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DNA copy number variations (CNVs) have previously been reported in human cortical 

neurons from non-diseased patients, but these alterations do not appear to be consistent from 

cell to cell and appear to be rare among neurons overall. Interestingly, Alzheimer’s disease 

patients appear to have a higher prevalence of CNVs than non-diseased, although the biological 

significance of this observation is still largely unknown. Single-cell whole-genome next-

generation sequencing holds promise to investigate these variations and the regions in which 
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they occur in an unbiased manner. Unlike recent advances in single-cell RNA-seq, however, 

library preparation for single-cell DNA-seq suffers from extremely limited throughput. 

Furthermore, it is difficult to assess the significance of individual variations from whole-

genome sequencing alone, particularly when control samples from non-diseased patients also 

show some variation at lower frequency. A potential solution is a multi-omics approach, in 

which information is collected about multiple species of biomolecules simultaneously from 

each sample, which taken together aid the interpretation of individual observations with respect 

to biological significance. 

This dissertation describes the design and development of a technology to physically 

separate DNA and RNA and to prepare sequencing libraries from each in parallel from limited 

starting samples without splitting, which we called Gel-seq. Thirty-two paired DNA and RNA 

sequencing libraries were successfully prepared from a variety of human and mouse cells lines 

and from mouse liver tissue using Gel-seq. Sample types could be clearly distinguished from 

each other based on either genomic copy number or transcriptomic profiles. This dissertation 

also describes the design and development of a technology to prepare a thousand single-cell 

whole-genome sequencing libraries in a single run. A proof-of-concept was performed with 87 

cells from human and mouse lines. Copy number profiles agreed with bulk, and 96% and 92% 

of human and mouse cells, respectively, clustered correctly within their cell line based on copy 

number profile alone. These technologies will help to enable the unbiased characterization of 

genomic alterations not only in neurodegenerative disorders, but potentially also in other 

conditions associated with mosaic genomic backgrounds, such as cancer, microbiome 

disorders, or infectious diseases. 
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INTRODUCTION 

Genomic mosaicism describes a situation in which different cells of the same tissue or 

organism contain different versions of the genetic code, i.e., DNA, and can encompass a broad 

range of DNA variations. Although variations in DNA sequence or content between cells in a 

tissue or organism are often thought of in the context of disease-causing mutations, there are 

several examples of genomic mosaicism that can be found in developmentally typical and non-

diseased examples. These variations can be patch-work mosaic, such as the patch-work skin 

coloration of a calico cat. Examples of normally occurring genomic mosaicism can also be 

found at the single-cell level, such as V(D)J recombination in T- and B-lymphocytes to expand 

the repertoire of antigen recognition in the immune system (“The Nobel Prize in Physiology or 

Medicine 1987” n.d.). 

Genomic mosaicism is also associated with a variety of disease states, however, and in 

some cases, can drive the disease itself. Early mutations in fetal development, and the stage at 

which they occur, can underlie both the presentation and the severity of a variety of neurological 

disorders, such as megacephaly (McConnell et al. 2017; Cai et al. 2014). Tumor development 

is also characterized by the emergence of clonally mosaic genomic mutations (Gao et al. 2016). 

Observations such as these have motivated a great deal of interest in studying genomic 

mosaicism down to the single-cell level, much like the study of transcriptional variation within 

has spurred technology development towards extremely high-throughput single-cell RNA-seq 

methods that can both elucidate relationships between known cell populations while 

simultaneously identifying previously unknown populations (Klein et al. 2015; Macosko et al. 

2015). 
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Patients with certain neurodegenerative disorders, such as Alzheimer’s disease, have 

been shown to have increased prevalence of DNA alterations in the pre-frontal cortex (Westra 

et al. 2010), but the shortcomings of existing technologies to characterize the type, scale, 

locations, and subsequent impact of these alterations across sufficient numbers of single 

neurons has hampered investigation into the potential biological significance of these genomic 

events. A promising method recently available is single-cell next generation sequencing (NGS), 

which has generated new possibilities for profiling a wide range of mosaic genomic alterations, 

but existing methods for single-cell DNA library prep are still too slow, expensive, and labor 

intensive to meet the required throughput. A second critical limitation of current NGS 

approaches is that multiple data types cannot typically be investigated in the same single cells, 

which places a severe limitation on the ability of investigators to link DNA alterations to any 

functional outcomes, such as RNA expression. There exists an unmet engineering need, 

therefore, to scale-up the throughput at which individual cells process for NGS library 

preparation, reduce the cost and effort required to prepare those libraries, and to expand the 

repertoire of technical approaches that can be applied to the same single-cell. 

This work seeks to address the aforementioned needs by showing proof-of-principle for 

two concepts: First, by demonstrating successful DNA and RNA sequencing from the same 

low-input (100 to 1000 cell) starting samples at negligible added cost by using a novel semi-

permeable hydrogel design; and Second, the development and implementation of a novel 

microfluidic single-cell hydrogel encapsulation device to allow a single investigator to generate 

thousands of single-cell whole-genome sequencing libraries in a single experiment.
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CHAPTER 1. DEVELOPMENT AND PROOF-OF-CONCEPT OF A LOW-INPUT 

MULTIOMIC HYDROGEL SEPARATION TECHNOLOGY FOR SIMULTANEOUS 

PREPARATION OF BOTH DNA AND RNA SEQUENCING LIBRARIES FROM THE 

SAME STARTING SAMPLE 

 

1.1. Abstract of Chapter 1 

The advent of next generation sequencing has fundamentally changed genomics 

research. Unfortunately, standard protocols for sequencing the genome and the transcriptome 

are incompatible. This forces researchers to choose between examining either the DNA or the 

RNA for a particular sample. Here we describe a new device and method, collectively dubbed 

Gel-seq, that enables researchers to simultaneously sequence both DNA and RNA from the 

same sample. This technology makes it possible to directly examine the ways that changes in 

the genome impact the transcriptome in as few as 100 cells. The heart of the Gel-seq protocol 

is the physical separation of DNA from RNA. This separation is achieved electrophoretically 

using a newly designed device that contains several different polyacrylamide membranes. Here 

we report on the development and validation of this device. We present both the manufacturing 

protocol for the device and the biological protocol for preparing genetic libraries. Using cell 

lines with uniform expression (PC3 and Hela), we show that the libraries generated with Gel-

seq are similar to those developed using standard methods for either RNA or DNA. 

Furthermore, we demonstrate the power of Gel-seq by generating a matched genome and 

transcriptome library from a sample of 100 cells collected from a mouse liver tumor. 
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1.2. Introduction 

Genomicists strive to understand how the information encoded by our DNA is turned 

into life. Understanding the way variations in DNA impact RNA expression is critical to 

decoding cell behavior. Recent advances in sequencing technology have made it possible to 

examine either the genome or the transcriptome of increasingly small samples (Gole et al. 2013; 

Sasagawa et al. 2013; Ramskold et al. 2012). Both approaches are extremely powerful, however 

the protocols are generally incompatible. This presents a challenge for simultaneously 

investigating both DNA and RNA.  

When samples are sufficiently large, they can be split in half and processed for either 

for DNA or RNA sequencing. Unfortunately, large samples tend to average out interesting 

variations between cells (Shapiro, Biezuner, and Linnarsson 2013). Researchers are 

increasingly interested in investigating the variations present in small populations of cells 

(Shapiro, Biezuner, and Linnarsson 2013). To illustrate the importance of studying small cell 

populations, consider that tumors are often composed of heterogeneous cell populations (Spratt 

et al. 2016). Evidence suggests this heterogeneity may be responsible for treatment failure 

(Sottoriva et al. 2013). In order to understand tumor genomics, it would be useful to profile 

small groups of cells from different locations. When collecting just a few hundred cells from 

such a tumor, splitting a sample in half could result in two distinctly different cell populations, 

making it difficult to establish a causal link between genomic and transcriptomic variations. 

Gel-seq is our solution to this problem. Rather than splitting the sample, researchers can instead 

use Gel-seq to generate DNA and RNA libraries from the same starting cells. This method 

allows for the direct comparison of DNA and RNA data from low input samples. 
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The ability to sequence either DNA or RNA from low input samples has only been 

achieved in the last five years (Gole et al. 2013; Sasagawa et al. 2013; Ramskold et al. 2012). 

Consequently there has been very little work regarding how to sequence both DNA and RNA 

from the same sample. To date we are only aware of two other publications on this topic, both 

from 2015, and both having taken very different approaches from our method. Dey et al. have 

developed a protocol, DR-Seq, for simultaneously amplifying and sequencing DNA and RNA 

from the same single cell (Dey et al. 2015). DR-Seq takes a computational approach to 

distinguish between genomic DNA and the cDNA derived from RNA. To calculate DNA 

coverage in DR-Seq, reads where only exons are present are computationally suppressed, as 

those could have originated from either DNA or RNA. The genomic profile is instead 

determined using data based only on sequences containing introns. A drawback of this approach 

is that it requires a priori knowledge (exons vs. introns) of a reference genome assembly. 

Furthermore, intron splicing is not always conserved in disease states such as cancer. Macaulay 

et al. have developed G&T-seq, a method for separating, amplifying, and sequencing DNA and 

RNA from the same single cell (Macaulay et al. 2015). This approach relies on a physical 

separation of RNA from genomic DNA by using the 3′ polyadenylated tail as a pull-down 

target. Messenger RNA is captured on a magnetic bead using a biotinylated oligo-dT primer, 

allowing it to be separated from genomic DNA. 

The novel aspect of Gel-seq is the ability to separate DNA and RNA in hundreds of 

cells based exclusively on size. Our method requires no a priori knowledge of the genome and 

is not limited to polyadenylated transcripts. For applications where a researcher can start with 

a few hundred cells, or where the transcripts of interest are not polyadenylated, Gel-seq provides 

an alternative approach to existing methods using cheap and widely-available materials. 
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Our method takes advantage of the vast size differences between DNA and RNA. At 

the heart of the Gel-seq protocol is the electrophoretic separation of DNA and RNA/cDNA 

hybrids based on this size difference. Genomic DNA from humans, for example, is tens of 

millions of base-pairs (bp) long for the shortest chromosomes and will remain megabase-scale 

if shearing is minimized. Most messenger RNA, on the other hand, are only a few hundred to a 

few thousand nucleotides.  Understanding this size difference, we developed two membranes 

that could be used to separate DNA from RNA. The first membrane, a low-density 

polyacrylamide gel, allows RNA molecules to pass through but stops larger genomic DNA. The 

second membrane, a high-density polyacrylamide gel, traps the RNA molecules. Both 

membranes allow small fragments (<100 bases) of unwanted artifacts, such as primers, to pass 

through. The membranes also allow small buffer ions to pass through unimpeded, a necessary 

condition for electrophoresis. While it is well documented in the literature that ion gradients 

can form in microfluidic systems in response to applied electric fields (Zangle, Mani, and 

Santiago 2010), we see no evidence that such gradients are negatively impacting our separation. 

We theorize that the large size of our buffer reservoir, the high potential difference across the 

membrane, and the short timespan over which we run the device the mitigates the effects of any 

ion buildup. 

Our basic approach to separating DNA and RNA is shown in Fig. 1. Fig. 1A shows 

DNA and RNA free floating in solution near a synthetic membrane. When an electric field is 

applied, as shown Fig. 1B, DNA and RNA experience an electrophoretic force that induces 

migration through the membrane. By tuning the membrane properties, we created a semi- 
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Figure 1: The underlying principle used to physically separate DNA and RNA. In an applied electric field, small 
RNA molecules migrate through the low-density membrane but large DNA molecules are trapped at the surface. 

