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Abstract

Comparative Causal Effect Estimation and Robust Variance for Longitudinal Data Structures with
Applications to Observational HIV Treatment

by

Linh Mai Tran

Doctor of Philosophy in Biostatistics

University of California, Berkeley

Professor Maya Petersen, Chair

This dissertation discusses the application and comparative performance of double robust es-
timators for estimating the intervention specific mean outcome in longitudinal settings with time-
dependent confounding as well as the corresponding estimator variances. Specifically, we focus on
carefully defining target causal parameters to avoid known positivity issues, estimating these pa-
rameters using the asymptotically efficient and double robust targeted minimum loss-based estima-
tion, comparing this to other double robust estimators of the same causal parameter, and estimating
the corresponding variances in a way which demonstrates valid Type I errors while retaining sta-
tistical power. Chapter 1 begins by introducing the open problem in statistics. We present the
International epidemiologic Databases to Evaluate AIDS, East Africa region (IeDEA-EA) cohort
and the implementation of a low risk express care program implemented between 2007−2009. We
continue in Chapter 2 by presenting the targeted learning road map for causal inference. This road
map is applied, as a case study, to the IeDEA-EA cohort in evaluating the impact of the low risk
express care program. Targeted minimum loss-based estimation is used to estimate the intervention
specific mean outcome using data adaptive machine learning candidate estimators for the nuisance
parameters. Practical issues are addressed, including carefully defining the causal parameters (and
the corresponding causal contrasts) and remaining within the boundaries implied by the statistical
model while using the machine learning algorithms. In Chapter 3, we compare additional estima-
tors for the intervention specific mean outcome. The iterated conditional expectation estimator,
inverse probability weighted estimator, augmented inverse probability weighted estimator, double
robust iterated conditional expectation estimator, and targeted minimum loss-based estimator are
presented. Additionally, variations on the double robust iterated conditional expectation estimator
and targeted minimum loss-based estimator are reviewed and implemented. Simulations are con-
ducted to analyze the finite sample performance of each estimator, in both correct and mis-specified
models. The estimators are also applied to estimating the impact of enrollment into the low risk ex-
press care program in the IeDEA-EA cohort. Chapter 4 studies the estimation of estimator variance
for estimators solving the efficient influence function. A robust approach of estimating the efficient
influence function variance is presented, followed by approaches for estimating the derived expec-
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tation of the variance. This robust approach of estimating the EIF variance can be used to raise a
red flag for unreliable statistical inference due to sparsity, thereby declaring that the target param-
eter is practically not identifiable from the data, and that the reported variance estimates (though
large) will themselves be imprecise. We additionally present a bootstrap approach based on fitting
the initial density of the data once, followed by a non-parametric bootstrap of the targeting step.
This bootstrap approach can be used to estimate the variance of substitution based estimators solv-
ing the efficient influence function. Simulations are conducted, demonstrating the bias, variance,
coverage, and statistical power resulting from each of the variance estimators. Standard errors and
confidence intervals are calculated using each of the variance estimators in estimating the impact
of enrollment into the low risk express care program in the IeDEA-EA cohort. The primary ap-
pendices present relevant proofs for the analyses conducted in this dissertation, while R code for
implementing the various estimators are provided in secondary appendices.
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Chapter 1

Introduction

1.1 The open problem
Obtaining a causal effect from observed data is currently one of the greatest open problems of the
modern era. In the vast majority of research studies where the researcher is tasked with analyzing
an exposure and outcome, the primary interest is usually in estimating a causal effect. That is,
how would some parameter of the outcome distribution differ under alternative exposure assign-
ments? For example, how would the probability of death by some time point differ if all subjects
versus none had received the exposure? While the exponential growth of computing power has
lead to faster and easier data collection and analysis, consequently providing droves of potentially
powerful insights, the analysis and resulting inference still varies widely from one analyst to the
next. This discrepancy can lead to very different decisions involving potentially large amounts of
resources from consumers of the results. It follows that much rigor and care needs to be placed
into such analyses so that significant differences (if any) in the results are not due to errors such as
incorrect assumptions or inaccurate formulations of the corresponding statistical problem.

A statistical model M is formally defined as a set of potential probability distributions. Con-
ventionally, the statistical model provides a framework in which parameters can be estimated and
inferences drawn from the observational data used in the model. For example, with classical statis-
tics, an analyst may choose a parametric linear regression model (Figure 1.1) with p parameters
for the data observed. Once the parameters are estimated from the data, the parameter that corre-
sponds to the treatment variable of interest is interpreted as the treatment effect. In scenarios where
these models contain the truth, then efficient estimates can be obtained with standard maximum
likelihood estimation software. In practice, however, these simple models rarely (if ever) capture
the true relationship of the covariates from the data. An obvious solution, then, is to use larger
semi-parametric or non-parametric models. To aid in doing so a systematic road map, backed by
theory, could be employed providing a robust and reproducible approach of establishing inference.

van der Laan and Rose [49], Petersen and van der Laan [66], Pearl [61], and others have ad-
vocated for the use of such a systematic road map for translating causal questions into statistical
analyses and interpreting the results. This road map requires the analyst to learn as much as possi-
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Figure 1.1: The true probability distribution p0 along with parametric M p and non-parametric
M np statistical models, residing within the Hilbert space of probability functions p ∈P .

ble about how the data were generated, use the information to posit a realistic statistical model that
encompasses these findings, and assign a corresponding estimand that can answer the scientific
question of interest. While in some cases this approach can be straightforward, in practice it gener-
ally requires much consideration when implementing. This is especially true in observational data,
where a common objective is to estimate the joint effect of one or more longitudinal exposures, or
series of sequential treatment decisions (for example, Bodnar [4], Bryan [7], and Petersen [63]).
For example, one may be interested in contrasting immediate enrollment into a particular program
(a single treatment decision) with delayed enrollment (a series of treatment decisions, in which
enrollment is sequentially deferred at multiple time points at which it could have been initiated).

In this introduction, we provide an overview of the International epidemiologic Databases to
Evaluate AIDS, East Africa region (IeDEA-EA) cohort used in this dissertation. The low risk
express care program is presented and detailed. The cohort is described and formalized as n copies
of O iid∼ P0. We review the likelihood and specify the notation for this observed data.

Chapter 2 reviews the framework for causal inference as applied to our setting [49, 62]. This
includes, though is not limited to (1) stating the scientific question, (2) specifying the causal model
M F , (3) specifying the causal parameter ΨF (P0

d ), and (4) assessing identifiability of our causal
parameter as some function of the observed data distribution P0. We provide a detailed descrip-
tion of this analysis, with an emphasis on several practical challenges likely to arise in similar
applications.

Chapter 3 considers additional estimators for the same target parameter as Chapter 2 (i.e. the
intervention specific mean outcome). Each estimator considered is described in detail and practi-
cal implementations are discussed. The decision between conditioning on treatment and pooling
across different treatment regimes is considered. We conduct a simulation study to analyze finite
sample performance in the estimators, in addition to applying each estimator to our IeDEA-EA
cohort.

Chapter 4 presents on two novel methods of estimating the variance of estimators solving the
equations corresponding to their influence functions, particularly in the setting of practical pos-
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itivity violations. A robust estimation approach that directly targets the variance of the efficient
influence is first presented, along with estimators of this parameter. A bootstrap approach is also
presented, which is shown to perform well for substitution based estimators such as targeted min-
imum loss-based estimation. Simulation studies are conducted using these variance estimators
on both a single time-point static treatment setting and longitudinal setting with time-dependent
confounding. We additionally apply the variance estimation approaches to the IeDEA-EA data,
demonstrating the variations in confidence interval lengths from each approach.

Mathematical proofs and software are reserved for the appendices. Appendix A presents a
proof demonstrating the equivalence of influence functions between the full data O and the reduced
data Or = O/L1(K + 1) used in the Chapter 2 applied analyses. Appendix B contains proofs
regarding the robust approach of estimating the efficient influence function variance presented in
Chapter 4, generalized to working marginal structural models. Appendix C contains code used to
compare the different estimators in Chapter 3 and Chapter 4.

1.2 The IeDEA-EA cohort
The majority of individuals with HIV live in settings, such as East Africa, where noticeable re-
source and infrastructure constraints place a limitation on the care these patients can receive [100,
115]. Antiretroviral therapy (ART) medication has been shown to reduce both viral loads and mor-
tality in these patients [23, 59, 119, 15, 12, 54], as well as reduce rates of transmission to persons
uninfected [68, 2, 13, 9]. However, the shortage of resources and health care professionals limit
the number of patients who can be placed on ART [110, 40, 116, 108].

Due to these limitations, various approaches have been undertaken in an effort to ensure that the
maximal number of patients who need care can receive it. One such approach shifts care provision
tasks for patients considered to be at low risk from physicians and clinical officers to other care
professionals, such as nurses. Consequently, the workload for the physicians and clinical officers
is reduced, thereby theoretically increasing the attention that higher risk patients can receive for
HIV or other conditions [115].

One such program was implemented between 2007 and 2009 among clinics around eastern
Africa. These clinics were followed as part of the Academic Model Providing Access to Healthcare
(AMPATH) program and contributed data to the International epidemiologic Databases to Evalu-
ate AIDS, East Africa region (IeDEA-EA). The purpose of this Low Risk Express Care (LREC)
program is to shift care tasks for patients considered to be at low risk from physician-centered
care models to those utilizing non-physician health workers trained in simplified and standardized
approaches to care. Patients were considered to be at low risk if they met the following set of
criteria.

1. They were older than 18 years of age.
2. They were stable on ART for at least 6-months.
3. They had no AIDS-defining or AIDS-associated events within the past 180-days.
4. During past 6 months, they reported no missed pills when asked about the 7 days prior to

each visit.
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5. They were not pregnant within the past 30 days.
6. Their most recent CD4 count> 200 cells/µL within 274 days prior to the current visit.

Once eligible, at each clinical visit, the clinician decided whether or not to enroll the patient
into the LREC program. Patients enrolled had part of their care, such as identifying and managing
ART side effects and opportunistic infections, shifted to nurses. Table 1.1 shows the differences
between the standard of care and the LREC model.

Table 1.1: Proportion of visits responsibility assigned between the (a) standard and (b) LREC
models of care provision. (P = Physician, CO = Clinical Officer)

Clinical monitoring Standard model LREC model
P / CO Nurse P / CO Nurse

Request CD4 / VL counts All None All None
Monitor / support ART adherence All All 1/3 All
Determine functional status All None 1/3 2/3
Identify / manage ART side effects All None 1/3 2/3
Identify / manage opportunistic infections All None 1/3 2/3

Our study population is comprised of subjects found eligible for the LREC program within
each of 15 clinics in Kenya between 2006 and 2009, with each clinic starting the LREC program
between 2007 and 2008. Table 1.2 shows the characteristics of the 15 clinics included in our study.

Table 1.2: LREC program clinic characteristics (n=15).

Area No.(%)
Urban 6 (40.0)
Rural 9 (60.0)

Clinic Type No.(%)
Referral hospital 3 (20.0)
(Sub) district hospital 7 (46.7)
Rural health center 5 (33.3)

Patients No.(%)
≤ 500 4 (26.7)
501−1000 3 (20.0)
1001−1500 4 (26.7)
> 1500 4 (26.7)

In an effort to ensure that other unmeasured (or unmeasurable) aspects of care remained roughly
constant, the first point of patient eligibility was truncated at 1-year prior to LREC program ini-
tiation at each clinic. Our target population is therefore comprised of patients found eligible for
LREC within 1-year before the clinic’s start date up to the administrative censoring date (5 March
2009). Our baseline timepoint (t = 0) was defined to be the first date at which a patient was eligible
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for the program within this window. Figure 1.2 shows the distribution of the time from baseline
to start of the LREC program, with negative values representing patient eligibility post program
initiation. A small number of subjects had more than one year of follow up from baseline to LREC
program initiation as a result of transferring to a new clinic with a later LREC start date. As pa-
tients generally visited clinics every three months, we discretized follow-up into time intervals of
90 days.

Patients were followed from the baseline time point defined above until one of four possible
end points:

1. Death
2. Loss to follow-up (LTFU), defined here to be 6.5 months with no clinical visits
3. Database closure, occurring on 5 March 2009
4. Transfer to a clinic with no LREC program

0

1000

2000

3000

−500 0 500 1000
Days

C
ou

nt

Figure 1.2: Histogram of time from eligibility to LREC program initiation.

Observed data
For notational convenience, we defined variables after the occurrence of any of these end points as
equal to their last observed value. Following discretization of the data, we have a longitudinal data
set with time-varying covariates, where the time points t correspond to 90-day intervals (e.g. 0, 90,
180, ... days). Let W be the observed baseline time-independent covariates observed at the date the
patient was first eligible for LREC (age at eligibility, CD4 count at start of ART, gender, indicator
that ART regimen is PI-based at eligibility, treated for tuberculosis at start of ART, indicator at
urban clinic at eligibility, and WHO immunologic stage at both the start of ART and maximum
stage prior to start). Let the time-varying variables from the observed data for each time point t be:

O(t) = (L1(t),Y (t),A1(t),A2(t),C1(t),C2(t)) : t = 0,1, . . . ,K, (1.1)
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where

• L1(t) consists of the most recent measures of time-varying covariate values at the start of
interval t, inclusive of covariates measured at the clinic level (i.e. calendar date, most recent,
nadir, and zenith CD4 count, days since enrolling into the AMPATH program, an indicator
of remaining on ART, pregnancy status, indicator in WHO stage III or IV, indicator of being
treated for tuberculosis, clinic type (rural or urban), and an indicator of having at least one
clinic visit in the previous interval).

• Y (t) is an indicator that the patient is either (a) no longer in care (not seen in the clinic for
6.5-months) or (b) has died by the end of interval t. It jumps to and remains at 1 if either
event occurs.

• A1(t) is an indicator of the LREC program availability by the end of interval t. It jumps to
and remains at 1 once the program has started.

• A2(t) is an indicator of enrollment into the LREC program by the end of the interval. It
jumps to and remains at 1 at time of enrollment and remains at 0 if A1(t) = 0.

• C1(t) is an indicator that the patient transfers by the end of interval t to a clinic other than
one of the 15 clinics that initiate the LREC program. It also jumps to and remains at 1 once
the patient transfers.

• C2(t) is an indicator of data base closure by the end of interval t. It jumps to and remains at
1 at the end of the study. Note that although database closure occurs at a fixed calender date,
censoring time due to database closure remains a random variable due to variability in time
of eligibility for LREC.

To simplify notation, we refer to the covariate and outcome nodes collectively as L(t) =
(L1(t),Y (t)). Furthermore, we refer to the treatment and censoring processes together as A(t) =
(A1(t),A2(t),C1(t),C2(t)). By additionally defining L(0) to include our baseline variables W such
that L(0) = (W,L1(0),Y (0)), our observable data for each subject i can be expressed as

Oi = (Li(0),Ai(0),Li(1),Ai(1), . . . ,Li(K +1)) (1.2)

where K + 1 is our final time point of interest, here equal to 4 (or equivalently 450 days after
LREC eligibility). We assume the observed data over all subjects consists of n copies of Oi

iid∼ P0 ∈
M , where P0 is the true underlying distribution (residing in a statistical model M ) from which the
data are drawn.
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Chapter 2

Evaluating the impact of the low-risk
express care program

We follow the targeted learning road map as presented by van der Laan and Rose [49] and Petersen
and van der Laan [66], as applied to our IeDEA-EA cohort. In doing so, we perform a case study of
the targeted learning road map in the longitudinal setting. For organizational purposes, we separate
the estimation of our parameter and interpretation of the results into subsequent sections.

In particular, we emphasize two primary issues in this chapter. The first is the translation of the
scientific questions into counterfactual causal parameters, including a total effect and controlled
direct effect. This is carefully defined as to avoid known and potential positivity violations. The
second is the use of recently developed estimation methods, including a double robust and semi-
parametric efficient targeted minimum loss-based estimator, the integration of Super Learning for
nuisance parameter estimation, and the imposition of global restraints for conditional distributions
implied by our statistical model. While previous analyses have applied the longitudinal targeted
minimum loss-based estimation (TMLE) method described here [6, 14], to the best of our knowl-
edge, this represents the first such application that integrates advanced machine learning algo-
rithms in an approach known as Super Learning [47]. We discuss several decisions and practical
challenges that arise as a result.

2.1 The targeted learning road map
Any causal scientific question must first be framed as a statistical question when being answered
with the observed data. For purely statistical questions, this includes properly defining the data,
statistical model, and estimand or statistical parameter of interest. Here we consider data that
consists of n independent and identically distributed observations of a random (vector) variable O
with some underlying probability distribution P0. The statistical model M should be chosen to
ensure that it contains the true distribution P0, and thus any model assumptions should be based
only on real knowledge about the process which generated the data. As stated in Chapter 1, in
practice this generally implies a semi-parametric or nonparametric statistical model.
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In order to translate causal questions into such a statistical estimation problem, the road map
further requires translating the scientific question into a formal causal query. Such a query is
typically defined as a parameter of the counterfactual distribution of the data, or equivalently,
the distribution the data would have under some ideal hypothetical experiment or intervention.
Here we consider counterfactual experiments indexed by static interventions to set a vector Ā of
treatment or exposure variables equal to some fixed value d(l̄) as a function of covariates l̄, and
denote the resulting counterfactual distribution of the observed data P0

d . The statistical model M
can then be augmented with possible additional non-testable causal assumptions about the data
generating process. These causal assumptions are representable using structural causal diagrams
or structural equation models [61]. The resulting causal model M F therefore represents a model
on the counterfactual distribution P0

d under each d(l̄) of interest.
Finally, one must also determine what additional causal assumptions (if any) are needed in

order to obtain identifiability of the target causal parameter from the distribution of the observed
data. In other words, what additional assumptions on the data generating process will allow the
researcher to express the target causal parameter ΨF (P0

d ) as a statistical estimand Ψ(P0) that is
a function of the observed data alone? In this chapter, we focus on the estimand provided by
Bang and Robins [3] through the longitudinal g-formula, which identified the causal effects of
longitudinal interventions under the sequential randomization assumption.

Once identifiability has been established, the statistical model M and target parameter of the
observed data distribution Ψ(Pd

0 ) are used to select a corresponding estimator Ψ̂ which is a function
of the empirical distribution Pn. This process may additionally require nuisance parameter estima-
tion. Here, we describe implementation of a double robust efficient targeted maximum likelihood
estimator [46], based on an iterative conditional expectation representation of the longitudinal g-
formula proposed by Bang and Robins [3]. The resulting Ψ̂ is used in calculating the parameter
estimate Ψ̂(Pn) = ψ̂n. Corresponding influence function based standard errors for the estimates are
calculated for inference and results are interpreted. In the following sections we illustrate each of
these steps in greater detail using the LREC analysis as a case study.

The scientific question
In implementing this task-shifting program, a primary question of interest among health care
providers is whether clinic level exposure to and individual level enrollment in the program re-
sults in either better or worse clinical outcomes. For example, it could be that enrollment in the
program increases loss to follow up and mortality because care is received from individuals that
have a lower level of qualification or certification. Alternatively, enrollment in the program might
decrease in mortality and loss to follow-up due to more attentive and personal care given to en-
rolled patients. It could also be that an equivalent level of care is provided and thus, no impact
is observed. Furthermore, receiving care at a clinic that has already implemented the LREC pro-
gram might itself have a direct beneficial or detrimental effect on patient outcomes, in addition to
an indirect effect mediated by patient enrollment in the program. Such an effect could result, for
example, from changes in clinic practices made possible by shifts in workload.
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Likelihood
We first consider the likelihood L(O) for the data structure specified in Chapter 1.2. In particular,
we use the following factorization, implied by the assumed time ordering L(t)→ A(t) such that
the likelihood for subject i is

L(Oi) = P0(Li(0),Ai(0),Li(1),Ai(1), . . . ,Li(K +1))
= P0(Li(K +1)|L̄i(K), Āi(K)) ·P0(Ai(K)|L̄i(K), Āi(K−1))
·P0(Li(K)|L̄i(K−1), Āi(K−1)) ·P0(Ai(K−1)|L̄i(K−1), Āi(K−2))
· · ·P0(Li(0))

=

K+1

∏
t=0

P0(Li(t)|L̄i(t−), Āi(t−))︸ ︷︷ ︸
Q0,L(t)(L(t)|Pa(L(t))

 ·
 K

∏
t=0

P0(Ai(t)|L̄i(t), Āi(t−))︸ ︷︷ ︸
g0,A(t)(A(t)|Pa(A(t))


(2.1)

where we define X̄(t) ≡ (X(1),X(2), . . . ,X(t)) to denote the history of variable X up to time
t, t− ≡ t − 1 to denote the previous time point, P0(·) to denote the true probability distribution
of O, and A(−1) = L(−1) = ∅. We assume O is discrete for sake of presentation. We fol-
low convention in using Pa(X) to denote the parents of the node defined as the variables which
precede it and denote the conditional probabilities P0(L(t)|·) and P0(A(t)|·) as the Q and g fac-
tors for the likelihood, respectively, such that Q0,L(t)(L(t)|Pa(L(t)) = P0(L(t)|L̄(t−), Ā(t−)) and
g0,A(t)(A(t)|Pa(A(t)) = P0(A(t)|L̄(t), Ā(t−)). For ease of notation, we collectively refer to the en-
tire set of P0(L(t)|·) and P0(A(t)|·) for all t respectively as

Q0 ≡ (Q0,L(0)(L(0)|Pa(L(0))),Q0,L(1)(L(1)|Pa(L(1))), . . . ,Q0,L(K+1)(L(K +1)|Pa(L(K +1))))

g0 ≡ (g0,A(0)(A(0)|Pa(A(0))),g0,A(1)(A(1)|Pa(A(1))), . . . ,g0,A(K)(A(K)|Pa(A(K)))).

(2.2)

Furthermore, we denote the conditional expectation of the L(t) process with an overhead bar
notation such that Q̄0,L(t) ≡ E0[L(t)|L̄(t−), Ā(t−)] and Q̄0 to denote the collection of Q̄0,L(t) across
all time points.

