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Abstract

When people categorize an object, they often encode a certain
number of its properties for later classification. In Schyns and
Murphy (in press), we suggested that the way people group
objects into categories could induce the learning of new
dimensions of categorization--i.e., dimensions that did not
exist prior to the experience with the categorization system. In
this research, we examine whether the context of known
concepts can influence feature extraction. The first
experiment simply tested whether the context of different
object categories could change the perception of the same
target stimuli. The second experiment examined whether
learning category B given the concept of category A may
result in different features being learned that learning A given
B. The results showed that the context of known concepts
influence the features people learn to represent object
categories.

Introduction

When people identify an object, they often encode a certain
number of its properties for later classification. For example,
an orange is commonly perceived as a round object of
orange color with an orange-peel texture. These properties
are then input to categorization processes which output
“orange" instead of "lemon” or "apple.” Many theories of
object recognition and categorization assume this simple
division of labor: Low-level perception encodes the input
object along a fixed set of dimensions which are the input of
categorization processes.

Presumably, the reason why people preferentially use
shape, texture and color to describe fruits is that these
properties are particularly informative to distinguish fruit
categories. Category learning is often thought of as the
process which groups into concepts the most informative
properties among a fixed set of possible properties (e.g.,
Bruner, Goodnow & Austin, 1956; Bourne, 1986; Estes,
1986, among many others). From a developmental
perspective the notion of a fixed set poses difficulties as it
now seems clear that infants and young children are not
aware of all the stimulus dimensions that become important
in later category learning--in fact, the acquisition of new
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dimensions has often been used to explain discrepancies
between children's and adults' word usage (e.g. Clark, 1983;
Mervis, 1987). Similarly, when adults engage in tasks such
as reading x-ray films, classifying pre-cambrian organisms
or chicken sexing, they do not become experts overnight.
Only extensive perceptual learning allows novices to notice
the structures experts see (Biederman, 1987; Gibson, 1969;
Lesgold, 1984).

Schyns and Murphy (1991, in press) suggested that the
way people organize their world could influence their
perception of objects (see also Goldstone, in press; Medin
and Wisnieski, in press, Schyns, 1991). Specifically, the
grouping of objects into categori es could induce the
learning of new dimensions of cat egorization--i.e.,
dimensions that did not exist prior to the experience with the
categorization system. Schyns and Murphy gave a
functional definition of features that attributes an important
role to perceptual and categorical structures. The
Functionality Principle summarizes this view (Schyns &
Murphy, in press): If a fragment of stimulus categorizes
objects (distinguishes members from nonmembers) the
fragment is instantiated as a unit in the vocabulary of object
concepts. The Functionality Principle claims that the
vocabulary of categorization is not necessarily fixed, but
rather expandable--i.e., not independent of the process of
category formation, but intertwined with it. The aim of this
research is to investigate further the constraints a categorical
context imposes on feature extraction.

An important implication of the Functionality Principle is
that the vocabulary of representation not only characterizes
members of a category, but also distinguishes members of
contrast categories. Thus, contrast categories could
influence feature extraction. To illustrate how this might
work, imagine you were a Martian with no experience of
Earth objects. The first objects you learn about are a bunch
of glasses which, as we know, have a cylindrical shape.
However, your Martian vocabulary does not possess
cylinder as a feature. So, you encode the cylindrical shape of
glasses with the new cylinder unit in your vocabulary. From
now on, you can use the unit cylinder to categorize objects.
On your second day of Earth life, you learn about mugs.
Mugs have a cylindrical part, so they look like glasses,
except that another fragment is systematically attached to
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mugs. Because this fragment distinguishes the concept of
glass from the new category mug, handle is added to your
vocabulary, and mug is represented in memory with the
units cylinder and handle.