  

permeable membrane that separates DNA from RNA. The genomic DNA molecules are pushed 

against the membrane, but become trapped at the edge due to their large size. Smaller RNA 

molecules, on the other hand, are able to weave their way through the low-density membrane 

much like a snake through grass, a process known as reputation (Viovy 2000). These RNA 

molecules are then stopped by a second, high density membrane. Once they have been 

physically separated, the DNA and RNA can be recovered and processed into genomic and 

transcriptomic sequencing libraries. 

Though we conceived of the method independently, our approach harkens back to the 

disc gel electrophoresis invented by Orstein and Davis in the 1960s (Ornstein 1964; Davis 

1964). In disc gel electrophoresis, hydrogels with discontinuous pore sizes are used to increase 

the separation resolution for proteins. Our method differs from traditional disc gel 
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electrophoresis in that our high-density membrane is designed to stop a species of interest rather 

than improve the resolution between bands. 

 

1.3. Experimental 

1.3.1. Gel-seq Overview 

An overview of the Gel-seq protocol is shown in Fig. 2A. We used a protocol adapted 

with minor modifications from Nextera XT to prepare DNA libraries after separation. To 

prepare RNA libraries, we first converted RNA to cDNA using a modification of the Smart-

Seq protocol developed by Ramskold followed by a modified version of Nextera XT (Ramskold 

et al. 2012; Illumina 2015). While we can separate DNA and RNA, we have found that 

converting the RNA to cDNA before separation helps mitigate problems associated with 

RNAse contamination. We begin the protocol with between 100 and 1000 intact cells, apply a 

lysis buffer, and perform reverse transcription with template switching. This generates 

cDNA/RNA hybrids that are more stable than RNA alone. This protocol does not have a 

measurable impact on the quality of the genomic DNA (gDNA). The resulting cDNA/RNA 

hybrids are orders of magnitude smaller than the genomic DNA, enabling size-based separation 

as shown in Fig. 1 using a custom fabricated gel system. 
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The Gel-seq device shown in Fig. 2B consists of three regions of polyacrylamide gel. 

The top layer, highlighted with false color in pink, consists of a low-density membrane of 4% 

total (T) acrylamide and 3% cross-linker (C) bis-acrylamide. A standard gel electrophoresis 

comb is used to define loading wells. This layer stops genomic DNA but allows transcripts less 

than 10,000 nucleotides to pass through. The second layer, highlighted in purple, is a high-

density membrane of 30% T acrylamide cross linked with 5% C bis-acrylamide. This layer 

stops RNA/cDNA but permits the passage of ions necessary for electrophoresis. The bottom 

layer, shown in green, fills the remainder of the gel cassette but is not used in the separation. 

The filler gel is also a 4% T acrylamide cross-linked with 3% C bis-acrylamide. Using a low-

Figure 2: An overview of the Gel-seq protocol (A) and device (B). False color has been added to half of the device 
to clearly demarcate the different regions of polyacrylamide gel. The third panel (C) is a fluorescent image showing 
the separation of genomic DNA and cDNA/RNA hybrids. Black bands indicate the presence of nucleic acids. 
Lanes loaded with only DNA ladder show a single band that has been trapped by the high density membrane. 
Lanes loaded with genomic DNA and RNA/cDNA show two bands, suggesting that genomic DNA has been 
separated from RNA/cDNA. 
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density filler gel, rather than filling the rest of the cassette with high density gel, ensures that 

there is a sufficiently large potential drop across the separation region to induce RNA/cDNA 

migration. The resulting gel cassette is compatible with standard buffer chambers and power 

supplies commonly found in life science laboratories. The fabrication protocol, described in 

detail in the next section, is straightforward and utilizes commonly available equipment and 

materials. 

After placing the device into a buffer chamber, we then pipette the DNA and reverse 

transcription products into the wells. We induce electrophoresis by applying 210 V across the 

cassette for 30 minutes. Once the genomic DNA and RNA/ cDNA have been separated, we cut 

out the gel sections to recover the nucleic acids using a modified crush and soak procedure. We 

prepare a DNA sequencing library directly from the genomic DNA using the Nextera XT 

protocol. For RNA, we first PCR amplify the cDNA fraction and then prepare a sequencing 

library by Nextera XT. 

 

1.3.2. Device Fabrication 

Many companies sell standard gel electrophoresis systems that come with a power 

supply, electrophoresis chamber, and empty cassettes. These systems dramatically simplify the 

process of conducting experiments with gel electrophoresis. End users simply fill the cassette 

with the desired density polyacrylamide based on their needs. Once the gel has polymerized, 

the cassette is placed in the electrophoresis buffer chamber, sample is added, and the chamber 

is connected to a power supply to apply an electric field. In this paper we based our fabrication 

protocol around the XCell SureLock® Mini-Cell system (Lonza); however, any similar system 

could be used. 
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Device fabrication builds on skills that will be familiar to researchers who use standard 

polyacrylamide gel cassettes. Before fabrication, monomer solutions are made for each layer 

by combining acrylamide/bis-acrylamide solution, 10X Tris-borate-EDTA (TBE), water, and 

sucrose solution (50% w/ v) as shown in Table 1. The addition of sucrose to the polyacrylamide 

precursor solution is key to the formation of a smooth interface layers between the different 

densities, but has minimal impact on electrophoresis. Stock acrylamide/bis-acrylamide 

solutions used in these recipes can be made by combining acrylamide (monomer) and bis-

acrylamide (crosslinker) powders using the following formulas: 

% T =  
monomer mass �g� + crosslinker mass �g�

solvent volume �mL�
 

% C =  
crosslinker mass �g�

monomer mass �g� + crosslinker mass �g�
 

 

The gel precursor solutions are mixed in a tube and vortexed to ensure thorough mixing, 

and then immersed in a sonicator under house vacuum. This helps to remove dissolved gases 

that could inhibit the polymerization process. Immediately before transferring the precursor 

solution to the cassette, a polymerization initiator containing ammonium persulfate (APS) and 

catalyst (TEMED) are added and the mix is briefly vortex again. Note that the high-density gel 

does not contain any TBE. While it could be included, we find it easier to mix the precursor 

solution when it is not included as we are approaching the solubility limit of acrylamide and 

bis-acrylamide. We have noticed no negative impact on device performance from the omission 

of TBE in this region. 
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Table 1: Recipes for mixing polyacrylamide gel precursors 

Filler gel precursor 
(4% T, 3% C) 

High-density gel precursor 
(30% T, 5% C) 

Low-density gel precursor 
(4% T, 3% C) 

      
40% T, 3.3% C 
acrylamide/bis-
acrylamide solution 

0.8 mL 
50% T, 5% C 
acrylamide/bis-
acrylamide solution 

1.2 mL 
40% T, 3.3% C 
acrylamide/bis-
acrylamide solution 

0.4 mL 

Deionized water 5.12 mL Deionized water 0.48 mL Deionized water 3.2 mL 
Sucrose (50% w/v) 1.28 mL Sucrose (50% w/v) 0.32 mL 10X TBE 0.4 mL 
10X TBE 0.8 mL APS (10%) 25 uL APS (10%) 26 uL 
APS (10%) 52 uL TEMED 0.5 uL TEMED 1.5 uL 
TEMED 3 uL     
      
Total volume 8.1 mL Total volume 2 mL Total volume 4.0 mL 

 

An overview of the protocol is shown in Fig. 3. Layers are fabricated from bottom to 

the top. We first add 6 mL of filler gel precursor to the cassette. The remainder of the cassette 

is filled with de-ionized, degassed water. The filler gel is allowed to polymerize for at least one 

hour or up to overnight. The water overlay ensures the formation of a smooth interface. After 

polymerization, we remove the water overlay by simply inverting the cassette and shaking. 

Compressed air can be used to assist in the removal of any trapped water droplets. We then add 

350 μL of the high-density precursor to the cassette. Due to the small volume of high density 

gel, it is important to ensure the precursor is evenly distributed by tilting the cassette back and 

forth to allow the liquid to uniformly spread out over the filler gel. Once the high-density 

precursor has been uniformly distributed, we again add a water overlay. In order to obtain the 

best interface, it is important to add the water slowly to the center of the cassette in order to 

minimize mixing with the high-density precursor. We allow the high-density gel to polymerize 

for at least 10 minutes before the water overlay is removed. Finally, we add the low-density 

precursor to fill the remainder of the cassette, approximately 1.65 mL. In order to define the 

loading wells, we insert a standard gel comb into the cassette. Cassettes can be fabricated with 

different numbers and sizes of wells by using different combs. In this work, we fabricated gels 
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with either 10 or 12 well combs. We allow the low-density gel to polymerize overnight before 

using the cassettes. Cassettes can be stored immersed in TBE buffer for several weeks.

 

Figure 3: The fabrication protocol for the cassette based devices. Each layer of gel is allowed to polymerize before 
the next layer of gel is poured on top of it. A water overlay helps to create a smooth interface between layers. 

 

1.3.3. Gel-seq protocol 

In addition to device development, there was a need to adapt existing biochemical 

protocols to be compatible with physical separation of gDNA and RNA and to prepare libraries 

from both. Recognizing the susceptibility of RNA to degradation, we reverse transcribe RNA 

to cDNA before separating it from gDNA. Once we separate gDNA and RNA/cDNA, we then 

prepare a sequencing library from the gDNA using Nextera XT. In parallel, we amplify the 

cDNA sample by PCR and prepare a sequencing library, also using Nextera XT. In order to 

minimize the shearing of genomic DNA, which could cause it to enter the separation gel, we 

avoided vortexing samples. Instead all samples were mixed by gently pipetting up and down 
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approximately 10 times. While this will shear the chromosomes somewhat, the fragments are 

still orders of magnitude larger than the RNA/cDNA hybrids. 

We begin the protocol by preparing cells in PBS at a concentration of 100 to 1000 cells 

per μL. Using the reagents provided in the Smart-Seq v4 kit (Clontech Laboratories), we mix 

19 μL of lysis buffer and 1 μL of RNase inhibitor to prepare a 10× stock solution of reaction 

buffer. We then combine 1 μL of the cell suspension, 0.5 μL of 10× reaction buffer and 2.75 

μL of nuclease-free water and mix by pipetting up and down 5 times. We then add 1 μL of 3′ 

SMART-Seq CDS Primer II and 1 μL of 20 μM random hexamer with SMART-Seq adapter 

(Integrated DNA Technologies (IDT): 

5′ AAGCAGTGGTATCAACGCAGAGTACNNNNNN 3′ 

 

Each sample is incubated at 72 °C in a preheated thermal cycler with heated lid for 3 

minutes to lyse the cells. Note that the addition of random hexamer seemed to have minimal 

impact and the mapping rates to rRNA remain below 1% (see Fig. S9). After lysis, we add a 

master mix containing 2 μL of 5× Ultra Low First-Strand Buffer, 0.5 μL of SMART-Seq v4 

Oligos, 0.25 μL RNase Inhibitor, and 1 μL SMARTScribe Reverse Transcriptase. We mix the 

sample by pipetting up and down 5 times and then immediately place it in a preheated thermal 

cycler at 42 °C with a heated lid for 90 min, followed by a heat inactivation step at 70 °C for 

10 min. 