The statistical model
With our data and likelihood clear, we first consider a statistical model M for the true distribution
P0, such that if Q and G are the variationally independent sets of all possible values for Q0 and
g0 respectively, then the statistical model can be represented as M = {P = Q ·g : Q ∈Q,g ∈ G }.
We assume a semi-parametric model, which restricts the set of possible distributions for the g0 and
Q0 components of the likelihood. Specifically, to respect the factual details that we know about
the data generating process, we force two model restrictions on the conditional distributions of
g0,A(t)(A(t)|Pa(A(t)) : k = 0,1, . . . ,K.
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1. Once A1(t) = 1, we have that A1(t+) = 1.

2. Once A2(t) = 1, we have that A2(t+) = 1.

where for notational convenience, we define t+ ≡ t +1 to denote the next time point and X(t+)≡
(X(t +1),X(t +2), . . . ,X(K +1)) to denote the remaining history of X from time t +1 to K +1.

Knowing that our outcome is also a counting process, we additionally force a model restriction
on the conditional distributions of Q0,L(t)(L(t)|Pa(L(t)) : k = 1, . . . ,K +1.

1. Once Y (t) = 1, we have that all last observed values for O(t) are carried forward with prob-
ability 1, i.e. O(t) = O(t)

where we define X(t)≡ (X(t),X(t +1), . . . ,X(K +1)) to denote the remaining history of variable
X to time K +1.

We emphasize again the stark contrast of this approach to the more classical one in which the
analyst sees that the dependent variable is binary and, say, chooses a parametric logistic regression
model with some “reasonable” set of covariates. The approach taken here makes minimal assump-
tions for our statistical model that we know to be true, as opposed to the parametric approach that
makes many constraints such as linearity, smoothness, and no multi-collinearity.

The causal model
A causal model allows us to represent additional knowledge and assumptions associated with our
scientific question that cannot be represented statistically. We present our causal model M F by
making use of structural equation models to formally present how we assume each variable to be
generated. We treat the 15 IeDEA-EA clinics as fixed, rather than sampled, which would describe
an experiment in which individual subjects become eligible for the LREC program at random
times. Specifically, we define the following non-parametric structural equation model (NPSEM)
[61] to represent our knowledge about the causal process that generated the observed data.

L1(t) = fL1(t)(L̄(t
−), Ā(t−),UL1(t))

Y (t) = fY (t)(L̄(t
−), Ā(t−),UY (t))

for t = 0,1, . . . ,K,K +1

A1(t) = fA1(t)(L̄(t), Ā(t
−),UA1(t))

A2(t) = fA2(t)(L̄(t), Ā(t
−), Ā1(t),UA2(t))

C1(t) = fC1(t)(L̄(t),Y (t
−), Ā(t−),A1(t),A2(t),UC1(t))

C2(t) = fC2(t)(L(0),Y (t
−),C̄(t−),C1(t),UC2(t))

for t = 0,1, . . . ,K

(2.3)

where U ≡ (UL1(t),UY (t),UA1(t),UA2(t),UC1(t),UC2(t)) are unmeasured exogenous variables from
some underlying probability distribution PU and L(−1) = A(−1) =∅.
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This causal model specifies how we believe each of the variables in our data are determinis-
tically generated, with randomness coming only from the unmeasured exogenous variables U . It
tells us, for example, that individual enrollment immediately following LREC eligibility A2(0)
is generated as a deterministic function fA2(0) of L(0), program availability A1(0), and an error
term UA2(0) drawn from some underlying population. Additionally, while not explicitly stated in
Equation (2.3), we note that the deterministic function for enrollment fA2(t) sets A2(t) = 0 with
probability 1 if Ā1(t) = 1, i.e. if the program is not yet available.

Note that censoring due to end of study C2(t) is not a function of time updated covariates
L̄(t) beyond baseline covariates L(0). This is because, while the values of L(0) may vary due to
the calender date at which a subject’s baseline eligibility occurs, once this date is set for a given
subject, the censoring process due to database closure is deterministic.

Our outcome Y (t) is assumed to be a function of treatment and censoring A(t) only up to the
previous time point, t− 1. This restriction is imposed in order to avoid the possibility of reverse
causality, i.e. that death/LTFU (Y (t)) that occurs in an interval t affects availability/enrollment
(A(t)) in the same interval. Consequently, the effects of availability and enrollment within an
interval on the composite outcome are only captured beginning in the following interval.

The causal parameter
Recall that we are interested in evaluating the impact of the LREC program for the IeDEA cohort.
It follows that we should define a causal parameter that corresponds with this scientific question.
More specifically, we are interested in the effect of LREC exposure and enrollment on the proba-
bility of both death and remaining in clinical care. Patients who do not return for continuing HIV
care are subject to higher risk of complications and health decline [38, 89, 22, 21, 34], placing
them at unnecessarily higher mortality rates. To account for this, we define our outcome of interest
(Chapter 1.2) as a composite of either the occurrence of death or LTFU. Patients were followed
until this “failure” or until censoring due to either the end of study or clinic transfer. We aimed to
evaluate the impact of (a) implementation of the LREC program at the clinic, and (b) enrollment
into the LREC program after implementation on both retention “in-care” and survival.

Conceptualizing an ideal hypothetical experiment can help in defining the target counterfactual
parameter of interest. In order to evaluate the effect of exposure to and enrollment in the LREC
program, we can conceive of an experiment in which we compare survival over time under alter-
native interventions to set time to program availability, time to enrollment following availability,
and under an additional intervention to prevent censoring. As represented above in the causal
model, these counterfactual outcome distributions are defined in terms of an intervention on the
data-generating mechanism for A(t) : t = 0,1, . . . ,K. In other words, we intervene to set values of
program availability, enrollment, and censoring to some fixed values of interest at all time points.

The outcome at t = 0 is independent of any potential treatment assignments A(t). As the
purpose of this study is to analyze the impact of different levels of treatment on the outcome, we
conditioned on survival past t = 0. Thus, we had that Y (0) = 0 for all subjects included in the
study. That is, all subjects in the study survived past the first 90 days.
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As the causal parameter, we focus on the mean of the counterfactual outcome at a fixed time
point under a specific treatment intervention d(l̄(K)). Let Ȳd(t∗) denote the counterfactual outcome
process over time t∗ under an intervention to set both time of program availability (A1(t∗−1)) and
time of individual enrollment (A2(t∗−1)). Our target parameter for a given intervention of interest
is EYd(t∗) : t∗ = 1, . . . ,4, where EYd(t∗) is the cumulative counterfactual probability of failure by
time t∗ under intervention d(l̄(t∗− 1)). As we have conditioned on surviving past t = 0 (the first
90-days of follow-up), our range represents the cumulative probability of failure from 180 to 450
days post-eligibility. The intervention on the exposure(s) of interest at each time point corresponds
to deterministically setting the values of A(t) to some value d(l̄(t)) as a function of covariate l̄(t)
for all t in the causal model M F specified above, resulting in a modified distribution P0

d . The
counterfactual outcome Yd(t∗) under this intervention can be interpreted as the value of Y (t∗) at
some fixed time point t∗ ≤ K +1 that would have been generated had A(t) been deterministically
set to d(l̄(t)) for all t. We use t∗ here to differentiate from the time t in which the data generating
process spans.

We focused on static interventions here so that there is only one and exactly one treatment
such that d(l̄(t∗)) = ā(t∗). When contrasting the counterfactual failure probabilities under the
distinct interventions, we focused on estimating the absolute risk difference (or average treatment
effect). Specifically, we contrasted these intervention specific counterfactual survival probabilities
under the three following static interventions: Our first intervention assigns all patients to have no
program availability at all time points (set A1(t) = A2(t) = 0 : t = 1,2, . . . , t∗), and forces patients
to remain uncensored (set C1(t) =C2(t) = 0 : t = 1,2, . . . , t∗). The corresponding 4 counterfactual
failure probabilities EYd=00(t∗) : t∗ = 1, . . . ,4 give us an understanding of survival patterns without
the LREC program.

The second intervention of interest is to assign all patients to have immediate program avail-
ability (set A1(t) = 1 : t = 1,2, . . . , t∗), but not allow any subjects to enroll into the program (set
A2(t) = 0 : t = 1,2, . . . , t∗). Patients would again be forced to remain uncensored and the coun-
terfactual failure probability at each time point EYd=1,0(t∗) : t∗ = 1, . . . ,4 would be calculated. By
evaluating Ψ1,0(P0) =EYd=1,0(t∗)−EYd=0,0(t∗) : t∗= 1, ...,4, we target the controlled direct effect
of exposure to the program if enrollment were prevented.

The third intervention is to assign all patients to have both immediate availability and en-
rollment (set A1(t) = A2(t) = 1 : t = 1,2, . . . , t∗). Again, censoring would be prevented and the
counterfactual failure probability at each time point EYd=1,1(t∗) : t∗ = 1, . . . ,4 would be calculated.
Evaluating Ψ1,1(P0) = EYd=1,1(t∗)−EYd=1,0(t∗) : t∗ = 1, . . . ,4 allows us to target the total effect
of enrollment in a scenario where all subjects experienced immediate availability.

Identifiability
It is well recognized that the cumulative effect of longitudinal exposures is often subject to time
dependent confounding (for example, Robins et. al. [77], Bodnar [4]). For example, the decision to
continue to defer enrollment at post-baseline time points may be affected by covariates that affect
the outcome (and are thus confounders), and that are themselves affected by the prior decision not
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to enroll. If not properly accounted for, the resulting estimates may be biased for the parameter of
interest.

Similar challenges arise in analyses aiming to estimate the effect of one longitudinal exposure,
while holding a second longitudinal exposure constant. For example, how would patient outcomes
have differed under immediate versus deferred exposure to a clinic level intervention, if individual
level enrollment were prevented? Such a controlled direct effect of two longitudinal exposures
can (under certain assumptions) be used to investigate the mechanisms by which an exposure is
mediated by individual level uptake. In such scenarios, both longitudinal exposures may be subject
to time dependent confounding.

Under the untestable assumption of sequential randomization [71, 76] and the partially testable
assumption of positivity [10, 64], this parameter EYd(t∗) is identifiable from the observed data
using the longitudinal g-computation formula [71]:

EYd(t∗) = ∑
l̄(t∗−)

E(Y (t∗)|L̄(t∗−) = l̄(t∗−), Ā(t∗−) = d(l̄(t∗−)))·

t∗−

∏
j=0

P(l( j)|L̄( j−1) = l̄( j−1), Ā( j−1) = d(l̄( j−1)))
(2.4)

Sequential randomization

Under the sequential randomization assumption [71], we have that

Yd(t∗)⊥⊥ A(t)|Pa(A(t)) : t = 1,2, . . . , t∗−1 (2.5)

That is, our treatment is independent of the counterfactual outcome given its parents or infor-
mally, that measured covariates are sufficient to control for confounding of treatment and informa-
tive censoring. A sufficient condition for this assumption to be met is if all unmeasured exogenous
variables affecting the treatment and censoring nodes UA(t) are independent of the exogenous vari-
ables affecting future Y (t) nodes given the observed past up to time t. This occurs if all potential
confounders for the treatment and outcome of interest are measured and adjusted for appropriately.
The randomization assumption or backdoor criteria is often used to formally define whether a given
adjustment set of measured covariates is sufficient to control for confounding [86, 71, 60]. In this
context, the major concern for violation of this assumption is that among patients classified as clin-
ically stable, some patients are healthier or at lower risk of loss than others in ways not captured
by the measured covariates, and these patients are differentially enrolled into the program.

Positivity

Our assumption of positivity [32, 10, 114, 64] states that:

P0(Ā(t∗−1) = d(l̄(t∗−1))|L̄(t∗−1), Ā(t∗−2) = d(l̄(t∗−2)))> 0 a.e. (2.6)
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Informally, this states that there is adequate support for each intervention of interest regardless
of covariate history. As we demonstrate below in simulations, even in situations where this as-
sumption on P0 holds, in finite samples certain covariate histories and treatment combinations may
be poorly supported, resulting in data sparsity and, consequently, potential increases in estimator
bias and variance which threaten valid inference.

Patients losing their eligibility for the LREC program posed a particular threat to this assump-
tion. Our study population is comprised of patients initially deemed eligible for the LREC program
due to their low risk. However, a noticeable proportion of the study population (32%) lost their
eligibility at some point during follow-up. Once these patients were ineligible, they had a 0 prob-
ability of subsequent program enrollment. To circumvent this potential positivity violation, we
considered only treatment interventions which avoided enrollment at these time points. For exam-
ple, consideration of patients who enroll immediately into the program would not encounter this
issue, as all patients are eligible at the start of follow-up. Consideration of patients never enrolling
into the program is also valid, as patients who are not eligible do not enroll. We further note that
patients who lost their eligibility after enrollment into the LREC program were still considered to
be enrolled. Similarly, patients who transferred to a new clinic without availability after receiving
care at a clinic where LREC was available were considered exposed to the LREC program (in
other words, we conducted an intent to treat type analysis of the effect of both availability and
enrollment).

We emphasize that while the causal parameter EYd(t∗) is of primary interest to us, in the
scenario where the assumptions are unmet, we still have a desirable and well defined statistical
parameter. This parameter can be thought of as the association between the intervention of interest
and the outcome adjusted for the measured subset of potential confounders, both baseline and time
varying.

2.2 Estimating EYd(t∗)

A range of estimators of our target parameter (or more precisely, of the statistical estimands to
which the counterfactual effects correspond under the sequential randomization assumption), have
been developed, implemented, and applied (e.g. Robins [70, 75], Robins et. al. [84], Rotnitzky
and Robins [87], Hernan and Robins [32], and Pearl [61]). Prominent examples include, inverse
probability weighted (IPW) [35, 41, 79, 92, 91, 87, 32], parametric g-computation [84, 32, 76,
102], and double robust estimating equation-based estimators [80, 48, 3, 107, 82].

The efficient influence function
In choosing an estimator, a desirable property to seek is the lowest asymptotic variance among
reasonable estimators as this ensures that we have the most statistically powerful estimator asymp-
totically. All regular asymptotically linear estimators have influence functions (IF) [25, 107, 112]
such that the estimator variance is equal to the variance of the influence function divided by n.
Estimators with the lowest asymptotic variance will have by definition IF equal to the efficient
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influence function (EIF) for Ψ(P0). The EIF for our target parameter, denoted D∗(P)(O), has been
derived previously [93, 80]. It is given by

D∗(P)(O) =
t∗

∑
t=0

D∗t (P)(O), where (2.7)

D∗0(P)(L(0)) = Q̄d
1− Q̄d

0

D∗t (P)(Ā(t
−), L̄(t−)) = Ht(g)(Q̄d

t+− Q̄d
t ) : t = 1,2, . . . , t∗

with

Ht(g)(Ā(t−), L̄(t−)) =
I(Ā(t−) = d(l̄(t−)))
g0:t−(Ā(t−), L̄(t−))

(2.8)

Q̄d
t∗+1 = Y (t∗) (2.9)

Q̄d
t (L̄(t

−)) = EP[Y d(t∗) | L̄d(t−) = L̄(t−)] : t = 1,2, . . . , t∗ (2.10)
Q̄d

0 = EP[Y d(t∗)]. (2.11)

It should be noted that g0:t−(Ā(t−), L̄(t−)) represents the cumulative probability of treatment
up to time t − 1 and that Q̄d

t (L̄(t
−)) = EP[Q̄d

t+ | L̄(t
−), Ā(t−) = d(l̄(t−))] is defined by recursive

regression, starting at t = t∗ and moving backwards in time. For notational convenience, we let
H0 = 1 so that

D∗(P)(O) =
t∗

∑
t=0

Ht(g)(Q̄d
t+− Q̄d

t ).

There are a number of points worth re-emphasizing here. Firstly, this EIF is simply a sum of
time-specific IFs over all time points. Thus, estimators that solve the estimating equation corre-
sponding to the EIF can be constructed such that they solve the estimating equations individually
at each time point. Secondly, when t∗ is equal to 1, i.e. there is only one time point, this IF re-
duces to the well known EIF for the point treatment setting [79, 81, 80]. Lastly, the IF has, in
the denominator of the first term, the cumulative probability of treatment up to each time point t.
This implies that the variance is highly dependent upon the cumulative probability of treatment
given the past, with the magnitude of variance increasing with lower probabilities. Consequently,
positivity violations or near violations (Equation 2.6), where the probability of treatment given the
past is extremely low, can have large effects on the performance estimators solving this IF.

Targeted minimum loss-based estimation
More recently, Bang and Robins [3] introduced double robust iterated conditional expectation g-
computation estimators solving the EIF, which van der Laan and Gruber [46] extended to develop
a longitudinal iterated conditional expectation TMLE. The g-computation recursive algorithm for
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estimating the cumulative probability of failure, introduced by Robins [75] and expanded in Bang
and Robins [3], calls upon the tower rule of conditional expectations for this identity, suggesting an
iterative conditional expectation (ICE) approach to estimating our parameters. Using their results,
our parameter can therefore instead be expressed as

E[E[· · ·E[E[Y d(t∗)|L̄d(t∗−1)]|L̄d(t∗−2)] · · · |L̄d(0)]] (2.12)

where Ld(t) is the variable L(t) from the post intervention distribution resulting from setting
Ā(t−) = d(l̄(t−)) and the expectations are taken with respect to this distribution. Thus, given L̄d(t)
is equivalent to conditioning on L̄(t), Ā(t) = d(l̄(t)).

This ICE approach has a number of advantages to the more simple standard g-computation
procedure. The most noticeable among them is that we are only required to estimate the iteratively
defined conditional expectations as opposed to the entire conditional densities of the covariate
process L̄(t∗). We therefore use the ICE approach here. A small disadvantage is that these set of
regressions must be run separately for each desired treatment rule, d(l̄(t∗)), whereas in using the
original formulation one only has to estimate the conditional densities once. We note however that
this is a very small price to pay when compared against the substantial gain achieved by not having
to estimate the entire joint density, especially when dealing with high dimensional data.

While the ICE approach already provides a considerable advantage towards our estimation
goals, using targeted minimum loss-based estimation [46, 49] provides a further gain. This ap-
proach, which builds upon the double robust ICE estimator of Bang and Robins [3], solves the
derived efficient influence function D(P) for our estimand within a substitution based setting and
is therefore guaranteed to respect the parameter constraints implied by our statistical model. This
removes the bias associated with the untargeted minimization of a global loss function for the den-
sity of the data. Furthermore, TMLE does not suffer to the same extent from positivity violations
[77, 114, 64] as IPW [77, 32, 64], and allows for full integration of machine learning while retain-
ing valid inference [49, 6, 95, 14]. It is also known to be double robust, in that consistent estimation
of the target parameter is obtained if either of the treatment or outcome distributions are estimated
consistently. All analyses were conducted on R version 3.1.1 [104]. An R package titled ltmle

has been developed which implements this estimator [96, 65]. This package takes longitudinal
data supplied in wide format and estimates our target parameter for each specified treatment rule
d( ¯l(t∗)). We therefore used this estimator in the analysis on the impact of the LREC program.

A number of options are available to users of the ltmle R package. For example, the probabil-
ities of treatment and censoring A(t) at each time point (for the specified treatment rule d(l̄(t∗)))
can be separately estimated and subsequently fed into the estimation procedure, rather then being
fit within. This allows the analyst the option of pooling the observations over all time points and
estimating probabilities within this pooled sample, as opposed to fitting separate models for each
time point. Doing so provides a lower variance in estimates of the treatment mechanisms at the
cost of potentially higher bias.

An additional advantage of pooling over all observations in estimating our treatment and cen-
soring mechanisms is that we can use additional data that is not included in modeling the ICEs.
That is, data observed beyond the final time point t∗ can be used to aid in estimating the probabili-
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ties of treatment for A(t) : t = 0,1, . . . , t∗−1. This can be advantageous and promotes stability in
the estimates by borrowing information across all time points, also at a cost of potentially higher
asymptotic bias. Specifically, it helped in the present study in estimating our censoring from trans-
fer mechanism, due to the extremely small number of transfers observed. For this study, we choose
to pool across observations to fit the treatment mechanisms though note that the decision between
the two did not significantly affect the parameter estimates.

An additional package option is the ability to pool over all subjects when estimating the ICEs
irregardless of observed treatment, as opposed to stratifying the data and using only subjects fol-
lowing the treatment rule specified. This choice implies an analogous bias-variance trade off.
Pooling over subjects regardless of treatment history potentially allows for more stable estimates
of the ICEs due to the smaller variance. This option is helpful when the number of time points
is large and the number of persons following a particular treatment regime over all time points is
small.

Use of the ltmle R package requires that the data be provided in a wide format and with a
time-ordering of the covariates. In doing so, two options are available for the L(t) node at each
time point t, i.e. L1(t),Y (t) or Y (t),L1(t). In our causal model in Chapter 2.1, the L(t) node is
not affected by the specified order. Therefore, use of either ordering will suffice in our study. We
additionally note, however, that even if the time-ordering did matter and our outcome of interest
Y (t∗) were, say, dependent upon the covariates L1(t∗), there is still no need to condition on L1(t∗)
for the sake of estimating our target parameter as the EIF for our parameter based on the full data
O is the same as the efficient influence function based on reduced data Or = O/L1(t∗). We provide
a short proof for this in Appendix A.

Super Learning the nuisance parameters
Consistent, asymptotically linear, and efficient estimation of our target parameter requires that the
treatment and censoring A(t) mechanisms as well as ICEs be estimated in a consistent manner and
at a fast enough rate. Recall that using parametric models to do this requires correct specification of
the functional form for the conditional densities. Given that we do not know a priori the form of the
true probability distribution P0 and the extreme unlikeliness that a simple parametric specification
will result in a correctly specified model, use of these models will most likely result in overly biased
estimates which will approach statistical significance with probability 1 as sample size increases
regardless of whether a treatment effect exists. In other words, the use of mis-specified parametric
models elevates the risk of obtaining significant findings even if no true treatment effect is present.