The Martian example illustrates how concepts influences
the learning of new units. When the vocabulary is not
sufficient to distinguish a new category from known
concepts, the fragment allowing the discrimination (handle
in the previous example) is incorporated in the vocabulary
as a new conceptual unit. Note that feature learning is not
always reversible. That is, two categories A and B presented
in a different order could induce people to extract different
features. This occurs because learning category B given A
may set different constraints for feature extraction than
learning A given B . To illustrate, assume arrow’s time goes
backwards for our Martian: He learns about mugs before
learning about glasses. Supposing his perceptual structures
were roughly like ours, he could describe the mugs by
mentioning that something seems to break the regularity of
the surface. However, he needs not encode this fact to ide
tify the mugs--perhaps they are the only small objects of that
sort he has ever observed. The Martian may represent mug
with a holistic, single unit (the shape of a mug as a chunk) in
the vocabulary. It is not necessary to learn two units of
representation when one unit performs the relevant
categorization. When the Martian experiences glasses, the
chunk mug is not a component of glasses as cylinder was of
mugs. To distinguish the two categories, the Martian could
simply instantiate cylinder as a new unit in his vocabulary.
Thus, although the two Martians would categorize glasses
and mugs equivalently well, different features and concepts
would cause this behavior.

In short, we want to argue that the context of known
concepts constrains the learning of new features. At any
state of conceptual development, a set of features defines a
repertoire of possible concepts--the set of all possible
combinations of the features of the set, or more technically,
the closure on the feature set. Known concepts are always a
subset of this repertoire. Learning a new category either
means finding a new combination of features within the
conceptual repertoire, or expanding the repertoire by adding
a new feature to the vocabulary. Which strategy applies
depends on the similarities and contrasts between known
concepts and the new category. Known concepts constitute a
categorical context , they fix contrasts and similarities for
concept learning and feature extraction processes.

The following experiments test a few predictions of
feature learning in categorical context. The first experiment
was a simple test of the idea that the context of different
object categories could change the interpretation of the same
target stimuli. The second experiment examined whether
categorical context could induce the representation of two
categories A and B with different features, depending on
which category is the context of the other.

Experiment 1

The following experiments used unfamiliar categories of
grey-level "Martian cells" similar to cells observed in a
microscope. The rationale of Experiment 1 was to present
two groups of subjects (the A-BC group and the AB-C
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group) with the context of two categories (respectively
categories A and BC and categories AB and C) composed of
different groupings of the same a, b, and ¢ components. We
expected the acquisition of a new vocabulary to be context
dependent and to determine the parsing of test objects.

Methods

Subjects and Stimuli. Twenty-four Grenoble University
students were randomly assigned to experimental conditions
AB-C or A-BC with the constraint that the number of
subjects be equal in each condition. We synthesized
categories of "Martian cells” with 2D-graphics software on
an Apple Macintosh computer. A Martian cell was created
from a uniformly grey circle, by adding black parts (cell
bodies) at random locations within the circle. Some parts
defined the categories, other parts were distractors. A
Gaussian filter was then applied to each cell to blend
together the background circle and the organites (see Figure
1 for example of Martian cells). We synthesized a total of 4
learning categories, each composed of 5 Martian cells,
Categories A and C were simple categories because a single
component (respectively part a and part b) defined them.
Categories AB and BC were composed categories because
two components (respectively ab and bc ) were adjacent to
one another in the cells. Note that the adjacent components
were always connected at loci of local minima of curvature,
the perceptual constraint on part segmentation of Hoffman
and Richards (1985). Testing cells A, C, AB, BC and ABC
(see Figure 1) were named according to the simple or
composed part they tested. Testing cells included the
subcomponents a, b, ¢ of the learning categories plus
distractor components.

Procedure. In a learning phase, subjects were told that they
would see 10 Martian cells, one at a time. Subjects were
instructed to observe the pictures carefully (each on a
separate page). In the A-BC (vs. AB-C ) condition, subjects
experienced the A (vs. AB) category and the BC (vs. O)
category. (The order of presentation of the categories was
counterbalanced.) Subjects were not instructed that the 10
stimuli formed two categories; categories were presented a
maximum of 3 times, depending on subjects’ self-assesment
of their learning.

In a testing phase, subjects saw the five test stimuli in a
random order, one at a time, on a CRT screen. Subjects were
instructed to circle the parts of the cells by delineating them
using a computer mouse (see Schyns and Murphy, 1991,
1993).