Following the completion of reverse transcription, we mix the samples with 2 μL of 6× 

DNA Gel Loading Dye (ThermoFisher). We load the entire reaction volume into the Gel-seq 

device (one sample per well) and apply an electric field of 210 V across the device for 30 

minutes to separate RNA from DNA. After separation, we stain the gel in 30 mL of 0.5× TBE 
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with 3 μl SYBR Gold (ThermoFisher) for 5 minutes. We image the gel using a 30 second 

exposure on a Bio-Rad Gel Doc. We then cut out the regions containing gDNA and cDNA/RNA 

using a scalpel. Visualizing the cDNA from the 100 cell input samples sometimes presented a 

challenge due to the small amount of nucleic acids present. Fortunately, the ability to visualize 

the location of the gDNA or cDNA is not a requirement for recovering it from the gel. We 

designed the device so the gDNA stops at the start of the well and the cDNA stops at the start 

of the high-density gel. As these locations are both visible to the naked eye, the gel can be cut 

without the use of a UV backlight. In practice we found using the UV backlight convenient as 

most samples could be visualized, but this is not a strict requirement. 

Once cut from the gel, each gel section is placed into a separate tube and ground up 

using the end of a pipette. We add 40 μL of nuclease-free water to the gel containing gDNA 

and 80 μL of nuclease-free water to the gel containing cDNA/ RNA. We then tape the tubes 

containing the gel and water to a vortex mixer inside 37 °C incubator and shake them for 8 to 

12 hours. This allows the nucleic acids to diffuse out from the gel into the water. 

After incubating the samples, we pipette the samples into an 8 μm mesh filter plate 

(Corning HTS Transwell 96-well permeable support) and spin the plate at 2600 RCF for 5 

minutes to strain out the gel fragments. We then pipette the gel-free water into a new 200 μL 

tube. 

For the gDNA sample, we add 1 μL of protease (Qiagen, diluted to 0.9 AU/mL) and 

incubate at 50 °C for 15 min followed by 70 °C for 15 min. This step is critical for depleting 

nucleosomes, making the DNA accessible for Nextera XT library preparation. Next, we use an 

18-gauge needle to create holes in the caps of all samples tube before spinning them in a 

vacufuge to reduce sample volume. The cDNA/RNA samples are reduced to 10 μL and the 
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gDNA samples reduced to 5 μL. This step takes 30–60 minutes, depending on the number of 

samples in the vacufuge. If samples were found to be below the target volume, 1–2 μL of clean 

nuclease free water was added to bring them to the correct target volume. 

We generate libraries from the gDNA samples by following the standard Nextera XT 

protocol (Illumina 2015). To conserve reagents, we have found that using half volume reactions 

does not significantly impact our library quality. The protocol is otherwise identical from this 

point on. 

To generate libraries from the cDNA/RNA samples, we first amplify the sample using 

PCR. We combine a 10 μL sample with 12.5 μL 2× KAPA SYBR Fast qPCR MasterMix 

(KAPA Biosystems), 0.5 μL PCR Primer II A (12 μM, from the Smart-Seq kit), and 2 μL 

nuclease-free water. We perform qPCR in a BioRad thermocycler using the following protocol: 

hot-start at 95 °C for 3 min, followed by 20–30 cycles of 98 °C for 10 seconds, 65 °C for 30 s, 

and 72 °C for 3 min. We adjust the number of cycles depending on the amount of starting 

sample and the shape of the qPCR curves to avoid over-amplification. After amplification, we 

clean the product using AMPure XP beads following the protocol described in the Smart-Seq 

Manual (Clontech 2016). Finally, once the amplified cDNA has been purified, we prepare 

libraries using the Nextera XT protocol with half volume reactions. 

The entire protocol requires 3.5 hours of hands on time and can be completed in 17.6 

hours. We recommend starting the protocol in the afternoon so that the crush and soak step can 

take place overnight. 
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1.4. Results and Discussion 

1.4.1. Validation of DNA and RNA/cDNA Separation 

To validate our separation approach, we tested the device using four samples: a low 

mass DNA ladder (0.1–2 kilobases (kb)), a high mass DNA ladder (1–10 kb), water as negative 

control, and genomic DNA and RNA/cDNA hybrids. Commercially purchased DNA is not 

generally appropriate as a control for genomic DNA in this case, as it tends to be sheared 

somewhat during production. The best solution is to use freshly lysed cultured cells in each 

experiment. After electrophoresis, the device was stained with SYBR Gold and imaged. The 

resulting fluorescent image is shown in Fig. 2C; false color has been added to distinguish 

between the different regions of the gel. 

The negative control (lane 3) showed no signal, demonstrating that the device is not 

auto-fluorescent. The first two lanes, loaded with DNA ladder, show the presence of black 

bands indicating that nucleic acid has been trapped in a specific location. The first lane, which 

was loaded with the low mass DNA ladder, contains only one band at the interface between the 

low and high-density gels. This band contains fragments ranging from 100–2000 basepairs. 

Rather than spreading throughout the gel, as is typical in standard gel electrophoresis, the bands 

stack on top of each other at the interface. This is exactly the desired behavior; small fragments 

of cDNA and RNA should move through the low-density gel and collect at the interface of the 

high-density region. Importantly, this ladder also demonstrates that fragments as small as 100 

bp are stopped by the high-density membrane. 

The second lane, loaded with the high mass DNA ladder, shows similar behavior. The 

major difference here is that the ladder fragments range in size up to 10 kb. Again, the ladder 

has stacked at the interface with the high-density gel, except for a small fraction at the top of 
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the low-density gel. This suggests a size cut-off somewhere between 2 and 10 kb, and perhaps 

a range of partial migration efficiency above 2 kb, however the great majority of cDNA/RNA 

species of interest are below this size (Suzuki et al. 2000). 

Finally, the fourth lane demonstrates the separation of genomic DNA and cDNA/RNA 

hybrids. A clear dark band present at the top of the start of the low-density membrane represents 

megabase scale genomic DNA, which is unable to enter the gel, while cDNA/RNA hybrids are 

stacked at the interface of the low and high-density regions. Unlike the lanes loaded with ladder 

only, however, there are several bands present within the high-density region of the gel. These 

fragments, smaller than 100 bp, are off-target products generated from primer oligonucleotides 

during reverse transcription. By allowing these bands to pass through the high-density 

membrane, we can easily remove them from the experiment by only cutting out the cDNA/RNA 

hybrids stacked at the membrane interface. 

As mentioned previously, there is no commercially purchased genomic DNA control 

shown in this example, as purified DNA tends to be sheared somewhat during production, and 

does not accurately represent the full native size of mammalian chromosomes. Furthermore, 

DNA library preparations in early iterations of Gel-seq failed until the addition of a protease 

digestion step to the protocol after gel separation, indicating that genomic DNA as loaded into 

our device is still complexed with nucleosomes. We hypothesize that these protein components 

of DNA in fact assist in trapping virtually all genomic DNA at the gel surface, aiding recovery 

by preventing nucleic acids from embedding in the gel during electrophoresis. 

In order to validate the conclusions inferred from this image, as well as assess the data 

quality of sequencing libraries, we cut out sections of the gel with the genomic DNA and 

cDNA/RNA hybrids and generated sequencing libraries. 
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1.4.2. Validation of DNA and RNA Libraries 

We compared Gel-seq against standard methods common in the genomics field using 

commercially available kits, which we refer to as “tube controls”, to prepare a total of 32 

sequencing libraries (see Table 2) from two human cell lines (PC3 prostate cancer and HeLa 

cervical cancer), a mouse cell line (3T3 fibroblasts), and primary derived hepatocytes from 

mouse liver. PC3 and HeLa were chosen because they are representative of cancers with 

extensive copy number variations (CNVs). CNVs are either duplications or deletions of large 

regions of the genome, and can be detected by coverage density with shallow sequencing. CNVs 

are known to play a role in many cancers and are a widely studied area in cancer genomics 

(Lucito et al. 2003; Sebat et al. 2004; Guffanti et al. 2013; Glessner et al. 2009). In addition, 

CNVs provide a useful signal for genomic data that lends itself to easy comparison between 

different approaches for whole genome sequencing library preparation. Primary derived 

hepatocytes from mouse were chosen in order to validate Gel-seq using cells from a complete 

organ, which presents additional challenges in terms of sample prep and reaction efficiency due 

to the presence of extracellular matrix and other inhibitory factors. 3T3 fibroblasts were 

included as a positive control against liver tissue samples. 
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Table 2: All 16 samples for both human and mouse. For each sample, both DNA and RNA libraries were generated 
(32 in total). Tube samples (standard method performed in tube as control) were split before lysis for subsequent 
DNA and RNA library prep protocols in parallel. Gel-seq samples were lysed first, and DNA and RNA were 
separated in device before library prep 

Human  Mouse 

Cell type Method Sample name Cell type Method Sample name 

HeLa 

Gel-seq 
HeLa-G1 

3T3 

Gel-seq 
3T3-G1 

HeLa-G2 3T3-G2 

Tube 
HeLa-T1 

Tube 
3T3-T1 

HeLa-T1 3T3-T2 

PC3 

Gel-seq 
PC3-G1 

Hepatocytes 

Gel-seq 
Liver-G1 

PC3-G2 Liver-G2 

Tube 
PC3-T1 

Tube 
Liver-T1 

PC3-T2 Liver-T2 

 

Gel-seq and tube control experiments were performed in parallel for all samples to 

assess the level of agreement between methods. DNA and RNA libraries were prepared for both 

human and mouse samples. For Gel-seq samples, RNA data was generated from the exact same 

cells as the DNA data, because DNA and RNA are separated after lysis, while cells used in the 

tube controls were split 50/50 before lysis. Technical replicates were generated for all samples 

in order to assess reproducibility of both genomic and transcriptomic profiles from Gel-seq 

data. Finally, we compared transcriptomic profiles between the different samples types within 

each species to assess whether Gel-seq can distinguish cell type on the basis of RNA expression.  

Fig. 4A shows a comparison of genome-wide CNV profiles generated from PC3 using 

either Gel-seq or a standard tube reaction. Each point is a mean normalized bin count; bins are 

defined from reference genome data such that each bin has equal expected count in a healthy 

diploid cell, i.e., a flat line, representing equal copies for each region of all autosomal (excluding 
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X and Y) chromosomes. In PC3, many CNVs can be seen as spikes above a background copy 

number of two, and Gel-seq yields a qualitatively similar CNV profile as standard tube reaction. 

Agreement between the two plots can be assessed quantitatively by linear regression in Fig. 4B. 

A Pearson correlation of R = 0.90 indicates that genomic data gathered from either method is 

functionally equivalent. Fig. 4C shows maximum predicted library coverage at saturation 

sequencing depth, indicating that Gel-seq yields high coverage libraries similar to standard 

methods. Full coverage extrapolations as a function of depth are shown in Fig. S2.

 

Figure 4: Comparing genomic data generated using the Gel-seq protocol to tube control. (A) Mean normalized bin 
counts for Gel-seq (top) and a tube control (bottom). Random noise is quantified by median absolute pairwise 
difference (MAPD, upper right). A MAPD of ∼0.2 indicates very low noise. (B) Pearson correlation between two 
representative libraries. Full pairwise correlations are shown in Fig. S4.† (C) Maximum predicted genomic 
coverage for all human DNA libraries extrapolated to saturation sequencing depth. Error bars are 95% confidence 
intervals. Suffixes indicate Gel-seq data (−G) or tube controls (−T), numbers indicate technical replicates (1 or 2). 
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Similarly, we compared the transcriptome data from our Gel-seq protocol to the 

standard in-tube Smart-Seq protocol. Fig. 5A shows the correlation between both Gel-seq 

technical replicates and between Gel-seq and the standard method. Each point is a count in 

transcripts per kilobase per million (TPM) for each gene detected at TPM > 5 in both dataset. 