We instead rely on the use of data-adaptive non-parametric methods which reside in a much
larger statistical model or set of distributions. Examples include gradient boosting machines [17,
19], neural networks [56], and k-nearest neighbors [1]. In deciding which method to use, we
recommend using the ensemble machine learning approach Super Learner, which is based on V-
fold cross validation and implemented in the R package titled SuperLearner [67]. This algorithm
takes a user-supplied loss function (chosen to measure performance) and a library of algorithms,
which can include parametric models as well as non-parametric or machine learning algorithms
such as those listed above. It uses V-fold cross validation to chose the convex combination of
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these algorithms that performs best on independent data (derived from internal data splits). If, as
is likely, none of the algorithms in the library achieves the rate of convergence one would have
with a correctly specified parametric model, the Super Learner will still perform asymptotically at
least as well as the best algorithm in the library. Otherwise, it achieves an almost parametric rate
of convergence (i.e. log(n)/n). Furthermore, the derived oracle inequality showing the asymptotic
performance also shows that the number of candidate algorithms considered in the cross-validation
procedure can be polynomial in size proportional to the number of observations [44, 109, 47].
Therefore, a large number of algorithms can be considered, which can grow with the number of
observations, without fear of hampering the Super Learner’s performance.

To use Super Learning, a loss function must be chosen and a user-specified library provided.
We chose the non-negative log loss function for its desired steeper risk surface, as this function
penalizes incorrect probabilities more severely than the more commonly used squared error loss.
A number of default candidates are included in the SuperLearner package that were used here.
These include the overall mean, main terms logistic model, step-wise regression with AIC [33],
generalized additive model [27], Bayesian generalized linear model [20], k-nearest neighbors [1],
LASSO [105], ridge regression [33], neural net [56], multivariate adaptive polynomial spline [18],
generalized boosted regression model [17, 19], and support vector machine [5, 11]. Additionally,
most of the algorithms have tuning parameters which can result in better candidate performance.
To ensure that we were achieving satisfactory performance, we used different tuning parameters
as additional candidates in the ensemble for the generalized additive models, k-nearest neighbors,
neural nets, and generalized boosted regression models. We additionally used 4 user-specific para-
metric models as candidates in the library. The Super Learner fits were constructed using all
potential confounders, listed above in Chapter 1.2 as W and L1(t) for each time point t.

Of particular concern to the analyst when deciding on which candidates to include in the Super
Learner library is the explicit condition that the candidates not be too data adaptive. This is because
the empirical process conditions for the asymptotic linearity of our estimator require that we work
within a Donsker class of estimators [50]. Indeed, we have seen that algorithms that tend to overfit
the empirical data, such as the machine learning algorithm random forest, will negatively impact
our estimators. We therefore excluded these algorithms from our library, though note that such
algorithms could still be used in a cross-validated parameter estimation approach such as cross-
validated targeted minimum loss-based estimation [117].

Regarding the pooling of observations across time for the treatment mechanism, one further
possible option is to use a Super Learner library that is doubled in the number of candidates by
including estimates from both the time stratified and pooled approach. Ensemble weights could
then be calculated based on the best performing candidate in this larger library and subsequently
fed into the ltmle package. Consequently, we continue benefiting from the borrowed information
at different time points and simultaneously protect ourselves from the asymptotic bias of the pre-
vious approach. We opted not to additionally use the stratified approach, due to the computational
intensity required of the approach.
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Initial ICE fits

In using non-parametric estimators for the estimation of the ICEs, we may potentially uninten-
tionally disregard the global constraints implied by our statistical model. While all the estimators
considered here are expected to work well at time t = t∗ where the outcome being modelled is
binary, their use at t < t∗ where the outcome being modelled is known to fall within the interval
[0,1] can present issues. For example, continuing to treat the outcome being modelled as binary
may result in programmatic errors since many of the algorithms, such as Support Vector Machines
or k-nearest neighbors, require that the outcome be supplied in classes or as factors. Alternatively,
modelling the outcome continuously may result in extrapolations with estimates greater than 1 or
less than 0. As our expectation is known to fall within [0,1], this would result in violations of the
constraints of the outcome being modelled.

For each of the algorithms facing this potential issue, we implemented three approaches aimed
at ensuring that estimates remained within the constraints. All three were used in the Super Learner
library, allowing us to objectively compare the performance of each approach. We define each of
the conditional expectations from Equation (2.12) to be Q̄0,L(t) such that, for example, Q̄0,L(t∗) ≡
E[Y d(t∗)|L̄d(t∗−1)] and Q̄0,L(t∗−1) ≡ E[Q̄0,L(t∗)|L̄d(t∗−2)]. Let each estimator of the conditional
expectation within the Super Learner library at time t be denoted as Q̄ j

n,L(t) for j ∈ 1,2, . . . ,J where
J is the total number of candidates in the Super Learner library. We considered

1. Simply truncating Q̄ j
n,L(t) at both 0 and 1.

2. Taking the logit transformation of the outcome being modelled and truncating at a fixed
threshold τ (set here to be 0.0001). We then modelled the transformed outcome on a contin-
uous scale and took the inverse logit transformation on the fitted values.

3. Stratifying the observations by whether they were within the (0,1) open interval or within
{0,1}, i.e. whether they were continuous within the (0,1) interval or dichotomous with only
values of 0 or 1. The former were fit on a continuous scale after taking the logit transforma-
tion, while the latter were modelled as a binary outcome.

We emphasize that use of Super Learner for estimation of the treatment mechanisms and ICEs
provides two important primary benefits. Firstly, its use helps ensure the conditions for the asymp-
totic linearity of our estimator and the corresponding statistical inference are met by ensuring the
consistent estimation of both the intervention mechanism and the iteratively defined conditional
expectations. This allows us to establish robust confidence intervals for our estimator. Secondly,
we gain efficiency in that we get an asymptotically efficient estimator if both the treatment mech-
anisms and ICEs are estimated consistently at fast enough rate. Thus, as long as at least one of
the library candidates for each of the nuisance parameters achieve this optimal rate, our approach
will have the lowest variance among all regular asymptotically linear estimators. Further, even if
we fall short of this goal, the improved estimation of both nuisance parameters offered by Super
Learner will generally improve finite sample efficiency.
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2.3 Results
Among the 15 clinics implementing the LREC program, a total of 16,513 subjects (31% male)
were found to be eligible for the program, of which 16,479 survived past t = 0. As we only
modelled survival up to 450 days, we report figures with follow-up truncated at that point. After
discretizing the data, these patients contributed a total of 17,668 person-years of follow-up to the
analyses. From these subjects 1,206 failure events were observed, of which 1,102 were losses
to follow-up and 104 were deaths. All failure events observed at t = 1 were deaths, since our
definition of loss to follow-up required at least 6.5 months to pass before a subject could be lost
to follow-up. A small number of subjects (n = 128) were censored due to transfers to non-LREC
clinics, while 3,889 subjects reached the end of study prior to t = 4 and prior to experiencing a
failure event and were administratively censored. Table 2.1 shows the characteristics of the patients
conditioning on survival past t = 0.

A small proportion of subjects died (42), were lost to follow-up (286), or were censored (60)
before the LREC program became available. Of the 16,050 subjects who were at some point
exposed to the program, most (15,294) experienced it by 1-year from baseline. Almost half of the
study population began follow-up after the LREC program had already initiated, as indicated by
the large spike in the cumulative incidence at time 0 (Figure 2.1). A noticeable spike was also seen
at 1-year after baseline, representing the patients who had their first eligibility truncated at 1-year
as stated in Chapter 3.1.

Patients who were not exposed to the LREC program could not enroll. Furthermore, once
the LREC program was available, decisions on whether to enroll subjects rested upon the treating
clinicians or clinical officers. Consequently, only 3,832 subjects were enrolled. As expected,
subjects who were healthier were more likely to enroll into the LREC program. For example,
univariate analyses showed that subjects who had higher CD4 counts, were receiving ARV, had
a WHO stage I or II, were seen in clinics less often, and were not being treated for tuberculosis
had higher probabilities of enrolling. Additionally, subjects from (sub) district hospitals and rural
health centers (compared to referral hospitals), with fewer missed clinical visits, not on protease-
inhibitor based regimen, and who were not pregnant also had higher probabilities of enrolling. We
note that despite listing non-pregnancy as a criteria for being at low risk, a small number of subjects
(18) enrolled while pregnant. Figure 2.1 shows the cumulative incidence of LREC availability and
enrollment. Cumulative incidence of enrollment by 90 and 360 days after baseline was 7% (95%
CI: 6.3%, 7.1%) and 19% (95% CI: 18.8%, 20.1%), respectively.

As stated in Chapter 3.1, all patients in our study started follow-up eligible for the LREC pro-
gram, leading to low or no variance in many of the confounders at early time points with a skewness
towards the healthier values. During follow-up, however, many subjects who did not enroll subse-
quently became less healthy resulting in decreased probabilities of subsequent enrollment. These
covariates measuring their health and enrollment probabilities therefore represent classical time-
dependent confounding and should be adjusted for appropriately [77]. Indeed, 3,920 subjects were
found to have lost their eligibility prior to enrollment and prior to 1-year, precluding interventions
to evaluate a range of different enrollment times, as discussed in Chapter 2.1.

Unadjusted analyses using the Kaplan-meier estimator showed overall high probabilities of in-
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Table 2.1: Characteristics of 16,479 patients at LREC eligibility (conditioning on survival past
t = 0).

Count (%)
Age (years)
<30 2,793 (17%)
30-39 7,017 (43%)
≥40 6,669 (40%)

Sex
Female 11,441 (69%)
Male 5,038 (31%)

CD4 cell count (cells/µL) at ART start
<200 9,754 (59%)
200-349 2,313 (14%)
350-499 543 (3%)
≥500 387 (2%)
Unknown 3,482 (21%)

CD4 cell count (cells/µL) at baseline
<200 0 (0%)
200-349 10,125 (61%)
350-499 4,016 (24%)
≥500 2,334 (14%)
Unknown 4 (0%)

PI-based ARV regimen
No 15,600 (95%)
Yes 879 (5%)

Max WHO stage prior to ARV start
I/II 7,696 (47%)
III/IV 8,373 (51%)
Unknown 410 (2%)

care survival among all subjects (Figure 2.2). Those with immediate LREC availability who never
enrolled had noticeably lower in-care survival than subjects never experiencing LREC availabil-
ity. For example, at t = 4 the proportion of subjects still alive and in care was 0.77 for those not
enrolling into LREC, compared to 0.93 for the group of subjects never experiencing LREC avail-
ability and 0.94 for subjects enrolling into LREC immediately. Conversely, those with immediate
enrollment into the program had the highest survival probabilities. Differences in survival prob-
abilities between treatment groups increased with time, with the largest differences seen between
subjects with immediate enrollment and those with LREC availability never enrolling.

The cross-validated risks (using the non-negative log likelihood loss) for the treatment and
censoring mechanisms are shown in Figure 2.3 under various models and algorithms. While ob-
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Figure 2.1: Cumulative incidence of LREC availability and enrollment and 95% confidence inter-
val.
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Figure 2.2: Unadjusted Kaplan-Meier survival curves.

servations at all time points were used in the mechanism fits, our interest is only in treatment
interventions at t ≤ 3. We therefore only calculated the risks using those time points. As expected,
the Super Learner fit outperformed all of the candidate estimators in the supplied library, as well
as the cross-validation selector (i.e. discrete Super Learner, which is equivalent to choosing the
single algorithm in the library with the lowest cross validated risk). Compared to the mean model,
which assumes no confounding and does not control for any confounders, the Super Learner fits
for the LREC availability and end of study mechanisms showed an immense decrease in cross-
validated risk. This gain was also noticeable when compared to the candidate model that only
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controls for time. The Super Learner fit for the enrollment mechanism also outperformed the mean
model, though to a smaller degree. No noticeable gain was seen in the transfer mechanism, pre-
sumably due to the extremely low number of transfers observed (218). We did not present the
cross-validated risks for the ICE fits as they are too numerous to describe in detail, though note
that they were similar to fits for the treatment and censoring mechanisms.
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Figure 2.3: Cross-valided risk estimates (using non-negative log-likelihood loss) and 95% confi-
dence interval for the treatment and censoring mechanisms. A number of candidates had cross-
validated risks too high to plot in the specified window and consequently are not shown. Mean:
marginal probability, Time: logistic regression with time variable only, GLM: logistic regression
with all confounders, AIC step: stepwise regression using the Akaike information criterion, GAM:
generalized additive model, KNN: k-nearest neighbors, LASSO: least absolute shrinkage and se-
lection operator, MARS: multivariate adaptive regression splines, GBM: generalized boosted re-
gression models, SVM: support vector machines, Parametric: user specified logistic models using
a subset of the confounders.
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Adjustment for potential confounders using the Super Learner fits resulted in relatively small
updates of the survival curves (Figure 2.4), i.e. 1− Ψ̂(Pn). Subjects enrolling immediately into the
LREC program at eligibility continued to have the highest survival probabilities, while those with
immediate availability not enrolling had the lowest. Tables 2.2 and 2.3 show the calculated aver-
age treatment effects between the different interventions. Confidence intervals and p-values were
calculated based on influence functions. As implied by the survival curves, immediate enrollment
into the LREC program at eligibility had a beneficial effect relative to never having LREC avail-
able, while having LREC immediately available and never enrolling was adverse. For example, at
t = 4 the probability of survival for subjects with immediate enrollment was 0.93 (95% CI: 0.91,
0.95) and 0.87 (95% CI: 0.86, 0.87) for subjects with immediate availability never enrolling. For
subjects without LREC availability, it was 0.91 (95% CI: 0.90, 0.92). Similar to the unadjusted
estimates, the treatment effects increased with time. All estimates after t = 1 showed statistical
significance.
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Figure 2.4: Survival curves adjusting for potential confounders.

It is possible that near positivity violations can have large effects on estimates of our parameter.
To test for this potential issue, we considered different truncation bounds for our treatment prob-
abilities. Specifically, we considered using a bound of 0.001 and using untruncated probabilities.
No differences were seen in the resulting mean outcome estimates.

2.4 Discussion
We have presented a comprehensive approach to applying longitudinal targeted minimum loss-
based estimation to evaluate the impact of the LREC program. The results support a somewhat
negligible impact of implementation and enrollment, with the lowest survival among patients with
immediate LREC availability never enrolling and similar survival among the other two interven-
tions (Figure 2.4). Subjects enrolling immediately into the LREC program have almost identical
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Table 2.2: Unadjusted time-specific average treatment effects. (a) compares the intervention im-
mediate LREC availability without enrollment to never having LREC available; (b) compares the
intervention immediate LREC availability and enrollment to immediate LREC availability without
enrollment.

(a) EYā=10(t∗)−EYā=00(t∗) (b) EYā=11(t∗)−EYā=10(t∗)

Time (t∗) Estimate (95% CI) p-value Estimate (95% CI) p-value

1 0.00 (0.00,0.00) 0.93 0.00 (0.00,0.00) 0.56
2 0.03 (0.02,0.03) 0.00 -0.04 (-0.05,-0.03) 0.00
3 0.04 (0.03,0.05) 0.00 -0.05 (-0.07,-0.04) 0.00
4 0.06 (0.05,0.08) 0.00 -0.07 (-0.09,-0.05) 0.00

Table 2.3: Time-specific average treatment effects adjusted for measured potential confounders.
(a) compares the intervention immediate LREC availability without enrollment to never having
LREC available; (b) compares the intervention immediate LREC availability and enrollment to
immediate LREC availability without enrollment.

(a) EYā=10(t∗)−EYā=00(t∗) (b) EYā=11(t∗)−EYā=10(t∗)

Time (t∗) Estimate (95% CI) p-value Estimate (95% CI) p-value

1 0.00 (0.00,0.00) 0.81 0.00 (0.00,0.01) 0.58
2 0.02 (0.02,0.03) 0.00 -0.03 (-0.05,-0.02) 0.00
3 0.04 (0.03,0.05) 0.00 -0.05 (-0.07,-0.03) 0.00
4 0.04 (0.03,0.06) 0.00 -0.07 (-0.08,-0.05) 0.00

survival to subjects never being exposed to the program. While the magnitude of difference in
survival increased with time, this difference is modest.

It is important to note that our target population is comprised only of subjects at low risk of
mortality. Consequently, the majority of our results are driven primarily by subjects not remaining
in care, as the number of deaths expected to be observed will be low. In our study, only 104 of the
total 1,206 failure events were from deaths. A sensitivity analysis using only loss to follow-up as
the outcome resulted in similar estimates.

We chose 90-day intervals for our time points in the current study, due to the understanding that
patients would have visits approximately every 3-months. While smaller intervals could have been
chosen, doing so can reduce the probability of following a given regime of interest given observed
covariates (i.e. increase the extent of practical positivity violations), both by decreasing the prob-
ability of availability and enrollment occurring in the first interval, and because the probability of
never enrolling given observed covariates involves taking a cumulative probability of not enrolling
given the observed past over many more time points. Furthermore, the use of smaller intervals
results in more time points, leading to higher computational costs. On the other hand, the use of
larger intervals leads to discarding information in order to preserve time ordering, which can result
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in a less complete control for confounding as well as failure to capture the full causal effect of
the intervention. In order to preserve time ordering, only covariate and outcome values measured
at the end of the prior interval are considered possible causes of enrollment and availability in an
interval. Longer intervals result in more problems with the assumption. We tested whether there
was an effect in our study by re-running the analyses using 30-day intervals. The resulting survival
estimates were similar to the ones reported here.

As with all studies, there are limitations that need to be considered. Firstly, it is possible
that we did not sufficiently adjust for all the potential confounders. For example, the majority of
subjects who had immediate availability and never enrolled had initial eligibility occur after the
LREC program had already started. These subjects experiencing incidental eligibility (as opposed
to prevalent eligibility from those eligible prior to the LREC program initiation) may have had
factors placing them at higher risk. In addition, in defining our composite outcome ”dead or lost
to follow up” we implicitly assumed that not being seen in clinic for 6.5 months is an undesirable
outcome reflecting out of care status. In practice, some of these patients might represent unreported
transfers to care in an alternative clinic. If true, however, this would have to occur disproportion-
ately among treatment groups in order to affect the average treatment effect estimates presented
here. Lastly, our analysis considered subjects from the same clinics to be causally independent
of each other. In specifying our causal model we made a key decision to use an individual level
NPSEM despite our interest in both an individual and a clinic level exposure variable. Such a for-
mulation assumes that individuals within a given clinic are causally independent, and in particular,
that the exposure received by one patient does not impact the outcome of another (the assumption
of no causal interference) [39, 103]. A different formulation is possible that uses a hierarchical or
clinic level NPSEM and corresponding hierarchical identification and analysis. We can think of the
corresponding experiment as randomizing entire clinics to start the LREC program and within clin-
ics with LREC available, randomizing patients to enroll. However, the sample size then becomes
driven by the number of clinics and identification would require adequate variability in the intro-
duction of LREC across clinics [103]. We therefore pursued an individual level formulation, while
noting the limitations of this approach. Future research into improved approaches to interference
effects in this setting should be undertaken.

We end by stating that, while not conducted here, this framework can be easily generalized
to include dynamic interventions that are dependent upon other covariates. For example, there
could be interest in intervening to enforce enrollment only on patients who retain eligibility during
follow-up while exempting patients who do not. Another option to consider is the use of marginal
structural models to smooth treatment effects across time points, as well as availability and en-
rollment times [84, 77, 75, 65] though care should be taken when implementing as the number of
regimes with available data would be limited. These models allow us to project the true underly-
ing dose response curve onto a working parametric model, allowing us to conduct inference on a
smaller set of parameters. The ltmle package includes a TMLE for causal parameters defined as
the projection of the survival or failure curve onto user-specified parametric models.

In summary we applied the targeted learning road map to longitudinal data with a multilevel
longitudinal treatment of interest to analyze a nurse-based triage system among HIV patients in
East Africa. This included both definition and identification of our causal parameter. Issues with
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positivity were handled with careful selection of our target causal parameter. Nuisance parameters
were estimated using Super Learner, a cross-validation ensemble algorithm using both parametric
and machine learning algorithms. Observations for the estimation of the treatment mechanisms
were pooled across time points, which aided us in estimating the censoring mechanism due to
clinical transfers. Various approaches were implemented aimed at ensuring the machine learning
estimates of the ICEs would respect the underlying statistical model. Estimates of survival at each
time point were then contrasted by their differences and inference derived using the empirical influ-
ence functions. The results show a somewhat negligible impact of both availability and enrollment
in the LREC program on in-care survival.



28

Chapter 3

Double robust efficient estimators of
longitudinal treatment effects

In settings where the exposure of interest is longitudinal, or in other words, is comprised of mul-
tiple treatment decisions over time, identification of causal parameters requires non-traditional
statistical estimands, such as that provided by the longitudinal g-computation formula under an
assumption of sequential randomization [71, 76]. Many estimators have been developed that target
these estimands. Available estimators differ in their efficiency, in the nuisance parameters they
require estimators for, and in their robustness and consistency of these estimands. For example,
the “classical” longitudinal g computation approach [71] relies on consistent estimation of a se-
ries of conditional densities while, inverse probability weighted estimators [35] rely on consistent
estimation of the treatment mechanism.

A number of these estimators are double robust (DR). In other words, they have the appeal-
ing property that if either of the two nuisance parameters are estimated consistently, then the
resulting estimator will be consistent for the true parameter value. They are also efficient in a
semi-parametric statistical model that makes assumptions, if any, only on the exposure assignment
mechanism if both nuisance parameters are estimated consistently at reasonable rates [48, 107,
49]. Such DR semi-parametric efficient estimators include, among others, those based on estimat-
ing equations [81, 87], sequential regression approaches based on iterated conditional expectations
[93, 75, 3], and TMLE [46, 65, 95].

Important differences also exist within the class of double robust efficient estimators. First,
a subset of estimators in this class are based on an alternative iterative conditional expectation
representation of the longitudinal g-computation formula [93, 75, 3], an approach that can improve
performance by dramatically reducing the dimensionality of one of the two nuisance parameters.
We focus here on this class of DR estimators. Second, DR efficient estimators may be defined
either as solutions to an estimating equation, or instead as a substitution estimator. The latter
approach can improve stability in the face of data sparsity (near positivity violations [32, 10, 64])
and ensure that resulting estimates respect the parameter space. Finally, as we discuss, existing
DR estimators differ in their ability to fully incorporate machine learning approaches to nuisance
parameter estimation while maintaining the basis of statistical inference.
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While a number of sophisticated estimators of longitudinal effects have been proposed, there is
a relative paucity of research comparing these methods directly to one another. Here, we compare
these various approaches to estimating a causal effect in a longitudinal treatment setting using both
simulated data and using the IeDEA-EA cohort.

