr x - Y 

1 '(0).( ) jt , (0)(,) 
= + 2rr A-bacA+dcaM_b X dt M+ d t . 

(2.41 ) 
To eliminate this anomaly and restore conformal invariance, we have to set its 

. coefficient equal to zero, 

(2.42) 

recovering the same condition as before (eq. (2.17)). We note that conformal 

invarianc~ imposes no restrictions on C~~). These constants can be determined by 
requiring that the stress tensor satisfy the Virasoro algebra to second order. We 
therefore need the OPE of the product of two stress tensors; this is given by [27,28]: 

T ( )T ( ) rv C rr (M(O)( )M(O)( ) + M(O)( )M(O)( )) - x - y = 2(x _ y)4 - (x _ y)2 -a X -a X .-a Y -a Y 
2 . 

- (X 7r: Y )2 (M~12 (X )M~12 (X )M~12 (y )M~12 (y)) 

2 

4(x ~ y)2 (F-adbF-adc + 2E-aa ,bc + 47rC~;»)x 

(M~Ot(x)M~01(x) + M~Ot(Y)M~01(Y)) , 

where c is the central charge. 

Since the Virasoro algebra reads 

we must have 

F -adbF -adc + 2E-aa ,bc + 47rC~;) = 0, 

which determines C~~), and the central charge c is given by 

0'2 
c =D - -(3E-aa bb + F-abcF-abc), . 47r ' 
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(2.43) 

(2.44) 

(2.45) 

(2.46) 



where D is the dimension of the flavor algebra. This is the central charge of the 

algebra generated by T _. The central charge of the algebra generated by the other 

chiral component, T+, (see eq. (2.20)) can be gotte~ from (2.46), by replacing E_ 

by E+ and F_ by F+. 

As a check on our formalism, we notice that, at Gab = 0 in (1.2), the action is a 

sum of two decoupled WZW models and therefore it is obviously conformal. G = 0 

indeed satisfies the condition for conformal invariance given by eq. (2.17) and so 

the equation passes this test. There is a further check on the central charge. The 

stress tensor of the WZW model is given by the Sugawara construction in terms of 

the currents, with the standard formula for the central charge: 

2kD 
c = ----,,-

2k + c~' (2.4 7) 

where k is the level number of the affine algebra, related to our N by 2k = Nand 

D 

c¢8ab = L facdfbcd. 

c,d=l 

This formula is exact. We have to compare it with (2.46) in the limit of large N (or 

k), with G set equal to zero. In this limit E-ab,cd = 0, F-abc = fabc and so from 

(2.46), 

C=D(l- c~) , , N ' 

"which agrees with the standard formula (2.47).to first order in liN. This particular 

solution (G = 0) has some relation to the Dashen-Frishman conformal point [6]. It 

is natu~al to suspect such a relation, since both G = 0 and the Dashen-Frishman 

solution are SU (n) symmetric. In the next section we will show how such relation 

can be made reasonable, but here we just note that the stress tensor of the Dashen­

Frishman solution is given by the Sugawara construction and the central charge i~ 

therefore given by (2.47). But, as we pointed out above, the G = 0 solution, being 

the sum of two WZW models, has also a Sugawara stress tensor and the standard 

for~ula for the central charge. Therefore, at the level of, stress tensors, there is 

agreement. 
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2.3. The Conformal Points in Coupling Space 

Having derived general conditions (eq.(2.42)) that the coupling constant Gab, 

and hence Gab, must satisfy to have a conformal invariant GTM, the next step is 

to check if there are really solutions to those conditions. 

Before we do that though, it would be useful to know if the one loop results 

we obtained are exact, or if there are corrections coming from higher loop con­

tributions. In principle, the OPE method used in the previous section is easily 

extendable to higher orders. To get the next order correction to T _ we just need 

to expand M-a(t,x) and M+a(t,x) to 4th and 3rd order respectively (there are 

no contributions from M~32 (t, x) to the stress tensor T _) and proceed as before. 

However, the lengthiness of the calculations involved have prevented us from doing 

that. 

We will restrict ourselves to diagonal matrices Gab and to the SU(2) and SU(3) 

flavor groups. For SU(2), a non diagonal Gab can always be written as a diagonal 

one (in a different basis) due to the uniqueness of the structure constants, so a 

diagonal Gab is not a restriction in that case. For SU(3), more general matrices 

seem to necessarily lead to overdetermined systems with no non trivial solutions. 

SU(2): 

o 
b 
o ~l 

From (2.42) we get then three distinct equations: 

2(ab - e)( -b + ae) 
( -1 + a 2) ( -1 + b2 ) ( -1 + e2) = 0, 

2(ab-e)(-a+be) =0 
( -1 + a2 )( -1 + b2 )( -1 + e2 ) , 

2( -b + ae)( -a + be) 
~--~~~~~~~~--~ = 0, 
(-1 + a2 )( -1 + b2 )( -1 + e2 ) 

(2.48) 

(2.49) 

with solutions a =b = 0 and e i= 1 and permutations of these. Note that this 

solution satisfies the requirement that (G - J) is invertible. 

SU(3): In this case G is a 8 x 8 matrix. We found that there is a solution of 

(2.42) with G33 =1= 1 and Gss i= 1 with all the other diagonal elements zero. 

It is also interesting to compare our results with the results obtained by Dashen 

and Frishman [6], even though the conformal points they found correspond to some 

trivial limits of the model we consider here. In their notation, the conformal points 
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occur for gv = 0 and gv = 47r/(n + 1). The gv = 0 point corresponds to G = 00 
(and also G = 00). Taken as a limiting case, this point is in fact a solution of (2.42) 

as can be seen from (2.49), with a = b = c. The other point, corresponds to the 

G = 0 case. Then from (1.3) and gvG = 41 we get 

47r 47r 
gv = N = N +n' 

where n is the Casimir ofSU(n). Since the Dashen-Frishman model corresponds to 

the N = 1 case, we seem to recover the same conformal point, and that on the other 
hand seems to suggest that maybe the one loop result is exact. However, since our 

one loop result was obtained in the large N limit no conclusion is possible. 

Appendix A. 

In this appendix, we fill the gaps in the evaluation of S(2) [q)elas.l done in §2.1. 
As explained there, we want to expand the action S[q)l around S(O)[q)elas.l, the 

classical action. To do this, parameterize the fields 9 and h by: 

g=g(q)), h = h(~); (A. 1) 

where q)(x) stands for q)Ci(X). The q)Ci'S are the coordinates in the group manifold 

where 9 takes values, and x = xJ.L are coordinates in Minkowski 2-space. The 

classic;al fields q)~las. are defined by gelas . ....:.. g( q)elas.), and similarly {or ~Ci. From 
now on, unless otherwise stated, q) stands either for q) and ~. 

Using the vielbeins EaCi(q)) and Eaa(~) defined in §2.1, the source terms can 
be written as 

Tr (K_(ig-18+g)) = Tr(K_ta)Eaa8+q)Ci = K_aEaCi8+q)Ci, 

Tr (K+(ih-18_h)) = T~(K+ta)Eaa8_~Ci = K+aEaa8_~Ci, 
and the action becomes 

(A.2) 

(A.3) 

Now we expand this action S[q)l around the classical action S(O) = S[q)elas.l treating 
/ 

K± as classical sources, which can then be written in terms of q)elas .. To expand 
the action, let 

q)(x) ---+ q)(x,s), 
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so that eP(x,s = 0) = ePclas.(X) and eP(x,s = 1) = eP(x) and define 

ea = : ePa(x,s)1 . 
s s=O 

(A.4) 

The ea(x)'s span the tangent space at ePclas.(X) and satisfy the geodesic equation 

(A.5) 

where 

(A.6) 

is the Christoffel symbol. In general the ea ( x )' s don't form an orthonormal basis 

but we can define new vectors 

(A.7) 

that span the tangent space at ePclas. (x) and form an orthonormal basis. The inverse 
relation is given by 

(A.8) 

where E~(eP) is the inverse vielbein defined by 

(A.9) 

Note that in the {(a} basis the metric is 8ab and so there is no difference between 

upper and lower indices, while in the {e a } basis the metric is gaj3 = E~Eaj3 and so 
an upper index is different from a lower index. The action can then be expanded as 

00 1 (d)n 
S[eP(x, s = 1)] = ~ n! ds S[eP] s=O = ~ s(n)[ePclas., (], (A.I0) 

00 

and keeping terms to second order in ('s we have (from now on eP(x) stands for 

ePclas.(X)): 
s(O)[eP, (] = S[eP], 

S(l)[eP, (] = 0 (if equations of motion hold), 

S(2) [eP, (] = ~ J d2x ((a( -8abD + A~bOJl + Dab)(b 

-a -Jl --b 
+ ( (-8abD + AabOJl + Dab)( 

+ (a( GabD + B~bOJl + Cab)(b 

+f(G~bD + B~bOJl + C~)(b) , 
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where 

All = 2f E a Oll-:i.° a 0 <p, 

BIl= -2faGE~(T/IL/l - cll/l)O/l</>O' 

Bil = -2faGT E:Cryll/l + cll/l)O/l([>O' 

C = faG!bE~E~(T/IL/l + CIl/l)OIl</>°O/l([>P, 

D = - fafbE~E%OIl</>°OIl</>P, 
- -a-b -0 -13 
D = - fa fbEoEpoll </> all</> , 

(A.12) 

and the matrix fe is defined by (fe)ab = feab. To compute the divergent counter 
term, we write S(2) in the form 

(A.13) 

where 

(A.14) 

and the JIlatrices R, pll and Q are 

[
-I G 1 

_ R= aT -I ' (A.15) 

After integrating over Z, we get 

1 
S(2) ~ - -Trlog(RD + pllOIL + Q) 

. 2 

'" - ~Tr (R-l~Q - ~R-l~Plla R-l~p/lO ) 
2 0 2 0 Il 0 /I 

(A.16) 

"'J d?p J 2 = 2 2 dxO(x), 
p -m 

where O(x) was defined in §2.1. 

3. Integrability 

The purpose of this section is investigate the conditions under which the GTM 

becomes integrable. By integrability, we mean the existence of an infinite number of 
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conserved and commuting dynamical variables. Here, we will not address the ques­

tion whether these are sufficient in number to make the model truly solvable. The 

bosonized form of the Thirring Model will be our starting point, and our treatment 

from that point on will be purely classical. It should, however, be noted that this is 

better than treating the original fermionic model classically, since bosonization does 

capture some of the quantum nature of the model. From the bosonized Lagrangian, 

we wish to extract a Lax pair depending on a spectral parameter. For this purpose, 

starting from the equations of illotion written as flatness conditions for two vector 

fields (2.33), we demand the existence of another flat vector field that interpolates 

between these two. This results in equations involving the coupling constants which 

we call the first integrability condition. Recall that to obtain these flatness condi­

tions, we used the invariance of the model under the transformation h --+ u+ (x+)h 

to set J + equal to zero. Then, what we "prove" by finding an interpolating flat 

vector field, is the integrability of this special solution (with J+ = 0), but the gen­

eral solution is also integrable by virtue of the same transformation (the situation 

is similar to what happens in the WZW model [35]). In general, these equations 

are overdetermined and they do not have solutions depending on a continuous pa­

rameter. In §3.3, we discuss four exceptional cases when such a solution .exists. For 

each of these examples, there exists a Lax pair depending on a spectral parameter. 

Given the Lax pair, in a standard fashion, one can construct conserved quanti­

ties in terms of a path ordered product. It is, however, necessary to specify boundary 

conditions. The simplest boundary condition is the periodic one, with the space 

coordinate compactified into a circle. Taking the trace of the path ordered product 

and expanding in powers of the spectral parameter yields an infinite number of 

conserved "charges". In §3.4, we compute the Poisson Bracket's of these charges 

and derive the conditions so that it vanishes. This is then our second integrability 

condition. In the four examples discussed earlier, the second integrability condi­

tion is automatically satisfied, although we are unable to prove in general that the 

second condition follows from the first. Another natural boundary condition is the 

open one: The space interval is from -00 to +00 and the fields vanish at ±oo. 

In this case, additional integrals of motion can be constructed by considering the 

matrix elements of the path ordered product, instead of just the trace. In §3.5, we 

compute the Poisson Bracket's of these additional integrals of motion and find that 

they satisfy a non-linear algebra. 
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3.1. Lax Pair Formulation 

We start by recalling here the equations of motion obtained before (eq. (2.33)): 

0+ V_ - 0_ V+ - i[V+ , V_ J = 0, 

0+ W_ - 0_ W+ - i[W+, W-J = o. 
(3.1) 

These flatness conditions for the vector fields V and Ware similar to the zero cur- ' 

vature condition of integrable systems. What is missing is a spectral parameter 

dependence that will provide by power expansion an infinite number of conserved 

currents. We will now derive conditions for a zero curvature with a spectral param-

eter dependence (a Lax pair) to exist. This will be the first integrability condition. 

