
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
EPICS SCA CLIENTS ON THE .NET X64 PLATFORM

Permalink
https://escholarship.org/uc/item/4zk5v28s

Authors
Timossi, Chris
Nishimura, Hiroshi

Publication Date
2006-10-19

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4zk5v28s
https://escholarship.org
http://www.cdlib.org/

EPICS SCA CLIENTS ON THE .NET X64 PLATFORM*

C. Timossi1 and H. Nishimura2, LBNL, Berkeley, CA 94720, U.S.A.

Abstract
We have developed a .NET assembly, which we call

SCA.NET, which we have been using for building EPICS
[1] based control room applications at the Advanced
Light Source (ALS)[2]. In this paper we report on our
experiences building a 64-bit version of SCA.NET and
the underlying channel access libraries for Windows XP
x64 (using a dual core AMD Athlon CPU). We also
report on our progress in building new accelerator control
applications for this environment.

SIMPLE CHANNEL ACCESS AT ALS
Simple Channel Access (SCA)[3] is a library that

provides a simplified API for developing Channel Access
(CA) clients. SCA was developed at LBNL and has been
in heavy use for both accelerator and beamline controls.
Since SCA’s most common use has been on Windows
platforms, we originally packaged it as an ActiveX
Control called SCA.COM[4]. This control is easily called
by any Windows client supporting Active X (e.g.
Labview, Visual Studio).

Although ActiveX controls can be accessed from .NET
assemblies we believed a more seamless integration was
important for two reasons. First, .NET will be the
standard development framework for Windows in the
future--on Vista, it will be the only development
framework. Second, it looked like a relatively simple task
to re-package the ActiveX control as a .NET assembly. In
fact, as often happens during a re-write, we found many
optimizations that resulted in better performance than the
previous component, in the context of the 32-bit version
of SCA.NET[5].

MIGRATION TO 64 -BIT

Need to Support 64-bit
PCs with 64-bit processors and operating systems, such

as Windows XP x64, are finally becoming widely
available. Scientific applications, which are accelerator
tracking programs for us [6], are already taking advantage
of the larger address space and faster execution speed.

On the other hand, typical machine control applications
have little need for these advantages as 32 -bit has been
most ly sufficient.

It is convenient, however, when building model based
64bit control applications, to have access to 64 bit
versions of controls libraries to avoid mixing 32 bit and
64 bit libraries.

Building CA for Windows XP x64
Building CA on x64 bit platforms has been done

previously. Even so, some help from the author [7] of the
CA software was needed to add a macro to CA base code
for the AMD architecture on Windows. Further, although
the EPICS build system is both powerful and flexible, we
decided to build the libraries in the Visual Studio
environment to take advantage of its rich debugging tools.

Finally, a patch previously posted by AMD, which
synchronizes the core time stamp counters, needed to be
installed [8].

The 2 DLLs built in this fashion (Com.dll and Ca.dll)
are categorized by .NET as unmanaged because they were
built for the win32 environment, not for .NET.

SCA.NET
Unlike the above DLLs, ALS.dll, which implements

SCA.NET, is built as a .NET assembly. When .NET
assemblies call routines in unmanaged libraries, they do
so through a special interface called Platform Invoke
(P/Invoke) . C# has syntax for P/Invoke that uses the
DllImport keyword, for example, as shown below:

 [DllImport("ca.dll")]
 unsafe public static extern
 char * ca_message(uint ca_status);

.NET considers any code that manipulates pointers as
unsafe. The C# compiler will generate an error unless
code using pointers are labelled with the unsafe keyword.

The CA routines used by SCA.NET are similarly
wrapped.

It’s worth noting that although the CA libraries are
separately compiled for both 64-bit (x64) and 32-bit (x86)
versions, ALS.dll is a single binary of the .NET assembly
built with the Visual Studio build option of “Any CPU”.
The OS is responsible for loading either the x64 or x86
versions of the DLLs that ALS.dll needs.

32-bit Programs on 64-bit Windows
Although both 32-bit and 64-bit programs can run on

64-bit Windows, 32-bit programs must run in a
compatibility layer called WOW64. This layer wraps the
application in its own 32-bit environment from which it
can only call directly into 32-bit DLLs. The resulting
overhead from this layer is architecture dependent --AMD
processors can execute 32-bit code directly whereas Intel
processors have to emulate 32-bit instructions. A 32 -bit
process may also use inter-process communications (IPC)
when calling into a 64-bit library. Interface options are:
pipes, messages, signals, ActiveX/COM out-of-process
servers, and networking APIs.

__

*Work supported by the U.S. Department of Energy under Contract
 No. DE-AC03-76SF00098.
1. CATimossi@lbl.gov. 2. H_Nishimura@lbl.gov

Assigning the CPU as a Build Option
When building SCA.NET, it’s most convenient to build

and deploy separately for x64 and x86. So first the
sources for CA and ALS.dll are compiled as native x64
libraries then an installer project is built. This process is
repeated for the 32 -bit version. Basically, the installer
places the output binaries in either “Program
Files\LBNL” for x64 binaries or in “Program Files
(x86)\LBNL” for 32 bit binaries.

EXAMPLE
When we program SCA/NET client programs that are

portable on x86 and x64 platforms, we must ensure that
all the libraries are also portable if they are by 3rd parties.
We currently use open-source libraries: SourceGrid [9]
for string grid and ZedGraph[10] for chart. Both are
managed code in C# and portable.

Fig.1 is an example program that reads and displays all
the ALS storage ring magnet EPICS channels (287
magnets and 1669 channels) at 1 Hz by using 13
SourceGrid controls on WinForm.

Fig.1. SCA.NET client example

This program runs both on x86 and x64 Windows without
rebuilding.

We have also created EPICS database client programs
that use ADO.NET 2.0 to access static EPICS database
record information such as process variable names from a
MySQL[11] database. ADO.NET also allows saving of
device information and configured/edited information to
XML files for runtime use on both x86 and x64 Windows.

 ACKNOWLEDGEMENTS
The authors appreciate useful advices from T. Scarvie,

and the system management help from C. Ikami and T.
Kellogg.

REFERENCES
[1] L. R. Dalesio, et al., ICALEPCS '93, Berlin,

Germany, 1993.
http://www.aps.anl.gov/epics/

[2] LBL PUB-5172 Rev. LBL, 1986.

 A. Jackson, IEEE PAC93, 93CH3279 -7(1993)1432

[3] http://www-controls.als.lbl.gov/epics_collaboration/
sca/

[4] C. Timossi and H. Nishimura, IEEE PAC’97, 0-7803-
4376-X/98, p805, 1998

 http://www-controls.als.lbl.gov/epics_collaboration/
sca/win32

[5] H. Nishimura and C. Timossi, PCaPAC 2005,
Hayama, Japan, 2005.

[6] H. Nishimura and T. Scarvie, EPAC 2006, Edinburgh,
Scotland, 2006.

[7] Jeff Hill, http://www.aps.anl.gov/epics/contacts.php

[8] http://www.amd.com/us-en/Processors/
TechnicalResources/0,,30_182_871_13118,00.html.

[9] http://zedgraph.org

[10] D. Icardi, http://www.devage.com/

[11] http://www.mysql.com/