Six distinct estimators are considered here. They are (i) a simple substitution estimator, based
on estimating the iterated conditional expectation (ICE) representation of the longitudinal g-computation
formula [75, 3], (ii) an inverse propensity weighted (IPW) method [35, 74, 32], (iii) an augmented
IPW (AIPW) estimator that directly solves the estimating equation corresponding to the efficient
influence function (EIF) [79, 81, 83, 93, 80, 75], (iv) a double robust iterated conditional expecta-
tion (DRICE) estimator as presented by Scharfstein et. al. [93], Robins [75], and Bang and Robins
[3], (v) a modified version of DRICE presented by Robins et. al. [82], in which we apply the
estimated inverse probabilities as observational weights, and (vi) a targeted minimum loss-based
estimator as presented by van der Laan and Gruber [46]. AIPW, DRICE, and TMLE all solve the
estimating equation corresponding to the EIF and are therefore efficient estimators. However, due
to the different manners in which they solve the estimating equation, finite sample performance
may differ.

This chapter builds on the existing comparative methods literature in several important ways.
First, much prior work has focused on the point treatment setting, in which both the statistical esti-
mands and corresponding estimators are substantially simpler than their longitudinal counterparts
[36, 64, 6, 26, 65, 14, 118, 51, 30, 98, 24]. For example, Decker et. al. [14] compared the ICE and
TMLE methods in estimating the causal effect of physical activity and diet on body mass index.
Petersen et. al. [64] compared the IPW and TMLE estimators using simulated data in a point treat-
ment setting with positivity violations. Second, most of the prior work comparing the performance
of estimators of longitudinal treatment effects has generally been limited to comparison of a single
double robust efficient estimator (such as TMLE or AIPW) to a simpler alternative such as IPW or
g-computation. To the best of our knowledge, this is the first longitudinal study to directly compare
the performance of a range of proposed double robust estimators in a head to head comparison and
incorporating machine learning. Furthermore, this study directly compares the performance of the
estimators under gradually increasing levels of positivity violations [10, 114, 64]. Lastly, for the
applied setting, it considers estimates from both the generalized linear modelling approach and by
incorporating Super Learning [47], an ensemble data adaptive machine learning algorithm.

3.1 Data
To reduce the complexity of the analyses in this chapter, we condition on LREC availability. That
is, we assume that the LREC program has already been initiated in each of the 15 clinics and
analyze the effect of program enrollment. Consider, as a working example, right censored survival
data in which subjects are followed from a baseline time point t = 0 up to some final time point
K +1. At each time point t, subjects may enroll into a treatment program. Regardless of whether
they enroll, each subject is followed until the first of either (i) some terminal event of interest
is observed, (ii) they are right censored due to transfers or administrative censoring, or (iii) they



CHAPTER 3. DOUBLE ROBUST EFFICIENT ESTIMATORS OF LONGITUDINAL
TREATMENT EFFECTS 30

reach the end of follow-up (t = K +1). Time-varying covariates are measured at each time point t
which may affect subsequent treatment covariates and outcome. Additionally, baseline covariates
are measured at t = 0.

More formally, we consider an independent and identically distributed (iid) statistical data
structure. Let Y (t) be a failure indicator, a counting process which takes value 0 until the out-
come event of interest is observed and subsequently switches to and remains at 1 for all remaining
time points. We assume that Y (0) = 0 for everyone, i.e. that no subjects have experienced the
event at the beginning of follow-up. Let L1(t) be the time-varying covariate values measured at
each time point t. We define L1(0) to additionally include all baseline covariates measured at
t = 0. Similar to Chapter 1.2, we refer to the joint outcome and covariate variables at time t as
L(t) = (Y (t),L1(t)) : t = 0,1, . . . ,K+1. Let A2(t) be the indicator of enrollment into the treatment
program and C1(t) be the indicator of censoring due to patient transfers and C2(t) be the indicator
of censoring due to data base closure. Each of these variables take value 0 until an enrollment or
censoring event is observed, respectively, at which point they become fixed at 1. We collectively
refer to the treatment and censoring processes as A(t) = (A2(t),C1(t),C2(t)) : t = 0,1, . . . ,K. For
notational convenience, we define all variables after failure or right censoring occurs as determin-
istically equal to their last observed value. Our updated data structure can, similar to Chapter 1.2,
be represented as n independent and identically distributed (iid) copies of the longitudinal data
structure

O = (L(0),A(0),L(1),A(1), . . . ,A(K),L(K +1)) iid∼ P0. (3.1)

3.2 Estimators for EYd(t∗)

We present each of the five estimators considered below for estimating EYd(t∗).

Iterated conditional expectation estimation (ICE)
As stated in Equation (2.12), our parameter of interest can be represented as a series of iterated con-
ditional expectations. From this representation, as described by Scharfstein et. al. [94] and Robins
[75], we can form an estimator which starts by estimating the inner most conditional expectation
and iterating outward until reaching the outermost conditional expectation. The parameter estimate
ψ̂ ICE

n is then just the empirical mean over all the observations. The specific algorithm proceeds as
follows:

1. Let T denote the failure time. Estimate the innermost conditional expectation Q̄d
0,L(t∗) =

E0[Y (t∗)|L̄(t∗−1), Ā(t∗−1) = d(l̄(t∗−1))], where the expectation is known to be equal to
1 if T < t∗. We denote this estimate as Q̄d

n,L(t∗).

2. Given Q̄d
n,L(t∗), we can recursively iterate outwards for t∗ = t∗− 1, t∗− 2, . . . ,1, estimating

Q̄d
0,L(t) = E0[Q̄d

n,L(t+)|L̄(t
−), Ā(t−) = d(l̄(t−))], acknowledging our slight abuse of notation,
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where again the expectation is known to be equal to 1 if T < t. We denote these estimates as
Q̄d

n,L(t).

3. At t = 1, we have the estimate Q̄d
n,L(1), which now is a function of only L(0). As indicated in

Equation (2.12), our parameter estimate is simply the empirical expectation over L(0), i.e.
ψ̂ ICE

n = EnQ̄d
n,L(1).

As with the established parametric g-computation estimator (e.g. Taubman et. al. [102]),
this estimator only relies upon the Q0 portion of the likelihood in estimating our target parameter.
Unlike the parametric g-computation estimator, however, which relies on estimating each of the
conditional probability distributions given in the g-computational formula above (Equation 2.4),
this estimator relies on only the conditional expectations Q̄0. Consequently, it provides a substan-
tial advantage over the parametric g-computation approach in that it avoids the need to estimate all
of the conditional densities.

Inverse propensity weighted estimation (IPW)
Our parameter can also be estimated by up-weighting subjects from strata of L1(t) that are un-
derrepresented compared to the representation they would have had under a randomized treatment
assignment [35, 74]. This approach can be understood as creating a pseudo-population in which the
measured covariates are balanced between treatment groups [31]. More formally, we implement
the following estimator [74]:

ψ̂
HT
n =

1
n ∑

n
i=1

I(Āi(t∗−1)=d(l̄(t∗−1)))
gn,0:t∗−1,i(d(l̄(t∗−1))) Yi(t∗)

1
n ∑

n
i=1

I(Āi(t∗−1)=d(l̄(t∗−1)))
gn,0:t∗−1,i(d(l̄(t∗−1)))

(3.2)

where gn,0:t∗−1,i(d(l̄(t∗−1))) = ∏
t∗−1
k=0 Pn(Ai(k) = d(l̄(k))|L̄i(k), Āi(k−) = d(l̄(k−))). By using this

inverse weighting, this approach relies upon the consistent estimation of g0 for proper inference.

Augmented inverse probability weighted estimation (AIPW)
Realizing that the EIF in Equation (2.7) has mean zero and is a function of our target parameter
[25, 107], we can straight forwardly form an estimating equation and solve for our parameter [83,
93]. This naturally results in the estimating equation estimator

ψ̂
AIPW
n = EnD∗(Qn,gn)(Oi)+Ψ(Q̄d

n)

= En

[
t∗

∑
t=1

I(Āi(t−) = d(l̄(t−)))
gn,0:t−,i(d(l̄(t−)))

(
Q̄d

n,L(t+),i− Q̄d
n,L(t),i

)
+ Q̄d

n,L(1),i

]
(3.3)

where again, for notational convenience, we use Q̄d
n,L(K+2),i to denote Yi(t∗).
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Double robust iterated conditional expectation (DRICE)
As shown by Bang and Robins [3], we can form a DR estimator as a sequential regression esti-
mator quite similar to the ICE approach from Chapter 3.2. This approach, however, additionally
uses the inverse propensity estimate gn,0:t−(d(l̄(t−)))−1 times the indicator of following treatment
I(Āi(t−) = d(l̄(t−))) as a covariate in estimating Q̄d

0,L(t). Thus, our outcome regression for each
time point t can instead be represented as a function of the observed past (L(t−),A(t−)), the in-
dicator of following the regime of interest I(Āi(t−) = d(l̄(t−))), and our probability of treatment
g0,0:t−(d(l̄(t−))). Our iterated conditional expectation algorithm is therefore updated as follows:

1. Estimate g0,0:t−(d(l̄(t−))) : t = t∗, t∗−1, . . . ,0. We denote the estimates as gn,0:t−(d(l̄(t−))).

2. Let T denote the failure time. Acknowledging our slight abuse of notation, we estimate
the innermost conditional expectation Q̄d,g

0,L(t∗) = E0[Y (t∗)|L̄(t∗ − 1), Ā(t∗ − 1) = d(l̄(t∗ −
1)),I(Āi(t∗−1) = d(l̄(t∗−1)))×gn,0:t∗−1(d(l̄(t∗−1)))−1], where the expectation is known
to be equal to 1 if T < t∗. We denote this estimate as Q̄d,g

n,L(t∗).

3. Given Q̄d,g
n,L(t∗), we can recursively iterate outwards for t = t∗, t∗−1, . . . ,1, estimating Q̄d,g

0,L(t)=

E0[Q̄
d,g
n,L(t+)|L̄(t

−), Ā(t−) = d(l̄(t−)),I(Āi(t−) = d(l̄(t−)))×gn,0:t−(d(l̄(t−)))−1]. The expec-
tation is also known to be equal to 1 if T < t.

4. At t = 1, we have the estimate Q̄d,g
n,L(1), which now is a function of only L(0). As indicated in

Equation (2.12), our parameter estimate is simply the empirical expectation over L(0), i.e.
ψ̂DRICE

n = EnQ̄d,g
n,L(1).

Bang and Robins [3] have shown that this estimator is algebraically the same as the AIPW
estimator, since

∑
i

gn,0:t∗−1(d(l̄(t∗−1)))−1I(Āi(t∗−1) = d(l̄(t∗−1)))(Yi− Q̄d
n,L(1)(Li(1)|Pa(Li(1)))) = 0 (3.4)

where Q̄d
n,L(1)(Li(1)|Pa(Li(1))) is instead modelled as a link function applied to the sum of Q̄d

0 and
g0(d(l̄)) times a parameter φ . While this holds in the case where the outcome is continuous and
the link function is the identity link, we note that applying this in a binary outcome setting where
the link function is the logit link creates a separate bounded estimator [82] which enforces an extra
restriction to the estimation procedure not present for the AIPW estimator. The supremum and
infimum of transformed values under this link can never fall outside of [0,1] and, consequently,
the approach is converted into a substitution based estimation procedure. This extra restriction
is beneficial for this setting in that it ensures that our resultant parameter estimates will always
respect the parameter space boundaries. We compare this approach to the AIPW approach in our
simulations and applications.
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The modified DRICE
Rather than using the inverse propensity estimates gd(l̄(t−))

n,0:t− as part of a covariate as presented by

Bang and Robins [3], an alternative approach could be to instead apply the inverse of gd(l̄(t−))
n,0:t− as

observational weights resulting in a pseudo-population and estimating Q̄d
0,L(t) in the same manner

as the approach above but instead using I(Āi(t∗− 1) = d(l̄(t∗− 1))) as a covariate [82]. This
approach is also double robust in the sense that consistent estimation of the target parameter will
be achieved if either the g0,0:t−(d(l̄(t−))) or Q̄d

0,L(t) for all t are estimated consistently.
The approach of applying the inverse propensity estimates gn,0:t−(d(l̄(t−))) as weights can

potentially aid us in the presence of positivity violations, since small values of gn,0:t−(d(l̄(t−)))
can potentially have large effects on the estimates of Q̄d

0,L(t) by acting as an outlier if used as a
covariate. Indeed, Robins et. al. [82] found that this approach resulted in lower mean squared
error for their simulations. Therefore, we also considered this version of the estimator for this
study and refer to it as mDRICE.

It is important to note here that the DRICE and modified DRICE are efficient only in linear
models as a consequence of the condition that the normal equations be solved for the DRICE and
AIPTW estimators to be equivalent [3]. Conversely, the TMLE and AIPTW estimators have no
such restriction and are therefore efficient under the larger semi-parametric statistical model M .

Targeted minimum loss-based estimation (TMLE)
van der Laan and Gruber [46] present an alternative ICE substitution based approach to solving
the EIF, thereby retaining both double robustness and asymptotic efficiency while simultaneously
respecting the parameter space and guaranteeing unique solutions. The targeted minimum loss-
based estimator requires a number of ingredients, including (i) the EIF D∗(Q,g)(O) defined above,
(ii) a generalized loss function possibly indexed by a nuisance parameter Lt,Q̄d

L(t+)
(Q̄d

L(t)), (iii) a

least favorable parametric submodel Q̄d
L(t)(εt) chosen such that the linear span of the generalized

score at zero fluctuation spans the EIF, and (iv) an updating algorithm which iteratively minimizes
the generalized loss-based empirical risk over the parameters of the least favorable parametric
submodel. Once these ingredients are collected, the algorithm for estimation is as follows:

1. Estimate g0,0:t−(d(l̄(t−))) : t = t∗, t∗−1, . . . ,1. We denote the estimates as gn,0:t−(d(l̄(t−))).

2. Let T denote the failure time. Estimate Q̄d
0,L(t∗) = E0[Y (t∗)|L̄(t∗− 1), Ā(t∗− 1) = d(l̄(t∗−

1))], where the expectation is known to be equal to 1 if T < t∗. We denote this estimate as
Q̄d

n,L(t∗).

3. Update the initial fit Q̄d
n,L(t∗) based on the t∗-th loss function Lt∗,Q̄d

L(t∗+1)
(Q̄d

L(t∗)(εt∗)) and us-

ing the submodel Q̄d
L(t∗)(εt∗). By setting ε̂n,t∗ = argmin

ε

PnLt∗,Q̄d
L(t∗+1)

(Q̄d
L(t∗)(ε)), an updated

fit is formed Q̄d,∗
n,L(t∗) = Q̄d

L(t∗)(ε̂n,t∗) that is targeted at the parameter Ψ(P0).
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4. Given Q̄d,∗
n,L(t∗), we can recursively for t = t∗, t∗−1, . . . ,1:

a) Estimate the conditional expectation Q̄d
0,L(t) = E0[Q̄

d,∗
n,L(t+)|L̄(t

−), Ā(t−) = d(l̄(t−))],
where again the expectation is known to be equal to 1 if T < t. We denote this es-
timate as Q̄d

n,L(t).

b) Similar to Step 3, update Q̄d
n,L(t) using the loss function Lt,Q̄d

L(t+)
(Q̄d

L(t)) with the para-

metric submodel Q̄d
L(t)(εt). Again, minimizing the empirical loss function

ε̂n,t = argmin
ε

PnLt,Q̄d
L(t+)

(Q̄d
L(t)(ε)) results in the updated fit Q̄d,∗

n,L(t) = Q̄d
L(t)(ε̂n,t) for

time t.

5. At t = 1, we have the estimate Q̄d,∗
n,L(1), which now is a function of only L(0). Our parameter

estimate is simply the empirical expectation over L(0), i.e. ψ̂T MLE
n = EnQ̄d,∗

n,L(1).

Similar to the DRICE estimator, this approach solves the EIF in a substitution based setting.
The primary difference in the two approaches is that TMLE forms the initial fit and subsequently
uses the inverse propensity estimates to update this initial fit, resulting in a 2-step approach. Con-
versely, DRICE solves for the EIF by including the inverse propensity estimates within the initial
fit.

Conditioning the nuisance parameter estimation on d(l̄(t))

One approach at estimating the nuisance parameters g0,0:t−(d(l̄(t−))) and Q̄d
0,L(t), as presented

by Bang and Robins [3] and van der Laan and Gruber [46], conditions on having followed the
treatment regime of interest d(l̄(t)) and uses only these subjects to estimate g0 and Q̄d

0 .
An alternative approach is to instead pool across all subjects regardless of treatment history

and uses these subjects in estimating g0 and Q̄d
0 . We refer to this latter approach as the pooled

estimator and the approach that conditions on following d(l̄(t)) as the stratified estimator. The
pooled approach provides potentially more efficiency and stability due to the increased sample
size used to estimate each nuisance parameter. We therefore considered the pooled approach for
the ICE estimator and both stratified and pooled approaches for the three DR estimators. We
further note that if, as in our worked example, A(t) is a counting process that jumps to one once
and remains there deterministically, the stratified and pooled approaches to estimating g0 will be
identical (n.b. the deterministic nature of A(t) naturally implies conditioning on prior A(t−1) = 0
when estimating g0). We therefore only considered the stratified approach for the IPW estimator
and and compare stratified vs. pooled approaches to estimating Q̄d

0 only.

Data adaptive estimation
The above estimators each require initial estimates of either g0, Q̄d

0 , or both. Similar to the analyses
in Chapter 2, we use Super Learning [47] for this estimation. This algorithm uses V-fold cross
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validation to select the best convex combination of conditional density or probability fits within a
user specified library of potential candidates. If none of the candidates in the library is a correctly
specified parametric model, then it has been proven to perform at least as well asymptotically
as an oracle selector that selects the best candidate from the library based on the (unknown in
practice) true distribution P0; otherwise, the Super Learner achieves the almost parametric rate of
convergence of log(n)/n.

Most of the estimators considered, with the exception of DRICE and mDRICE, can incorporate
machine learning while retaining valid theory based inference. The exceptions are due to the
previously stated requirement that linear statistical models be used. This restriction extends to data
adaptive estimation as well, such as stepwise regression, as the covariate incorporating the inverse
propensity estimate could be eliminated from the analysis resulting in a loss of the DR property.
We therefore did not consider the data adaptive approaches for DRICE and mDRICE.

3.3 Simulations
To compare the various approaches presented at estimating our target parameter in a controlled
empirical and finite sample setting, we undertook a simulation using a fixed parametric distribution.

Data generating distribution P0

Our data was generated for times t = 0,1,2, . . . ,6 using the data structure described in Chapter 3.1
under a sample size of n = 500 as follows:

W1,W3 ∼ N(0,1)

W2 ∼ Ber(logit−1(−1))

Y (t)|Y (t−) = 0∼ Ber(logit−1(−1.9+1.2W1−2.4W2−1.8L11(t−)

−1.6L12(t−)+L11(t−)L12(t−)−A1(t−)))

L11(t)|Y (t−) = 0∼ N(0.1+0.4W1 +0.6L11(t−)−0.7L12(t−)

−0.45A1(t−),0.5)

L12(t)|Y (t−) = 0∼ N(−0.55+0.5W1 +0.75W2 +0.1L11(t−)

+0.3L12(t−)−0.75A1(t−),0.5)

A1(t)|Y (t−) = 0,A1(t−) = 0∼ Ber(logit−1(−1−1.5W1 +1.75W2

+1.2L11(t)−1.8L12(t)+0.8L11(t)L12(t))))

(3.5)

Thus, we have that L(t) = (Y (t),L11(t),L12(t)) where at time t = 0,
L(0) = (W1,W2,W3,Y (0),L11(0),L12(0)) and A(t) = (A1(t)) for all t. For ease of notation, we
defined L11(−1) = L12(−1) = A1(−1) = 0, fixed Y (0) = 0, i.e. assumed that everyone was alive
at baseline t = 0, and discarded treatment and confounder data gathered at t = 6 as our last time
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point of interest for the outcome is at t = 6 and that extra data would only affect survival Y (t) at
t > 6. We also enforced the restrictions of our model listed in Chapter 2.1. Thus, we have that
Y (t) and A1(t) are counting processes. Once a subject experiences a failure, i.e. Y (t) = 1, all
the remaining values remain at 1. Subjects enrolling, i.e. having A1(t) = 1, stayed enrolled for
the remainder of follow-up. For simplicity, we did not include censoring in our data generating
distribution for this simulation.

Target parameter Ψ(P0)

For the simulation, we considered the intervention of interest to be the static intervention “never
enroll”, i.e. d(l̄(t)) = ā(t) = 0 : t = 0,1, . . . , t∗. Because the needed identifying assumptions hold
by design in this simulation, the target causal and statistical parameter values are identical. The
target parameter under this data generating distribution P0 is defined as the statistical estimand
corresponding to EYā(t∗) for t∗ = 1,2, . . . ,6. This parameter can be thought of as the cumulative
probability of failure at each time point t∗ up to time 6 within a counterfactual population of
subjects where no one ever enrolls into the treatment program of interest, i.e. A1(t∗) = 0.

We determined the true parameter value ψ0(t∗) : t∗ = 1,2, . . . ,6 by drawing observations under
the post-intervention data generating distribution Pd

0 with a sample size of 8x106, where data were
generated according to Equation (3.5) but setting A1(t∗) = 0. Defining our true parameter as
ψ0 ≡ (ψ0(1),ψ0(2), . . . ,ψ0(6)), this resulted in the true parameter value

ψ0 ≈ (0.232,0.335,0.390,0.428,0.460,0.489). (3.6)

Time dependent confounding was defined such that failing to adjust for any confounders would
result in an underestimation of ψ0(t∗) for low values of t∗ and overestimation for high values of t∗.