The idea is to find a one parameter family of matrices that interpolate between the 

equations of motion. To this end we define an interpolating connection as'follows: 

(3.2) 

where N ±ab are constants, to be determined as functions of the spectral parameter 
A. The vector field B must satisfy the zero 'curvature condition 

with boundary conditions 

The zero curvature reads 

B±a(x; A = Ao) = V±a(x), 

B±~(x; A = AI) = W±a(x). 

(3.3) 

(3.4) 

and using equations (2.36) and equating the coefficients o~ M+pM_q to zero we get 

the first integrability condition 

(3.6) 

This condition gives us a Lax pair a~d an infinite number of resulting conservation 

laws (see §3.4). One must also show that these conserved quantities are mutu­

ally commuting; that is, their Poisson Bracket's vanish. This will be the second 

integrability condition, derived in §3.4. 
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Equations (3.6) are in general an overdetermined algebraic system with 

(dim G)3 equations for 2( dim G)2 variables N ±ab. In fact, since these equations 

are nonlinear, this counting is misleading. What we have actually is a system of 

polynomial equations for the variables N±ab. The locus of the polynomials defines 

an algebraic variety M and the condition of integrability is not that M =f:. {O} (this 

is guaranteed since we always have two solutions when B is equal V or W) but that 

dim M ~ 1 in order to have a spectral parameter. 

Although the system is overdetermined and there are no paramet.ric solutions 

for a generic coupling constants Gab, there are special interactions for which the 

model is integrable. This is the subject of the next section. 

3.2. Solutions of the First Integrability Condition 

In this section we will construct some solutions to the integrability condition, 

proving thus, the existence in those models, of an infinite number of conserved 
currents. In all examples we will make use of the diagonal ansatz. We assume that 

G and N ± are diagonal matrices: 

Then A±abe = Aabe, 

Gab = gaoab, 

N±ab = n;Oab, 

and the integrability condition (3.6) reduces to 

or, using (3.7), 

(3.7) 

( + gagb - ge + - gage - gb + + '-)f - 0 na na nb ne abc - . v(1- g~)(l - g~)(l - gn )(1 - g~)(l - gn(l - g~) 
(3.8) 

Note that there is no implied sum here. 

Example 1: G = g1. (The Symmetric Case). 

In this case, N± = n±l, and we have one equation for two variables, 

(3.9) 
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with a one parameter family of solutions. 

Example 2: G = g1l® g2l. 

This just gives two copies of the above equation (3.9). 

Example 3: SU(2) with U(l) symmetry. Gab = gabab with g1 = g2 =I- g3· 

This suggests the ansatz, N±ab = n;bab with nt = ni =I- nt Then there are 

three equations for four variables, 

nt(g; --.: g3) + n1 (g1g3 - gJ) + (1 - g;)(1- gi)tntn3" = 0, 

rij(g3g1 - gJ) + n3"(g3g1 - gJ) + (1 - g;)(l - gi)tntnl = 0, 

nt(g1g3 - gJ) + n1(g; - g3) + (1 - g;)(l - gi)tnjn1 = o. 

,The one parameter family of solutions is given by, 

1 

nt = (A(l + 93~(1 _ gf)2 (2(93 - g;) + ~91(1 - g3) + g1(1 - 93)A)) "2 , 

n, = ((1 + 93~(; _ 91l' (2(93 - 9il + }91(1 - 93) + 91(1- 93).\')) t , 
l' 1 

nj= (1- 2)1(1_ 2)((g3-g;)+I91(1- 93 )), 
g3 2 g1 ' 

n3 ~ (1 _ gi) ~ (1 _ gi) ((g3 - g;) + Ag1 (1 - g3)), 

(3.10) 

(3.11) 

where A ..:.- ~ is the free parameter with range :1 ::; A ::; g1. Note that the case 
, 1 

where we also have g2 =I- g1 gives six equations for six variables. 

Example 4: Symmetric spaces. 

Let F be a simple group with a subgroup H. Then the Lie algebra F can 

, be decomposed into the Lie algebra H and its orthogonal complement K, which 

generates the coset F / H. This coset space is a symmetric space if [K, K] c H. In 

what follows we will label the generators of H with greek indices (i.e. t a ), and the 

generators of F / H with latin indices (i.e. t a ), and when we don't' want to specify 

between them, we'll use dotted latin indices (i.e. ta). 

To have a coset (symmetric) space in the present model we choose 
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with ga '= 9 and ga = 1. This assures that the currents in H are set to zero, 

resulting in a coset model. We cannot use (3.6) because A±abc is not defined in this 

case (H± is not invertible), but instead, we have to use (3.1) and (3.3): 

0+ V-a - 0_ V+ a + fabe V+b V- e = 0, 

0+ W- a - 0_ W+ a + fabeW+b W- e = 0, 

o+B-a - o_B+a + fabcB+bB-c = o. 

The choice of G leads to the ansatz: 

with r;(>,) = r±(>.) and r~('\) = 1. Then, we can rewrite (3.12) as 

(1 - g~)o+ V-a + fabe(1 - gage )V+b V- c = 0, 
gb . 

1 ge 
(1 - 2" )0_ V+ a + fabc(1 - -)V+b V- e = 0, 

ga gagb 

r-; 0+ V-a - rt 0_ V+ a + fabertr-;V+b V-i: = 0. 

(3.12) 

(3.13) 

Note that a is fixed (no implied sum). Now if a is in H, then the first two equations 

in (3.12) are the same, and from the third one we get the condition r+('\)r-('\) = 1. 

The fact that the first two equations become the same is a sign of gauge invariance. 

To fix a gauge we choose V_a = 0. Then in this gauge, if a is in K, the first 

two equations in (3.13) solve the third one without further conditions. Hence, for 

symmetric spaces, we get one equation for two variables 

(3.14) 

9.9. The Poisson Bracket - Periodic Boundary Condition 

Having a Lax pair at hand, we can construct conserved quantities in the time 

variable x+, if we also impose periodicity in the space coordinate x_. We first define 

the following quantity: 

(3.15) 

and take B± periodic in x_ with period 211". The integral goes between x_ and 

x _ + 211" '" X _. This quantity satisfies the equation 

(3.16) 
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which can be taken as the definition 4 of path ordering in (3.15). More importantly, 

the trace of this matrix, U()') = Tr U(x+, x_; ),), is conserved: 

a+u = i 1:-dx'- Tr(o+B_U) 

(Bianchi id.) = i 1:- dx'-- Tr((o_B+ + i[B+,B-:])U) 

(integration by parts) = -i 1:- dx'- Tr(B+(o_U - i[B_,U])) , 

(by (3.16)) = o. 

(3.17) 

We see that U is a conserved quantity and upon expanding it in powers of ), we get 

infinite number of conserved currents. Since U does not depend on x+, we drop its 

dependence from U as well as the subindex - from x_. The next step is to find 

the algebra of the conserved currents. In particular if they all commute then we 

have infinite number of conserved quantities in involution, which is the trademark 

of integrability. We want to calculate t~e Poisson Bracket's of U()') with U(fJ,): 

J 8U(),) 8U(J.i) 
{U()'), U(J.i)} = dxdy 8B_a(x;),) 8B_b(y; J.i) {B_a(x; ),), B-b(Y; J.i)} 

= - J dxdy Ua(x; ),)Ub(Y; J.i){B_a(x; ),), B_b(y; J.i)} 

= ~ J dxdy Ua(x; ),)Ub(y; J.i)N_ac(),)N_bd(J.i){M-c(x), M-d(Y)}· 

-The Poisson Bracket's for the M_'s where given in (1.9) 'and include a non-local 

term. To get a local algebra forJthe Poisson Bracket's for our conserved fields we 

need the coefficient of €( x - y) to be a derivative such that by integration by parts 

the derivative acts on € to give a 8 function. For a generic coupling this cannot 

happen, but exactly for the models that satisfy the integrability condition this is 

4 This is the same as defining the path ordered exponential with the "upper" limit 

Jb ) 

fixed, i.e., Pe adxA(x = 1 +J:dxA(x) + J:dxJ:dx'A(x)A(x') +. .... Note that this is 

the opposite of the usual. definition where the "lower" limit is fixed. 
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true! 

{U(A), U(/t)}non-local = 

2 J -=; dxdyUa(X;A)Ub(Y;/t)N_ac(A)N_bd(/t)€(X -y)x 

A-ckrA_dls (Pe!: dx' A+pM_p(x')) rsM-k(x )M-z(y) 

271" J = N dx Ua(x; A)N_ac(A)A+ckrM-k(X)X 

J . jYdx'A M (x') 
dy €(x - y)Ub(Y; /t)(N-bd(/t)A_dls)(Pe '" +p -p )rsM-1(y) 

271" J . = N dx Ua(x; A)N_ac(A)A-ckrM-k(X) X 

J dy €(x - y)Ub(Y; It) (},T+bd(/t)A+dSI + !btuN+ts(/t)N-u1(/t)) x 

(Pe!: dx' A+pM_p(x'))rsM_I(y), 

where the las~ step follows from the integrability condition, (3.6). Using the follow­
ing ide:p.tities, 

(3.18) 

we can write now the integrand of the y integral as a total derivative 

The contribution of the non-local piece is therefore 

where in the second step we (anti )symmetrized the right hand side so that the 

change in sign under A +-+ /t is manifest. The contributions from the local terms are 
easily evaluated: 
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and 

Putting everything together we get 

{U(A), U(/L)} = J dx Ua(x; A)Ub(X; /L)Jabl(A, /L)M~I(X), (3.19) 

- where ( 

Jabl(A,/L) = N_ ac (A)N+bd(/L)A_c1d - N+ac(A)N_bd(/L)A_dlc 

- 2N-ac(A)N-bd(/L)F_cdl (3.20) 

+ farsN-sl(A)N_rc(A)N_bc(/L) - fbrsN-sl(/L)N-ac(A)N-rc(/L). 

The right hand side of equation (3.19) is zero, if the integrand is a total derivative. 
This motivates us to try the ansatz 

(The left hand side of this equation can be computed using the identities of (3.18). 
Note that there is no relation between this Cab and the one defined in section 2. 
This results in the second integrability condition 

(3.22) 

For models for which a Cab that satisfies this equation can be found, we have then 
{U(A), U(/L)} = 0, and the conserved quantities are in involution. In the diagonal 
ansatz, C has the form 

Cab(A, /L) = Ca(A, J.L)8ab. 

We will now check the models that satisfy the first integrability condition against 
this second integrability condition. In all examples we have, the result is the same: 

The second integrability condition is automatically satisfied. However, we do not 
know whether in general the second condition follows from the first one. 

In example 1, the symmetric model, we take Ca(A, /L) = C(A, /L), and then we 
have one equation for one unknown, C(A, /L). The condition (3.22) is satisfied, and· 
the conserved quantities are commutative. The generalization to example 2 is trivial. 

In case of example 3, SU(2) with Cab(A,/L) = Ca(A,/L)8ab and with C1(A,/L) = 
C2 (A,J.L) =I- C3 (A,/L), initially we have three equations for two unknowns, but using 

the fact that Ca(A, /L) = -Ca(/L, A) we see that there are only two equations. So, in 
this case also, equation (3.22) can be solved, and the model is integrable. We have 
not checked example 4 in detail, but we suspect that the result is the same. 
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3.4. The Poisson Bracket - Open Boundary Condition 

In this section we will show that the structure of the model is richer with open 

boundary conditions. We consider the open interval from -00 to +00, with fields 

vanishing at ±oo. With these conditions, it is possible to construct more integrals 

. of motion than with the periodic one. These integrals do not commute in general 

and it is the aim of this section to calculate the algebra they generate. A subset 

of these integrals are the integrals we saw in the periodic case, and they commute, 

insuring, thus, the integrability of the model. 

The calculation of the Poisson Bracket's is the same as the periodic case, ~he 

only difference will come from the boundary. Defining 

U( ) P
-ijYdxIB_(x';,\) 

>.. X,y = e:r: ) , (3.23) 

then, any matrix element Uab(>") = U,\ab(-oo,oo), and not just the trace, is con­

served, provided that B+(±oo, >..) = O. This follows from manipulations similar to 

(3.17), noticing that the boundary terms coming from ±oo can be dropped. Of 

course, B_ also must vanish sufficiently fast at ±oo for the integral to exist. 