The linear regressions are shown as red lines, and the Pearson correlation coefficient is shown 

in the upper left corner. Technical replicates from Gel-seq agree with each other (R ∼ 0.8), but 

correlate less well with the standard method (R < 0.7). This suggests that Gel-seq introduces a 

bias in gene counts, but that the bias is systematic and meaningful conclusions are still possible 

between different biological samples. We performed linear regression for all pair-wise 

combinations of the 8 human RNA datasets: PC3 and HeLa, Gel-seq and tube, two technical 

replicates each (Fig. S5). Pearson correlation coefficients for all 28 pairs are condensed in Fig. 

5B by comparison type. The green bars represent correlations between pairs of datasets from 

the same cell type generated from either standard tube reactions, Gel-seq, or Gel-seq versus 

standard. The red bars represent correlations between pairs of datasets from different cell types, 

which are expected to have lower R values due to biologically different transcriptomic profiles. 

Although Gel-seq does not agree well with the standard method (R = 0.66 for matched samples), 

it shows similar difference in correlation between matched and mis-matched samples (R = 0.81 

versus R = 0.70, respectively) to the standard method (R = 0.97 versus R = 0.86), suggesting 

that Gel-seq still provides powerful insight into transcriptional variation between different cell 

types. Indeed, Fig. 5C demonstrates that RNA-seq data generated from Gel-seq (left plot) 

discriminates well between HeLa and PC3 cell types based on principal component analysis 

(PCA), as does the standard in-tube method (right plot). Fig. 5C shows that samples separate 

by method on the first principal component with 96.3% variance explained, confirming that 
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Gel-seq introduces a systematic bias, but that different cell types (HeLa and PC3, red and blue 

clusters) still separate well on principal component 2. 

 

Figure 5: Comparing transcriptomic data generated using the Gel-seq protocol to tube controls. (A) Two 
representative scatter plots of TPM per gene (above threshold of TPM > 5) with an overlaid linear regression and 
Pearson correlation coefficient. The plot on the top compares two technical replicates using Gel-seq, while the plot 
on the bottom shows a comparison between a Gel-seq sample and a standard method performed in a tube as control. 
(B) Pearson coefficients from all 28 pair-wise linear regressions for all 8 HeLa and PC3 RNA datasets generate 
from with Gel-seq and tube controls. Full table of scatter-plots and regressions are shown in Fig. S5.† (C) PCA 
for Gel-seq datasets on the left and tube controls on the right. First two principal components are plotted for each, 
with a total of 98.1% and 99.4% of variance explained for Gel-seq and tube controls, respectively. (D) PCA for all 
8 human samples, with total of 99.2% variance explained by the first two principal components. 

 

As reported by the SEQC/MAQC-III Consortium, all RNA-seq methods show some 

gene specific bias (Consortium and others 2014). The key for any new approach is to 

demonstrate reproducibility so that differences observed between samples can be attributed to 
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a biologically relevant phenomenon. While Gel-seq does not perfectly replicate the results from 

Smart-Seq, it gives reproducible results and can be used to identify differences between 

samples. 

 

1.4.3. Generating Paired Libraries From Tissue 

Gel-seq allows researchers to generate both genome and transcriptome data from the 

same limited sample using commonly available materials. This is useful in scarce samples, such 

as those collected from living tissue in a biopsy. As mentioned previously, preparing next-gen 

sequencing libraries from tissue rather than cell lines presents substantial additional challenges. 

Cell lines divide rapidly, typically doubling in number in 24 to 48 hours, and tend to be highly 

transcriptionally active, expressing a broader set of genes at high levels compared to an adult 

tissue under homeostasis. Tissue samples are also subject to the presence of additional 

extracellular matrix, which can severely inhibit enzymatic reactions. Several iterations of both 

our device and accompanying biochemical methods were tested before establishing Gel-seq as 

a robust protocol that works in tissue as well as cultured cell lines. We also lowered the input 

to 100 cells (0.61 ng DNA). Gel-seq libraries from mouse tissue displayed high quality statistics 

in terms of unique DNA alignments and genes detected by RNA (Table S1). Genomic coverage 

for DNA data and library complexity for RNA data were extrapolated to high sequencing depth 

(saturation) in Fig. S2 based on bootstrapping simulations, indicating that Gel-seq yields high-

quality libraries with coverage similar to standard methods for cells from both cultured lines 

and complex tissue. 
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1.5. Conclusion 

One of our goals in developing Gel-seq was to create a protocol that could be easily 

implemented by other researchers. We therefore decided to fabricate devices within the 

standard form factor of a polyacrylamide gel cassette. While the technique we used to define 

our different membranes is novel, most genetics labs already have all of the necessary 

equipment to fabricate the Gel-seq device. Furthermore, the cost of the device is trivial – just 

$5.25 for a device that can process 12 samples. We believe researchers will find it 

straightforward to implement Gel-seq in their own labs and hope this will facilitate the rapid 

adoption of the technology. 

As with any library preparation protocol using commercial reagents, the overall cost for 

generating libraries with Gel-seq remains high. Our reagent cost per sample was $28 for 

Nextera XT and $50 for Smart-Seq. As cheaper alternatives for library preparation are 

developed, however, our protocol can be adapted to work with these new techniques. We 

focused on creating a device that could be adapted for different applications. While in this paper 

we demonstrated the Gel-seq protocol using Nextera XT and a modified Smart-Seq, the device 

itself can be used with a wide range of library preparation approaches. For example, during 

development we successfully tested the device using an older RNA library amplification 

protocol CellAmp (Kurimoto et al. 2007). The core innovation in this technology, separating 

DNA and RNA based on size using polyacrylamide membranes, is agnostic to the library 

preparation approach. We anticipate that future biological innovations in library preparation 

could be integrated into our work flow. 

We were successful in generating RNA libraries from cell lines regardless of whether 

we generated the cDNA either before or, as in earlier iterations using Cell Amp, after separation 
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from the genomic DNA. An unforeseen aspect in the development of the Gel-seq protocol, 

however, was the challenge of starting from whole tissue. We found that it was important to 

adhere strictly to the Smart-seq protocol to generate cDNA from tissue samples as soon as 

possible. We also experimented with freezing tissue or cell suspensions from tissue in liquid 

nitrogen, but we found that the best results were obtained when processing fresh samples. We 

suspect that the extracellular matrix in our tissue samples may have contained RNases, 

proteases, or other inhibitory factors. Fortunately, Gel-seq is a flexible protocol and proved to 

be adaptable to liver samples. Although Gel-seq showed generally higher random noise in 

technical replicates compared with our tube controls, the ability to include genomic data from 

the same cells in the downstream analysis may justify the trade-off in many applications. Newly 

developed RNA library preparation methods or optimization of separation and recovery may 

improve the precision of the RNA data in the future. 

An interesting phenomenon observed in the RNA data was that in all 4 samples types 

(HeLa, PC3, 3T3, and primary hepatocytes) Gel-seq technical replicates agreed with each other, 

but did not have high correlations with the standard in-tube method. This suggests an underlying 

systematic difference between methods, which some day might be corrected with either 

additional optimization of separation and recovery, or accounted for computationally based on 

known parameters. Our first suspicion was exonic transcript length, with the assumption that 

very long or very short genes could be lost or trapped in the device. While we did observe a 

weak relationship between RNA gene counts and gene length in Gel-seq data, with medium 

length genes showing the highest gene counts, we observed an identical effect in tube control 

data. Attempting to normalize by a lowess fitted correction function did not improve the 

correlation between Gel-seq and tube (not shown). This could suggest that additional factors 
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beyond gene length are affecting the data. For many applications the addition of synthetic RNA 

spike-ins at a range of known concentrations (e.g., ERCC control (Lemire et al. 2011)) could 

be used to quantify systematic biases in sample data. This is already a common approach in the 

field for correcting systematic biases introduced by different kits. Future work will focus on 

addressing these challenges and improving the Gel-seq method. For the time being, however, 

Gel-seq is already a powerful and sensitive tool for finding differences in expression between 

samples. 

Unfortunately, Gel-seq cannot be used in this embodiment to generate data at the single 

cell level. The geometry and low throughput of the device presented here makes it infeasible to 

process meaningful numbers of single cell datasets, although it is possible to fabricate 

qualitatively similar devices on the micron scale that could achieve this goal (Lee et al. 2013). 

While the sample loss in Gel-seq is variable and hard to accurately quantify, we have observed 

that anywhere from 10% to 50% of the nucleic acids cannot be recovered from the gel after 

separation. This number agrees with the literature for similar crush and soak extraction 

protocols from polyacrylamide gel (Sambrook and Russell 2006). When working with 100 to 

1000 cells, these losses do not appear to substantially change the resulting libraries. To analyze 

samples below this limit, however, we will need to modify our protocol. 

One approach to improve the protocol could be the use of dissolvable gels to increase 

sample recovery. We made several attempts at using dissolvable gels during development of 

the device, but none were successful. Agarose is too porous to be used for the high-density gel 

region and a hybrid device with a separation layer made from agarose and a high-density layer 

made from polyacrylamide was too fragile to handle. We tried using BAC crosslinked 

polyacrylamide following protocols developed by Hansen (Hansen 1981), but found low-
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density BAC gels for the separation layer were more fragile than their standard BIS 

counterparts. For the high-density region, we found that the gels could not be dissolved, a result 

Hansen also reported in his work. That said, there are many other dissolvable polymer 

chemistries, such as DHEBA, that might improve device performance. 

We explored the use of a Phi-29 MDA whole-genome amplification, but found it was 

not necessary, as we were able to recover sufficient starting material from our target input of 

approximately 100 cells for the Nextera XT protocol. A preamplification step before library 

prep could be added either before or after separation. This could potentially reduce the required 

cell input, but scaling down cell inputs in our experiments introduced substantial 

inconsistencies in performance, most likely due to a large coefficient of variation in input when 

attempting to load small numbers of cells. Even with pre-amplification, we suspect that this 

issue would hamper meaningful comparisons between samples. Alternatively, recent work has 

shown that with optimization of lysis conditions, high-quality sequencing libraries can be 

prepared directly from single cells using Tn5 without pre-amplification (Zhan et al. 2017). 

Although the protocol we adapted from Smart-Seq relies on a poly-T primer, we also 

added primers with random binding sequences early in our experiments in an attempt to 

improve performance based on previous work on RNA sequencing from nuclei. We saw no 

effect, but kept the protocol unchanged for consistency. 

As Gel-seq relies on hydrogel immobilization of sample material, it offers interesting 

possibilities when applied to new methods, such as the potential to change buffer between 

incompatible protocols without loss of sample material, or to amplify material inside the gel 

before attempting to extract. Future work in both device fabrication and protocol development 

could decrease input into the single cell range. A very recent publication from Adam Abate's 
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group shows that single bacterial cells can be encapsulated in agarose hydrogels and uniquely 

barcoded, allowing 50 000 single-cell whole-genome libraries to be generated in a few hours 

(Lan et al. 2017). The fundamental concepts of separation and library preparation demonstrated 

in Gel-seq via bulk-scale 100 to 1000 cell experiments are also relevant at the single-cell level, 

and many of the challenges that we faced in developing Gel-seq likely also apply at smaller 

scales. We believe that the solutions we present in this manuscript are a valuable resource for 

future work in single-cell genomics using hydrogels. 