Positivity
Under the specified distribution P0, the degree of practical positivity violations increases with t.
Figure 3.1 shows the marginal densities of g0,0:t∗−1(ā(t∗− 1) = 0) : t∗ = 1,2, . . . ,6 for each final
time point t∗ under ā(t∗− 1) = 0, allowing us to obtain a sense of the severity of the violations.
Because g0,0:t∗−1(ā(t∗−1)) : t∗ = 1,2, . . . ,6 are functions of L̄(t∗−1), the marginal densities were
derived by taking the conditional probabilities marginally over the distributions of L̄(t∗− 1) for
each final time point t∗. The density plot for time t∗= 1 shows a somewhat uniform distribution for
g0,0:0(ā = 0), with only 4% of the marginal distribution below 0.01. As t∗ increases, however, the
cumulative probability of remaining unenrolled, i.e. having ā(t∗−1) = 0, decreases significantly.
For example, 40% of the marginal distribution g0,0:5(ā(5) = 0) for time t∗= 6 was below 0.01. The
resulting distributions become increasingly concentrated close to 0, indicating that the probability
of remaining unenrolled is near 0 at later time points. Indeed, we saw in the realized simulations
that on average, only 6% of observations were still unenrolled and at risk of failure at t = 5.
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Figure 3.1: Marginal densities of g0,0:t∗−1(ā(t∗−1) = 0) for each time point t∗.

3.4 Estimator practical implementations
We provide summaries below of how each estimator presented above is implemented in our simu-
lation. For ease of presentation, we only cover estimation of our target parameter for the final time
point of interest, i.e. t∗ = K + 1 = 6, and note that the same approaches are taken for the earlier
time points as well.

ICE
We first condition our data on survival up to the penultimate time point t∗− 1, i.e. t = 5, as well
as optionally conditioning on the subset of subjects having Ā(t∗− 1) = d(l̄(t∗− 1)) (depending
on whether we are using the stratified versus pooled approach described in Chapter 3.2), where as
stated in Chapter 3.3, ā(t∗−1) = 0. With this subset, we carry out a logistic regression, regressing
Y (t∗) onto Ā(t∗−1) and L̄(t∗−1). Specifically, for this simulation we used the following correctly
specified logistic model Q̄L(t∗)

E [Y (t∗)|L̄(t∗−1), Ā1(t∗−1)] = logit−1[β0 +β1W1 +β2W2 +β3L11(t∗−1)+β4L12(t∗−1)
+β5L11(t∗−1)L12(t∗−1)+β6A1(t∗−1)]

(3.7)

This logistic regression provides us with estimates β̂ = (β̂0, β̂1, . . . , β̂6), resulting in a fitted
object Q̄n,L(t∗) for time t∗= 6. Under the stratified approach the coefficient on the A1(t) covariate in
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the logistic model is absorbed into the intercept. With this fit, we estimate Q̄d
0,L(t∗) for each subject

i by setting A1(t∗−1) = 0 for all subjects and calculating estimates under the fitted object Q̄n,L(t∗)
for everyone, where the conditional expectation is known to be equal to 1 if Ti < t∗. We iterate this
by now conditioning on survival up to time t = 4 and (optionally) on the subset of subjects having
Ā1(t∗− 2) = d(l̄(t∗− 2)), using the estimates Q̄d

n,L(t∗),i as the outcome, and regressing it onto
Ā(t∗− 2) and L̄(t∗− 2) using the logistic model from Equation (3.7) but replacing the predictors
for time t∗−1 with those of time t∗−2. This gives us a fitted object Q̄n,L(t) for time t = 5, which
we use to estimate Q̄d

0,L(K) for each subject i by setting A1(t∗− 2) = 0 for everyone and again
calculating estimates under the fitted object, again setting it equal to 1 if Ti < 5. We continue
iterating these steps backwards over t until we reach time t = 1, at which we will have the estimate
Q̄d

n,L(1) as a function of only L(0). The target parameter is then estimated by taking the empirical

mean over the sample, ψ̂ ICE
n = 1

n ∑
n
i=1 Q̄d

n,L(1),i.
We also considered the performance of this estimator using the same algorithm above, but

under the following mis-specified logistic model (acknowledging a slight abuse of notation):

E [Y (t∗)|L̄(t∗−1), Ā1(t∗−1)] = logit−[β0 +β1W2 +β2L11(t∗−1)+β3A1(t∗−1)] (3.8)

AIPW
In implementing this estimator, g0 was estimated as for the IPW estimator, using the same correctly
specified and mis-sepcifed parametric models. In contrast to the IPW estimator which only requires
an estimate of each subject’s cumulative probability of never enrolling through time t∗− 1 (i.e.
gn,0:t∗−1(d(l̄ = 0))), for the AIPW estimator, we compute gn,0:t(d(l̄(t))) for t = 0,1, . . . , t∗, i.e.
each subject i’s predicted cumulative probability of not enrolling up to each time point t.

We first condition our data on survival up to the penultimate time point t∗− 1, i.e. t = 5, as
well as optionally conditioning on the subset of subjects having Ā(t∗−1)= d(l̄(t∗−1)) (depending
on whether we are using the stratified versus pooled approach described in Chapter 3.2), where as
stated in Chapter 3.3, ā(t∗−1) = 0. We use this subset to estimate Q̄d

0,L(t∗) by carrying out a logistic
regression of Y (t∗) on L̄(t∗− 1). Both the correctly specified model from Equation (3.7) and the
mis-specified model from Equation (3.8) were considered (where under the stratified approach the
coefficient on the A1(t) covariate in the logistic model is absorbed into the intercept). The resulting
logistic regression fit Q̄d

n,L(t∗) is then evaluated for each subject i in the study setting the predicted
value equal to 1 if Ti < t∗. This allows us to evaluate the functional

D∗t∗(Qn,gn)(Oi) =
I(Āi(t∗−1) = d(l̄(t∗−1)))

gn,0:t∗−1,i(d(l̄(t∗−1)))

(
Yi(t∗)− Q̄d

n,L(t∗),i

)
: i = 1,2, . . . ,n.

We iterate this by now conditioning on survival up to time t = 4 and (optionally) on the subset of
subjects having Ā(t∗−2) = d(l̄(t∗−2)), using the estimates Q̄d

n,L(t∗),i as the outcome, and regress-
ing this outcome onto L̄(t∗−2) using the logistic model from Equation (3.7) or (3.8) but replacing
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the predictors for time t∗−1 with those of time t∗−2. This gives us a fitted object Q̄d
n,L(t) for time

t = 5, which we evaluate for each subject i setting the predicted value equal to 1 if Ti < 5. The fit
is then used to evaluate

D∗t∗−1(Qn,gn)(Oi) =
I(Āi(t∗−2) = d(l̄(t∗−2)))

gn,0:t∗−2,i(d(l̄(t∗−2)))

(
Q̄d

n,L(t∗),i− Q̄d
n,L(t∗−1),i

)
: i = 1,2, . . . ,n.

This procedure is iterated until all of D∗t (Qn,gn)(Oi) : t = 1, . . . , t∗ are evaluated and Q̄d
n,L(1),i : i =

1,2, . . . ,n is estimated. The target parameter is then estimated by simply taking the empirical mean
of the sum of Q̄d

n,L(1),i and D∗t (Qn,gn)(Oi) over t, i.e.

ψ̂
AIPW
n =

1
n

n

∑
i=1

(
Q̄d

n,L(1),i +
t∗

∑
t=1

D∗t (Qn,gn)(Oi)

)
.

DRICE
This estimator is very similar to the ICE approach, with the added step of using the inverse es-
timates gn,0:t−(d(l̄(t−)))−1 times the indicator I(Āi(t−) = d(l̄(t−))) as an additional predictor in
estimating Q̄d

0,L(t) : t = 1,2, . . . , t∗. Similar to Chapter 3.4, we first compute gn,0:t−(d(l̄(t−))) for
t = 1,2, . . . , t∗.

We then take the subset of subjects conditioned on survival up to the penultimate time point
t∗−1; if using the stratified approach we further conditioned on having Ā(t∗−1) = d(l̄(t∗−1)).
With this subset, we carry out a logistic regression, regressing Y (t∗) on Ā(t∗− 1), L̄(t∗− 1), and
I(Ā(t∗− 1) = d(l̄(t∗− 1)))/gn,0:t∗−1(d(ā(t∗− 1))). Thus, rather than just using Equations (3.7)
and (3.8), we additionally regressed on I(Ā(t∗− 1) = d(l̄(t∗− 1)))/gn,0:t∗−1(d(l̄(t∗− 1))), such
that the correctly specified and mis-specified models respectively are

E [Y (t∗)|L̄(t∗−1), Ā1(t∗−1)] = logit−1[β0 +β1W1 +β2W2 +β3L11(t∗−1)+β4L12(t∗−1)
+β5L11(t∗−1)L12(t∗−1)+β6A1(t∗−1)

+β7
I(Ā(t∗−1) = d(l̄(t∗−1)))

gn,0:t∗−1(d(l̄(t∗−1)))
]

E [Y (t∗)|L̄(t∗−1), Ā1(t∗−1)] = logit−1[β0 +β1W2 +β2L11(t∗−1)+β3A1(t∗−1)

+β4
I(Ā(t∗−1) = d(l̄(t∗−1)))

gn,0:t∗−1(ā(t∗−1))
],

(3.9)

noting that in the stratified approach the coefficient on A1(t∗− 1) is simply absorbed into the
intercept. Following this approach of fitting Q̄0, the remaining steps are implemented identically
to the ICE approach in Chapter 3.4.
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mDRICE
As discussed in Chapter 3.2, it is also possible to form a DR estimator by instead using the inverse
propensity estimates gn,0:t−(d(l̄(t−)))−1 as observational weights [82]. This approach is simi-
lar to the DRICE approach above, with the lone exception that the inverse propensity estimates
gn,0:t−(d(l̄(t−)))−1 instead be used as observational weights in the logistic regressions, leaving the
indicator of treatment I(Āi(t−) = d(l̄(t−))) as the model covariate. We denote estimates under this
approach as ψ̂mDRICE

n .
While generally the use of logistic regression solved Equation (3.4), we noticed a small propor-

tion of the time that convergence was not truly achieved, i.e. the equation corresponding to the EIF
was not truly solved. This occurrence increased with the presence of practical positivity issues. To
ensure that resulting estimates would not be biased, we implemented a customized optimization
function which would directly solve the EIF in this setting.

TMLE
This estimator differs from the ICE approach in that at each sequential regression step, Q̄d

0,L(t) is
first estimated (without use of the estimated inverse propensity score) and then this initial fit is
updated in a second regression step, using the initial fit as offset, and including the identical term
I(Āi(t) = d(l̄(t))) as a single covariate. As noted in Section 3.2, this modification facilitates the
use of machine learning approaches for Q̄0.

As with the DRICE approach, we first take the subset of the data conditioned on survival up to
the penultimate time point t∗−1 (as well as optionally, Ā(t∗−1) = d(l̄(t∗−1))). With this subset,
we carry out a logistic regression, regressing Y (t∗) onto Ā(t∗− 1), L̄(t∗− 1). Both models from
Equations (3.7) and (3.8) were considered. The transformed fit logit Q̄d

n,L(t∗) is then used as an offset
in a univariate logistic regression with no intercept, the covariate h = 1, and observational weight
I(Ā(t∗−1) = d(l̄(t∗−1)))/gn,0:t∗−1(d(l̄(t∗−1))) to form the following parametric submodel [46]

logit Q̄d,s
n,L(t)(εt) = logit Q̄d,s

n,L(t)+ εth (3.10)

where t = t∗. The sole parameter εt∗ is estimated using maximum likelihood estimation, i.e. the
negative likelihood loss function, resulting in the estimate ε̂n,t∗ . This allows the initial fit Q̄d

n,L(t∗)

to be updated to Q̄d
n,L(t∗)(ε̂n,t∗), which we denote as Q̄d,∗

n,L(t∗). This updated fit is evaluated for each
subject i in the study, setting equal to 1 if Ti < t∗. We iterate by now conditioning on survival
up to time 4 and (optionally) on the subset of subjects having Ā(t∗− 2) = d(l̄(t∗− 2)), using the
estimates Q̄d,∗

n,L(t∗),i as the outcome, and regressing it onto Ā(t∗−2) and L̄(t∗−2) using the logistic
model from Equation (3.7) or (3.8) but replacing the predictors for time t∗−1 with those of time
t∗−2. This gives us an initial fitted object Q̄d

n,L(t) for time t = 5, which we again update using the
parametric submodel specified in Equation 3.10, with t = 5 and observational weight I(Ā(t∗−2) =
d(l̄(t∗− 2)))/gn,0:t∗−2(d(l̄(t∗− 2))). The updated fit is evaluated for each subject i in the study
setting equal to 1 if Ti < 5, and the procedure is iterated backwards over t until we reach time
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t = 1, at which we will have the estimate Q̄d,∗
n,L(1) as a function of only L(0). The target parameter

is then estimated by taking the empirical mean over the sample, ψ̂
T MLE,s
n = 1

n ∑
n
i=1 Q̄d,∗

n,L(1),i.
For completeness, we also implemented a version of TMLE which uses the covariate ht =

I(Ā(t) = d(l̄(t)))/gn,0:t(d(l̄(t))) and observational weight 1 which we refer to as the covariate
submodel. Similar to DRICE, we also noticed some convergence issues with this estimator as
practical positivity issues increased and therefore implemented our own customized optimization
function to directly solve the EIF in this setting.

R-packages
While TMLE is potentially complex in its execution, we note that an ltmle R-package has been
developed for this estimator [65, 96] and uploaded to The Comprehensive R Archive Network
(CRAN). Additionally, estimates using the ICE and IPW estimators can be obtained using this
package. A built in option allows the user to either stratify or pool the subjects when estimating
Q̄d

0,L(t) and gn,0:t−(d(l̄(t−))) for t = 1,2, . . . , t∗. Furthermore, it can conduct the estimations using
either a parametric generalized linear model or the Super Learner estimation approach discussed
in Section 3.2. We used version 0.9-6 of this package for this study.

We additionally developed a new lrecCompare R-package which was designed specifically
for all of the remaining analyses for the current study. This package contains all of the functions
to generate the simulation data, as well as code to perform the AIPW and DRICE computations.
Similar to the ltmle R-package, a built in option allows the user to either stratify or pool the
subjects and computations can be conducted using either a parametric generalized linear model
or Super Learner. A further option allows the user to use the modified version of the DRICE
estimator. Corresponding code for the package is presented in Appendix C.

Performance
Estimator performance was evaluated by comparing the bias and mean squared error of each es-
timator across 1000 iterations. While the sample variance of the empirical IF/n can provide a
straightforward variance estimator for most of the estimators considered (with the exception of
the ICE estimator), IF based variance estimation has been shown in past work to result in anti-
conservative confidence intervals in settings, such as the one deliberately studied here, with prac-
tical positivity violations (e.g. van der Laan and Gruber [46], Petersen et. al. [65]). While the
comparative evaluation of variance estimators is an exciting area in its own right, we focused here
on performance of estimators of the target parameter EYd(t∗) and leave the evaluation of variance
estimators for Chapter 4. To evaluate the extent to which an estimator’s bias/se ratio threatened
valid inference, we therefore calculated a modified version of 95% confidence interval ”coverage”,
in which we used standard error estimators based on the empirical variance of an estimator across
the 1000 repetitions.
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3.5 Results
The mean squared error of each estimator from the simulations are presented in Figure 3.2 with
further results presented in Tables 3.1 and 3.2. To limit the impact of the positivity violations and
in accordance with theory [48, 49], estimates of g0,0:t∗−1(d(l̄(t∗))) were truncated at 0.001.
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Figure 3.2: Mean squared error of each estimator under correct and mis-specification of g0 and Q̄0.
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ICE
Under correctly specified models, the ICE estimator had the lowest MSE and bias among all the
estimators studied. As time increased and practical positivity issues arose, estimator variance
increased. However, the increase was minimal and estimates remained stable. Under a mis-
specification of Q̄0, the bias and MSE were slightly higher, though also remained stable across
time. Coverage for this estimator remained valid over all time points under the correctly specified
model and (expectedly) fell to as low as 0.69 at t∗ = 6 under the mis-specified stratified model.

IPW
As predicted by underlying theory, the IPW estimator generally had among the highest bias and
MSE within the estimators studied. For example, under the correctly specified model at t∗ = 1, a
bias of 0.009 was observed. Additionally, as expected given the complete reliance of this estimator
on estimation of the propensity score, the bias increased by a factor of almost 6 when the g0 model
was mis-specified. Positivity issues noticeably affected this estimator, with a steady increase in the
MSE at each time point. Within this setting, the high bias in mis-specifying g0 was reversed for
later time points. Due to positivity, the MSE tended to remain lower for this estimator when g0
was mis-specified. At t∗ = 6 the MSE was 0.050 for the correctly specified model and 0.041 for
the mis-specified model. Even under a correctly specified model, coverage reduced with positivity.
While at t∗ = 1, a coverage of 0.96 was observed, this fell to 0.63 at t = 6. The mis-specified
model also resulted in reduced coverage though at later time points where positivity issues were
present, the coverage was higher than those from correctly specified models.

AIPW
At t∗ = 1, the AIPW had minimal bias when at least one of the two nuisance parameters were
estimated consistently. With both the g0 and Q̄0 models specified correctly, a bias close to 0 was
observed. As time progressed and the extent of practical positivity violations increased, the esti-
mates for the target parameter became biased and MSE increased. Coverage, however, remained
valid at approximately 95% over all time points. In settings of mis-specification, lower bias and
MSE was seen when Q̄ was correctly specified (and g was mis-specified) at the early time points,
while the relationship was reversed at later time points. In comparison to IPW (which is also an
estimating equation), the bias and MSE in AIPW was considerably improved, even under model
mis-specification and positivity issues. Compared to the ICE estimator, the bias and MSE were
higher at early time points. At later time points, the MSE remained higher although the ICE bias
was higher. A proportion of estimates was noticed to reside outside the parameter boundary of
[0,1], which increased with time. For example, at t = 1 between 0.1% to 0.05% of the estimates
were outside [0,1], while this increased to 2.1% at t = 6.
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DRICE
The DRICE estimator resulted in minimal bias when at least one of g0 or Q̄0 was specified correctly.
Under model mis-specification, lower bias and MSE was seen when only g0 was mis-specified.
Positivity issues also appeared to affect this estimator, as both the bias and MSE increased consid-
erably over time. Similar to the AIPW, under large levels of practical positivity issues a lower MSE
and bias was seen from the mis-specified models. Coverage remained valid over all time points.
When compared to AIPW, performance was worse over all settings with higher bias and MSE.

Modifying DRICE had a large impact on the estimator’s performance, such that the MSE was
lower than those from AIPW. For example, under a correctly specified model at t∗= 6 the MSE was
0.015 compared to 0.022 for AIPW. This improvement was also seen under a fully mis-specified
setting, with a MSE of 0.007 and 0.027 for the mDRICE and AIPW estimators respectively. Sim-
ilar to the unmodified DRICE, under low positivity issues a low bias was observed when either of
g0 or Q̄ was correctly specified.

TMLE
The TMLE performance was similar to that of DRICE. Under the covariate submodel, positivity
issues resulted in an increase in the bias and MSE. For example, at t∗ = 1 a bias and MSE of
0.003 were observed while t∗ = 6 they were 0.111 and 0.049 respectively. Mis-specifying g0 or
Q̄0 appeared to result in lower bias and MSE with increases in positivity issues. Coverage also
remained mostly at 95% when at least one of the two models were correctly specified.

Under the weighted submodel, TMLE tended to perform the best among the DR estimators,
with the lowest bias and MSE observed. Indeed, it’s performance was near that of the ICE estimator
for correct specification and with minimal positivity issues. Similar performance was seen under a
mis-specification of either g0 or Q̄0. As with the weighted DRICE, mis-specifying Q̄0 under high
levels of positivity resulted in lower bias and MSE. Coverage also remained mostly at 95%.

Pooling vs stratifying
Pooling observations in estimating Q̄0 increased estimator performance under most scenarios (Fig-
ure 3.2). The benefit of pooling was seen both with and without model mis-specification. Once
significant levels of positivity violations were present, all estimators benefited greatly from pool-
ing across different strata of ā when at least one of the two nuisance parameters were specified
correctly. The benefit was highest for DRICE, with the primary gains being seen when Q̄0 was
correctly specified. Whereas at high levels of positivity a lower bias and MSE were seen from
mis-specification of the nuisance parameters under the stratified approach for the DR estimators,
the opposite was true for pooling observations. In other words, lower bias and MSE were seen for
correct specification when pooling observations, but not when stratifying by treatment followed.
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3.6 Estimating EYd(t∗) in the IeDEA-EA cohort
Recall that, as opposed to using the entire IeDEA-EA cohort in Chapter 2, we conditioned on
LREC availability for this analysis. Our baseline time point, t = 0 is therefore the first point of
patient eligibility once the program has been initiated at each of the 15 clinics. With this restriction,
15,225 subjects were found eligible for the LREC program. Of them, 2,011 immediately enrolled
into the program at the start of follow-up (i.e. within the first 90 day interval). During follow-up,
subjects continued to enroll into the LREC program. By 21 months from initial eligibility, 1,819
subjects were still alive and remained un-enrolled. The patients cumulatively contributed a total of
229,941 person-months (Interquartile range: 6,18) of follow-up to the analyses. In regards to their
final observed outcomes, 1,440 experienced either loss to follow-up (1,362) or death (78) by 24
months, while 140 were censored due to clinic transfers. Subjects for whom the database closed
less than 24 months after eligibility were administratively censored. Some of the variables (i.e. cd4
count, clinic visited, WHO stage, pregnancy, tuberculosis treatment) had missing values. Rather
than omitting the subjects with missing values completely, we imputed values by using either their
last observation carried forward (for time-varying covariates with prior measures) or by using the
median of the value across all subjects. This did not noticeably change any of the overall summary
statistics for the covariates when compared to a complete case analysis.