Define now 

(3.24) 

then 

- J 8Uaa,(>..) 8Uw(p) 
{Uaa,(>"),Pw(p)} = dxdy 8B-c(x; >..) 8B_d(y; p) {B-c(x; >..), B-d(y; tt)} 

= - J dxdy Uaa,c(x; >")UWd(Y; tt)N-ck(>..)N -dl(tt){M_k(X), M_1(y)}. 
(3.25) 

Being careful to take into account the boundary contribution from the non-local 

term in the Poisson Bracket's of the M_ 's, we get 

{Uaal(>"), Uw(tt)} = ~ J dx Uaalc(X; >")UWd(X; tt)Jcde(>", tt)M-e(x) 

271" + N (U(>..)tcta,(tdU(tt»)wUlk(O)N_ck(>..)N_dl(tt) (3.26) 

271" . 
- N (tcU(>"») aa' (U(tt )td) bb,Ukl(O)N -ck(>..)N -dl(tt), 
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where Jabc is defined in (3.20), and Uab(O) = Uab(>" = >"0). If /abc also satisfies 

the second integrability condition (3.22) then the integrand can be written as a 

derivative. The only contributions come from the boundary and the final result is 

27r ( {Uaa ,(>"), UW(fl)} = N' (U(>..)tc)aa' (U(fl)td)bb'Ccd(>", fl) 

-(tcU(>")) aa' (tdU(fl)) bb'Ccd(>", fl) 

+ (U( >.. )tc) aa' (tdU(fl)) bb' Ulk(O)N -ck(>..)N -dl(fl) 
(3.27) 

- (tc U( >..)) aa' (U(fl )td) bb' Ukl(O)N -ck( >")N -dl(fl)) ~ 

This algebra, in the symmetric case, can be compared with the algebra obtained 

without bosonizing the fermions obtained in [20]. Both the appearance of cubic 

terms and the more complicated spectral dependence of the "classical". r-matrix 

Cab( >.., fl) are quantum effects due to the process of bosonization. 

Equation (3.27) exhibits a closed algebra for the matrix elements Uab(>"); N_ 's 

and C's are the corresponding "structure constants" that depend on the particular 

model under consideration. The algebra is clearly non-linear, with quadratic and 

cubic terms in U appearing on the right hand side. We have not succeeded in 

identifying it with any well-known algebra, although it may possibly bear some 

relation to the W algebras [36]. It is also the generalization of the algebra Luscher 

and Pohlmeyer [18] found for the'special case of the fundamental representation of 

SU (2). Finally we would like to comment on the relation of this algebra to the affine 

algebra of currents found in the principal chiral model [15]. In the symmetric case 

(Example 1 of §3.3), the Thirring model bears a great resemblance to the principal 

chiral model; for example, the equations of motion (3.1) in this case reduce to 

go+ V_ + 0_ V+ = 0, 

0+ V_ - 0_ V+ - i[V+, V_] = O. 
(3.28) 

For 9 = 1, these are identical to the equations of motion of the principal chiral 

model. Not surprisingly, the· Lax pair and the conserved quantities are in one 

to one correspondence, with obvious modifications in case 9 =f. 1. However, the 

algebra (3.27) is quite different from the affine algebra found in [15]. This is because 

in [15], the Poisson Bracket's of the conserved quantities were de~ived from the 

transformations they generate on the field variables, whereas we have used the 

standard Poisson structure given by the Lagrangian. The two Poisson structures 

differ in this case, as well as in the principal chiral model [37]. 
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4. Free Field Realization 

In this section, we will express the fields M~n;(x) in terms of free fields cPa(x)'s 
so that the Poisson Bracket's in the classical case'(eq. (1.9)), or the OPE in the 

quantum case (eq. (2.27)), between two M_a(x)'s is still satisfied. (These cP's are 
not to be confused with the cP's introduced in section 2). As in section 2, the 
calculations will be carried only to second order in a. Our motivation for doing this 

is twofold: first of all, one may ask whether the relatively complicated appearance 
of the OPE's given by eq. (2.27) is due to our choice of fields; with a different choice 
of fields, a simpler algebra might emerge. Indeed, we show that one can express 

everything in terms of free fields; however, the simplification achieved in this way is 
somewhat illusory, since the expressions connecting M_ 's to free fields are non-local 
and complicated. Next, we reexpress the stress tensor in terms of free fields, hoping 
for a simple result. Indeed, the stress tensor turns out to be local and quadratic in 
free fields; on the other hand, an unusual term involving the second derivative of 
the fields makes its appearance. This term is responsible for the deviation of the 
central charge from the free field value and cannot be eliminated. 

We start with the classical M_ fields and try to express them in terms of cPa(x)'s 
that satisfy the free field Poisson Bracket relations, 

{cPa(X),cPb(Y)} = -log(x -y)8ab. ( 4.1) 

The solution to zeroth order (M~o2 (x)) is obvious, and the next two orders are easily 

constructed by guesswork. The result is, 

M~02(x) = cP~(x), 

M~l)(x) = ~F-abccP~(X)cPc(x), • 

M~2)(x) = - 3
1
6 (F-aceF-bde + F-adeF-bce)cP~(x)cPc(X)cPd(X) 

( 4.2) 

+ 3
1
6 (F -abeF -cde + 9E-ac,bdcP~( x) JX dy cPc(y )cP~(y). 

This can easily be extended to operators. Define now quantum free fields by OPE's 

(4.3) 

To avoid singular expressions we work with normal ordered fields, for example, 

(4.4) 
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In order to satisfy the OPE algebra given before (eq. (2.27)), we simply take over 

the classical expression, replacing produc,ts of fields by normal ordered products. It 

turns out that this almost works; however, additional terms are necessary to make 

it work. The final result is 

M~02(x) = <p~(x), 

M~12(x) = - ~F-abc:<P~(X)<Pc(x):, 

M~22(x) = - 3~7r (2F-acdF-bcd + 9E-ab)cc)<P~(x) 

+36
1 

(F-acdF-bcd + 9E_ab)CC)jX ~(<p~(y) ~ <p~(x)) 
7r . y-x 

( 4.5) 

- 3~(F-aceF-bde +F-adeF-bce):<p~(x)¢>c(X)<Pd(X): 
1 jX + 36 (F-abeF-cde + 4E-ac)bd):<p~(X) dy <Pc(y)<p~(y):. 

Usingc'these expressions we can construct the stress tensor, which to second order, 

is quadratic in the free fields and is given by 

(4.6) 

It can also be directly checked that, at least to second order, this construction in 

terms of free fields yields the Virasoro algebra with the correct central charge. 

We could also have expressed the M_:s in terms of currents that satisfy an 

affine Lie algebra; in fact, with minor modifications, (4.2) and (4.5) still hold if 

the <p~ (x) 's are replaced by currents. Again, the stress tensor is quadratic in the 

currents, as in (4.6), which looks promising for an affine Sugawara construction. 

But again there appears the analogue of the last term in (4.6), which, expressed in 

terms of the currents Ja(x), looks like 

-

and clearly does not belong in the affine Sugawara construction. 
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5. Discussion 

We have studied the conformal invariance and integrability of the GTM, and 

the structure of its Poisson Bracket algebra. 

The conditions that the coupling constants have to satisfy to have conformal 

invariance are given by (2.42) (or (2.17)). This result, valid in the large N limit, 

was obtained by using two different approaches, the background field method and 

the operator method, and agrees with the result obtained in [31] by a still different 

method. Among the problems that are still left open is the contribution of the 

higher order corrections in liN to both the condition for conformal invariance 

(eq. (2.17)), and to the operator algebra (eq. (2.27)). These related problems are 

in principle easy to answer, but the lengthiness of the calculations involved have 

prevented progress in that direction. 

We also derived very general conditions (eqs. (3.6) and (3.22) and (3.20)) that 

the coupling constants should satisfy to have integrability. By that we meant the 

existence of an infinite number of conserved and commuting dynamical variables, 

but we never discussed whether this was enough to make the model really solv­

able. At this point it is worth mentioning some similar issues discussed in [21], 

where Poisson Bracket's between non-local charges, resembling the ones discussed 

in section 3, were also evaluated. There, it is argued that the existence of infinitely 

many conserved charges in involution, don't necessarily led to integrability, and it 

is suggested that classical non-local charges are not crucial for integrability. This is 

still an open question. 

We have also tried to shed some light on the structure of the operator algebra 

mentioned above by expressing it in terms of free fields and free currents. We have 

found some simpIlfication in the expression for the stress tensor, but still the result 

could not be reproduced by any well-known construction. It appears very likely 

that we have a completely new conformal model 
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II. String Field Equations from Generalized Sigma Model 

1. Introduction 

A satisfactory formulation of string field theory continues to be one of the 

important open problems of string theory. There have been two main lines of 

approach to this problem in the past which have enjoyed varying degrees of success. 

The first approach (see [1-6]) starts with the BRST formalism, developed first in 

the context of free strings, and generalizes it to interacting strings. This approach 

was first successfully applied to the open string theory, and, making use of the 

extension of the BRST method due to Batalin and Vilkovisky [7], it was later 

generalized to include closed strings [5J. The great advantage of this approach is 

that, compared to the alternatives, it is the most developed one from the technical 

stand point and its correctness is beyond doubt. However, so far it has n?t led to 

any substantial advances in our understanding of string theory. This isno doubt due 

in part to the complexity of this method, but also, it is due to the fact that initially 

a fixed background has to be specified. Although there are proofs of background 

independence [5], to our knowledge, there is no manifestly background independent 

formulation. A great advantage of such a formulation would be its role in unmasking 

various possible hidden symmetries of string theory. From the very beginning of 

string theory, symmetries like invariance under the local transformations of the 

target space coordinates, connected with the existence of the graviton, were difficult 

to understand in the usual formulation that uses a flat background metric. A 

manifestly background invariant formulation of string theory should improve our 

understanding of these symmetries, and also possibly shed light on the recently 

discovered symmetries such as duality. 

The second main line of approach (see [8], [9,10J and [11-17]) to understanding 

string dynamics starts with a two dimensional sigma model defined on the world 

sheet. In the earlier versions, the field content was restricted to massless excitations 

of the closed bosonic string, namely the graviton, the antisymmetric tensor and the 

dilaton [8J. The massive modes were neglected in order to have a renormalizable and 

classically scale invariant theory. The field equations are then derived by imposing 

quantum scale invariance, which amounts to demanding that the beta function 

vanish. In practice, one usually works with the beta function computed in the one 

loop approximation, using the background field method which preserves manifest 
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covariance under local field redefinitions. This approach has many advantages over 

the first one: The background independence and the symmetries are made manifest, 

and the connection between conformal invariance and renormalization is made clear. 

There are also serious drawbacks: The massive modes are neglected and an off-shell 

formulation that goes beyond the equations of motion is missing. There is also the 

question about what happens beyond one loop; in many important cases the higher 

loop contributions lead to field redefinitions without changing the content of the 

equations of motion, although it is not clear how general this result is [17]. 

An important variation of this approach, which seems to overcome many of 

the drawbacks mentioned above, is originally due to Banks and Martinec [9]. The 

basic idea is to apply the renormalization group equations of Wilson and Polchiriski 

to the two dimensional sigma model. The starting point is the most general sigma 

model, which includes all the massive levels of the string and is non-renormalizable 

in the conventional sense. A cutoff is introduced to make the model well-defined, 

and the equations of motion satisfied by the string fields are obtained by requiring 

the resulting partition function to be scale invariant. Although the classical action 

is scale non-invariant, and the cutoff introduces further scale breaking, the cancel­

lation between these two effects makes the final scale invariance possible. Hughes, 

Liu and Polchinski [10] refined and extended this method, and they showed that 

the closed bosonic string scattering amplitudes in the classical (tree) limit can be 

derived from these equations. This approach has many nice features: It treats the 

whole string all at once and not just the massless levels, and it is also apparently 

exact and not limited to the one loop approximation. Finally, the emergence of 

. the string amplitudes as a solution provides a stringent check on the resulting equa­

tions. Nevertheless, this approach also has some unsatisfactory features. As already 

noticed in [10], the equations do not seem powerful enough to eliminate all the un­

wanted states of the string spectrum; some additional gauge invariance needed to 

eliminate them is apparently missing. Another drawback is that the coordinate sys­

tem in the field space is fixed right from the beginning, and as a result, covariance 

under field transformations, which was such an attractive feature of [8], is lost. We 
suspect that these problems are connected, and we offer some evidence in support 

of it. 

Here, we propose a new approach which combines some of the advantageous 

features of both the renormalization group method and the covariant beta function 

treatment of the massless excitations. The rest of the thesis is organized as follows: 

In section 2 we derive our version of the renormalization group equations written in 

covariant form. We start with a general· sigma model that is supposed to represent 
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all the levels of the closed bosonic string, with flat metric on the world sheet . The 

functional integral is written in the presence of a general background in a form 

completely covariant under local and non-local coordinate (field) transformations, 

subject only to the condition that the determinant of the transformation is unity. 

The field equations are then obtained by requiring invariance of the effective action 

under the conformal (Virasoro) group. In section 3, we apply the formalism just 

developed to the lowest levels of a closed, unoriented bosonic string. In §3.1 we study 

the tachyon and the massless level, while in §3.2 and §3.3 we study the first massive 

level in the non-covariant and covariant cases, respectively. In our formalism, in the 

tachyon and mass~ess levels .we only impose local coordinate invariance. Then, this 

corresponds to the familiar renormalizable sigma model [8], and our results,should 

agree with the standard ones. This is indeed the case. When studying the first 

massive level, we need to consider also non-local transformations. In §3.2 we restrict 

ourselves to a non-covariant approach, and we find that the level structure we obtain 

doesn't agree with the known structure of the first massive level of the string. Like in 

[10], we find that there are too many states, and there is not enough gauge invariance 

to eliminate the spurious states. Only when we consider a covariant approach, in 

§3.3, do we get an agreement. However we are only able to obtain that, when the 

model is left-right symmetric. This difficulty, which was an unfortunate feature of 

our approach, was resolved by Bardakci while this thesis was being written. We 

conclude with a discussion of the results. 