Since Gel-seq does not require a poly-A tail to achieve separation, it is also uniquely 

positioned for microbial studies, as prokaryotes typically do not polyadenylate their coding 

transcripts. A modification to the library prep would be required, as we relied primarily on a 

poly-T Smart-Seq primer, but Gel-seq benefits from an inherent flexibility in terms of different 

biochemical approaches. Gel-immobilized material can be washed or transferred, for example, 

into buffers suitable for either a poly-A tailing step or some other total RNA prep method, as 

long as RNAses are inhibited. 

As for input, with microbial studies it might not be necessary to start with the same total 

mass of DNA as with mammalian genomes. While typical bacteria have only about 0.1% the 

nucleic acid content of mammalian cells, this also means that far less sequencing effort is 

needed to reconstruct either the genome or transcriptome. Previous work in the Zhang lab has 

shown 90% complete de novo assembly from a single E. coli bacterium after MDA pre-

amplification in 12 picoliter PDMS microwells.1 Even one million paired end 100-base reads 

yields 200 million bases, which, for a single E. coli with 6 million bases total, gives 33× 

coverage. Assuming sufficiently uniform coverage, this is enough reads to perform de novo 

assembly. Even the smallest visible colony of E. coli that a researcher might pick from a plate 
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using a toothpick may contain more than enough material for Gel-seq. The question that 

remains to be answered is what amount of material is irrecoverable from the gel barrier. We 

suspect that the amount of irrecoverable material is likely a function of surface area. Reducing 

the device geometry to suit a toothpick sized sample might achieve the same goal as 

preamplification when working with microbes. 

We have shown in this paper that Gel-seq can be used to generate high quality libraries 

from vanishingly small populations of cells. It is a flexible protocol that can be used to quickly 

process samples with an inexpensive and easy-to-fabricate device. The development of a gel 

based method for preparing next-generation DNA and RNA sequencing libraries from the same 

cells opens news doors for genomics, allowing researchers to ask if DNA mutations in small 

numbers of cells affect RNA expression in those same cells. It is also our hope that the physical 

principals described here might someday be translated to a single-cell technique to allow 

simultaneous profiling of tens of thousands of single-cell genomes and transcriptomes. Such a 

device would provide a more general approach for linking DNA variation to RNA expression 

in complex samples such as tumors or microbial populations. 
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1.5 Appendix to Chapter 1 

1.5.1 Additional Experimental Techniques 

Positive Control Library Preparation: Standard protocols were used to generate 

reference libraries as a comparison to our Gel-seq protocol. To generate libraries from RNA, 

we followed the Smart-Seq and Nextera XT manuals (Clontech 2016; Illumina 2015). The only 

modification we made to these protocols was to use half volume reactions and the addition of 

random priming to the reverse transcription step of Smart-Seq. To generate libraries from 

genomic DNA, we lysed cells using a simple lysis buffer developed by Shatzkes (Shatzkes, 

Teferedegne, and Murata 2014). Once the cells were lysed, we followed the standard Nextera 

XT manual using half volume reactions (Illumina 2015).  

Cell Culture: PC3 was cultured in F-12K media (Gibco) supplemented with 10% heat-

inactivated (HI) FBS (Gibco) and 1% penicillin/streptomycin (P/S) (Gibco). HeLa was cultured 

in Eagle’s Minimum Essential Medium (ATCC) supplemented with 10% HI FBS and 1% P/S. 

3T3 was cultured in high-glucose Dulbecco’s Modified Eagle’s Medium (4.5 g/L glucose and 

L-glutamine) supplemented 10% HI FBS and 1% P/S and 3T3 cell lines were cultured in 

DMEM with 4.5 g/ml glucose and 1 mM sodium pyruvate (ThermoFisher Scientific) 

supplemented with 10% heat-inactivated FBS (ThermoFisher Scientific) and 1% penicillin-

streptomycin (ThermoFisher Scientific).  

Mouse Primary Hepatocyte Collection: Mouse livers were perfused with a classic two-

step method. Briefly, livers were perfused via the portal vein with 20 ml of pre-warmed wash 

buffer followed by 20 ml of digestion buffer containing 5000 U collagenase Type IV (Gibco) 

and 5000 U collagenase type I (Worthington). After perfusion, tissue was cut as small as 

possible, passed through 100-µm cell strainer, and centrifuged at 50g for 5 min to pellet 
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hepatocytes. The animal protocols (s09108) for all procedures were approved by the UCSD 

Institutional Animal Care and Use Committee (IACUC). All methods were performed in 

accordance with the relevant guidelines and regulations. 

 

1.5.2 Analysis of Sequencing Data 

Sequencing and De-multiplexing: Libraries were sequenced on a MiSeq (Illumina) 

using v3 kits and standard sequencing primers. Libraries were loaded at 27-30 pM and at least 

50 cycles were obtained for read 1 for each experiment, plus 8 cycles for Index 1 and 8 cycles 

for Index 2. Base calls were de-multiplexed to fastq using bcl2fastq.  

Extrapolation Simulations: Library complexity and genomic coverage simulations were 

performed with preseq (Daley and Smith 2013) using extrac_lc and extrap_gc, respectively, 

with 100 bootstrapping iterations each.  

DNA Mapping and CNV Calling: Copy number profiling on DNA libraries was 

performed as described in Baslan et al. with minor modifications (Baslan et al. 2012). Briefly, 

reads were trimmed to 36 bases using fastx (14 bases from the start and all bases after 50) and 

mapped to GRCh38 or mm10 with bowtie (Langmead et al. 2009). For both mouse and human, 

alignments were counted across 25,000 bins whose boundaries were calculated such that 

mapping their respective reference genomes would generate equal counts per bin. Bin counts 

were then normalized to mean for each sample and GC corrected in matlab by lowess regression 

based on GC content. No segmentation was performed. Pearson correlations were performed in 

Python using scipy (Jones et al. 2001) and plotted using matplotlib (Hunter 2007).  

RNA Mapping and PCA: RNA fastq was mapped to a pre-annotated index constructed 

from either GRCh38.87 (human, hg38) or GRCm38.87 (mouse, mm10) using STAR (Dobin et 
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al. 2013) and read counts for each gene were converted to TPM. A threshold of TPM > 5 was 

applied. Pearson correlations and PCA were performed in Python using scipy (Jones et al. 2001) 

and scikit-learn (Pedregosa et al. 2011), respectively, and plotted using matplotlib (Hunter 

2007). Base-wise percentage of reads mapping to exons was calculated from GenCode GTF 

files using bedtools coverage. Base-wise percentage of reads mapping to ribosomal and transfer 

RNA was calculated from Ensembl BioMart BED files, also using bedtools coverage. 

Percentage of RNA reads mapping to mitochondrial genes was calculated from alignments 

using grep to search for the MT in the chromosome field. 
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Figure 6: TapeStation traces for all sequencing library pools. 
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Figure 7: Panels A and B show predicted genomic coverage as a function of depth of coverage in DNA libraries 
from human and mouse samples, respectively. Bar graphs represent maximum predicted coverage at saturation. 
Panels C and D show predicted library complexity for RNA libraries from human and mouse samples, respectively. 
Error bars are 95% confidence intervals created from 100 bootstrapping simulations. 
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Figure 8: Copy number profiles across 25,000 bins for human DNA libraries from HeLa and PC3 cell lines. G and 
T in sample names indicate Gel device and Tube controls, respectively, while numbering indicates technical 
replicates. Horizontal axis denotes chromosome and bin position, vertical axis denotes mean normalized bin count 
(corrected for GC content). 
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Figure 9: Pairwise correlations between bin counts for human DNA libraries from HeLa and PC3 cell lines. Main 
diagonal entries are sample names, lower diagonal entries are Pearson correlation coefficients. 
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Figure 10: Pairwise correlations between detected gene counts for all human RNA libraries from HeLa and PC3. 
Lower diagonal entries are Pearson correlation coefficients (R value) and number of detected genes (N values, 
genes with non-zero counts) in common for each comparison. 
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Figure 11: Copy number profiles across 25,000 bins for mouse DNA libraries from a 3T3 cell line and mouse 
primary tissue. G and T in sample names indicate Gel device and Tube controls, respectively, while numbering 
indicates technical replicates. Horizontal axis denotes chromosome and bin position, vertical axis denotes mean 
normalized bin count (corrected for GC content). Extreme peaks in mouse primary samples are due to "bad bins" 
in the reference genome, in which repetitive sequences present in the true genome are not included in the reference 
genome, leading to a false pile up of reads from experimental data. 
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Figure 12: Pairwise correlations between bin counts for mouse DNA libraries from 3T3 and mouse tissue. Main 
diagonal entries are sample names, lower diagonal entries are Pearson correlation coefficients. Correlations are 
weaker than for PC3 versus HeLa due to less extreme copy number variation in 3T3 and almost none in the mouse 
primary sample, leading to little dynamic range in bin counts. 
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Figure 13: Pairwise correlations and PCA for Gel-seq and tube samples. Panel A shows all 28 pair-wise 
correlations between gene counts (TPM > 5) for RNA libraries from mouse 3T3 fibroblast cell line and mouse 
liver. Lower diagonal entries are Pearson correlation coefficients (R value) and number of detected genes (N 
values, genes with non-zero counts) in common for each comparison. Panel B shows average R values for different 
comparison types (Error bars are standard deviation, N is number of comparisons in each type.) Panel C shows 
PCA separation for Gel-seq, standard tube method controls, and all 8 together. 
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Figure 14: RNA mapping features. Panel A shows base-wise percentage of RNA alignments in annotated exons 
in either GRCh38 or mm10 reference genomes. Only mouse liver samples show any significant difference, with 
Gel-seq data mapping to exonic regions at a slightly higher rate (p = 0.03, two-tailed t-test, unequal variance). 
Panel B shows base-wise percentage of RNA alignments in ribosomal RNA genes (rRNA). There is evidence that 
polyadenylation of rRNA acts as a degradation signal, 11 and short rRNA degradation fragments (less than 1000 
bases) would be expected to migrate faster than the majority of mRNA, which might explain why Gel-seq detects 
a higher proportion of rRNA than tube controls. Panel C shows base-wise percentage of RNA alignments in 
transfer RNA genes (tRNA). tRNA is short and not polyadenylated, which likely explains why we see no mapping 
when using the Smart-Seq poly-T primers. It seems that the random priming also failed to detect tRNA in either 
Gel-seq or tube controls, possibly due to the short length of tRNA. Panel D shows the percentage of RNA reads 
mapping to the mitochondrial chromosome. Hepatocytes contain very large number of mitochondria, so a high 
RNA mapping rate to mitochondrial genes is not necessarily surprising in liver, although we cannot fully explain 
why Gel-seq detected less than the tube controls in this comparison. 
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CHAPTER 2. DEVELOPMENT AND PROOF-OF-CONCEPT OF A MICROFLUIDIC 

HYDROGEL ENCAPSULATION TECHNOLOGY FOR SINGLE-CELL WHOLE-

GENOME SEQUENCEING LIBRARY PREPARATION 

 

2.1 Abstract of Chapter 2 

Although genomic mosaicism has been shown to occur in the human brain in the form 

of copy number variations (CNVs), changes occur less frequently on a per cell basis than in 

tumors. Rarer variants require larger number of cells to accurately determine the underlying 

distribution, and existing whole-genome sequencing library preparation methods are limited in 

throughput. We designed a microfluidic device to encapsulate single neuronal nuclei in 

hydrogel droplets to facilitate combinatorial library prep of a thousand neurons in a single two-

day experiment with no special equipment necessary, e.g., a flow cytometer or commercial 

microfluidic system. We showed proof-of-concept by mixing mouse and human cells and 

demonstrating strict mapping specificity with very shallow depth of 87 cells, with potential for 

scaling into the many thousands. The copy number profiles generated agreed with ground truth 

observations from down-sampled bulk sequencing libraries of the same cell lines. This 

technology will not only enable the unbiased copy number characterization of human neuronal 

genomes, but can also be applied to tumor and microbiome profiling. 