Target parameter
We are interested in comparing 1 minus the cumulative probability of dying or dropping out of
care over time under the intervention to prevent enrollment at all time points (ā1 = 0) and enforce
no censoring (c̄1 = c̄2 = 0). Under the counterfactual intervention we estimate 1 minus the coun-
terfactual probability of failure by time t∗, ψā(t∗) =EP0

d
[Yd(t∗)] for each time point t∗ = 1,2, . . . ,7,

where t∗ = 7 corresponds to the 24th month of follow-up.

Estimation results
We first used parametric generalized linear models (GLMs) to estimate the g0 and Q̄0 portions of
the likelihood. Fits for g0 were formed by pooling observations over the 7 time points, as opposed
to stratifying by each time point and fitting separate models (as was done in the simulations). This
aided us in estimating the clinic transfer mechanism, as the number of subjects transferring clinics
was low (n = 140). Figure 3.3 shows the estimated marginal densities of gn,0:t∗−1(ā(t∗)) : t∗ =
1,2, . . . ,7 at each time point t∗ taken marginally over the 15,225 subjects. While the trend of
shifting to lower probabilities over time is similar to that seen in the simulated data (Figure 3.1),
the degree of positivity violations is smaller.

Figure 3.4 shows the results of applying each estimator to our data using the GLM fits. 95%
confidence intervals were calculated using standard error estimates from each estimator’s influ-
ence function. For the ICE estimator, the empirical EIF was also used. At early time points, all
approaches yielded very similar estimates. As time progressed all the parameter estimates de-
creased and only slightly deviated from one another (with the lone exception of IPW). Confidence
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Figure 3.3: Marginal densities of gn,0:t∗−1(ā(t∗)) for each time point t∗ taken over the 15,225
subjects using GLMs, where ā1 = 0.

intervals also increased with time. Pooling observations across treatment regimes did not affect the
estimates noticeably. The estimators all (within rounding errors) respected the monotonicity of the
cumulative failure distribution over time.
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Figure 3.4: Applied GLM estimates and 95% confidence intervals for estimating ψā=0(t∗) =
EYā=0(t∗) : t∗ = 1,2, . . . ,7.

As stated in Section 3.2, Super Learner was also used to estimate the conditional probability g0
and conditional expectations Q̄0. The library of potential candidates used here consisted of: a gen-
eralized linear model, Bayesian genearlized linear model, multivariate adaptive regression spline,
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gradient boosting machine, support vector machine, neural network, LASSO, ridge regression, and
a stepwise selected model using the Akaike information criterion. We took the linear combination
which minimized the cross-validated non-negative binomial likelihood risk.
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Figure 3.5: Marginal densities of gn,0:t∗−1(ā) for each time point t∗ taken over the 15,225 subjects
using Super Learner, where ā1 = 0.

Figure 3.5 shows the estimated density for gn,0:t∗−1(ā(t∗−1)) for time point t∗ = 1,2, . . . ,7 us-
ing Super Learner. A comparison of the GLM and Super Learner plots implies that the fits between
the two approaches are very similar, with Super Learner generally resulting in more concentrated
distributions. Correlations in the estimated cumulative probabilities at each time point t∗ resulting
from the two approaches varied from 0.56 to 0.97 with higher correlations toward the later time
points. Estimates of probabilities tended to be higher for gn,0:t∗−1(ā(t∗− 1) = 0) fits using Super
Learner. Figure 3.6 shows the estimates of our target parameter, with influence curve based 95%
confidence intervals. We excluded DRICE here, as a number of the candidates we used in the Su-
per Learner library were non-linear. While the estimates are similar to the approach using GLMs,
a number of differences are seen. Firstly, the similarity of the estimates across the set of estimators
(within each time point) is reduced. A noticeable reduction is seen in estimates from TMLE with
inverse propensity score as covariate at the later time points. Monotonicity is still preserved (within
rounding errors). Confidence intervals were generally larger than those estimated using GLM fits.

3.7 Discussion
Numerous approaches have been proposed for estimating causal parameters in a longitudinal treat-
ment setting, several of which have the attractive theoretical properties of double robustness and
semi-parameteric efficiency. However, there are few published direct comparisons of the relative
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Figure 3.6: Applied Super Learner estimates and 95% confidence intervals for estimating
ψā=0(t∗) = EYā=0(t∗) : t∗ = 1,2, . . . ,7.

performance of the DR estimators in a longitudinal setting or with machine learning approaches
for estimating the nuisance parameters. In this article, we presented and analyzed seven specific
estimators, including 4 double robust estimators, in a longitudinal treatment setting using both
simulated and real world data. The DR estimators we considered further included possible modifi-
cations to estimators [3, 46], in that we considered estimators that (a) integrated the inverse propen-
sity score estimate as a weight rather than a covariate [82] and (b) pooled rather than stratified on
treatment history when estimating nuisance parameters. We evaluated performance under model
mis-specifications and steadily increasing levels of positivity violations for our simulated data. For
the applied setting, we considered both a parametric and data adaptive approach at estimating g0
and Q̄0. Simulation results showed decreasing estimator performance with increasing positivity vi-
olations and with model mis-specifications. Pooling observations tended to result in lower MSE, as
well as reduced bias when at least one of the two nuisance parameters were estimated consistently.
The positivity violations affected the IPW estimator the most and the ICE estimator the least, while
the DR estimators showed an affect intermediate to the two. Without positivity violations, as pre-
dicted by theory, the DR estimators retained valid inference, unbiasedness, and low MSE when at
least one of the two models were specified correctly. When both nuisance parameters were spec-
ified incorrectly, the ICE approach out performed the DR estimators in terms of bias and MSE.
Among the DR estimators, DRICE and TMLE using the inverse propensity score estimate as co-
variate performed the worse in simulations with the highest bias and MSE. Integrating the inverse
propensity score as observational weights in DRICE and TMLE resulted in considerably improved
performance, outperforming AIPW in terms of MSE. The magnitude of difference increased over
time with the magnitude of positivity issues.

In the applied setting, similar estimates were observed across estimators when using GLM fits
of the two nuisance parameters. The use of Super Learner to estimate g0 and Q̄0 resulted estimates
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similar to the GLM approach, though with more variability between estimators and slightly wider
confidence intervals. Integrating the inverse propensity scores as observational weights in the two
DR substitution based estimators resulted in improved performance in simulations when compared
with the covariate form.

In simulations, pooling observations generally resulted in lower bias and MSE for all estimators
when at least one of the two relevant portions of the likelihood were estimated consistently. This
became even more apparent as time progressed and practical positivity violations set in. In our
applied analyses, however, no large difference was seen from pooling observations.

A number of debates have arisen regarding which of the estimators considered here are pre-
ferred in practice as well as theory. For example, these estimators can be stratified into an esti-
mating equation approach (IPW, AIPW) or a substitution based estimator (ICE, DRICE, TMLE).
Our preference is for substitution based estimators, as previous research has noted that estimating
equations may result in no or multiple solutions [46]. Furthermore, as seen in the simulations,
these methods do not always obey the constraints of the parameter space. Consequently, the use
of these methods can, as seen here, lead to estimates and confidence intervals that are outside of
the [0,1] range for our parameter. In our simulations, we saw that up to 2% of the estimates from
AIPW estimator were outside that range. Substitution estimators are defined as mappings applied
to probability distributions and consequently will never result in values beyond the bounds of the
parameter space.

There is also a debate regarding whether DR estimators really have an advantage, as in practice,
both the outcome and treatment models could be mis-specified. Our simulations here, those from
Kang and Schafer [36], and those from Robins et al [82] in the point treatment setting show that
when both are wrongly specified, the ICE approach can outperform the DR estimators in terms of
bias and MSE. However, in using machine learning approaches to estimate both nuisance param-
eters, we largely side step this concern and gain several important advantages. By using machine
learning approaches, which respect that our true statistical model is non-parametric, we can ensure
consistency of our nuisance parameters estimators, providing an essential condition for accurate
inference as well as estimator efficiency. This further translates into finite sample gains in both bias
and variance. Furthermore, in settings such as randomized controlled trials where g0 is known, the
DR estimators are guaranteed to be consistent and their use will only improve efficiency.

Our intention in comparing the various estimators was to provide a sense of the performance
of these estimators in practice. Given its efficiency, ability to respect the parameter space, and
observed performance, we recommend the pooled and weighted TMLE approach as the preferred
estimator. The weighted DRICE estimator also performed well as a substitution based estimator,
though is not generalizable to machine learning which can make use of non-parametric models.
While the ICE approach generally resulted in the lowest MSE, the simulation was conducted in a
parametric setting which is unlikely to occur in practice.

We end by stating that the approaches presented here can easily be generalized to a number
of various other estimation problems. An example includes the estimation of causal effects of dy-
namic treatment regimes, where treatment decisions are functions of the time-dependent covariate
process. Extensions involving marginal structural models may also be applied in summarizing the
treatment effect over multiple time points, levels of treatments, or treatment effects that are also
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functions baseline covariates [77, 65].
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Chapter 4

Robust variance estimation and inference
for causal effect estimation

4.1 Introduction
As shown in Chapter 3, a number of different estimators are available for estimating the treatment
specific mean outcome parameter (and the corresponding causal contrasts). Variance estimation
for these estimators are conventionally achieved by using their corresponding influence functions
(IF) or by re-sampling methods such as the bootstrap. However, a number of shortcomings exists
with these variance estimation approaches. In particular, no theory for exists for the non-parametric
bootstrap when using data adaptive methods for estimation nuisance parameters, and both IF-based
and bootstrap based confidence intervals can become anti-conservative with increasing levels of
practical positivity violations. For example, van der Laan and Gruber [46] found IF-based variance
estimates for the intervention specific mean outcome that were overly-conservative when compared
with the Monte-Carlo variance of the TMLE, leading to anti-conservative confidence intervals.
Petersen et. al. [65] found poor coverage for influence function-based confidence intervals, owing
to both a result of practical positivity violations and relatively rare outcomes. This behaviour is
especially true under sparsity in finite samples, even when the assumptions for asymptotic validity
of these estimators hold [64]. As a consequence, statistical inference based on these estimators and
these variance estimates becomes unreliable when the treatment mechanism (i.e. the missingness
mechanism) practically or theoretically violates the underlying positivity assumption. Despite this,
to the best of our knowledge, very little research has conducted into variance estimation.

Additionally, under sparsity issues, the estimated variance may also fail to raise a red flag for
unreliable statistical inference [64]. For example, these estimates of the asymptotic variance are
not sensitive to theoretical violations of the positivity assumptions under which the asymptotic
variance would be infinity, i.e. when positivity fails. Consequently, it is less likely that the analyst
will be able to determine if the data at hand provides insufficient information to estimate the desired
causal parameter with any reasonable degree of accuracy.

Previous work [64, 65] proposed estimating the asymptotic variance of the estimator with a
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parametric bootstrap-based on a fit of the density of the data generating distribution, involving
estimation of the treatment mechanism and the G-computation factor of the likelihood. This pro-
posal corresponds with evaluation of the variance of a given estimator using the data at hand as a
given data generating experiment. The consistency of this estimator relies on correct specification
of both the treatment mechanism and the G-computation factor. As a consequence, this parametric
bootstrap-based variance estimate was only proposed as a measure to raise a red flag for unreliable
statistical inference. In addition, in the context of sparsity, one needs to sample many bootstrap
samples and refit the likelihood in each iteration in order to obtain a valid evaluation of the esti-
mator variance, in order to capture the rare observations that nonetheless heavily contribute to this
variance. Thus, this semi-parametric bootstrap method is extremely computer intensive, making it
an intractable method for complex estimators and complex data generating distributions.

In this chapter, we use analytic expressions to compute the variance of the efficient influence
function (EIF) [25, 79] which provide the asymptotic variance of estimators solving the estimat-
ing equation corresponding to the EIF, such as the AIPW or TMLE. These analytic expressions
naturally integrate over the rare observations, and thereby avoid the finite sample bias in variance
estimation using standard influence curve or non-parametric bootstrap based methods due to rare
observations mentioned above. With this, we construct plug-in type estimators of these asymptotic
variances that are consistent if the treatment mechanism is consistently estimated. These estima-
tors only require estimation of the treatment mechanism and several treatment specific means of
specified outcomes (defined as a function of the observed data structure, indexed by the estimator
of the treatment mechanism), which can thereby be estimated with either an estimating equation
type IPW estimator or an efficient double robust method such as a targeted minimum loss-based
estimator. The resulting variance estimator, unlike current alternatives based on taking the empiri-
cal variance of the estimated influence function, or using a non-parametric bootstrap, will become
very large whenever the estimated treatment mechanism reflects practical or theoretical violations
of the positivity assumption and, consequently, a lack of identifiability.

While this newly presented approach performs well in estimating the asymptotic estimator vari-
ance, a lower finite sample variance is expected for substitution based estimators such as TMLE,
due to the guaranteed parameter boundaries provided by the estimator. To address this, we addi-
tionally present a bootstrap based approach of estimating the finite sample variance which does
not require re-estimation of the treatment mechanisms and the Q-factor of the likelihood. The
approach is shown to, under certain conditions, be asymptotically linear. The resulting reduction
in the computational load (compared to a fully non-parametric bootstrap approach which refits the
likelihood for each iteration) allows for a more tractable approach at estimating the variance.

To summarize, we start by reviewing the current approach of influence function (IF) based
estimator variance estimation. We then present the approach for robust estimation of the variance
of the EIF, which performs well under sparsity. The expression for the variance of the efficient
influence function is presented along with both an IPW and TMLE based estimation approach for
this parameter. To help illustrate, an example is given for a point treatment setting under a static
treatment regime and advantages of this new approach are covered. We additionally introduce
a bootstrap approach to estimate the estimator variance. To reduce the computational intensity
required, a TMLE for estimating the intervention specific mean outcome is presented. The TMLE
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is shown to be asymptotically linear with an influence function equal to the EIF. This bootstrap
approach also solves the EIF and therefore has a normal limiting distribution, implying a consistent
approach at estimating the variance.

We illustrate the results of our work by applying the presented variance estimation approaches
to both a single time-point static treatment setting and longitudinal setting with three time points
and time-dependent confounding. We show that the robust approach at estimating variance per-
forms well for the AIPW variance. The robust approach over-estimates the TMLE variance, while
the bootstrap approach results in estimates close to the observed Monte-Carlo variance. The re-
sulting confidence intervals are shown to be valid, while the bootstrap approach is shown to retain
higher statistical power. Lastly, we apply the new and current variance estimation approaches in
evaluating the effect of enrollment into the LREC program in our IeDEA-EA cohort. Point esti-
mates, standard errors, and confidence intervals for the additive treatment effect are presented for
seven distinct time points. We conclude with a discussion, which reviews the benefits of this new
approach, potential limitations, and future directions.

4.2 Semi-targeted estimation of the EIF variance
Recall that an estimator Ψ̂(Pn) is considered to be asymptotically linear if and only if

Ψ̂(Pn)−Ψ(P0) =
1
n

n

∑
i=1

D(P0)(Oi)+op(n−1/2)

for some mean 0 finite variance influence function D(P0)(O) [25]. Any estimators solving the
estimating equation corresponding to an influence function will therefore, by the central limit the-
orem, be asymptotically normally distributed with mean zero and variance equal to the variance of
the influence function σ2 divided by n. The asymptotic variance of the estimator can therefore be
consistently estimated with the empirical variance of the estimated influence function D(Pn)(O),
i.e. ˆvar[Ψ̂(Pn)] = var[D(Pn)(O)]/n, which implies an asymptotically valid confidence interval.

Alternatively, we can directly target the variance of D(P0)(O) as an expectation. The following
describes how to obtain a TMLE of the variance of each component of the EIF σ2

t in the setting of
a scalar parameter. We provide a proof for the more general working MSM setting in Appendix B.

Expression for variance of the EIF for EYd

Under regimens d(l̄(K)), we have

σ
2
0 ≡ E0[D∗(P0)(O)]2 =

K+1

∑
t=0

E0[H2
t (g0)(Q̄d

0,t+− Q̄d
0,t)

2].

Using the expression for Ht(g) from Equation (2.8), and first taking the conditional expectation
w.r.t. Ā(t−) given X = (L̄d : d), it follows that this can be written as:

σ
2
0 =

K+1

∑
t=0

EPd
0

[
(Q̄d

0,t+− Q̄d
0,t)

2(L̄d(t))

g0(d(l̄(t−)), L̄d(t−))

]
, (4.1)
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where we define g0(d(l̄(−1)), L̄d(−1)) = 1 so that the term at t = 0 equals EL(0)[Q̄d
0,1(L(0))−

E0Y d]2. This is simply a sum of expectations over t ∈ {0,1, . . . ,K +1}. We can write

σ
2
0 =

K+1

∑
t=0

σ
2,d
t =

K+1

∑
t=0

EPd
0

[
Sd

t (Q̄0,g0)(L̄d(t))
]

(4.2)

for the specified function

Sd
t (Q̄0,g0)(L̄d(t))≡

(Q̄d
0,t+− Q̄d

0,t)
2(L̄d(t))

g0(d(l̄(t−)), L̄d(t−))
: t = 0,1, . . . ,K +1

Note that, given (Q̄0,g0), EPd
0
Sd

t (Q̄0,g0) is the mean of a counterfactual Sd
t (Q̄0,g0)(L̄d(t)), i.e.,

the mean of a real valued function (indexed by d(l̄) itself) of L̄d( j), which needs to be estimated
based on the longitudinal data structure L(0),A(0), . . . ,A(t−1),L(t). Given Q̄0,g0, we observe the
outcome Sd

t (Q̄0,g0)(L̄i(t)), i = 1,2, . . . ,n, so that we can represent the observed data structure as
L(0),A(0), . . . ,A(t−1),Sd

t (Q̄0,g0)(L̄(t)), and we wish to estimate the statistical target parameter

EPd
0
Sd

t (Q̄0,g0) = ∑
l̄(t)

Sd
t (Q̄0,g0)(l̄(t))Pd

0 (L̄
d(t) = l̄(t)) : t = 0,1, . . . ,K +1, (4.3)

where again we assume l(t) is discrete for sake of presentation.

Estimation of variance of the EIF
With the expression for the variance of the efficient influence function in hand (Equation 4.2), we
can now form estimators which target this parameter. Q̄0 and g0 are not known in practice, though
estimates Q̄∗n and gn will be readily available if estimating EYd using a double robust estimator such
as TMLE, thus providing us with the observed outcome Sd

t (Q̄
∗
n,gn)(L̄(t)). Treating this variable

as our new time point specific outcome, our goal is to estimate the mean of this variable over the
post-intervention of L̄d(t). For notational convenience, let Zd(t)≡ Sd

t (Q̄0,g0)(L̄(t)), and represent
the observed data structure as (L(0),A(0), . . . ,A(t−1),Zd(t)).

One possible approach to estimating each of the components (Equation (4.3)) is to use a simple
IPW estimator [35]

σ̂
2,d
t,n,IPW =

1
n

n

∑
i=1

I(Āi(t−) = d(l̄(t−)))
g0:t−,n(Āi(t−), L̄i(t−))

Zd
n (t)

where Zd
n (t) = Sd

t (Q̄n,gn)(L̄(t)). However, such an estimator would still be subject to underesti-
mation of the variance by ignoring the contribution of observations that selected a likely treatment
Āi, even though their probability of following d(l̄) is very small. In other words, subjects i with
small probabilities of following d(l̄) would be unlikely to be observed with Āi = d(l̄) resulting in
an indicator value of 0 for the numerator and, consequently, a contribution of 0 to the IPW estima-
tor. Therefore, we stress that it is important to use a plug-in estimator such as the TMLE [46] to
estimate this parameter. A plug-in estimator will integrate over all l̄(t) in the support of Pd

t,n and
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thus contribute many large values of Sd
t,n(Q̄

∗
n,gn) when there are practical or theoretical positivity

assumption violations. In addition, the TMLE is a double robust estimator so that it will yield a
consistent estimator of this variance if gn is consistent for the true g0.

Given Q̄0,g0, we will now provide a succinct summary of the TMLE of σ
2,d
0,t = EPd

0
Zd(t) that

is based on iterative sequential regression. Note that this iterative sequential regression approach
is similar to the one presented by van der Laan and Gruber [46] for the intervention specific mean
outcome parameter. Denote the counterfactual of Zd(t) under treatment d′ with Zd,d′(t), and let
Pd′

0 be the G-computation formula [71] corresponding with this intervention Ā(t−) = d′(l̄(t−)).
We wish to estimate σ

2,d
0,t =EPd

0
Zd,d(t), which can be represented as a series of iterated conditional

expectations

σ
2,d
0,t =E[E[· · ·E[E[Zd(t)|L̄(t−1), Ā(t−1)= d(l̄(t−1))]|L̄(t−2), Ā(t−2)= d(l̄(t−2))] · · · |L̄(0)]].

The EIF for this target parameter σ
2,d
t is given by

D∗
σ

2,d
t
(P)(O) =

t

∑
m=0

Hd,t
m (g)(Q̄d,σ2

t
m+ − Q̄d,σ2

t
m ),

where we define

Q̄d,σ2
t

t+1 = Zd(t)

Hd,t
m (g) =

I(Ā(m−) = d(l̄(m−)))
g0:m−(Ā(m−), L̄(m−))

: m = 1,2, . . . , t

Hd,t
0 = 1.

Therefore, the EIF for σ2 = ∑t σ
2,d
t is simply D∗

σ2 = ∑t D∗
σ

2,d
t

.

With the EIF established, the TMLE of σ
2,d
t is now defined as follows.

1. Estimates g0:m−,n : m= 1,2, . . . , t are readily available if estimating EYd using a double robust
estimator such as TMLE.

2. Set Q̄d,σ2
t

t,n = Zd
i (t). Determine the range (a,b) for Zd

i (t), i = 1, . . . ,n and target this initial fit
using a parametric submodel respecting this range (a,b) by adding the clever covariate Hd,t

t
on the logistic scale (or by using Hd,t

t as observational weight with clever covariate 1), using

the initial fit as off-set. The resulting updated fit is denoted with Q̄d,σ2
t ,∗

t,n .