In our opinion, the main contribution of the work presented here, is that, at 

least in the context of a natural expansion, the field equations of motion that follow 

from the general sigma model can be made covariant under not only local, but also 

non-local transformations in the field space. Furthermore, this covariance is crucial 

in eliminating spurious states of the first massive level. 

2. Covariant Renormalization Group Equations 

In this section, we derive a set of renormalization group equations for a general 

sigma model in a classical background. These equations are derived by imposing 

conformal invariance on the sigma model in the presence of a background field; 

they are covariant generalizations of the string equations of motion derived in [10]. 

Throughout, we also work with flat worldsheet. We found the renormalization group 

approach of [10] advantageous for the following reason: When the ~eneralized sigma 

model action S contains all the levels of the string and not just the massless ones, 

one is dealing with a conventionally non-renormalizable theory. In their approach, 
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the conventionally non-renormalizable interactions coming ~rom massive states, as 

well as the superrenormalizable interaction resulting from the tachyon, are treated 
on equal footing with the renormalizable interactions of the massless states. How­

ever, there are some problems with this approach. One of them is lack of covariance 

under the transformation of the target space coordinates. For example, the equa­
tions derived in [10] had a fiat background; as a result, they were not explicitly 

covariant even under the usual coordinate transformations (local coordinate invari­

ance) associated with gravity. Also, as pointed out by them, the equations do not 

seem strong enough to eliminate the states that. are absent from the string spec­
trum. We will overcome both of these problems, at least for the first massive level: 

by combining the renormalization group approach with the traditional background 
field approach (see, for example [18]). Our approach will ensure covariance under 

not only local but also arbitrary non-local coordinate transformations, and by both 
considering a non-renormalizable action and also non-local coordinate transforma­
tions which mix up levels with different masses, the traditional treatment [8] will 

be extended to include massive levels of the string. 

Our starting point is the partition function 

(2.1) 

We will specify Xo and S' in terms of X and the action S shortly. The action S, 
which is a functional of the string coordinate l X p,u and a function of the' cutoff 

parameter A, can be written as 

S[X, A] = jd?u£(X,A) 
(2.2) 

= XP,u D..p,u,vul(A)XVUI + SindX]. 

The cutoff appears only in the quadratic part of the action through the regularized 

free inverse propagator D.; Sint is independent of the cutoff. When not essential, 
we will suppress the dependence on the cutoff; later, the cutoff dependence will be 

specified more precisely. 
The primary goal of this work is to formulate the string field equations in a 

form covariant under arbitrary functional transformations of the background field 

Xo: 
(2.3) 

1 XJ.lO' is the same as XJ.I(O'). Here and in the rest of this thesis 0' always stands for 

worldsheet coordinates. All other greek indices refer to spacetime coordinates. 
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We shall adopt the usual language of differential geometry: Tensors will be 

labeled by a composite index like jUY, and upper and lower indices will undergo the 

standard transformations of contravariant and covariant tensor indices. Also, when 

no confusion can arise, we follow the convention of summation over repeated discrete 

indices j1V, and integration over repeated continuous indices CT, CT'. Here, CT stands 

for the worldsheet coordinates CTO and CTl; the worldsheet metric is Euclidean. In 

the standard background field method, it is convenient to define a new coordinate 

variable X JL~ (s) as a function of an internal parameter s through the geodesic 

equation 

d
2 

JLU() JLU () d XOIU /( ) d f/ uII ()_ ds2X s +,rOlul,,8uII X ds s ds X s -0, (2.4) 

with the boundary condition that, at s = 1, XJLU(s = 1) = XJLU, where X is the 

original variable that appears in (2.1). As in this case, when the parameter s is 

omitted, this will mean X at s = 1. The classical background field Xo is given 

by X JLU (s = 0) = X!:u, and it is also useful to define the tangent at s = 0 by 

(dX JLU (s) / ds )s=o = ~JLu. The connection r is yet unspecified; it is introduced in 

order to have covariance under (2.3). We shall see later on that quantum corrections 

break this group down to transformations with unit functional determinant: 

(2.5) 

The idea of the background field method is to change variables in (2.1) from X = 
X(l) to ~ at fixed Xo in order to exhibit the dependence on the classical field 

explicitly. This is conveniently done by expanding X and also the action in powers 

of the parameter s and setting s = 1 at the end. For later use, here we write down 

the first three terms of the expansion of X: 

(2.6) 

In the same way, the action can be expanded: 

S[X] = S[Xo] + ~S[X(s)]ls=o + ~ :2 S [X(S)]ls=0 + ... 

S[X] 8S[Xo] t OlU 1 G (X )tOlU t,8u' S (2.7) 
= 0 + 8XOIU ~ + 2" OIU,,8U' 0 ~ ~ + R, 

o 

= S[Xo,~]. 
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Here, 5R denotes the cubic and higher order terms in ~ in the expansion of 5. The 

propagator G in the presence of the background field is given by 

(2.8) 

We are now ready to define 5': it is gotten from 5 by subtracting the term linear 

in ~: 

(2.9) 

It is well-known that the transition from 5 to 5' in the background field approach 

is equivalent to the introduction of a background field dependent source. Changing 

variables of integration from X to ~ in (2.1), the partitio~ function can be written 

as 

Z[Xo] = J [DX] eS
' 

= J[D~] e(S'+M), 

(2.10) 

where we have defined 

, det ( ~~) = exp (M) . (2.11) 

From now on, we will drop the subscript on Xo; X will stand for the classical 

background field, and in order to avoid confusion, the original field X will be denoted 

by X(1). M, the log of the jacobian, can be computed from (2.6); we write down 

the result to quadratic order in ~: 

(2.12) 

where M R is at least cubic in ~. The combination of the Ricci tensor and the 

covariant derivative that appears on the right hand side of this equation is explicitly 

given by 

(2.13) 

1 (au" vu'" au" vu"') - 6" r vu", ,,8ur au" ,"(u' + 2r au" ,vu",r ,8u,,,(u' . 

We note that: 

. a) M is of order n; it is a quantum correction to the classical action. 
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b) We have dropped the term linear in e in (2.12); this can be taken care of by 
redefining S'. 

c) Referring to (2.12), we see that the first term on the right, the Ricci tensor, 

is covariant; however, the second term, which is the covariant derivative of the 

contracted connection, is not. At this point, we could add a counterterm to S that 

would eliminate this non-covariant term. However, we decided to follow a different 

prescription, and impose the condition that the connection is derived from a metric. 

In that case, we have 

(2.14) 

Here, 9 is the determinant of the metric. From this, one sees that this term is 
covariant only under coordinate transformations with unit determinant. Therefore, 

our prescription breaks the full diffeomorphism group down to transformations with 

unit determinant. We should emphasize that there are more ways to do this, and in 
fact, the one chosen here is not the standard one. They differ in the way the measure 

is defined or the' cutoff breaks conformal invariance. For instance, an alternative 

prescription would have been to add the counterterm mentioned above, but leave 

the connection undefined. However, whatever the prescription, the final equations, 

obtained by imposing conformal invariance of the partition function Z, are the same. 

The next step in our program is to expand the partition function (see (2.10)) 

in a perturbation series. However, in contrast to the usual perturbation series, each 
term in our series is invariant under the restricted (unit determinant) transforma­

tions ((2.3), (2.5)). In deriving the perturbation expansion, we follow the standard 

functional approach discussed in the textbooks (see for example [19]). First, we 
define a free partition function Zo in the absence of interaction (except with the 

external field), coupled to an external source J: 

(2.15) 

Here, G with the upper indices is the inverse of G with the lower indices. The full 

partition function can now be written as 

Z(X) = exp (SI(X, P)) Zo(X, J)IJ=o, I (2.16) 

where, 

(2.17) 
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and P, which replaces ~ as the argument of S1 in (2.16), is given by 

P,U" = _i_8_. 
8Jp.(J' 

(2.18) 

In (2.16), after the functional derivatives with respect to J act on Zo(X, J), 
J is set equal to zero. Eq. (2.16) can be used as the starting point of a pertur­

bation expansion in pOwers of S 1. It is easy to see that the invariance under the 
coordinate transformations (2.3), subject to the constraint (2.5), are preserved in 

this expansion, if at the same time, J and P are transformed by 

(2.19) 

Sin~e we are dealing with a non-renormalizable interaction, the series is badly 

divergent. To have a well defined answer, we introduce a. cutoff in the quadratic term 
in the action (see (2.2)). This cutoff in general violates the coordinate invariance 

described above. We shall later see how to deal with this problem; in fact, the 
solution will be at the heart of the derivation of the string equations. 

Among the coordinate diffeomorphisms, conformal transformations on the 
world sheet will playa special role. They are given by 

(2.20) 

where 

(2.21) 

In what follows, to save writing, we will only exhibit the formulas corresponding 

to the f + transformations; the f - expressions can be obtained from these by an 
interchange 0f + with -. The string field equations follow from demanding that 

the partition function (2.1) be invariant under the conformal transformations. The 

first thing to check is the invariance of the quadratic part of the action in (2.2); in 
the absence of the cutoff, .6. is given by2 

(2.22) 

and is conformally invariant. Here, 7]p.1/ is the fiat Minkowski metric. We introduce 

the cJtoff by defining 
(2.23) 

. 2 Whenever 8(J'+ acts on a fun~tion of only (/, not (/ and (/', it will be written as just 8+. 
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It will turn out to be useful to also define the following related functions: 

b.u,ul(A) = -ou+ou_ 8X(a, a'), 

Jd'iT' b.u,ul(A)b. U',U"(A) = 82
( a - a"), 

Ou+Ou_b.u,UI(A) = -lX(a, a'), 

Jd'fy' lX(a,a')8X(a', a") = 82 (a - a"). 

(2.24) 

The detailed structure of these functions is not important; all one needs to know is 

that 8X (a, a') and JX (a, a') are smoothed out versions of the two dimensional Dirac 

delta function, and they are chosen so that b.u,ul(A), and as many derivatives of 

it as needed, are finite at a = a', when the cutoff is finite. Notice that, unlike the 

propagator used in [10], our propagator need not vanish at a = a'. As a result, in 

contrast to [10], we shall encounter cutoff dependent terms in our equations. In some 

cases, these can be eliminated by renormalizing, for example, the slope parameter. 

In other cases, when such a renormalization is not possible, we will consider it as 

an anomaly and set its coefficient equal to zero. This will then provide additional 

useful information. For example, the field equation for the dilaton is derived in this 

fashion. 

The cutoff violates conformal invariance; b. with cutoff is no longer conformal 

invariant. To restore the conformal invariance, we have to supplement the trans­

formations (2.20) by a suitable variation of the cutoff parameter(s). Specializing to 

infinitesimal variations, we define. 

(2.25) 

where 8v is a "+" infinitesimal conformal transformation, which corresponds to 

taking the F in (2.3) and (2.19) to be3 

(2.26) 

with a similar expression for the "-" transformations. Here v is an arbitrary func­

tion of a+, parametrizing conformal transformations. The variation 8A is defined so 

that the quadratic part of the action in (2.2) is invariant under the total variation 
8, resulting in the equation 

(2.27) 

3 Then Ov = Jd1rv((7+)8+XIL<7 6;l"cr, but in general Ov = F;:<7(X)6Xb!"cr. To be more 

precise, this F is not the same defined in (2.3) and (2.19), but is the F defined by FIL<7 (X) = 
Xp.<7 + FIL<7 (X), with the tilde dropped. Also, we define v( (7+) == f+( (7+). 
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Later on, we will also need the cutoff variation of the propagator, so the varia­
tion of the function .6.u,U'(A), which is the inverse of .6.u,u,(A), is needed. At first, it 
may seem that the inverse also satisfies the same equation; and this would be true 
if the inverse were unique. However, there is a well-known ambiguity in going from 

.6. to its inverse; for example, in the absence of cutoff 

(2.28) 

The functions k+ and k_ are arbitrary, resulting in a non-unique inverse. The 
variation, of the propagator under the change of the cutoff also suffers from the 
same ambiguity. This ambiguity can be resolved by demanding that the ultraviolet 
cutoff does not change the long distance behavior of the propagator4. Imposing this 

boundary condition, we have the following equation: 

Comparing (2.27) to (2.29), we note that, because of the boundary conditions at 
large distances, an extra term appeared on the right hand side of (2.29). This term 
is the source of the conformal anomaly; in the string equations of [10], this anomaly 
is cancelled by the explicitly conformal non-invariant terms in the action. The above 

equation will play an important role in the calculations that follow: In applying the 
fundamental equation (2.38) to special cases, one needs an explicit expression for 
the variation of the propagator under the change of the cutoff; namely the term 
8 A.6. u,u' in the above equation. This equation therefore provides the needed explicit 
expression~ Another point that needs to be clarified is the dependence of .6. u,u' 

on the variables (j and (j'. We would like to impose two dimensional rotation and 

translation invariance on the world. sheet even in the presence of the cutoff. There is 
no problem in imposing both of these invariances for a fixed cutoff, however, when 
the cutoff is changed infinitesimally from this fixed value, its variation is given by 
(2.29) and it is clearly no longer translation and rotation invariant. This is the 

consequence of the translation and rotation non-invariant long distance boundary 
condition imposed in determining the cutoff variation. 