Figure 1 : This figure illustrates the exemplars of
Martian cells used in the testing phase of Experiment
1. The simple A and C cells are respectively defined
by the a and ¢ components. Composed AB, BC, and
ABC cells are defined by various combinations of the
a, b and ¢ components.
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Results and Discussion.

If the context of different objects results in different units
being learned, subjects should interpret the same test stimuli
quite differently. A-BC subjects should analyze the new
ABC test cell as a composition of a and bc , but AB-C
subjects should perceive ab and c¢. We scored subjects on
whether their segmentations of ABC was compatible with
the a and bc, or with the ab and ¢ vocabulary. A Chi-square
test of association revealed a significant association between
group (A-BC vs. AB-C) and type of delineation (a and bc vs.

aband ¢), X2(1) = 10.37, p < .01.

To test further the hypothesis that subjects had extracted
different vocabularies of object representation, we compared
the delineations of the composed test stimuli. Our
hypothesis was that A-BC subjects should segment AB in
two parts (because a was a unit allowing the segmentation)
but they should systematically delineate BC as a chunk. AB-
C subjects should do the opposite (i.e., segment BC because
of ¢, but delineate AB as a chunk). We scored each subject
on whether they segmented AB or BC. A Chi-square test of
association revealed a significant association between group
(A-BC, vs. AB-C) and segmentation or no segmentation of

each chunk, X 2(1) = 12.44, p < .001. This indicates that
what one group perceived as an indecomposable unit was
perceived by the other group as a composition.

As indicated by the previous analysis, the simple parts a
and ¢ may bhave a different status in both groups.
Specifically, the A-BC (vs. AB-C) group should perceive a
(vs. ¢ ) as a unit of categorization, but a (vs. ¢) should not be
a unit in AB-C (vs. A-BC). We scored each subject on
whether they circled a or ¢ in the A and C stimuli. A Chi-
square test of association showed a significant association of
group and delineation, X2(1) = 7.19, p < .01. Each group
was aware of its simple unit but was unaware of the simple
unit of the other group. This provides further evidence that
composed parts were perceived as a holistic single unit
unless its components were themselves units (see also
Schyns & Murphy, in press).

Experiment 2

Experiment 1 suggests that the context of different objects
causes the leaming of different units which influence
people's perception of stimuli. The goal of Experiment 2
was (o demonstrate that the context of known concepts
determines which features are chosen to encode a new
object category. We set up a very simple situation of
categorization. Two groups of subjects had to learn a simple
category X and a composed XY category of Martian cells,
but the learning order was different in each group (X before
XY, or XY before X). We wanted to show that despite
equivalent categorizations of X and XY stimuli the groups
used different features.

Methods

Subjects and stimuli. Twenty Grenoble University students
participated in the experiment; they were assigned randomly
to conditions. Stimuli were Martian cells constructed as
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explained earlier. We synthesized three categories of
Martian cells for the learning phase of the experiment. The
composed part ab defined the AB category (a and b were
adjacent on each exemplar of the category). The A and B
categories were simple categories defined respectively by
the subcomponent a and the subcomponent b.

Five types of stimuli were used for testing: AB cells, A
cells, B cells, A-B cells and distractors. A-B cells were cells
in which the components a and b were not adjacent to one
another but randomly disposed in the cell with the constraint
that they did not overlap. Distractor cells were only made of
components of random shapes (see Figure 2).

Procedure. Initial Learning Phase. In an initial learning
stage, subjects were instructed to carefully observe two
categories of 10 cells. Stimuli were presented one at a time
for 1 sec. on a CRT screen. After each category, subjects’
learning was tested with 4 cells (two new exemplars and two
distractors). Subjects' task was to categorize the cells.
Perfect categorization was the criterion to learn the second
category, or to complete the initial learning phase. We
defined four groups of subjects according to order of
presentation of the categories. In th A-ABgroup and the B-
AB groups, the simple category (either A or B) was learmed
before the composed AB category. This order was reversed
in the AB-A and the AB-B groups. For ease of presentation,
we will call the first two groups the X-XY leamning condition
and the other groups the XY-X learning condition.