3. Given Q̄d,σ2
t ,∗

t,n , we can recursively for m = t−1, t−2, . . . ,1:

a) Regress the targeted fit Q̄d,σ2
t ,∗

m+,n onto Ā(m−) = d(l̄(m−)), L̄(m−), using logistic regres-

sion to respect the range (a,b). Denote the fit Q̄d,σ2
t

m,n .
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b) Target this initial fit respecting the range (a,b) with clever covariate Hd,t
m− on the logistic

scale (or by using Hd,t
m− as observational weight with clever covariate 1), and denote this

targeted fit of Q̄d,σ2
t

m with Q̄d,σ2
t ,∗

m,n .

4. At m = 1, we have the estimate Q̄d,σ2
t ,∗

1,n , which now is a function of only L(0). Finally,

we take the average of Q̄d,σ2
t ,∗

1,n w.r.t. the empirical distribution of Li(0). The resulting

σ̂
2,d
t,n,T MLE = Q̄d,σ2

t ,∗
0,n is the desired TMLE of σ

2,d
t .

Application to single time-point treatment setting
For the sake of illustration, let us consider the method presented above for estimation of the vari-
ance of the EIF for the case that O = (L(0),A(0),Y = L(1)) and the target parameter is EY a for a
static point treatment a.

In this case, the variance of the efficient influence curve is represented as

σ
2
0 = E0[D∗(P0)(O)]2

= E0

[
I(A = a)

g0(a | L(0))
(Y − Q̄a

0(L(0)))+ Q̄a
0(L(0))−EY a

]2

= E0

[
I(A = a)

g0(a | L(0))
(Y − Q̄a

0(L(0)))
]2

+E0[Q̄a
0(L(0))−EY a]2

= EPa
0

[
(Y a− Q̄a

0(L(0)))
2

g0(a | L(0))

]
+E0[Q̄a

0(L(0))−EY a]2.

(4.4)

If using a double robust estimator for the estimation of EY a such as TMLE, we are provided
with estimators gn and Q̄∗n of g0(A | L(0)) and Q̄a

0(L(0)) = E[Y a | L(0)] = E0[Y | A = a,L(0)]. The
second term in the final expression of Equation (4.4) is easily estimated with the empirical distribu-
tion. Given g0 and Q̄0, the first term can be represented as the mean of a counterfactual Sa(La(0))≡
(Y a− Q̄a

0(L(0)))
2/g0(a | L(0)) which needs to be estimated based on (L(0),A,Sa(L(0),Y )), where

Sa(L(0),Y ) = (Y − Q̄0(a,L(0)))2/g0(a | L(0)) represents the observed outcome. For example, we
can use a TMLE estimator E∗a,nSa(L(0),Y a) of E0Sa(L(0),Y a) = EL(0),0[E0[Sa | A = a,L(0)]]. The
TMLE estimate E∗n[Sa | A = a,L(0)] of E0[Sa | A = a,L(0)] is defined by determining the range
(a,b) of Sa(Li(0),Yi), obtaining an initial regression fit of E0[Sa | L(0),A] that respects this range,
representing it as a logistic regression fit bounded by (a,b), and updating the latter by fitting a
univariate logistic regression with clever covariate I(A = a)/g0(a | L(0)), using the initial fit as
an off-set. Regarding the initial fit En[Sa | A = a,L(0)], recall from above that Sa is a function
of L(0) which results in the initial fit being exactly (Y − Q̄0(a,L(0)))2/g0(a | L(0)) such that re-
gression is unneeded. Following the update step, the TMLE of E0Sa(L(0),Y a) is now given by
1
n ∑

n
i=1E∗n[Sa | Li(0),A = a], so that

σ̂
2,∗
n =

1
n

n

∑
i=1

E∗n[Sa(Q̄∗n,gn) | A = a,Li(0)]+
1
n

n

∑
i=1

(Q̄∗n(Li(0),a)− ψ̂
∗
n )

2.
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Advantages of the plug-in estimator of σ2
0

Since σ2
0/n equals the asymptotic variance of an asymptotically efficient estimator, it provides a

good measure of the amount of information in the data for the target parameter of interest. There-
fore, it is sensible to view σ2

0/n as a measure of sparsity for the target parameter of interest. If gn
is a good estimator of g0, then our proposed plug-in estimator σ̂2

n is much less subject to under-
estimation due to sparsity than currently available estimators such as the sample variance of the
estimated influence function, and the bootstrap-based estimate of the variance of an efficient esti-
mator. Indeed, the non-parametric bootstrap generally is not valid, except when using a parametric
model to estimate g0 and Q̄0 which will never capture a true model in practice. This plug-in es-
timate σ̂2

n represents a variance of the estimate of the EIF which involves the integration of rare
combinations of treatment and covariates that are unlikely to occur in the actual sample.

In particular, if there are theoretical violations of the positivity assumption, then this true vari-
ance σ2 equals infinity, and, if gn approximates g0 well, then also the estimate σ̂2

n will generate
very large values, demonstrating the lack of identifiability and thereby raising a red flag for finite
sample sparsity bias in the estimators (beyond the large confidence intervals generated by σ̂2

n ). We
also note that if there are serious practical violations of the positivity assumption, then the esti-
mate of this variance should be imprecise, since it is itself a highly variable estimator of a weakly
identifiable parameter.

4.3 Variance estimation for substitution based estimators
The plug-in estimator of the asymptotic variance of the EIF presented above is superior to the more
common approach of taking the empirical EIF variance over the sample (i.e., var[D∗(Pn)(O)]), in
that there is a much stronger contribution of combinations of treatment and covariates that are
unlikely to occur in the actual sample. In finite samples, however, the use of substitution based
estimators such as TMLE (which are guaranteed to solve the EIF within a bounded range) will
expectedly provide lower estimator variance due to the mere fact that they are guaranteed to respect
the global constraints of the statistical model and target parameter mapping. That is, as opposed
to estimating equations that tend to result in estimates outside parameter boundaries as the EIF
variance increases, the use of substitution estimators in finite samples will retain an estimator
variance that is smaller than the EIF variance divided by the sample size, n. Thus, using the newly
presented robust EIF variance method will likely result in over-estimation of the estimator variance
for these types of estimators.

One alternative approach at estimating the variance for substitution based estimators is to con-
duct a nonparametric bootstrap. The n observations are sampled with replacement and used to
form an estimate of the parameter over B iterations. However, as stated above, the non-parametric
bootstrap is generally invalid. Additionally, this is a very computer intensive method that usually
requires estimating the full likelihood (i.e., Pd

0 ) of the longitudinal data structure within each sam-
pled iteration and is therefore normally infeasible in practice unless conducted within an a prior
selected smaller parametric statistical model such as logistic regression. In this section we thus
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present an alternative bootstrap based approach that, unlike the standard non-parametric bootstrap,
is both computationally feasible and theoretically valid. That is, this bootstrap approach allows us
to estimate the variance of the estimator while avoiding re-estimation of g0 and Q̄0. To facilitate
this, we propose a modification of the usual TMLE such that the targeting step is separated.

Modified TMLE for EY d

To reduce the computational burden that bootstrapping requires, we first present the modified
TMLE approach at estimating the parameter EY d . This parameter can be estimated by

1. Estimate g0:t−(Ā, L̄) : t = 1,2, . . . ,K +1 and denote the fits g0:t−,n.

2. Determine the range (a,b) for EY d . Recursively for t = K + 1,K, . . . ,1, estimate the con-
ditional expectation Q̄d

t = E[Q̄d
t+|L̄(t

−), Ā(t−) = d(l̄(t−))] respecting this range. Denote the
fits Q̄d

t,n.

3. For time t = K + 1, target the initial fit Q̄d
K+1,n by using a parametric submodel respecting

the range (a,b) by adding the covariate HK+1(gn) (on the logistic scale), using the initial fits
as off-set, and setting Y as the dependent variable. Denote this updated fit as Q̄d,∗

K+1,n.

4. Given Q̄d,∗
K+1,n, we can recursively for t = K,K,K − 1, . . . ,1 target the initial fits Q̄d

t,n by
using parametric submodels respecting the range (a,b), adding the covariates Ht(gn) (on the
logistic scale), using the initial fits as off-set, and setting Q̄d,∗

t+,n as the dependent variable.

Denote the updated fits as Q̄d,∗
t,n .

5. At t = 1, we have the estimate Q̄d,∗
1,n , which now is a function of only L(0). Taking the average

of Q̄d,∗
1,n w.r.t. the empirical distribution of Li(0) gives us the desired TMLE estimate of EY d .

This estimator also solves the EIF and is therefore also asymptotically linear and efficient. To
see this, first note that we are given an initial fit Pn = (g0:t−,n, Q̄d

t,n : t = 1,2, . . . ,K +1). This fit is
updated using a submodel such that P∗n = Pn(ε). Looking at this estimator minus the truth, we see
that

Ψ(P∗n )−Ψ(P0) =−P0D∗(Pn)(O)+R2(Pn−P0)

for some remainder term R2(Pn−P0). Assuming that Pn is a good enough fit, then it will converge
to P0 at a rate fast enough such that the remainder term is op(1/

√
n). Consequently, we have that

(under empirical process conditions)

Ψ(P∗n )−Ψ(P0) = (Pn−P0)D∗(P∗n )(O)

= (Pn−P0)D∗(P0)(O)+op(1/
√

n).

We emphasize that this estimator is proposed for the sake of the bootstrap method. It is recur-
sive, in that each fit Q̄d

t,n is dependent upon the fit at t+. As opposed to the TMLE presented by van
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der Laan and Gruber [46], the recursive nature of this TMLE is self contained within each step.
In other words, each estimation step in this TMLE can be performed independently of the other
steps. This allows the analyst to form all of the initial fits Pn prior to performing any of the targeted
updates.

Bootstrapping the modified TMLE
If desired, the new TMLE approach presented above can be bootstrapped in a fully non-parametric
manner, such that observations are drawn with replacement prior to fitting the full likelihood Pd

0
and used to form an estimates of the parameter, leading to an estimator variance estimate. For the
sake of computational ease, our general recommendation is to only bootstrap the targeting step.
More specifically, once the fits g0:t−,n and Q̄d

t,n are formed for t = 1,2, . . . ,K + 1, steps 3-5 above
are carried out in the bootstrap such that for b = 1,2, . . . ,B we have

P∗n,b = Pn(εb)

for a user selected submodel P(ε). The estimator variance is then estimated by taking the variance
over the bootstrapped estimates, i.e., var( ˆΨ(Pn)) = var[Ψ(P∗n,b)].

It is easy to see that the EIF is also solved for each bootstrapped sample in the updating step, i.e.
P∗n,bD∗(Pn(εb))(O) = 0. More precisely, if Pn→ P0, then this bootstrap estimates σ2

0 = P0D∗(P0)
2

and thus consistently estimates the asymptotic variance of our TMLE. If, for example, only gn is
consistent, then this TMLE will be asymptotically linear with IF D∗(Q̄,g0), which is a conservative
influence function, since the influence function of the TMLE is D∗(Q̄,g0) minus its projection
onto the tangent space [48, 46]. We note that, just like the empirical variance of D∗(Pn)(O), this
inference is not double robust in sense that if, for example, gn is inconsistent but Q̄n is consistent,
then it will not be consistent.

4.4 Simulations
The variance estimators presented in this paper provide novel estimators of the asymptotic vari-
ance of estimators solving the estimating equations corresponding to the EIF. Simulation studies
presented in this section illustrate their applications in two settings: the estimation of the effect
of treatment in a simpler point treatment setting, and the estimation of the effect of treatment on
survival in a longitudinal observational study setting with three time points (i.e. K +1 = 3) under
time-dependent confounding. To analyze performance, we first compare the variance estimation
approaches covered above in estimating the estimator variance. Both the AIPW and TMLE estima-
tors are considered in order to demonstrate the difference in estimating equations and substitution
based estimators, respectively. The mean of the variance estimates are compared to the Monte-
Carlo variance of each estimator. The Monte-Carlo variance of each variance approach is also
reported. Additionally, we present the empirical coverage, Type I, and Type II errors resulting
from each variance estimation approach.
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Data generating distribution P0

Point treatment setting

Consider a point treatment setting, such as patient enrollment into a care program, in which the
treatment A(0) is only assigned at a single time point. We are interested in determining whether
the treatment of interest has a significant effect on the outcome on an additive scale. Our target
parameter is therefore the difference of the mean outcomes under treatment and control, i.e., ψ0 =
EY1−EY0. Under this setting, the simulated data were generated as follows:

W1,W3 ∼ N(0,1), bounded at [-2,2]
W2 ∼ Ber(logit−1(−1))

L1(0) ∼ N(0.1+0.4W1,0.52)

L2(0) ∼ N(−0.55+0.5W1 +0.75W2,0.52)

ḡ0,0(A(0)|Pa(A(0))) = logit−1(βp− (βp +2.5)W1 +1.75W2

+(βp +3.2)L1(0)−1.8L2(0)+0.8L1(0)L2(0)))

Q̄0,1(Y |Pa(Y )) = logit−1(−0.5+1.2W1−2.4W2−1.8L1(0)−1.6L2(0)
+L1(0)L2(0)−βψ0A(0))

with a positivity associated parameter βp ranging from −2 (minor positivity violations) to
1 (strong practical positivity violations) and the treatment effect associated parameter βψ0 rang-
ing from 0 (no treatment effect) to 1 (strong treatment effect). Here, L1(0) and L2(0) are not
time-dependent confounders and are therefore considered baseline covariates along with (W1,W2),
which affect both the treatment and the outcome.

Longitudinal treatment setting

For the longitudinal setting, we considered a treatment A(t) which was allowed to vary over time
as a counting process. That is, if A(t) = 1 then we have that A(t) = 1. Similar to the point treatment
setting, we are interested in whether the treatment of interest has a significant effect on the outcome
at the final time point t∗ = 3 on an additive scale. Thus, our target parameter is the difference of the
mean outcomes under treatment and control at this final time point, i.e., ψ0 = EY1(t∗)−EY0(t∗)
where Y (t∗) = L3(3). Under this setting, data for the first time point was generated in the same
manner as the point treatment setting above. For the remaining two time points, the data were
generated conditional on survival (i.e. L3(t−) = 0) as follows:
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L1(t) ∼ N(0.1+0.4W1 +0.6L1(t−)−0.7L2(t−)+0.45βψ0A(t−),0.52)

L2(t) ∼ N(−0.55+0.5W1 +0.75W2 +0.1L1(t−)+0.3L2(t−)
+0.75βψ0A(t−),0.52)

ḡ0,t(A(t)|Pa(A(t))) = logit−1(βp− (βp +2.5)W1 +1.75W2

+(βp +3.2)L1(t)−1.8L2(t)+0.8L1(t)L2(t)))

Q̄0,t(L3(t)|Pa(L3(t))) = logit−1(−0.5+1.2W1−2.4W2−1.8L1(t−)−1.6L2(t−)
+L1(t−)L2(t−)−βψ0A(t−))

Similar to the point treatment setting, the treatment effect associated parameter βψ0 also ranged
from 0 to 1. We note, however, that the positivity issues faced in this scenario will be even more
severe due to taking the cumulative probabilities of treatment over time, which resulted in smaller
probabilities. We therefore considered only βp values from −2 to 0 and imposed a truncation level
of 0.001 to the estimates of g0:t . Figure 4.1 shows the proportion of observations with truncated
g0:t as a function of βp at a null effect, i.e. βψ0 = 0
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Figure 4.1: Proportion of observations with g0:t truncated.

Under these settings, the true parameter values ψ0 were achieved by generating 8× 107 ob-
servations under the counterfactual distribution for each βψ0 considered. Simulation results were
obtained for 500 simulations of size n = 500. Within each simulation, the bootstrap estimates of
variance were formed from B = 1000 iterations.

Submodels used
Any submodel and loss function for which its loss-function specific score

∂

∂ε
L(P(ε))

∣∣∣
ε=0



CHAPTER 4. ROBUST VARIANCE ESTIMATION AND INFERENCE FOR CAUSAL
EFFECT ESTIMATION 64

spans D∗(P0)(O) can be chosen in TMLE for both estimation of the mean outcome EYd and the
variance of the EIF σ2. As these submodels solve the equation corresponding to the EIF, they will
all be asymptotically equivalent and thus, all asymptotically efficient. That is, no difference will be
seen between the use of various submodels as the sample size grows to infinity. However, we note
that the use of various submodels in finite samples can have varying performance. For example,
under increasing levels of positivity violations the use of linear submodels which use Ht(g) as a
covariate can have higher variance due to observations with low probabilities of treatment acting
as outliers which result in highly influential points for the estimation of the submodel parameter ε .
Alternatively, using Ht(g) as weights for the submodel avoids this issue.

Recall that the catalyst for this work was the anti-conservative estimates of estimator variance
resulting from the use of the empirical EIF variance. We therefore wish to establish a robust
estimator of the variance of estimators which solve the EIF, particularly under violations or near
violations of positivity. In other words, we desire a variance estimator which will asymptotically
converge to the true variance of the estimator, but also simultaneously act on the conservative side
in finite samples. Keeping this in mind, we used two submodel and loss function combinations
for our simulations. For the estimation of the target parameter and the robust estimator of the EIF
variance, we used submodels which define Ht(g) and Hd,t

m (g) to be observational weights such that

logitQ̄(ε) = logitQ̄+ ε,

acknowledging our slight abuse of notation. Alternatively, in our bootstrap approach at estimating
the TMLE variance, we define the clever covariate using Ht(g) such that

logitQ̄(ε) = logitQ̄+ εHt(g).

Both submodels use, as loss function, the negative log-likelihood loss. As stated previously, both
of the submodels presented solve the equation corresponding to the EIF and are therefore asymp-
totically equivalent.

Simulation results
Point treatment results

Figure 4.2 shows the Monte-Carlo variance under no treatment effect (βψ0 = 0) for both the AIPW
and TMLE estimators, along with the mean of the variance estimates from each estimation ap-
proach. To keep the differences in perspective, we plotted results only for the positivity associated
parameter βp ≤ 0. At the lower end of βp where positivity violations are minor, the observed
estimator variance is low for both the AIPW and TMLE estimators, with TMLE showing lower
variance between the two. For example, at βp = −2 the Monte-Carlo variance was 0.0027 and
0.0025 for the AIPW and TMLE estimators, respectively. Equivalently, the TMLE estimator re-
sulted in a variance that is 6% lower than that of the AIPW estimator, despite solving the same
estimating equation corresponding to the EIF. As βp increased, introducing higher levels of posi-
tivity violations, the estimator variance increased for both estimators. Additionally, this occurred
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at a noticeably higher rate for the AIPW estimator than for TMLE, resulting in an increase in
the magnitude of difference between the two estimators. For example, at βp = 0 the simulations
resulted in a Monte-Carlo variance of 0.0167 and 0.0077 for the AIPW and TMLE estimators,
respectively.

−2.0 −1.5 −1.0 −0.5 0.0

0.00

0.01

0.02

0.03

0.04

0.05

(a) AIPTW

(500 simulations per βp setting)
βp

V
ar

ia
nc

e

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

● ● ●
●

●
● ●

●

● ● ●

●
●

●
●

●

●

●

Mean robust EIF variance / n
Mean empirical EIC variance / n
Monte−Carlo variance

−2.0 −1.5 −1.0 −0.5 0.0

0.00

0.01

0.02

0.03

0.04

0.05

(b) TMLE

(500 simulations per βp setting)
βp

V
ar

ia
nc

e

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

Mean robust EIF variance / n
Mean bootstrap variance
Mean empirical EIC variance / n
Monte−Carlo variance

Figure 4.2: Mean of variance estimates for each estimator under no treatment effect (βψ0 = 0) at
each positivity (βp) value under the point treatment setting, overlaid with the estimator’s Monte-
Carlo variance. Robust variance estimates are identical for the two estimators.

For the AIPW estimator, the empirical EIF based approach of estimating variance performed
well at estimating the variance of the estimator. For example, at βp = −2 the mean of the EIF
approach was 0.0031 compared with the Monte-Carlo variance of 0.0027. At βp = 0, they were
0.0167 and 0.0175, respectively. Alternatively, the robust approach of estimating variance ap-
peared to overestimate the variance at higher instances of practical positivity violations (e.g.βp =
0).

In the TMLE estimator, all three approaches to variance estimation performed almost identi-
cally at low values of βp. At βp =−2, the mean of the estimates was 0.0030, 0.0030, and 0.0032
for the empirical EIF, robust, and bootstrapped based approaches, respectively, compared to the
estimator’s Monte-Carlo variance of 0.0025. As βp increased and practical positivity issues arose,
the empirical EIF approach tended to result in slightly anti-conservative estimates of variance,
while the bootstrap approach resulted in slightly conservative estimates. As opposed to the AIPW
estimator, the robust EIF approach severely overestimated the TMLE estimator variance.

Figure 4.3 shows the Monte-Carlo variance for each approach taken at estimating the estima-
tor’s variance. Lower values in this figure can be interpreted as coming from a variance estimator
with more precision. In the AIPW estimator, the empirical EIF approach has noticeably higher
variance than the robust approach, with a variance of 2.93 at βp = 0 compared with 1.50 for the
robust approach. This implies that the empirical EIF approach to estimating the AIPW estimator
variance is less reliable than the robust EIF approach. For the TMLE estimator (Figure 4.3b), the
empirical EIF approach to estimating variance showed much lower Monte-Carlo variance. The
bootstrap approach also resulted in very low variance, implying a high reliability of this approach
at estimating the variance.
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Figure 4.3: Monte-Carlo variance of variance estimators for each mean outcome estimator under
no treatment effect (βψ0 = 0) at each positivity (βp) value under the point treatment setting. Robust
variance estimates are identical for the two mean outcome estimators.

We evaluated 95% confidence interval coverage for the TMLE estimator of EYd under the
three approaches to variance estimation. Due to the lower variance seen in Figures 4.2 and 4.3, we
focused only on the TMLE estimator here. Figure 4.4 shows a heat map overlaid with a contour plot
of the resulting coverage estimates (i.e. the observed proportion of times the true parameters were
captured by the confidence intervals) over the different combinations of βψ0 and βp. Additionally,
we estimated the power to reject the null hypothesis (at a level of 0.05) corresponding to each
variance estimation approach under the range of treatment effect sizes and degrees of positivity
violation considered above. Figure 4.5 shows a heat map overlaid with a contour plot of the
resulting power estimates. Results at βψ0 = 0 can be interpreted as Type I errors, as they inform us
of the times that the null hypothesis of no treatment effect is incorrectly rejected.