The generators of conformal transformations, in the form they are expressed 
in (2.26), are not covariant under general coordinate transformations (2.3). They 

can be cast into a covariant form_ by writing 

(2.30) 

4 For ~ detailed treatment of this question, see [10] .. _ 
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The function 1 is introduced to make Fv transform as a vector in the indices /-La; 

note that the subscript a' in 1:,u is not a tensor index. A further constraint on 1 
comes from demanding that 8v satisfy the Virasoro algebra. We will specify this 

function later on when we discuss concrete examples. 
We are now ready to write down the fundamental string field equation; it is 

obtained by demanding the invariance of the partition function under the conformal 
variation (2.25): 

8Z(X,A) = o. (2.31) 

We note that this is not merely a requirement of covariance but one of invariance. In 
this respect, F!:u acts like a Killing vector that generates the conformal symmetry. 

Carrying out the operations represented by 8 on the right hand side of (2.16) gives 

exp (SI(X, P)) H(X, P) exp (~J/-LuG/-LU'V~' Jvu') I. = 0, 
., 2 )=0 

(2.32) 

where H(X, P) will be defined shortly. From this equation, it is tempting to con­
clude that 

H(X,P) = o. (2.33) 

However, this conclusion is not correct; eq. (2.33) is too strong as it stands. This 
is because of the existence of an identity of the form 

where K satisfies 

(2.35) 

but is otherwise an arbitrary function of X and P. This identity, easy to verify -

directly, can be understood as follows. Reversing the steps leading from' (2.10) 
to (2.16), one can get rid of the operator P and write the above identity as an 

integral over the variable e. The identity is then satisfied by virtue of the integrand 
being a total derivative. A total derivative corresponds to an infinitesimal change 

of variable in the integral in (2.10); therefore (2.34) is equivalent to the invariance 

of (2.10) under such a change of variable. Eq. (2.35) expresses the restriction that 
the Jacobian of this transformation is unity so as to leave the action unchanged, 

and (2.33) amounts to deducing the vanishing of the integrand from the vanishing 

of an integral and it is therefore too strong; the correct equation should be 

'1.J }'~/-LU (8S1 G· p vu') 
rL = '\. 8P/-LU + /-LU,VU' , (2.36) 
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, 
I 

and (2.32) is satisfied by virtue of (2.34). 
The function 1{ can be determined by carrying out the variations indicated in 

(2.31); the result is 

(F/;ur 8;JlU + p vu
' :;::, 8:JlU -+ 8A) (S(X) + S1(X, P) - ~Tr log G(X)) 

_ _ FOtU v _ v V GOtU ,vu _ v V GJlU,OtU 8 GJlU,VU 1 
( 

" £GJlU,VU' £FJlU '" £Fvu'" ') 
2 v 8XOtu" 8XOtU" 8XOtu," + A 

x (8
2
S1(X,P) 8S1 8S1 ) _ KJlU (8S1 G ,pvu') 

8PJlU 8pvu' + 8PJlU 8pvu' - 8PJlU + JlU,vu . 
(2.37) 

Eq. (2.37) is our version of renormalization group equations for the string ac­
tion S. As it stands, it has two unusual features: 

a) It is an equation in two variables X and P, whereas the standard renormal­
ization group equations are in a single variable, the background field X. 

b) It contains a function ]{JlU(X, P), arbitrary except for the constraint given 
by (2.35). 

We will now show that these two seeming defects cancel each other; it is possible 
to convert (2.37) into an equation in a single variable X by taking advantage of the 
arbitrariness of the function K. To see this, imagine expanding S1, M and K in 
a power series in the variable P. By equating different powers of P on both sides 
of the equation, we obtain an infinite set of equations, each in the single variable 
X. Let us now focus on the equation zeroth order in P. Since the right hand 
side of (2.37) starts with a linear term in P, this equation receives no contribution 
from K. This follows from the fact that SR, M and therefore S1 all start at least 
quadratically in the expansion in powers of P. We therefore have an equation in 
the single variable X and free of the ambiguity coming from K: 

EG+EM =0, (2.38) 

where, 

(2.39) 

and 

E =_ _FOtu. v v V GOtU ,vu v V GJlU,OtU _ 8 GJlU,VU 1 ( " £GJlU,VU' £FJlU '" £Fvu" ') 
M 2 v 8XOtU". + 8XOtu" + 8XOtU" A 

[
8

2
M 8M 8M 1 x -- -0 8PJlU 8pvu' + 8PJlu 8pvu' -. 

P=o 
(2.40) 
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This equation is the fundamental result of the section. In the next two sections, 

it will provide our starting point for the derivation of the string field equations. 

We end this section with a couple of comments: 

a) Eq. (2.38) is a a one loop result, which one can verify either by counting 

powers of 1i or more simply from the appearance of the "Tr log" type terms. It 

should therefore agree with the standard treatment [8] for a renormalizable action 

S. We will make this comparison in the next section. 

b) This observation leads to an apparent paradox: No approximation has been 

made in deriving (2.38), yet it is clearly a one loop result. We have to conclude 

that the one loop result leads to exact string field equations. 

c) There are of course an additional infinite number of equations coming from 

higher powers of P. These equations can then be used to determine the unknown 

function KIUT(X, P). One can then extract relations not involving K by using 

the -constraint (2.35). These appear to come from two or more loops. We do not 

know whether these equations are redundant, or whether they contain additional 

information, which would then supplement the one loop result but not change it. 

d) Eq. (2.38) contains two unknown functions: The Killing vector F/:q and 
" implicitly, the connection r::,,Bql (See (2.8)). They have to be expressed in terms 

of the fields that appear in S. This will be done in the following sections. 

3. The Lowest String Levels 

In this section we apply the formalism developed in the last section to the lowest 

levels of a closed, unoriented bosonic string: The tachyon and the massless level in 

§3.1 and the first massive level in §3.2 and §3.3. The fundamental equation (2.38) 

is too formal to be useful as it stands; one needs explicit results for the connection 

and the Killing vector. Since we do not have an exact expression for either of 

these, to make progress we resort to an expansion which we call the quasi-local 

expansion. This is an expansion in the number of derivatives on the world sheet 

and it is explained in §3.1. The local coordinate transformations associated with 

gravity appear at zeroth order, and each new power of the expansion parameter b 

brings in transformations with two more derivatives on the world sheet. The levels 

of the string can also be similarly organized; the nth level goes with the power 

bn
- l . In §3.1, we study the zeroth order term in the expansion. This corresponds 

to considering only the tachyon and the massless levels and imposing only local 

coordinate invariance. We are, therefore, back in familiar territory of renormalizable 

sigma model [8], where the connection and the generators of conformal algebra are 
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well-known. Our reason for reexploring it is twofold: Firstly, we would like to check 

our formalism against standard results. This check is non-trivial since the way we 

treat the dilaton is different from the standard treatment [8], where the dilaton 

field is introduced as an independent- field in the action from the beginning. In 

our approach, the determinant of the metric plays the role of the dilaton field, and 

everything works out alright. We note that this dete~minant cannot be gauged 

away, since the coordinate transformations under which tile model is invariant are 

restricted to have unit determinant. The second question we would like to answer is 

what happens if we abandon covariance by, for example, setting the connection equal 

to zero. In this case, we recover the gravitational equations in a fixed gauge, but 

we loose the equation of motion for the dilaton. Therefore, covariance is important 

in obtaining a complete set of equations. 

The next step is to go to first order in the expansion, which is the subject 

of §3.2. The first massive level of the string enters at this order, and also the 

coordinate (field) transformations include non-local terms for the first time. The 

important question is whether in this case, a suitable metric and a Killing vector 

that generates the conformal algebra exist. We show how to construct both the 

metric and the Killing vector to this order, and we derive the resulting equations of 

motion for the first massive level. An important check on the method is to find out 

whether the level structure agrees with that of the first massive level of the string. 

Again, to see what difference covariance makes, we check this for the non-covariant 

version, when the connection is set equal to zero. As mentioned before, we find that 

there are too many states, and there is not enough gauge invariance to eliminate 

the spurious states. In §3.3, we investigate the first massive level in the covariant 

case. Here, the situation is the opposite; for a general left-right non-symmetric 

model, there are too few states. Only when the model is left-right symmetric, there 

is an exact match. At the end of this thesis we mention some recent work done by 

Bardakci that overcomes this restriction. 

9.1. The Tachyon and the.Massless Leyel 

We will start by studying the two lowest levels of a closed, unoriented bosonic 

string: The tachyon and the massless level. Ideally, one would like to start with 

S as an arbitrary functional of XJLU and try to solve (2.38) in all its generality. 

However, this direct approach seems hopelessly complicated and not particularly 

useful. Instead, the problem is made tractable by expanding S in powers of the (}" 

derivatives of XJLu. We will call this the quasi-local expansio:n. This expansion is 

quite natural from the point of two dimensional field theory on the world sheet and 
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it has been the basis of most of the work done on this subject. From the string point 

of view, it is an expansion in the level number, two derivatives in cr corresponding 

to an increase of one unit in level number. We note that as a consequence of two­

dimensional rotation invariance on the world sheet, which we shall always assume, 

there is always an equal number of derivatives with respect to cr+ and cr_. It is then 

convenient to introduce a parameter "b" to keep track of the expansion: The field 

representing the nth level of the string will be multiplied by b(n-l). For example, 

the tachyon has coefficient b-1 and the massless level is independent of b. The first 

two terms in t~e quasi-local expansion of S are then given by 

S = b-1S(-1) + S(O) + ... = Jdtr (b-1CI>(X(cr)) + 9tLlI(X(u))8+XJUTfLXIIU + ... ). 
(3.1) 

Here and in the sequel, we have adopted the following notation: The super­

scripts (-1), (0), etc., refer to terms in S proportional to the corresponding pow­

ers of b. Expressions like CI>(X(u)) denote local functions of the coordinate X(u), 
whereas expressions such-as FtLU(X) denote functionals in the same coordinate. 

Also, we should make clear that the parameter "b" is merely a bookkeeping device 

and can be set equal to one at the end of the calculation. 

In the same spirit, the coordinate transformations (2.3) have a quasi-local ex­

panSlOn: 

FtLU(X) = ftL(X( u)) + bftL IIA(X( cr))8+XIIU 8_XAU + bftL II8+8_XIIU (X( u)) + .... 
(3.2) 

The first term is the local coordinate transformation associated with gravity; 

terms with increasing powers of b contain higher derivatives of u and become in­

creasingly non-local. In this section, we will only be concerned with invariance 

under local transformations represented by the first term in (3.2). However, the 

general strategy, pursued in the next section, is to determine FtU
, the generator of 

the conformal transformation (see (2.30)), and tl,le connection r as a power series 

in b so as to achieve covariance under both local and non-local transformations. To 

zeroth order in b, Fv , the. generator of t,he conformal transformations, is given by 

the first term in (2.30); the function f:,u is at least of first order in b. 

To simplify the exposition, we have so far neglected the cutoff dependence in 

S (see (2.2)). With the cutoff restored, the second term in (3.1) should read 

S(O) Jd2 d2 I - 8 X tLU8 X IIU' = u U 9 tLU,IIU' u+ U!. , (3.3) 
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where g is given by 

(3.4) 

8X(0",0"') is defined in (2.24) and h is a cutoff independent local function of X(O"). 
We have now to determine the connection r and the generator of conformal 

transformations F/:rT to zeroth order in b. We have already observed above that Fv 
is given by (2.26) to zeroth order, since f in (2.30) is already first order in b. As 

for the conneCtion, it will be derived from a metric that transforms correctly under 

local transformations. The standard choice for the metric made in sigma model 

calculations, which we shall adopt, is the symmetric part of g in (3.3): 

where, 

(3.6) 

The connection, to zeroth order in b, is given in terms of the metric by the 

standard formula: 

(3.7) 

With these preliminaries out of the way, we are ready to write down the field 

equation for the tachyon field. This we do by extracting terms lowest order in b, 

proportional to b-1 , from -(2.38). Notice that only Ec contributes. The equation 

reduces to the following simple form 

The first term on the left is easy to calculate: 

(3.9) 

In calculating the contribution of the second term, we take advantage of the 

following simplifications: We are going to drop all the non-local terms that can 

arise in the expansion of this term. Such non-local terms are in general present 

since the action S that satisfies (2.37) is not necessarily one particle irreducible, 
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and we wish to extract the one particle irreducible part that is locals. Another 

simplification follows from the fact that the result clearly is going to be a covariant 

Klein-Gordon equation for the tachyon field q, in the background metric g. We can 

then first linearize this equation by expanding to first order in hJ.Lv of {3.5) around 

the flat background, and then covariantize the result to arrive at the full answer 

in an arbitrary background. This will be our strategy in the rest of this thesis; 

only the linear part of the field equations will be computed in the presence of a flat 

. background, and the result will be generalized to a non-trivial background, making 

use of the powerful restrictions resulting from covariance. 