 

2.2 Introduction 

Single-cell RNA-seq especially has experienced a revolution in the last three years. 

Experimental techniques have increased throughput from the order of tens of cells prior to 2015 

(cite) to many thousands (Macosko et al. 2015; Klein et al. 2015) per run, with over a hundred 
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thousand cells per run in some recent publications (Cao et al. 2017; Rosenberg et al. 2018) with 

demonstrated potential for scaling well into the hundreds of thousands. These changes came 

very quickly, and were enabled largely by two key concepts: Large sequencing barcode spaces 

created by combinatorial indexing and novel methods of physical compartmentalization. 

 There are obvious parallels between the design goals for developing single-cell 

genomics, transcriptomics, epigenomics, etc., such as the need to minimize cost and time per 

cell, achieve sufficient throughput per sample, and avoid the introduction of bias in the data, 

but the study of genomics entails specific technical challenges that have held the field back 

compared to epigenomics and transcriptomics. Subsequently, most highly-parallel single-cell 

methods have focused on targets such as RNA or methylation patterns, while whole-genome 

sequencing (WGS) of DNA from single cells has seen much less of the spotlight. Much of this 

discrepancy is simply due to the fact that mammalian genomes are so large and incompletely 

annotated, which creates two substantial problems: First, it is technically challenging to 

generate even coverage; and Second, the majority of variants called are likely to have unknown 

significance. In terms biologically meaningful inferences, therefore, modern day single-cell 

WGS is relatively information poor compared to RNA-seq, with a correspondingly lower ratio 

of “signal-to-sequencing-dollar.” 

A second factor that has held back single-cell WGS is the technical challenge of 

accessing the genomic DNA (gDNA) of a single cell for library prep. DNA in mammalian 

systems is heavily protected by both the double-membrane of the nucleus as well the protein 

components of chromatin, primarily composed of millions of nucleosome complexes, an 

octameric assembly of 4 different histone proteins connected by linkers, which are spaced about 

121 bases apart in closed chromatin. 
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Our group has previously demonstrated an approach called MIDAS (Gole et al. 2013) 

to overcome some of these limitations, whereby a very large number of 12 nL PDMS 

microwells are loaded randomly with a limiting dilution of cells, such that an average of only 

one in ten wells is loaded with a very low rate of multiplets. Our lysis method used alkaline 

conditions to lyse membranes and denature proteins, which can then be neutralized by an acidic 

solution. The major objective at the time was reducing the random bias incurred during multiple 

displacement amplification (MDA) by limiting the size of the reaction, which we accomplished, 

although with limited throughput. Figure 20 shows a fluorescent image of the microwells with 

neuronal nuclei deposited, and illustrates some of the difficulty of this approach in practice. 

Two years of continuous experimentation yielded nearly 200 single-cell libraries from human 

cortical neuron, yet only 60 of these passed quality control filters suitable for CNV calling. Of 

these, 27 cells were from 3 AD patients, a further 27 came from 3 ND patients, and 6 came 

from a DS patient. 

To address this limitation, we explored a commercial microfluidic system using a 

variety of custom protocol. The automatic loading, known locations of capture site, and 

automated harvesting promises higher throughputs, but high complexity of valve-based 

microfluidics places a cap on scalability. Furthermore, while there is some flexibility in the 

types of reagents used, the geometry is essentially fixed, which limits the extent to which this 

approach could be adapted for future assays. We ultimately found that the method did not scale 

adequately, and after a year of protocol optimization we could not match the data quality of 

MIDAS. 

Motivated by the above challenges and limitations, we subsequently developed a 

hydrogel droplet encapsulation technique using an in-house designed and fabricated 
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microfluidic device to prepare a thousand single-cell libraries for parallel sequencing in a single 

run. As shown in Figure 15, cells or nuclei are lysed on-chip to release DNA into the droplet 

such that the solution can be well-mixed by the serpentine outlet. This ensure a homogeneous 

distribution of molecules throughout the resulting hydrogels, which we have observed to be 

critical to the efficient capture of DNA by entangling in hydrogel, thorough removal of proteins 

and lipids during washing, and uniform accessibility of the entangled DNA. Approximately 

1000 droplets can be produced per second at a monodisperse diameter of 60 um (volume = 113 

pL). Samples are loaded at limiting dilution, such that nine out of ten droplets are empty, one 

in ten are loaded, and a low rate of loaded droplets contain more than one cell. The hydrogels 

are allowed to polymerize overnight, after which the emulsions are broken and hydrogel beads 

are recovered into an aqueous phase and washed extensively. Remaining protein complexes, 

such as nucleosomes, are then enzymatically digested and washed out. Library prep is 

performed on groups of ~2000 PA bead encapsulated nuclei per well in a plate format with 

combinatorially barcoded transposon oligos enzymatically inserted by Tn5 transposase. 
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Figure 15: Experimental workflow. A mixed population of cells or nuclei are encapsulated in polyacrylamide (PA) 
hydrogel droplets using a polydimethylsiloxane (PDMS) an in-house designed microfluidic droplet generator. 

 

2.3 Results 

2.3.1 Validation of single cell genomic compartmentalization 

Cross-mapping between mouse and human is handled by aligning to a combined 

genome and setting a mapping quality threshold for each read to ensure a high rate of unique 

alignment. Sequencing barcodes corresponding to both mouse and human DNA appear clearly 

in the plot away from the axis, whereas orthogonal mapping against the axis indicates single-

cell data. In this case, the collision rate can be calculated by observing the events along the 

diagonal and considering that the total cross-cell collision rate is equal to twice the cross-species 

collision rate (possible collisions are human-human, mouse-mouse, human-mouse, and mouse-

human), as same-species collisions will still appear along the axis (Macosko et al. 2015). A 

total of approximately 640 nuclei extracted from a human HeLa cervical cancer line and mouse 

3T3 fibroblasts were pre-mixed at a 50/50 ratio before polyacrylamide encapsulation and 
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subsequently sequenced on a single MiSeq at approximately 9 million reads. A cut-off of 20,000 

reads yielded 27 HeLa and 60 mouse 3T3 libraries (Fig. 16, panel C). 

 

Figure 16: Improvement of mapping orthogonality over time. Mixing mouse and human cell lines prior to the 
experiment enables a quantitative estimate of the degree cross-contamination between single cells. 

 

2.3.2 Genome-wide copy number uniformity 

The next step was to investigate the evenness of coverage to ensure that the hydrogel 

matrix encapsulating each single genome did not interfere excessively with Tn5 based library 

preparation. Figure 17 shows genome-wide averages for both bin counts and bin-wise integer 

copy number estimated using the CSHL varbin circular binary segmentation (CBS) method 

(Baslan et al. 2012) for 27 HeLa and 60 3T3 cells. Bulk libraries with approximately 2 million 

reads each for HeLa and 3T3 were downsampled many times to generate distribution of counts 

from a perfectly uniform genome for each cell line. These downsampled bulk represent a 

control for each line, showing the “true” copy number profile for comparison to the single cell 

libraries, assuming a homogenous population in culture. 
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Figure 17: Genome wide coverage uniformity of bin counts for both mouse and human. Reference genomes were 
binned into 1,000 variable length regions such that each region contained the same number of mappable reads. 
Bulk libraries shown here are downsampled to 20,000 reads. 

 

While the single cells show more noise on a bin-by-bin basis compared to the bulk, there 

are visual similarities in called regions which indicates that there could still be signal detectable 

above noise. 

 

2.3.3 Correlation of cell line copy number profiles 

To determine whether the method in its current form can detect signal above noise, we 

tested whether we could distinguish between cell lines based on copy number alone. Many cell 

lines, including HeLa and 3T3, are marked by distinct amplifications and deletions are large 

regions compared to their reference genomes. This dynamic range in copy number on a per-

region basis allows for a correlation metric to be calculated for each pair of cells on a bin-wise 

basis. Pearson correlation coefficients were calculated for all 27 HeLa single-cell copy number 
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profiles compared to down-sampled bulk libraries for both HeLa and human pre-B lymphoblast 

line GM12878. Figure 18 shows a scatter plot of correlation coefficients, with 26 out of 27 

(96%) of HeLa cells correctly assigned to HeLa reference based on copy number profile, 

indicated by their position above a diagonal indicating random assignment between cell lines. 

 

Figure 18: Pearson coefficients for HeLa cells correlated to bulk HeLa versus bulk GM12878. 

 

Figure 30 in the appendix shows similar scatter plots for HeLa cells correlated to HeLa 

versus 3T3, as well as similar plots for 3T3 cells. Panel A shows HeLa cells correlated to bulk 

HeLa versus bulk 3T3, with 26 out of 27 (96%) of HeLa cells correctly assigned to HeLa. Panel 

B shows 3T3 cells correlated to bulk 3T3 versus bulk GM12878, with 55 out of 60 (92%) of 

3T3 cells correctly assigned to 3T3. Panel C shows 3T3 cells correlated to bulk 3T3 versus bulk 

Hela, again with 55 out of 60 (92%) of 3T3 cells correctly assigned to 3T3. 

Genome wide copy number profiles were also correlated on a bin-wise basis between 

all single cells for both HeLa and 3T3, as well as nine bulk sequencing control libraries down-
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sampled at varying depths (200,000, 20,000, and 2000 reads) each for both HeLa and 3T3. 

Figure 31 in the appendix shows that manually sorted single cells by either read depth or noise 

level (MAPD) did not create any apparent pattern in the heatmap. Figure 32 in the appendix 

shows a similar map of all pair-wise cell-to-cell correlation coefficients after clustering, 

indicating that more than 90% of single cells clustered accurately within their respective cell 

lines along with the bulk controls. 

The down-sampled bulk samples in from the two different cell lines have an average 

correlation of ~0.26, which provides a useful cutoff for correlation as there is no expected 

relationship between the copy number profiles of HeLa and 3T3. Much of the non-agreement 

between cells within each line and the down-sampled bulk are likely due to random noise. Only 

about half of cells in each line have an R of greater than 0.5 when compared to the down-

sampled bulk, although the fact that clustering was accurate indicates that there was still signal 

detected above noise. Further optimization of the protocol will likely noise to levels similar to 

those seen in another recent hydrogel encapsulation, Tn5-based whole-genome sequencing 

approach using bacteria (Lan et al. 2017), discussed below. However, some of the disagreement 

within cell lines could also be explained of sub-clonal populations present within the cell-to-

cell correlations, similar to another single-cell library prep method using Mu transposase ((Xi 

et al. 2017), in which cells in culture developed copy number variations after many passages. 