Verification Phase. To insure that the memory of the
second category did not interfere with the memory of the
first category, we tested subjects' memory of the categories
after completion of the initial learning phase. The test was a
simple categorization of 6 new cells (two simple, two
composed, and two distractors cells). Subjects had to
indicate the categorical membership of each exemplar
(possible responses were X, XY and none) by pressing the
appropriate key of a computer keyboard. A single mistake
would eliminate a subject from the experiment.

Testing Phase. In the testing phase, subjects were asked to
categorize 20 new cells: 4 X, 4 XY, 4 X-Y and 8 distractors
cells. To ensure that subjects would categorize after (instead
of during) their exploration of the cells, we simulated the
effect of looking at cells through the aperture of a
microscope. That is, subjects saw successively 2 snapshots
of different portions of the cells. For the X and XY cells, one
portion showed the relevant component (x or xy) and the
other portion revealed a distractor part. For X-Y cells, x was
presented in one portion, and y in the other. For distractor
cells, both portions showed distractor parts. (Order of
snapshot presentation and of assignment of features to
portions was randomized.) Subjects had to categorize each
cell by pressing the appropriate keyboard key.



distractor cell

Figure 2 : This figure illustrates exemplars of the test
stimuli. The simple A and B cells are respectively
defined by the a and b components. AB and A-B cells
are defined by the a and b components, but the
components are not adjacent to one another in A-B
cells.

770



Delineation Phase. To assess the units used in the testing
phase, we simply asked subjects to circle the parts they saw
during the experiment on five new cells (1 X, 1 Y and 3
distractors presented one at a time.)

Results and Discussion,

Both groups categorized equally well the X and XY cells
(respectively, X= 97%, XY= 81% for the X-XY group and X=
94%, XY= 81% for the XY-X group). To understand better
which units of representation were responsible of the
categorical judgments we must turn to the categorizations of
X-Y cells. Remember that X-Y cells are composed of the x
and y components, but the components are not adjacent to
one another (see the A-B cell on Figure 2). Since the
categorical structure is exactly the same in both groups
(namely, y distinguishes X and XY), X-XY and XY-X subjects
should categorize X-¥ cells in the same way.

We scored subjects on whether they categorized X-Y cells
as X or XY cells. A t-test on the difference scores of X and
XY categorizations of X-Y cells revealed a significant
difference between X-XY and XY-X, 1(7) = 2.23, p< .05. In
other words, X-XY subjects preferentially categorized X-Y
cells as XY while XY-X subjects categorized the same cells
as X. This is counterintuitive because both groups
categorized equivalently well X and XY stimuli! This
suggests that the groups use different concepts to categorize
the cells. Specifically, X-XY subjects seem to combine the
features xand y to recognize X-Y cells, while XY-X subjects
notice x and disregard y.

To test this hypothesis, we looked at whether subjects
delineated the x and the y parts in X cells and Y cells during
the delineation phase. A Chi-square test of association
revealed a significant association between group and the
delineations made (circling xand circling ), Xz(l} = 4,267,
p< .05. If the X-XY subjects delineated x and y, XY-X
subjects mostly delineated x, disregarding Y cells as
distractors.

In summary, Experiment 2 demonstrated that the context
of one concept influences which features are learned to
encode a new category. Althought both groups experienced
the same categories, each group represented the categories
with a different features set. This ocurs because
categorization influences features extraction. Specifically, in
Experiment 2 learning the X concept forced X-XY subjects to
instanciate y to represent the contrast between the known X
category and the new XY category. Because XY-X subjects
learned xy as a single holistic unit, the XY concept imposed
different contrast for the encoding of the X category,
resulting in x being added as an independant feature to the
vocabulary of object concepts.

The results of Experiment 1 and Experiment 2 suggest
that the way people organize their world determine their
vocabularies of object representation. We think feature
learning in conceptual context has far reaching implications
for theories of perceptual leamning and developement.
Conceptual context extends concept learning to the
development of a vocabulary of functional features --
features useful to categorize objects. Conceptual context
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offered a framework to study the grounding of functional
fetaures on perception.
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