Eq. (3.8) is linearized by setting 

(3.10) 

and by expanding the "Tr log" to first order in H: 

T 1 G '" 1 A J.LU,Vu'H 
r og = 2"-l J.LU,VU' . (3.11) 

The linear part of H, to order b-1 , is given by 

(3.12) 

.. 
In calculating the left hand side of (3.8), the following identity proves useful: 

. ( 2) 2 ~J.LU,vu'jd71" v( ")8 X>..u" b b S _ ~J.LU,vu, __ b __ _ 
a:r + bX>"u" bXJ.LubXVU' - bXJ.LUbXVU' 

(jd
2 " (")8 >..u" bS ) b

2
S (()8 ( ')8 ) A J.LU,VU' 

X 77 V Of. +X bX M" - bX J.LU bXvu' v a+ u+ + v a+ u+ "-l . 
(3.13) 

The second term on the right hand side can be calculated making use of (2.29), 

leading to the equation 

jdtrv'(a+) [-q,(X(a)) + 1~7r8J.L8J.Lq,(X(a)) + ~~(O)(A)8J.L8J.Lq,(X(a))l = 0, 

(3.14) 

S See [20] for a verSIOn of renormalization group equations that are one particle 

irreducible. 
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where ~(O)(A) is the pr~pagator ~u,u' (A), evaluated at u = u f
• By translation 

invariance, it is independent of u. Since ~ is only a function of X /J.U and not of its 

derivatives with respect to u, it follows that 

(3.15) 

The term ~ (O)(A) is cutoff dependent and it blows up as A -+ 00. This cutoff 

dependent term can be eliminated by explicitly introducing the slope parameter 

which we have suppressed and by renormalizing it. The same cutoff dependent 

term is encountered in the equations for the higher levels and it is again eliminated 

by the same slope renormalization. Finally, (3.15) can easily be generalized to 

an arbitrary background by using the metric given by (3.5) and casting it into a 

covariant form. 

The next step is to derive'the field equation for g, which includes both the 

metric ((3.5)), and the antisymmetric tens?r 

(3.16) 

To do this, we have to extract zeroth order terms in b from (2.38). It is useful 

to distinguish between the two terms Ea and EM, the former coming from the 

variation of the Tr log G, and the latter coming from the variation of M. The 
. . 

reason for this distinction is that the Ea is cutoff independent, whereas EM is 

proportional to a cutoff dependent factor. We will argue later that these two terms 

must vanish separately, yielding two separate equations. The first of these will 

be the equation for the metric g and the antisymmetric tensor B; the second will 

provide the equation for the dilaton. Our strategy is again to expand around the 

fiat background to first order in hand B, and use covariance to arrive at the full 

answer. We make use of (3.11) to calculate Trlog G, extracting the linear piece in 

h, and using (2.29), we find 

(3.17) 
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Here, the subscript "lin" refers to terms linear in h. The r that appears on the 

right hand side is the linearized form of the connection (3.7): 

(3.18) 

where, 

(3.19) 

The functional derivative of si~2 can be calculated from (3.1), and repeating the 

steps that led to (3.15) gives the following field equation: 

(3.20) 

where D = 0J.J)Jl. Here, since we use a fiat metric to raise and lower indices, there 

is no real distinction between upper and low~r indices. This will be understood 

whenever we have repeated upper or lower indices. 

The equation above came from the conformal transformations in the variable 

0"+ • The other set of conformal transformations in the variable 0"_ result in an 
additional equation: 

(3.21) 

It is now convenient to combine these two equations and rewrite them in terms 

of h and the antisymmetric tensor B. Interestingly, we find that, without any ref­

erence to (3.19), these equations fix the contracted connection r up to an arbitrary 

scalar field ¢, which we shall identify with the dilaton field: 

(3.22) 

and we arrive at the following equations for hand B: 

(3.23) 

DBlIA - olloJlBJlA + oAoJlBJlll = o. (3.24) 

Comparing with (3.19) determines ¢: 

(3.25) 
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and substituting this result back into (3.23) gives the standard equations of gravity 

without source in linearized form. The equation for the antisymmetric tensor B f.LV 

is the linearized version of the standard result of [8]. 

Up to this point, we have not taken into account EM. Let us first calculate 

the M dependent factor in (2.40). From equation (2.12), we find that 

The term which is quadratic in M will not contribute since it is non-linear 

(and also non-local). To the order we are considering, the first factor on the right 
in (2.40) can be evaluated by setting GO!u,{3u' equal to .6. O!u,{3u', with the result, 

(3.26) 
We see that unlike the cutoff independent E a , EM is p~oportional to the cutoff 

dependent factor .6.(0 ) (A). This term is a consequence of the prescription chosen, 

and being cutoff dependent, must be set equal to zero by itself. This gives us the 

additional equation 

(3.27) 

and combining this with (3.23) and (3.25), we find that 

(3.28) 

and 

( 
(3.29) 

Equations (3.28) and (3.29) describe the coupled graviton-dilaton system in the 

linear approximation. To see this, we note that these equations are invariant only 

under coordinate transformations of unit determinant, which, linearized, results in 

invariance under gauge transformations 

(3.30) 
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with the important restriction that 8p.K,P. = O. This restriction to unit determinant 

was explained in section 2 in the paragraph following (2.14). As a consequence, the 

trace of h, hp.p., which can be gauged away if there is invariance under unrestricted 

coordinate transformations, can no longer be eliminated and becomes a dynamical 
degree of freedom. Up to normalization, we identify it with the dilaton field cPo The 

natural candidate for the graviton field is tl;le traceless co~ponent of h: 

(3.31 ) 

where D is the dimension of space. We identify h with the graviton field in the gauge 

where the metric has unit determinant and as a consequence, the graviton field is 

traceless. h also satisfies (3.29), which is the correct equation for the graviton 
coupled to the dilaton in this gauge. We would like to point out the difference 

between our treatment of the dilaton and the standard approach. In the standard 

treatment, in addition to XJ.ll7, the dilaton field 4 is introduced in the action from 

the beginning, and the theory is regularized by going from 2 to 2 + € dimensions 
on the world sheet. We stay with a two dimensional world sheet, regularize only 

the free propagator (see (2.2)), and the dilaton field is identified with the log of 

the determinant of the metric. This identification is only possible because the full 

coordinate invariance was broken down to transformations of unit determinant. 

We end this section with a few observations: 
a) So far, we have worked out the coupled system of the graviton, dilaton and 

the anti symmetric tensor only in the linear approximation. As stressed earlier, the 

full dependence on the graviton field follows from covariance. However, we have not 
calculated the higher order contributions in the dilaton field cP and the antisymmet­

ric tensor field B P.1I' It would be interesting to compare these to the results of [8], 

although such a comparison is plagued with ambiguities due to possible field redef­
initions involving the dilaton field. It is also not clear that we should even consider 

the antisymmetric tensor: Our approach works only for the left-right symmetric 

string models and the antisymmetric tensor decouples in that case. 

b) In the presence of the cutoff, the coordinate transformation, given by (3.2), 

has to be modified to preserve the invariance of the action. In the linear approxi­
mation, the modification is 

(3.32) 

Although they are not needed in the work reported here, the non-linear corrections 

to (3.2) can, in principle, be worked out. 
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c) There is an ambiguity in the expression for the connection given by (3.19), 
which is the standard result of differential geometry derived from the metric. How­

ever, since we insist on invariance under transformations with unit determinant, we 

A1re free to modify the metric by, for example 

(3.33) 

where k is an arbitrary constant. The modified metric leads to a modified connec­

tion, and to a new set of equations. These equations are not, however, physically 

different from (3.28) and (3.29); they correspond to field redefinitions involving the 

dilaton field mentioned above. This becomes clear by noticing that the dilaton field 

can be taken to be the log of the determinant of g; then (3.33) is a dressing of the 

metric by the dilaton field. 

d) It is of some interest to find out what would have happened, if we had car­

ried out a non-covariant calculation. This means setting the connection r equal 

to zero throughout, and referring to the equations (3.20) and (3.21), it amounts to 

choosing the gauge 

(3.34) 

Therefore, the equation for the graviton comes out gauge fixed, but otherwise cor­

rect. What is missing is (3.28), the equation for the dilaton field. This is because 

the equation of motion for the dilaton comes entirely from M, and with connection 

equal to zero, M is also zero. 

3.2. The First Massive Level - Non-Covariant Approach 

In this section, we shall investigate the first massive state, using once agrun 

the tools developed in section 2. The particular question we would like to address 

is whether the spectrum of states that follows from the linear (free) part C?f the 

equations of motion we are going to derive is consistent with the known spectrum 

of the first massive level of the string. This is clearly a necessary test any successful 

candidate for string field equations must pass. Of course, in addition, the non­

linear part of the equations should reproduce the interactions of the string theory. 

We will not address the question of interactions here, apart from observing that 

the stringent requirements of covariance we are going to impose probably fix the 

interaction uniquely. 

The field equations will again follow from (2.38), given F ((2.30)) and the 

connection r to first order in b. For the sake of comparison with the non-covariant 
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renormalization group approach of [10], we will first carry out a calculation with 

vanishing connection and F given by (2.26). Comparing the resulting physical states 

to those of the string, we will find that there are too many of them. In the next 

section the calculation is done covariantly: We start with rand Fv derived from a 

metric, suitably defined so as to satisfy invariance under coordinate transformations 

(2.3) and (2.5) to first order in b. The resulting set of states appear to be consistent 

with those of the left-right symmetric string model. We conclude that only the 

covariant approach yields equations powerful enough to produce the spectrum of 

at least the left-right symmetric string theory; the equations resulting from the 

non-covariant approach turn out to be too weak. 

The starting point is the first massive level, written out in full generality: 

+ e(1) 8+8_XJJ.l 8+XJJ.28_XJJ.3 + e(3) 82 XJJ.l 8+XJJ.2 8+XJJ.3 JJ.lJJ.2JJ.3 . JJ.lJJ.2JJ.3 -

+ e~ll)JJ.28+8_XJJ.l 8+8_XJJ.2 + e~~)JJ.28~8_XJJ.l 8_XJJ.2 

+ e(3) 82 8+Xlll 8+X1l2 + e(4) 82 Xlll 82 X1l2) 
III 112 - III 112 + -,' 

(3.35) 

where the e's in this expression are local functions of the field XIlO'. Here and in 

many of the equations that follow, we have also simplified writing by replacing, for 

example, XlllO' by XJJ.l. 

Eq. (3.35) is highly redundant because of the existence of linear gauges. These 

result from the possibility of adding zero to (3.35) by adding a total derivative in 

u+ or in u_ to the integrand. Such a possibility already exists for the zero mass 

level; adding 

(3.36) 

to (3.1) amounts to the well-known gauge transformation of the antisymmetric 

tensor B: 

(3.37) 

For the first massive level, the situation is more complicated; there are six 

distinct linear gauge transformations. These are discussed in Appendix A, where it 

57 



is also shown that, making use of these gauges, all but three of the fields appearing 

in (3.35) can be eliminated. The resulting linear gauge fixed form of S(1) reads 

s(1) = Jd1;- (eJ.l.IJ.l.2,VIV20+XJ.l.l o+XJ.l.2fLXVl O_XV2 

+ eJ.l.IJ.l.2J.1.30+0_XJ.l.l o+XJ.l.20_XJ.l.3 + eJ.l.l J.l.20+0_XJ.l.l O+O_XJ.l.2) . 
(3.38) 

It is also shown in Appendix A that this form of S(I) is in fact completely gauge 

fixed; in contrast to the massless level, there are no linear gauge transformations 

left of the form (3.-37) that map it into itself. It is now easy to carry out the nOll­

covariant calculation by substituting S given by (3.38) in (2.38), and setting r = 0 

and Fv to the value given by (2.26). The resulting equation is 

(3.39) 

The second term of this equation can be evaluated with help of the identities 

(3.13) and (2.29): 

(3.40) 

Setting S(1) = Jdtr U(X(Ci)) and using the above results gives 

(3.41 ) 

The last term in this equation can be evaluated after a tedious but straightfor-
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ward calculation, with the result , 

fd~d~' V(I7+) - v(I7.+) 8
2
5(1) 1 = fd~V'(I7+) 

17+ - 17+ 8XiJ.U8XiJ.U 

x ((DeiJ.liJ.2,VIV2 - 28iJ.I 8iJ.eiJ.iJ.2,VIV2 + ~8iJ.I 8iJ.2eiJ.iJ.,VlvJ8+XiJ.18+XiJ.28_XVI8_XV2 

+ (DeiJ.I iJ.2iJ.3- 48iJ.eiJ.iJ.2 ,iJ.I p.,,- 8iJ.2 8iJ. eiJ.I iJ.iJ.3 +~8iJ.2 eiJ.iJ.,iJ.I iJ.3 )8+ 8_X iJ.18+XiJ.28_X iJ.3 

+(DeiJ.liJ.2 - 8iJ.eiJ.liJ.iJ.2 + ~eiJ.iJ.'iJ.liJ.J8+8_XiJ.18+8_XiJ.2 
1 

+( -28iJ.eiJ.iJ.I ,iJ.2iJ.3 + "S8iJ.I eiJ.iJ.'iJ.2iJ.J8~XiJ.I 8_XiJ.28_XiJ.3 

+ (-8iJ.eiJ.liJ.iJ.2 + ~eiJ.iJ.'iJ.liJ.2)8~8_XiJ.1 8_ X iJ.2) . 