If true, this could provide a useful  and convenient model for study in the future development 

of the hydrogel approach described here, as detecting clonal sub-populations of cells is an 

application of interest for a whole-genome single-cell copy number profiling method. 
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2.4 Discussion 

 

Figure 19: Comparison of scGel-seq to other whole-genome sequencing library preparation methods. FACS 
(yellow) refers to all methods which rely on single-cell sorting (e.g., sorting into 96- or 384-well plates) for 
compartmentalization. 

 

Figure 19 shows a qualitative comparison of a variety of methods for single cell whole-

genome sequencing library preparation, some of which are not yet commercially available. 

FACS-based methods have the longest history and highest degree of commercial availability, 

and can have very good coverage uniformity, but have high cost per cell due to large reaction 

volumes on a per cell basis. Cell sorters have also historically come with high associated costs, 

on the order of hundreds of thousands of dollars. While large institutions often have core 

facilities that can be shared across labs, reliance on FACS could be a barrier for smaller 

organizations. Finally, single-cell sorting can only be scaled linearly at best by increasing the 

number of collection plates, and the high cell losses typically incurred during sorting in single-

cell purity mode limits the total number of cells able to be sequenced. 
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An advantage of a microwell array approach such as MIDAS is that sorting is not a 

technical requirement, meaning that any population of cells, nuclei, or even bacteria can be 

loaded into each array due to the low chance of a multiplet with such a large number of wells, 

although many of our mammalian samples had been FACS purified based on cell markers of 

interest prior to the experiment. While we demonstrated parallel amplification of hundreds of 

genomes in parallel, and successfully demonstrated a substantially superior coverage 

uniformity compared to competing methods at the time, the extraction and processing of each 

amplified genome was labor intensive and required a skilled operator to work through the day 

to collect 96 samples. After two additional days of processing, only about 25% of libraries 

would typically pass all QC standards, which included shallow depth sequencing to screen 

libraries before deeper and more costly sequencing. This led to a long data turnaround time for 

relatively few samples. We also realized that even substantial automation of the process would 

likely only increase throughput by less than an order of magnitude. 

The Fluidigm C1 DNA-seq chip consumes reagents with substantially higher efficiency 

due to small reaction volumes, with a correspondingly lower cost per cell, and has nearly an 

order of magnitude higher throughput per run. The C1 also yields high coverage on a per cell 

basis, but suffers from high region-to-region coverage noise in our hands for the purpose of 

CNV calling. Furthermore, the chip requires expensive equipment for loading, running, and 

harvesting samples, requires the purchase of expensive licensing to run custom protocols to 

reduce noise, and any valve-based microfluidic compartmentalization approach presents an 

obstacle to scaling up. Fluidigm has announced an 800 chamber chip, but it is unclear how 

much farther it can be scaled. 



55 

Although some of the costs are still difficult to estimate prior to any commercial 

implementations of highly-multiplexed single-cell whole-genome methods, it is apparent from 

the techniques described in the literature and their demonstrated throughputs that the cost per 

cell prior to sequencing stands to be lowered dramatically, likely below 10 cents per cell. The 

recent announcement of a CNV calling platform from 10X genomics will be the first 

commercially available solution for generating approximately one thousand single cell whole-

genome sequencing libraries, and the costs of their single cell RNA-seq applications (~$800 - 

$1000 per run) can be used as an estimate, which puts their approach somewhat in the middle 

at just under a dollar per cell. The 10X system also requires pricey a microfluidic station to run 

each chip, although the run time is short and the machine can be shared between many labs 

more easily than the C1, which has an overnight runtime. 

The advantage of combinatorial split-pool methods is the ease of exponential scalability 

at low additional cost, but there are particular technical challenges in adapting such approaches 

to mammalian whole-genome assays due to the dense association in chromatin between DNA 

and proteins such as histones. There exists a need for a method of uniformly accessiblizing the 

entire genome, thus removing the endogenous structural components of genome organization, 

while simultaneously maintaining a physical association between all molecules of interest from 

the same single cell or nucleus. There are a number of ways in which a method can fail to 

achieve these conflicting objectives. First, wildly uneven coverage can result from incomplete 

removal of the histone proteins, a process which has been referred to as nucleosome depletion 

(Vitak et al. 2017). Harsh conditions and reagents are generally required for complete stripping 

of nucleosomes; lipid structure such as cell and nuclear membranes would not be expected to 

survive these treatments, are so any method that relies on these structure for 
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compartmentalization of nuclei acids is unlikely to be adaptable to whole-genome sequencing. 

Harsh conditions can also inactive enzymes introduced early in the experiment, and carry-over 

reagents can interfere with downstream reactions. Vitak et al. addressed this in SCI-seq by 

either cross-linking chromatin together prior to nucleosome depletion and combinatorial 

tagmentation by Tn5, followed by cross-link reversal before PCR, or by a diiodosalycate 

treatment to strip nucleosomes but preserve nuclear matrix proteins. In our lab, both approaches 

yield an extremely fragile product, and the combinatorial design requires a high-accuracy flow 

sorter to deposit precise numbers of cells (~20) per well for PCR barcoding (Vitak et al. 2017). 

Attempting to distribute such a small number of particles by hand pipette would result in 

unacceptable losses and uneven deposition due to stickage inside the pipette tip. 

Adam Abate’s group introduced the use of agarose hydrogels in Sic-seq to obtain high 

coverage, uniform single-cell libraries from bacteria, showing that at least some hydrogels can 

be employed for single-cell encapsulation and whole-genome sequencing without impacting 

the evenness of coverage. SiC-seq requires the use of pre-made barcode beads instead of split-

pool barcoding, however, and uses a variety of highly sophisticated microfluidic devices to 

encapsulate, merge with Tn5 and barcodes, and perform PCR, which would be likely result in 

a high start-up cost for a potential user. 

The approach described in this work demonstrates a rapid polyacrylamide encapsulation 

technique followed by highly-scalable combinatorial split-pool Tn5 barcoding that does not 

require any droplet merging or FACS, can be performed by a single operator in 2.5 days, and 

has a start-up cost of well under $10,000. Because only 1 in 10 hydrogels contain a cell, the 

other 90% of dropets are empy and act as an inert carrier. This reduces the degree and variability 

of sample loss due to pipetting, and enables distribution of as little as 20 cells (~200 beads) per 
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well with sufficient uniformity to control barcode collisions going into PCR without requiring 

time-consuming sorting with expensive FACS equipment. Hydrogels also perform very well in 

repeated washing steps due to their high structural integrity compared to cells, nuclei, or cross-

linked chromosomes. Finally, hydrogels such as polyacrylamide also have interesting chemical 

attachment properties that can be exploited in the future, such as the potential for acrydite-

modified poly-T primers to capture mRNA in for library prep in parallel with DNA, similar to 

the concept described in Gel-seq in Chapter 2 of this dissertation. Future work in the Zhang lab 

will explore the potential of these approaches. 

It is our hope that the polyacrylamide encapsulation approach described here will 

facilitate fast, easy, and highly-scalable whole-genome single-cell library preps on the order of 

a thousand cells per run, providing an unbiased landscape of the genomic copy number of 

human neurons in the brain. We also hope that this approach in general will provide a platform 

to implement multi-omics on the single cell level, using a technique that can implemented in 

any lab, without large, specialized equipment, at minimal cost per cell prior to sequencing. 

  



58 

2.5 Materials and Methods 

2.5.1 Cell Culture 

HeLa and 3T3 cell lines were cultured in DMEM, high glucose, pyruvate (ThermoFisher 

Scientific Cat. 11995-065) supplemented with 10% FBS (ThermoFisher Scientific Cat. 

10437010) and 1% Penicillin-Streptomycin (ThermoFisher Scientific Cat. 15070063). Cells 

were trypsinized with TrypLE Express Enzyme (1X), no phenol red (ThermoFisher Scientific 

Cat. 12604013) and stored at 1 million cells/mL in DMEM with 50% FBS and 5% DMSO 

(Sigma Aldrich Cat. D2650) for liquid nitrogen cryopreservation. Cells were barely thawed and 

washed in cold PBS prior immediately prior to nuclei extraction. Nuclei were isolated using a 

custom nuclei isolation buffer (NIB) (0.32 M sucrose, 5 mM CaCl, 3 mM Mg-Acetate, 0.1 mM 

EDTA, 10 mM Tris-HCl, 0.1% Triton X-100, pH 8.0). Cell pellets were resuspended in 1 mL 

of cold NIB and incubated on ice for 30 minutes, followed by centrifugation at 300 rcf for 5 

minutes. Nuclei were washed once in cold PBSEB (PBS plus 1% fatty-acid free BSA and 1 

mM EDTA) before use. 

 

2.5.1 Microwell MDA amplification and library prep 

All microwell experiments were performed according to the methods described in (Gole 

et al. 2013), with the exception of the alkaline denaturation of amplicons after MDA followed 

by second strand synthesis and ethanol purification prior to Tn5 library prep. Amplicons were 

instead pipetted up and down ~8 times to loosen hyper-branched structure and immediately 

used as Tn5 template. This simplification reduced per-sample processing time by nearly 6 hours 

and increased library prep success rate, with no measurable effect on data quality for CNV 

calling. 
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2.5.2 Custom library prep using commercial microfluidic chips 

Custom protocols for the Fluidigm C1 were generated the Open App Developers Pack 

(100-8588) with small cell size (100-8134) IFCs. Alkaline lysis was performed in chamber 1 

using 400 mM NaOH, while neutralization was performed in chamber 2 with equimolar amount 

of HCl.  Primer-limited MDA pre-amplification was performed on-chip using Phi29 

polymerase in 3 steps using random nonamers with double 3’ terminal phosphoramidite 

backbone modifications (IDT; 5’ NNNNNNN*N*N 3’). Steps 1 and 2 were carried out at 30 C 

for 30 minutes with 250 nM primer in microfluidic chambers 3 and 4, respectively, while step 

3 was performed at 30 C for 3 hours with 250 uM in chamber 5. Tn5 library prep was performed 

off-chip using Nextera XT Tn5 according to manufacturer’s instructions (Illumina 2015). 

 

2.5.3 Microfluidic Device Fabrication 

Microfluidic chips were fabricated by PDMS soft lithography using Sylgard 184 with 

10:1 silicone base:curing agent mixed for 3:30 min at 2000 rpm in a Thinky mixer. Bottom 

layers were cast by pouring 10 g of mixed silicone into a 10 cm diameter petri dish while top 

layers were cast with 25 g in a 50 x 75 mm area on a custom SU-8 mold fabricated in-house 

(see below), followed by de-gassing by vacuum for 45 minutes. Samples were then baked at 80 

C for 1 hour and devices were cut out using an exacto knife. Input/output ports were punched 

using a 0.7 mm biopsy punch. All microfluidic channels were then cleaned using 3M Magic 

tape after casting and cutting. Device top and bottom layers were surface activated by O2 

plasma using an Oxford Plasmalab 100 oven at 250W power (0 reflected) with 5 sccm O2 for 

15 seconds. Top and bottom layers were immediately bonded after plasma treatment and baked 
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30 minutes at 80 C. Microfluidic channels were surface treated by Aquapel followed by 

Fluorinert FC-40 rinse. Aquapel was prepared fresh for each experiment by cutting the glass 

vial out of a plastic Aquapel applicator, placing it into a plastic bag, shattering it, and straining 

the solution through a 40 um strainer, and loading into a 3 mL. Microfluidic channels were 

filled with Aquapel by holding the syringe gently against the inlet of each device and depressing 

the plunger until the channels were visibly filled. Each device was then flushed out with air 

using an empty syringe. FC-40 was then flushed through each device using an identical 

technique. Each device was then thoroughly flushed with air, holding the dish vertically and 

catching all displaced liquid with a kim-wipe until completely flushed. Devices were then baked 

at 65 C for 20 minutes and covered with 3M Magic tape, which was then scored by scalpel for 

convenient individual use. Each casting yielded 2 chips containing 9 devices each, suitable for 

18 independent 1000-plex single-cell experiments and could be fabricated within a day for a 

total cost of less than $100, including time charged for clean room usage. 