(3.42) 
One has to take into account possible gauge invariance of the integral on the 

right hand side of this equation. Because of the presence of the factor v' ( 17+ ), the 

gauges are generated by adding a total derivative with respect to 17_ only, and as 
a result, there are only three of them, as opposed to six in the case of (3.35). In 
writing down (3.42), we have already eliminated all redundant terms and fixed the 
linear gauges completely. 

Let us now evaluate the second term in (3.41). As opposed to (3.42), which is 
cutoff independent, here we encounter only cutoff dependent terms. These terms 
are proportional to !::J.. u,u

l 

(A) and its derivatives, evaluated at 17 = 17'. By rotation 

invariance on the world sheet, the number of derivatives with respect to 17+ must 
match those with respect to 17_. Defining 

we have, 

8u+8u_D.U,u' (A)lu=u' = D.~O)(A), 
82 82 !::J..u,U'(A)I_ 1 = !::J..(O) (A) u+ u_ u-u - 4 , 

!::J..iJ.U,VU
I 

8
2 

fdtr R V'(a{!.)~(X(I7I1))I.' 
8XiJ.U8XVU' smg 

= Jdtr v' (17+) ( !::J.. (O)(A)DeiJ.I iJ.2,VIV28+XiJ.l 8+ XiJ. 2 8_XVI 8_XV2 

+ DeiJ.I iJ.2iJ.3 8+8- X iJ.I 8+XiJ.2 8_XiJ.3 + DeiJ.liJ.2 8+8_XiJ.I 8+8_XiJ.2 

(3.43) 

+ 2!::J..~O)(A) (-4eiJ.iJ.I ,iJ.iJ.2 + 8iJ.eiJ.iJ.I iJ.2 + 8iJ.2eiJ.liJ.iJ. - 28iJ.8iJ.2eiJ.iJ.l) 8+XiJ.I 8_XiJ.2 

+ 2!::J..iO) (A)eiJ.iJ. ) . 
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These singular terms can be eliminated by renormalization as follows: The same 

slope renormalization that got rid of the cutoff dependent term in the equation 

for the tachyon (see (3.15) and the discussion that follows) also eliminates the 

term proportional to ,6.(O)(A) here. The other cutoff dependent terms are due to 

the contraction of two X's in the same vertex, and they can be taken care of by 

vertex renormalization. This amounts to eliminating them by introducing local 

counterterms in S of the form, for example, 

(3.44) 

In the operator formulation of the string theory, these divergent terms are 

eliminated by the operator normal ordering of the vertex. 

After renormalization, one is left with the finite equations given by (3.42). They 

fall into two classes: Propagating equations of motion are (with the unconventionally 

normalized mass squared given by 167r) 

plus constraints 

De tL1tL2 ,VIV2 + 167retL1tL2 ,VIV2 = 0, 

DetLltL2tL3 + 167retLltL2tL3 = 0, 

DetL1 tL2 + 167retL1 tL2 = 0, 

1 . 
8 tL e tLP-l,VlV2 - 68P-l ep-p-,VIV2 = 0, 

2 
8p- e P-IP-P-2 - 3 e P-P-,tLl P-2 = 0, 

and also the constraints that come from v' ( u_ ) 

1 
8 V e P-IP-2,VV2 - 68v2 ep-IP-2,VV = 0, 

2 
8p- e P-ltL2tL - 3eP-IP-2,VV = 0. 

(3.45) 

(3.46) 

(3.47) 

Comparing with the structure of the first massive level of the string (see Ap­

pendix B), it is clear that the above constraints are too weak. For example, in string 

theory, everything is expressible in terms of the analogue of e tL1 P-2,VIV2' whereas here 

ep-l P-2 and most of ep-l P-2P-3 cannot be so expressed. Clearly, the latter fields are 

spurious and should somehow be eliminated. In the next section, we will see that 

the covariant approach overcomes this problem. 

60 



3.3. The First Massive Level - Covariant Approach 

In this section, the field equations for the first massive level will be rederived, 

this time imposing covariance under coordinate transformations given by (3.2). 

When treating the massless levels, covariance under only the local transformations 

(first term in (3.2)) was imposed; we now require, in addition, covariance under 

transformations first order in b. We will initially simplify the problem by starting 

with flat Minkowski metric, with h = 0, in (3.4), an? with the action 

(3.48) 

where S(l) is given by (3.38). Because the metric is flat, we have to set the first 

term in (3.2) equal to zero, and also take into account the introduction ~f the cutoff 

in (3.48) by modifying the transformations. The modification needed is similar to 
(3.32), X/1-U -t x,p.u, with: 

X'/1-U = xp.u +b Jd'i/ 8l ((I, (I') (fp.II>'(X( (I' ))8+XIIU
I 

8_X>'u' + fp.II(X( (I') )8+8_XlIu). 

(3.49) 

It is easy to check that, to first order in b, (3.48) is invariant under (3.49),H at 

the same time, the fields transform by 

ep.lI>' -t ep.lI>' + 2f/1-II>', 

ep'1I -t ep'1I + fp.1I + flip.-
(3.50) 

Since only the symmetric part of fp.1I appears, from now on we will impose the 

condition 

(3.51) 

As we have mentioned earlier, we initially work with flat metric in order to 

simplify the exposition. After having derived the field equations with the flat metric 

as background, we will then show that everything can easily be generalized to 

accommodate an arbitrary metric. 

The above transformations are subject to the condition of unit determinant 

(see (2.5)). This translates into 
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U sing two dimensional rotational invariance, several cutoff dependent terms 
vanish, giving us 

(3.52) 

and 

(3.53) 

where we have used the fact that, by translation invariance, 8X (0",0"), which will be 
shortened to 8X(O), does not depend on 0". 

The first condition is satisfied by setting 

(3.54) 

where A/-I is arbitrary. It is interesting to identify field combinations that are invari­

ant under the transformat,ions (3.50), subject to the constraints (3.53) and (3.54). 
e/-l/-l is clearly one such invariant; another combination which is almost invariant is 
given by' 

kv). = 8/-1e/-lv). - 8).8/-1e/-lv. (3.55) 

Under (3.50), kv ). undergoes the following gauge transformation: 

(3.56) 

and so it is the appropriate gauge invariant field strength constructed out of kv ). 

that is invariant. Later, we will see that this gauge invariance is broken for reasons 
that will become clear. 

We can now extend the metric given by (3.5) to include the first order correction 
in b. The key observation is that if there were no restrictions on the 1's, we could 

gauge away the fields ep.v). and e/-l V by a transformation of the form (3.49) by setting 

1 
f/-lv). = 2"e/-lv)., 

1 
f/-lv. 2"e/-lv. 

(3.57) 

The metric extended to first order in b is then constructed starting with fiat metric 

to zeroth order in b and carrying out the transformation (3.49), with the 1's given 
by (3.57): 

XWT -+ XWT - ~ J d'ir' 8X (0",0"') (e/-lv).(X( 0"'))8+Xvcr' 8_X).cr' + ep.v(X( 0"'))8+8_Xvcr'). 

(3.58) 
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The result is 

9 IU7,VU' = TJ j.l v8l (0', 0") + bh ~l;,VU' , 

h~l;,VU' = - ~ 8}vu' (ej.lQA(X( 0'))8+XQU 8_XAU + ej.lQ(X( 0'))8+ 8_XQU) (3.59) 

+ (J.LO' f-+ vO"). 

If the constraints (3.53) and (3.54) did not exist, this would be a trivial metric, 

equivalent to a fiat metric. In that case, there would be no need to go to the trouble 

of constructing it; it would have been simpler to fix gauge by eliminating the fields 

ej.lVA and ej.lv' However, the constraints on the 1's make (3.59) a non-trivial metric: 

Because of these constraints, hj.lu,vu' can no longer be transformed away, and neither 
can the e's be completely eliminated. It is easy to check directly, using (3.50), that, 

even in the presence of the constraints, (3.59) transforms correctly to first order in 

b under (3.49). 

There is a somewhat subtle issue of the invariance of this metric under the 

linear gauges given in Appendix A. So far, we have been working with the gauge 

fixed form of the action given by (3.38), and since the action was gauge invariant·. 

to start with, this gauge fixing is legitimate. We have to show that, the metric 

proposed above, is also the gauge fixed form of a gauge }nvariant expression. In 
fact, the functions ej.lVA and ej.lV can be written in gauge invariant form; this is 

implicit in' the gauge fixing procedure that led to (3.38). Explicitly, we can define 

two tensors invariant under linear gauges by 

After gauge fixing, Tj.lVA and Tj.lv reduce to e~:A and e~lJ respectively. 

From the metric given above, one can find the first order correction in b to the 

connection and the generators of the conformal transformations (see (2.30) and the 

related discussion). The standard formula of differential geometry expressing the 

connection in terms of metric gives 
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Now let us compute the corrected conformal generators. Write (2.30) as 

F:U(X) = jeftr' v(a+)F:,C7(X), 

F:,C7(X) = 82 (a' - a)fhXJlC7 + 1:,C7(X), 

where 1:,17 starts at first order in b. Taking advantage of the fact that Ft C7 transforms 

like a vector in the indices fLa, the first order correction is computed exactly as in 
the case of the metric. Start with 

at zeroth order, and apply the vector transformation law to it under coordinate 
transformation (3.58), with the result 

jdtr' v(a+ )1:,17 = - ~ jdtr' 017+ 81 (a, a')( v( a+) - v( a+)) 

x (eJlv>.(X( a') )a+XVC7' a_X>'C7' + eJlv(X( a'))o+o_Xv~') . 
(3.62) 

This result can be simplified in the limit of large cutoff. As A becomes large, 

81(a,a') ~ P(a - a'), and oC7+81(a,a')(v(a+) - v(a'+)) ~ -81(a,a')v'(a.+), so we 
can write 

jdtr' v( a+ )I:,u '" ~fdtr' v' (a+ )81 (a, a') 
,_ 2 

x (eJlv>.(X(a'))o+Xvu' o_X>.u' + eJlv(X(a'))a+a_Xvu') . 

We have now at hand all the information needed to evaluate (2.38) to first 

order in b; the action is given by (3.48), the connection by (3.61), and the conformal 
generator by (3.62). Since the calculation is straightforward but somewhat tedious, 
we skip the details and instead, indicate the main steps. Part of the calculation was 
already carried out for the non-covariant case in section 4; all we have to do is to 

add the extra terms that arise from the connection and from 1 in (3.62). We first 
calculate the terms that contribute to Ee in (2.38); a simple calculation gives 

and therefore, to first order in b, 
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since the other two terms, e/l l /l 2 /l 3 and e/l l /l2' cancel. Next, expanding the Tr log as 

in (3.11), we compute H/lU,vul to first order in b: 

(3.63) 
where, . 

S' - jd2 !l X/ll!l X' /l20 X V
1. 0 X V2 - u e/ll/l2,V1V2u+ u+ - - . (3.64) 

Next, we apply 8 (see C2.25)) to H/lU,vul . The contribution coming from the first 

term on the right in (3.63), 

has already been calculated in the last section; it is given by setting e/l l /l2/l 3 and 

e/l l /l 2 in (3.42) equal to zero. The contribution of the second term in (3.63), after a 

somewhat lengthy computation, is given by 

~ (jdtr" vCa/'.)o+X AU" 8}AUII + 8A) 7]/lV ~U,UI (A) 

with 

'. x (OU+ ou_ 8}vU1 (e/lOlf3o+XOlU o_Xf3u + eP.Olo+o_XOlU) + (f.tU +--+ vu')) = 

= - 8l(O)jdtr v'(u+)o+XOl o_Xf3 Cop.e/l Ol f3 - 0f3o/leP.Ol) 

- O+<L8l(O)jdtrv'(u+)ep./l' 

(3.65) 

o+o_8lCo) = (ou+ou_ 8l(u,u'))u=u
1

' 

The main steps in the computation are the following: The critical term to be 

evaluated turns out to be 

jdtrdtr' (8A~U,UI (A)) (Ou+Ou_ 8}/lU1 (eP.Olf3 o+XOlU o_Xf3u + e/lOlo+(LXOlU )) = 

= - jdtr (8A8l (u, u')O/le/lOlf3o+XOlU o_Xf3u + ou+ ou_ 8A8l C u, u')e/l/lo+o_XOlU) ul=u' 

(3.66) 
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and the cutoff dependent factors can be simplified using (2.29): 

( 8A ZX(a,a')) u=u' = v'(a+)8X(0). 

where r is given by (3.61), and k is defined by (3.55). 

(3.67) 

(3.68) 

Putting together (3.42), (3.65) and (3.68) in (2.38), we finally get the equations 
for the first massive level. These equations contain cutoff independent terms, which 
come only from (3.42), and cutoff dependent terms, which all come from (3.65) 
and (3.68). We note that all the cutoff dependent contributions come from terms 
proportional to the connection r, and therefore they are absent from a non-covariant 
calculation. We first write down the cutoff independent equations: 

. (3.69) 

We have one equation of motion and four constraints. In addition, we have three 
cutoff dependent equations. Two of them follow from the conformal transformations 

(3.70) 
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where k is defined by (3.55). The remaining equation (there is a fourth, repeated 

equation, for eu), results from conformal transformations in (J-e. and it is conve­

niently written in terms of a field Ie, defined by 

(3.71 ) 

and it reads 

(3.72) 

The equation satisfied by k is not invariant under the gauge transformations 

given by (3.56)., The reason for this is the following: In the computation of the 

determinant, the cutoff dependent factor 8X ((J, (J') at (J = (J' is (J independent and 

therefore it can be put in front of the integral in (3.52). The integral itself is then 

invariant under the gauge transformation (3.56). On the other hand, in the main 

step leading to (3.65), the cutoff variation ofthe same factor at (J = (J' is (J dependent 

(see (3.66), (3.67), and also the discussion following (2.29)). As a consequence, an 

additional factor v'((J+), as compared to (3.52), appears in the integral on the right 

hand side of (3.65), and this spoils gauge invariance under (3.56). It is, therefore, 

necessary to modify the condition (3.54); it should be replaced by 

O,JP.VA = 0, 

Op.!p.v = o. 
(3.73) 

Both k and Ie are invariant under the transformations satisfying these more 

stringent conditions. 

Going back to the equations (3.69), we see that two of the constraint's are too 

stringent, 

(3.74) 

eliminating degrees of freedom from the field eP.1P.2,VIV2 which are present in the 

string spectrum (see Appendix B). The hope is that k and Ie could supply the 

missing degrees of freedom. We shall see below that this happens in the left-right 

symmetric case, with parity invariance on the world sheet, which interchanges (J+ 

and (J_. In this case, e is invariant under the interchange of the p,'s with v's, and the 

comp~:ments eliminated by (3.74) are the same as those of a symmetric second rank 

tensor. We have analyzed equations (3.70) and (3.72) in the left-right symmetric 

case, when 
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Defining 

and 

one can easily show that equations (3.70) and (3.72) are equivalent to the equations 

(3.75) 

plus the constraint 

(3.76) 

The number of independent degrees of freedom of the above system is the 

same as that of a symmetric second order tensor minus a scalar. The missing 

scalar is provided by e Illl' so in the final count, the fields k and k provide the 

missing degrees of freedom needed to establish agreement with the string theory 

spectrum. Unfortunately, in the general case with no left-right symmetry, there are 

still missing degrees of freedom, and at the present time, we have no solution to this 

problem. Our suspicion is that our method in its present form is applicable only 

in the symmetric case, and some new ideas are needed to extend it to the general 

case~ 

We close this 'section by a brief description of the promised extension of the 

results of this section to the case of a general gravitational background. This means 

replacing the fiat background given by 1]1l1l8X (0",0"') in (3.59) by the metric 9/LrT,lIrT' 
of (3.5). We have to show that the equations of this section can be covariantized 

with respect to this metric. Most of the time, the task is trivial; one has to keep 

the upper and lower indices of tensors match correctly and use the metric to raise 

and lower indices as needed. For example, in (3.38), the first termon Jhe right is 

correctly written, since O+X/L and o_X/L transform as contravariant vectors. On 

the other hand, O+O_XIl is not a'vector; it should be replaced by 

6 See the Epilogue section for a brief note on new work done by Bardakci 
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where the connection r is given by (3.18). Similarly, the partial derivative with 

respect to X in (3.59) should be replaced by the covariant derivative using the 

same connection: For example, 

for a vector VIIU" One can easily show that everything in this section goes through 

with these modifications. Notice, however, that in all this we have worked only with 

the metric, which is symmetric, and we have dropped the antisymmetric tensor 

altogether. This is clearly permissible only in a left-right symmetric model. It 

is clear that, in order to generalize our treatment to the left-right non-symmetric 

string, we have to figure out how to incorporate the antisymmetric tensor in the 

discussion above. 

4. Discussion 

With this work we have proposed a new approach for deriving the string field 

equations from a general sigma model on the world sheet. Those equations can 

be made covariant under not only local, but also non-local transformations in the 

field space. In this approach the world sheet one loop result is exact, although it 

may only give incomplete information, to be supplemented by higher loop results. 

We applied this method to derive the equations for the tachyon, massless and first 

massive level. The spectrum of states that follows from the linear part of these 

equations of motion was shown to agree with the known spectrum of strings. This 

is in contrast with a non-covariant approach, where the equations are too weak to 

produce the right spectrum. 

In this work we only analyzed _the linear part of the equations. We did not 

address the question of string interactions, neither did we attempt to extend our 

results to higher string loops. It would be desirable to go beyond the expansion we 

have used, and establish exact covariance under non-local transformations. Also, 

natural generalizations such as a better treatment of left-right non-symmetric closed 

string (see Epilogue below), strings with boundaries (open strings) and fermionic 

strings are worthy of investigation. 
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Epilogue 
While this thesis was being written, Bardakci pushed this direction of research 

further and solved some of the difficulties present in this work. For instance, there 

is no need anymore to have left-right symmetry. To achieve that, one shouldn't 
assume that the connection is derived from a metric, as we did here. Instead, it 
should be left undefined as much as possible, the only constrain being in the number 
of derivatives present to give the right conformal dimension. Due to the extra 
freedom this gives, many constraints are not present anymore because they can be 
absorbed in the definition of the connection. The equations and constraints one gets 
in the end are just enough to get the right number of degrees of freedom, without 

the need to impose some left-right symmetry; and the one to one correspondence 
between the known string spectrum and those equations and constraints is easily 
established. Also, since the connection doesn't come from a metric, the restriction 
to coordinate transformations of unit determinant is not present anymore. The 
Virasoro symmetries were also shown to be satisfied. 

Appendix A. 

In this appendix we fill up the steps that lead from (3.35) to (3.38). As it was 
said in the comments that follow (3.35), of the eight fields present there, all but 
three can be eliminated by linear gauge transformations. The six distinct linear 

gauge transformations that we can add to (3.35) are: 

1) 

2) 

3) 

4) 

5) 

6) 

ih (cJ.I.,Vl v2 ihXJ.l.8_XVl 8_XV2) = 8J.1.l CJ.l.2,VlV2 8+X J.l.l 8+XJ.l.28_XVl 8_XV2 

+ CJ.l.,VlV2(8~XIL8_XV18_XV2 + 28+X IL 8+8_XV1 8_XV2) 

8-(£J.l.l IL2,v8+XJ.l.l 8+XJ.l.28_XV) = 8Vl £J.l.lJ.l.2,V28+XJ.l.l 8+XIL2 8_XVI 8_XV2 

+ £J.l.lJ.l.2,V(28+8_XJ.l.18+XJ.l.28_XV + 8+XIL1 8+XJ.l.28:XV) 

8+( c~ll)J.l.2 8+8_XJ.l.l 8_XJ.l.2) = 8vc~1/IL2 8+Xv 8+8_XJ.l.l 8_XIL2 

+ c~ll)J.l.2(8~8_XIL18_XJ.l.2 + 8+8_XILI 8+8_XJ.l.2) 

8 (£(1) 8+8 X IL1 8+XJ.l.2) = 8 £(1) 8 X V8+8 XJ.l.18+XIL2 - ILl IL2 - V ILl IL2 - -
-+ ~ll)J.l.2(8:8+XJ.l.18+XJ.l.2 + 8+8_XIL1 8+8_XJ.l.2) 

8+(c(2) 8+XJ.l.182 XIL2) = 8 c(2) 8+Xv8+XJ.l. l a2 XJ.l.2 J.l.l J.l.2 - V ILl IL2 -
+ C~~)IL2(8~X/L18:XJ.l.2 + 8+XJ.l.18+8:XJ.l.2) 

8 (£(2) 8 X IL1 82 XJ.l.2) = 8 ~2) 8 X V8 X IL1 82 XJ.l.2 - J.l.l IL2 - + V ILl IL2 - - + 

+ ~~)IL2 (8:XILI 8~XJ.l.2 + 8_XJ.l.l 8~8_XJ.l.2). 
(A.I) 
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To eliminate e~4J choose 

(A.2) 

To eliminate e~2J choose 

(A.3) 

To eliminate e~3J choose 

(A.4) 

To eliminate e~2J.>. choose 

(A.5) 

To eliminate e~3J.>. choose 

(A.6) 

B h . (2) _(2) (1) -(1) d - I 
y c ooslng CJ.LIJ.L2 + CJ.L2J.LI) CJ.LIJ.L2) CJ.LIJ.L2) cJ.LI,J.L2J.L3) an cJ.L2J.L3,J.LI proper y) we can 

eliminate everything except eJ.LIJ.L2, IIIIl2) eJ.LIJ.L2J.L3 and eJ.LIJ.L2; we dropped the super­

script (1) after gauge fixing. The transformations that preserve this gauge are 

(A.7) 

plus) we could also add 

O+(CJ.LI0+0:XJ.LI)-O_(C~1 O_OiXJ.LI) = OJ.LI CJ.L2(O+XJ.LI O+O:XJ.L2 -o_XJ.LI o_ oiXJ.L2). 

(A.8) 

All of these linear transformations act trivially on (3.38); they leave eJ.LIJ.L2, IIIIl2) 

eJ.LIJ.L2J.L3 and e/LI/L2 invariant. This means that linear gauges are completely fixed in 

the form given by (3.38). 
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Appendix B. 

In this appendix we show that the constraints (equations (3.46) and (3.47)) 
obtained in section 4 for the first massive level fields are too weak. This will be done 

.. by comparing those constraints with the analogue constraints of the first massive 
level of the string. 

To obtain these consider the most general level 2 state Is) given by 

I ) (E tJ.LI tJ.L2btlllbtll2 E tJ.Lbtlllbtll2 
S = J.LIJ.L2,IIIIl2 a l a l 1 1 + J.L,III!l2 a 2 1 1 

E tJ.LI tJ.L2btll E tJ.Lbtll ) 10) + J.LI J.L2 ,lIa l a l 2 + J.L, lIa2 2 , 

(B.1) 

where a~, alJ.L and b~, blJ.L are the closed string operators. This state satisfies the 
relations 

(Lo - l)ls) = (Lo - l)ls) = ° 
and 

L21s) = L21s) = 0, 

from which we get some conditions between the E's. The gauge freedom present in 
these conditions can be taken care of by adding zero norm states to Is). After that 
is done we get the constraints 

pJ.L EJ.LJ.LI,IIIIl2 + V2PJ.LIE,IIIIl2 = 0, 

plI EJ.LI J.L2,III II + V2PIII E/-I.IJ.L2, = 0, 

pJ.L EJ.L/-I.I, + V2P/-l.IE = 0, 

pll E,1I11l + V2PIII E = 0, 

4V2E,IIIIl2 - EJ.LJ.L,lItIl2 = 0, 

4V2E J.LIJ.L2, - EJ.LI/-l.2,1111 = 0, 

where the new E's are related to the old ones by 

Combining, the only constraints on EJ.LI/-l.2,IIIIl2 are 

J.LE 1 E '-0 P J.LJ.LI,IIII12 + 4PJ.LI J.L/-I.,1I11l2 - , 

plI EJ.LIJ.L2,1I11l + ~PIII EJ.LIJ.L2,1I11· = 0, 

(B.2) 

(B.3) 

and all other E's are given in terms of EJ.LI J.L2,1I1 112 . If we consider that the E's play 
the analogue roll of the e's in section 4, then the constraints (3.46) and (3.47) are 
not powerfull enough, because for example, eJ.LI/-l.2J.L3 and eJ.LI/-l.2 are not completely 
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