Microfluidic molds were fabricated in a clean room on 4” test grade silicon wafers. 

Wafers were solvent cleaned before use in a hot acetone bath at 55 C for 5 min, followed by 

rinse in methanol at room temperature for 3 min, followed by rinse with DI water and blow-dry 

with nitrogen. Wafers were then cleaned by oxygen plasma at 5 sccm O2 with 250 W power 

for 5 min. SU-8 2025 was deposited at 30 um target thickness by spin coating at 500 rpm for 

10 seconds at 100 rpm/second acceleration, followed by 3000 rpm for 30 seconds at 300 

rpm/second acceleration. Soft bake was performed at 65 C for 2 minutes followed by 95 C for 

5 minutes. Exposure was performed on an EVG 620 mask aligner in hard contact mode at 13 

mW/cm^2 for 12.3 seconds for a total exposure of 160 mJ/cm^2. Post-exposure bake was 

performed at 65 C for 1 min followed by 95 C for 5 min. Wafers were developed 5 minutes in 
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SU-8 developer, followed by 10 second rinse in fresh developer, followed by rinse in 

isopropanol and blow dry with nitrogen. Wafers were then hard baked at 150 C for 5 minutes 

and surface treated by FOTS vapor deposition. Wafers were then taped to the bottom of 15 cm 

petri dishes and covered in a large quantity (~80 g) PDMS for the first casting. Subsequent 

castings were performed inside the 50 x 75 mm mold space left after cutting out chips. 

Custom photomasks for the final device design were chrome on 5” sq. x 0.090” soda 

lime ordered from a commercial vendor (FrontRange PhotoMask) with 10 micron tolerance, 

dark field background, and right read (chrome) down. 

 

2.5.4 Pressurization of Microfluidic Devices 

A house-air driven constant-pressure microfluidic testing station was constructed using 

general purpose 1/2” ID 5/8” OD PVC tubing (McMaster-Carr 5233K66), 0.5 to 30 PSI 1/4” 

NPT regulators (McMaster-Carr 43275K16) and 0 to 30 PSI 1/2” NPT digital pressure gauges 

(McMaster-Carr 2798K211) for each pressure line. Smaller tubing (McMaster-Carr 55485K72) 

was used for each line to connect to a needle inserted through a metal washer and a 1/4” rubber 

stoppers, which was then used to pressurize a disposable 3 mL syringe (Beckton Dickinson 

309657) mounted vertically (tip down) on a standard laboratory ring stand with the plunger 

removed. A No. 18 ball joint clamp were used to secure the rubber stopper by sandwiching it 

between the metal washer and the flanges of the syringe. Syringes were attached to 22-gauge 

blunt leur stubs (Instech LS22) inserted into 0.023” ID polyethylene tubing (Instech BTPE-50) 

with attached 22-gauge right-angle metal adapters (Instech SC22/15RA) to be inserted into 

microfluidic I/O ports. Connections were made with a variety of barbed, threaded, and leur-lok 

adapters, depending on the components. 
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2.5.5 Hydrogel Encapsulation of Nuclei 

After washing in cold PBSEB, nuclei were resuspended in hydrogel precursor buffer 

(PBS plus 20% v/v Optiprep (Sigma Cat. D1556) 18.6% w/v acrylamide, 0.54% w/v N,N’-

Methylenebis(acrylamide), 1% w/v fatty-acid free BSA, and 1 mM EDTA) and strained through 

a 20 um mesh. Suspensions were loaded into 3 mL syringe mounted on a laboratory ring stand 

and pressurized as described above. 

Lysis buffer was composed of buffer G2 with 0.45% w/v APS prepared fresh for each 

experiment and strained through a 20 um mesh. Novec HFE-7500 was used as carrier oil with 

1.5% w/v fluorosurfactant-008 (RAN) and 0.4% v/v TEMED added fresh for each experiment. 

All microfluidic experiments were performed on an upright microscope. Visual 

monitoring of the microfluidic junction between the sample, lysis, and oil lines enabled tuning 

of on-chip reagent mixing ratios. Because the boundary between lysis reagents, sample, and oil 

are clearly visible with a light microscope, the mixing ratio can be tuned on-chip. A target 

mixing ratio of 1:2 sample:lysis was achieved by tuning pressure in each line such that the width 

of each of the two lysis flows was equal to the width of the sample flow in the middle of the 

junction. This was confirmed by tracking reagent delivery through microfluidic tubing marked 

off in 1 cm increments as shown in Figure 26. The ratio of the slopes of the curves are equal to 

the flow rates and were within 10% of the desired 1:2 mixing ratio. 

Samples were collected under 300 ul of mineral oil and allowed to polymerize overnight 

at room temperature. Emulsions were broken by removing as much HFE and mineral oil from 

below and above the bead layer as possible and then washing twice with 20% PFO in HFE with 

300 rcf centrifugation for 5 minutes at each step, followed by two washes with 1% SPAN-80 

in hexane, followed by two washed in TEBST buffer (10 mM Tris-HCl, 10 mM EDTA, 137 
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mM NaCl, 2.7 mM KCl, 0.1% (v/v) Triton X-100). Samples were then washed 4 times in buffer 

G2 and digested for 1 hour at 50 C with Qiagen Protease followed by heat inactivation at 70 C 

for 15 minutes. Samples were then washed 4 times in tagmentation buffer before staining, 

counting, and aliquoting for Tn5 library prep as described in Preissl et al. (Preissl et al. 2018). 

 

2.5.6 Library Preparation and Sequencing 

Hyperactive Tn5 was obtained from Berkeley Macrolabs produced using a published 

protein expression and purification protocol (Picelli et al. 2014). All libraries were sequences 

on Illumina GAIIx, HiSeq, or Miseq platforms. Combinatorial Tn5 libraries were sequenced 

with 50 cycles for read 1, 43 cycles for index 1, and 37 cycles for index 2 (SE50+43+37). 

 

2.5.7 Data Processing and Analysis 

BCL files were converted to FASTQ for reads and index reads using Illumina’s 

bcl2fastq with a dummy sample sheet and options to generate FASTQ for index reads. Tn5 and 

PCR barcodes were extracted from the first 8 and last 8 bases of index reads 1 and 2. 

Demultiplexing was performed with deindexer (https://github.com/ws6/deindexer). Library 

IDs corresponding to each barcode combination were then assigned to the FASTQ header line 

of each read using pysam (https://github.com/pysam-developers/pysam) (Li et al. 2009). 

For quantification of species mixing, FASTQ was merged and mapped to a bowtie2 

(Langmead and Salzberg 2012) index built from a merged reference genome of both hg38 and 

mm10 and filtered with a MAPQ cutoff of >10 using samtools (Li et al. 2009). Mapping rates 

to hg38 and mm10 were then plotted with matplotlib (Hunter 2007). 
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For single cell copy number profiling, a cutoff of 20,000 reads per cell to select 87 single 

cell libraries. 27 HeLa libraries were identified along with 60 for 3T3, with 2 libraries colliding 

in barcode space. This corresponds to a collision rate of 2*2/87 = 5%, meaning that 95% of 

libraries analyzed above cutoff are expected to be from single cells. Libraries were 

demultiplexed and mapped as described above for species mixing, except that FASTQ was 

mapped in parallel to either hg38 or mm10 instead of a combined reference. 

The varbin CBS approach from CSHL (Baslan et al. 2012) was used to profile genome-

wide copy number with 1000 varbins generated from 50 base simulated reads from hg38 and 

mm10 using bowtie2 with a MAPQ cutoff of 10. 
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2.6 Appendix to Chapter 2 

 

Figure 20: Fluorescent images of microwells containing nuclei stained for DNA prior to MDA amplification 
(MIDAS). 
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Figure 21: Geneome-wide mapping coverage of assumed euploid samples using different approaches. The flatness 
of the traces indicates qualitatively the evenness of coverage. MIDAS shows that lowest noise, approaching that 
of a bulk library. 

 

 

Figure 22:  Bulk copy number from Alzheimer’s and non-diseased control patients.  A threshold of copy number 
> 4 was used to avoid any calls from chromosome 21 in Down’s syndrome in further analysis. Bulk Down’s 
syndrome sample was not available at this time. 28 genes were called as having high copy number, and were 
assumed to be mapping artifacts due to incomplete reference and excluded from further consideration. 
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Table 3: List of single-cell samples generated for each patient type using MIDAS 

Patient ID Disease state # Sum 

1-20 AD 5  

27 24-01 AD 11 

25-00 AD 11 

M1864 DS 6 6 

60831 ND 22  

27 1568 ND 2 

7-03 ND 3 

 

 

 

Figure 23: Average copy number calls from MIDAS data across cells of each group. All groups including control 
shared the same 28 genes called above threshold as discussed in Figure 20. Alzheimer’s neurons showed 18 genes 
with high copy number across cells, as well as a further 138 genes that were also seen at high copy number in 
Down’s syndrome neurons. 
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Figure 24: Investigation of variability in copy number states between samples. Setting a threshold of 2 eliminated 
all but the 28 spurious genes in control ND samples identified previously. AD samples had 109 unique genes 
variable above this threshold, with another 16 shared with Downs. 
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Figure 25: Variance versus mean for MIDAS microwell libraries. When plotting variance versus mean for a variety 
of calls across cells of each group, random noise is expected to be distributed around a line given by σ^2 = µ, 
referred to as Fano noise. While this is the case Down’s and Control, AD has a subset of calls which are much 
more variable across cells than expected by chance, indicating a higher degree of non-shared variation. 
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Figure 26: Microfluidic reagent flow versus time. 
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Figure 27: Mouse reads versus human reads for combinatorial gel bead libraries 
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Figure 28: Mouse reads versus human reads for combinatorial gel bead libraries plotted by titration 

 

 

Figure 29: Genome wide bin counts and copy number estimates for HeLa and 3T3 for both single cells and bulk. 
Green and red points indicate one standard deviation above and below the mean, respectively. Standard deviation 
for bulk libraries are the result of repeated downsampling. All plots are at 1000 bin resolution.  
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Figure 30: Combinatorial gel bead library noise of coverage versus depth of sequencing. 

 

 

Figure 31: Scatter plots of Pearson correlation coefficients for all single cells compared to bulks. 
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Figure 32: Correlation heatmaps for unclustered samples. Panel A shows single cells sorted by read depth per 
library. Panel B shows single cells sorted by noise (MAPD). 

 

Figure 33: Pairwise correlations for all 87 single cells from both HeLa and 3T3, as well as 9 downsampled bulk 
for each cell line. Single cell copy number profile correlation clustering. (Bulk 3T3: 1 to 9; Single cell 3T3: 10 to 
69; Bulk HeLa: 70 to 79; Single cell HeLa: 80-105). 
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