At low instances of positivity issues, coverage appears valid for all three variance estimation
approaches with the proportion of time the true parameter was captured consistently at 0.95 or
larger (Figure 4.4). Where positivity issues were low (βψ0 < −0.5), the empirical EIF approach
maintained nominal to conservative coverage. Where severe positivity violations were present,
coverage dropped substantially below 0.95. For example, at βp = 1 coverage for this approach
varied from 0.41 to 0.85. In contrast, the robust EIF approach consistently resulted in coverage
at around 0.95− 0.96 at low values of βp and increased with βp, consistent with prior results
showing overestimation of the variance under increasing positivity by this approach. For example,
at βp =−.7, coverage remained at 0.98 at all values of βψ0 . At βp ≥−0.1, the observed coverage
was almost always greater than or equal to 0.99 at all values of βψ0 . The bootstrap based coverage
shown in Figure 4.4c varied the least, with coverage consistently between 0.95−0.97 irrespective
of the treatment effect (βψ0) and positivity severity (βp) considered.

Regarding the observed power (Figure 4.5), the empirical-EIF based variance approach re-
sulted in the highest power among all three variance estimation approaches when an effect was
present. For example, at βψ0 = 1 and βp =−1, the observed power was 0.71, 0.51, and 0.51 for the
empirical-EIF, robust-EIF, and bootstrap approaches respectively. While this result implies a more
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Figure 4.4: Simulated coverage for each variance estimation approach for the TMLE estimator
under various treatment (βψ0) and positivity (βp) values under the point treatment setting.

efficient approach, it expectedly came at a cost of higher Type I error which became uncontrolled
with an increase in βp. For example, at βp = −2 an observed 4.2% of the simulations incorrectly
rejected the null hypothesis. This proportion increased to as high as 15% at βp = 1. Alternatively,
the robust EIF estimation approach resulted in low Type I errors (i.e. between 0− 5.8%) with
none of the simulations incorrectly rejecting the null beyond βp = −0.1. The bootstrap approach
resulted in an intermediate performance, with higher power than the robust EIF approach when
an effect was present while simultaneously retaining appropriate control of the Type I error at all
levels of βp when no effect was present. For example, at βp = 1 only 4.8% of the simulations
incorrectly rejected the null hypothesis.
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Figure 4.5: Simulated power for each variance estimation approach for the TMLE estimator under
various treatment (βψ0) and positivity (βp) values under the point treatment setting.

Longitudinal treatment results

Results for the longitudinal setting were less stable, though still similar to the point treatment set-
ting. Figure 4.6 shows the mean of the variance estimates under each approach, overlaid with the
Monte-Carlo variance of the estimators. The same trend over the different levels of positivity was
seen as in Figure 4.2, with the variance increasing with the magnitude of positivity issues. The
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empirical EIF approach also performed well here at low levels of βp for both the AIPW and TMLE
estimators. At high values of βp, the approach tended to slightly underestimate the variance both
both intervention specific mean outcome estimators. Conversely, the robust EIF approach consis-
tently over estimated the variance for both estimators. The bootstrap approach resulted in slightly
conservative variance, though were still very similar to the Monte-Carlo variance esitmates.
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Figure 4.6: Mean of variance estimates for each estimator under no treatment effect (βψ0 = 0) at
each positivity (βp) value under the longitudinal treatment setting, overlaid with the estimator’s
Monte-Carlo variance. Robust variance estimates are identical for the two estimators.

Figure 4.7 shows the coverage corresponding to each variance estimation approach for the
TMLE estimator of the intervention specific mean outcome. Coverage for the empirical EIF ap-
proach dropped considerably with an increase in positivity issues. For example, at a null effect (i.e.
βψ0) the observed coverage was 0.93 at βp =−2 and 0.78 at βp = 0. For the robust EIF approach,
coverage increased with positivity. This became as high as 1.00 (i.e. all simulated confidence
intervals captured the true parameter value) at higher levels of positivity issues. For the bootstrap
approach, a higher level of coverage was also seen. For example, under a null effect, a coverage of
0.95 was observed at βp =−2 and 0.98 at βp = 0.
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Figure 4.7: Simulated coverage for each variance estimation approach for the TMLE estimator
under various treatment (βψ0) and positivity (βp) values under the longitudinal treatment setting.
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Results for the Type I error and power were also similar to the point treatment setting. When
there was an effect, the empirical EIF approach resulted in the highest power. At βψ0 = 1 and
βp = −2, we observed a power of 0.99. However, the Type I error was also uncontrolled here,
becoming as high as 0.22 at βp = 0. While the robust EIF approach maintained valid Type I error
rates, the power for this approach when an effect was present was the lowest. For example, for an
treatment effect size of βψ0 = 1 we observed a power ranging from 0.996 at βp = −2 to 0.14 at
βp = 0. The bootstrap approach also resulted in controlled Type I error rates, with observed values
below 0.05 over all values of βp considered. Power was higher than the robust EIF approach across
all values of βψ0 and βp. For a treatment effect size of βψ0 = 1, we observed a power ranging from
0.988 at βp = −2 to 0.40 at βp = 0 for the bootstrap approach. Compared with the robust EIF
approach, this is almost a 3-fold increase in power!
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Figure 4.8: Simulated power for each variance estimation approach for the TMLE estimator under
various treatment (βψ0) and positivity (βp) values under the longitudinal treatment setting.

4.5 Variance estimates for the impact of LREC enrollment in
the IeDEA-EA cohort

Similar to the approach taken in Chapter 3.6, we condition on LREC availability for these analyses.
To avoid potential theoretical positivity issues from subjects losing eligibility during follow up,
we define our target parameter as the difference in the mean outcomes between the intervention
to enforce immediate enrollment for all subjects (i.e. d(l̄(t∗)) = 1) and the intervention to prevent
subjects from ever enrolling into the program (i.e. d(l̄(t∗)) = 0). Under both interventions, subjects
are also intervened to never be censored. Our target parameter is therefore ψ0(t∗) = E0Yd=1(t∗)−
E0Yd=0(t∗) : t∗ = 1,2, . . . ,7.

Nuisance parameters were estimated using Super Learning [47]. Candidates considered in the
library included (i) an intercept only model (i.e. the mean), (ii) logistic regression [113], (iii)
Bayesian logistic regression [20], and (iv) step-wise logistic regression using the Akaike Infor-
mation Criterion [111]. A truncation level of 0.001 was applied to the probabilities of treatment.
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For the robust estimation of the EIF variance, we bounded Sd
t and used a quasi-binomial logistic

regression approach to estimate Q̄d,σ2
t

m : t = 1,2, . . . ,K +1,m = 0,1, . . . , t.
As the TMLE estimator out-performed the AIPW estimator in the simulations, we also consid-

ered only that estimator for this analysis. While our primary interest for this analysis is the additive
treatment effect, positivity issues can have an effect on our variance estimates, potentially result-
ing in different inference or conclusions. We therefore considered all three variance estimation
approaches.

Estimation results

Table 4.1: Point and standard error estimates for the additive treatment effect of LREC program
enrollment. Bootstrap estimates were based on 1000 repetitions.

Time Point Standard Errors
point Estimate Empirical EIF Robust EIF Bootstrap

1 -0.0001 0.0008 0.0010 0.0010
2 -0.0348 0.0032 0.0036 0.0035
3 -0.0523 0.0048 0.0070 0.0070
4 -0.0698 0.0056 0.0091 0.0077
5 -0.0681 0.0062 0.0107 0.0077
6 -0.0671 0.0065 0.0147 0.0088
7 -0.0660 0.0067 0.0229 0.0089

Table 4.1 shows the results of the applied analyses. The treatment effect estimates increased up
to time t∗ = 4 and plateaued indicating a (mostly) monotonic effect as time passed. Similar to the
results in the simulations, the empirical EIF approach resulted in the lowest standard errors, while
the robust EIF approach resulted in the highest estimates. This difference increased with time, with
a factor of over three times the magnitude of the empirical EIF approach at t∗ = 7. The bootstrap
approach resulted in standard error estimates that were in between the two previous approaches,
with estimates closer to those from the empirical EIF approach.

Figure 4.9 shows the corresponding 95% confidence intervals for the point estimates using each
of the variance estimation approaches. As expected from the standard error estimates, the empirical
EIF approach resulted in the tightest confidence intervals, while the robust EIF approach resulted
in confidence interval lengths that were up to 3 times those from the empirical EIF approach.
Confidence intervals created using the bootstrap approach were intermediate to the previous two,
with lengths closer to those of the empirical EIF.

4.6 Discussion
The goal of the current study was to establish a consistent approach of estimating the variance
of estimators solving the EIF which, in contrast to the common approach based on the empirI-
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Figure 4.9: Point estimates and 95% confidence intervals for the additive treatment effect of LREC
program enrollment. Bootstrap estimates were based on 1000 repetitions.

cal variance of the estimated EIF, do not act anti-conservatively when confronted with posItivity
violations. We have presented two such novel approaches at estimating this variance: 1) a robust
approach that directly targets the asymptotic variance of the EIF, and 2) a bootstrap approach based
on fitting the initial density of the data once, followed by a non-parametric bootstrap of the target-
ing step. We noticed in simulations that the variance of AIPW increases with the variance of the
EIF as positivity increases. In contrast, the variance of the TMLE was constrained in the face of in-
creasing positivity violations by being a substitution estimator, and as a result, while the empirical
EIF approach underestimated variance, the robust EIF approach increasingly over-estimated the
variance as the degree of positivity violations increased. In contrast, the bootstrap based approach
provided less conservative variance estimation, while maintaining Type I error control in the face
of extreme positivity violations, both in the point treatment and longitudinal setting. In our applied
setting, the empirical EIF approach also resulted in the lowest standard errors, while the robust
EIF approach resulted in noticeably higher estimates. This resulted in noticeable 95% confidence
interval length differences between the three approaches.

We emphasize that, as the robust EIF approach directly targets the asymptotic variance of the
EIF, extremely large values of estimates from this can be used to raise a red flag for unreliable
statistical inference due to sparsity, thereby declaring that the target parameter is practically not
identifiable from the data, and that the reported variance estimates (though large) will themselves
be imprecise. As such, we recommend that this approach be used if there is concern regarding
identifiability of the data for the target parameter of interest.

While the EIF can raise a red flag for lack of identifiability, for substitution estimators such as
TMLE we suggest that it is overly conservative for constructing valid confidence intervals and tests
in finite sample in the face of substantial positivity violations. In previous work [64], we suggested
the parametric bootstrap as a diagnostic tool for sparsity-bias in the point treatment setting. The
approach can become cumbersome, as the analyst would need to refit the whole likelihood for
each iteration of the bootstrap. Our robust EIF approach is able to avoid estimating the whole
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likelihood by targeting the required means under the post intervention distribution defined by the
longitudinal g-computation formula directly. Even if we use an actual TMLE of Pd

0 , our analytic
estimate of the variance is still much less computer intensive than the parametric bootstrap method,
in particular, in view that one would need to run many replicate samples of the data set in order to
pick up the observations that correspond with a rare treatment and thus contribute large numbers to
the variance expression. Therefore, we believe that the proposed analytic method will be (at least,
practically) superior to the earlier proposed parametric bootstrap method. Our presented bootstrap
approach, while more computationally intensive than the robust EIF approach, is also superior
to the earlier proposed approach, in that we do not have to refit the entire likelihood under each
iteration. This also significantly reduces the computational resources required to obtain estimates
of the target parameter, particularly if computationally intensive non-parametric machine learning
algorithms are used to estimate these densities.

Further refinements can be applied in an attempt to obtain variance estimates with an even
smaller finite sample bias. One such approach is a convex combination of the variance estimators
considered above. For example, we noticed in supplementary analyses that taking

α̂nσ̂
2
eEIF,n +(1− α̂n)σ̂

2
rEIF,n

had good performance, where σ̂2
eEIF,n is the variance estimate using the empirical EIF approach,

σ̂2
rEIF,n is the variance estimate using the robust EIF approach, and α̂n = |σ̂2

rEIF,n−σ̂2
eEIF,n|/(σ̂2

rEIF,n+

σ̂2
eEIF,n). We note, however, that such an approach is ad-hoc and may lead to varying results in other

simulations or distributions. We therefore chose not to present the results here.
A potential limitation of the robust approach at estimating the variance involves the conditions

for asymptotic linearity to be met. Specifically, we have the requirement that Q̄d
t : t = 0,1, . . . ,K+1

and g0 be estimated consistently. Without this, we do not have a limiting distribution so that we
are not estimating a well defined σ2

0 and inference is impossible. Furthermore, it is also required

that Q̄d,σ2
t

0 be estimated both consistently and at a fast enough rate. In our simulations, we used a

simple parametric model to estimate Q̄d,σ2
t

0 , though a more non-parametric approach such as Super
Learning could have been applied. Such an approach is extremely computationally expensive and
infeasible in practice, as it would have to be applied to estimate the variance of the EIF at every
single time point, σ2

t . In this regard, the bootstrap approach is superior as it does not require the

additional estimation of Q̄d,σ2
t

0 .
It would be of interest to further evaluate not only the practical performance of these variance

estimation approaches in future studies, but also the application of the approaches to other param-
eters. Appendix B derives the general approach for working marginal structural models. Further
research into the practical performance of this approach is needed for this setting. These variance
estimation approaches can also be used for more complex parameters, such as mean outcomes
under dynamic regimes, stochastic interventions, or marginal structural working models. Future
research could also develop a collaborative TMLE [45] or cross-validated [117] based approach at
robustly estimating the EIF variance.
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Appendix A

Proof that O and Or have equivalent
influence functions

We provide a proof here showing that the influence function for the full data O is equivalent to the
influence function we solve for in our analysis based on the reduced data Or = O/L1(K +1).

Firstly, we know the efficient influence function D(P) for the reduced data Or. Our goal is to
compute the efficient influence function for the full data O for this same parameter (but now as a
function on a model on O instead of Or).

Recall that one can compute an efficient influence function D∗(P) by first deriving an influence
function of any estimator, and then projecting this influence function on the tangent space T (P)
of the model. D(P) is one such influence function since it is the influence function of the TMLE
ignoring L1(t∗). Thus, the desired efficient influence function is D∗(P) = π(D(P)|T (P)) where π

is the projection operator acting onto T (P).
Now, we note that the likelihood of O can be factorized as P(L1(t∗)|Y (t∗))P(Or). Thus, the tan-

gent space is the orthogonal sum of the tangent space T1(P) of the first factor P(L1(t∗)|Y (t∗)) and
the tangent space Tr(P) of P(Or). Consequently, π(D(P)|T (P))= π(D(P)|T1(P))+π(D(P)|Tr(P)).
However, the target parameter is only a function of P(Or), such that P(L1(t∗)|Y (t∗)) is actually
a nuisance parameter. Because the efficient influence function is always orthogonal to a nuisance
tangent space (i.e. the space of scores one gets by varying the nuisance parameters), it is also
orthogonal to the tangent space of P(L1(t∗)|Y (t∗)). It follows that D∗(P) = π(D(P)|Tr(P)) (i.e.
the component in T1(P) is zero).

However, D(P) is the efficient influence function of the target parameter based on Or and
is therefore an element of the tangent space of P(Or), so that D(P) is in Tr(P). This results
in π(D(P)|Tr(P)) = D(P), which completes the proof that D∗(P) = D(P). That is, the efficient
influence function of our parameter based on Or is the same as the efficient influence function of
our parameter based on O.
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Appendix B

Efficient influence function variance for
working marginal structural models

B.1 TMLE of σ 2
K+1 for marginal structural working models

For the general working marginal structural model (MSM) Θ ≡ {mβ : β} from Petersen2013, we
have that the component corresponding with the last time point K +1 equals

D∗K+1(P) = ∑
d∈D

h1(d,K +1)
I(Ā(K) = d(L̄(K)))

g0:K(Ā(K), L̄(K))
(Y − Q̄K+1(Ā(K), L̄(K)))

= CK+1(P)(Ā, L̄)(Y − Q̄K+1),

where, for some user defined weight function h(d,K +1),

CK+1(P)(Ā, L̄) = ∑
d∈D

h1(d,K +1)
I(Ā(K) = d(L̄(K)))

g0:K(Ā, L̄)
.

h1(d,K +1) = h(d,K +1)
∂

∂β
mβ (d,K +1)

mβ (1−mβ )

We want to obtain a representation of the variance of this component D∗K+1 so that we can use
a semi-substitution estimator of this part of the variance of the EIF, hopefully, thereby obtaining
a variance estimator that is more accurate under violations of practical positivity, and a variance
estimator that can be used as a red flag for lack of identifiability. This variance can thus be written
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as

σ
2
K+1 = E[C2(Y − Q̄K+1)

2]

= E[C2Q̄K+1(1− Q̄K+1)]

= E

(∑
d∈D

h1(d,K +1)I(Ā = d(L̄))

)2
Q̄K+1(1− Q̄K+1)

g2
0:K

(O)


= E

[(
∑

d1,d2∈D
h1(d1,K +1)h1(d2,K +1)I(Ā = d1(L̄))I(Ā = d2(L̄))

)
Q̄(1− Q̄)

g2
0:K

(O)

]

= ∑
d1,d2

h1(d1,K +1)h1(d2,K +1)E
[
I(Ā = d1(L̄))I(Ā = d2(L̄))

Q̄(1− Q̄)

g2
0:K

(O)

]
.

The latter expectation equals:∫
L̄ I(d1(L̄) = d2(L̄))∏

K+1
t=0 Q(Lt | Ā(t−) = d1(L̄(t−)), L̄(t−))

Q̄(1−Q̄)
g0:t(d1(L̄),L̄)

= E
Pd1

0

[
I(d1(L̄d1) = d2(L̄d1))

Q̄(1−Q̄)
g0:K

(d1(L̄d1), L̄d1)
]
.

This yields the following expression:

σ
2
K+1 = ∑

d1,d2∈D
h1(d1,K +1)h1(d2,K +1)

E
[
I(d1(L̄d1) = d2(L̄d1))

Q̄(1− Q̄)

g0:K
(d1(L̄d1), L̄d1)

]
= ∑

d1∈D
h1(d1,K +1)

E

[(
∑

d2∈D
h1(d2,K +1)I(d1(L̄d1) = d2(L̄d1))

)
Q̄(1− Q̄)

g0:K
(d1(L̄d1), L̄d1)

]
= ∑

d1∈D
h1(d1,K +1)EZd1(d1,K +1)

where

Z(d1,K +1) =

(
∑

d2∈D
h1(d2,K +1)I(d1(L̄(K)) = d2(L̄(K)))

)
Q̄(1− Q̄)

g0:K(d(L̄(K)), L̄(K))
,

so that the counterfactual of Z(d1,K +1) under intervention d1 is given by

Zd1(d1,K +1) =

(
∑

d2∈D
h1(d2,K +1)I(d1(L̄d1(K)) = d2(L̄d1(K)))

)
Q̄(1− Q̄)

g0:K
(d1(Ld1(K)),Ld1(K)).
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Static regimens
In the special case that the class of dynamic regimens D consists only of static regimens ā(K) so
that there is only one and exactly one treatment such that Ā(K) = d(L̄(K)), then we have

Z(K +1) = h1(Ā,K +1)
Q̄(1− Q̄)

g0:K
(Ā, L̄),

so that

Zd(K +1) = h1(d,K +1)
Q̄(1− Q̄)

g0:K
(d(L̄d), L̄d).

In that case, we have

σ
2
K+1 = ∑

d∈D
h1(d,K +1)2EZ1d(K +1)

where Z1(K +1) = Q̄(1− Q̄)/g0:K(Ā, L̄) and Z1d(K +1) = Q̄(1− Q̄)/g0:K(d(L̄d), L̄d).
It is important to note that in expressing our variance this way, we integrate out the indicator

of treatment over Ā, i.e. I(Ā = d(L̄)). By getting rid of this indicator, we no longer rely as heavily
on observations from subjects following treatment in estimating the variance of D∗K+1. This par-
ticularly helps us when there is a lack of positivity, since subjects with low probabilities of desired
treatment simply are not observed.

We have now shown that

σ
2
K+1 = ∑

d∈D
h1(d,K +1)EZd(d,K +1),

where

Z(d1,K +1) =

{
∑
d2

h1(d2,K +1)I(d1(L̄) = d2(L̄))

}
Q̄(1− Q̄)

g0:K
(d1(L̄), L̄).

We can now define Z(K + 1)(Ā, L̄) = ∑d∈D h1(d,K + 1)I(Ā = d(L̄)) Q̄(1−Q̄)
g0:K

(Ā, L̄) (as function
of Ā, L̄) as a new outcome for our longitudinal data structure such that Zd(d,K + 1) = Z(K +
1)(d(L̄d), L̄d). Our variance σ2

K+1 is then represented as ∑d∈D h1(d,K +1)EZd(d,K +1). Thus, if
we redefine the longitudinal data as (Ā, L̄) with the final outcome of interest as Z(K +1) = Z(K +
1)(Ā, L̄), and use the working MSM parameter EZd(K+1)= β0 with β0 = argminβ ∑d∈D h1(d,K+

1)(EZd(K +1)−β )2, then we have that

β0 = ∑
d∈D

h1(d,K +1)EZd(K +1)/ ∑
d∈D

h1(d,K +1).

This demonstrates that we can obtain σ2
K+1 by simply multiplying β0 by ∑d∈D h1(d,K +1), i.e.

σ
2
K+1 = β0 ∑

d
h1(d,K +1).

We can therefore also estimate this variance component σ2
K+1 by computing the TMLE of the

intercept β0 in the working MSM for our newly defined outcome Z(K+1) using weights h1(d,K+
1), and then multiplying it against ∑d∈D h1(d,K +1).
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B.2 TMLE of σ 2
t for marginal structural working models

We now present the how to obtain a TMLE of the variance of the t-th component of the EIF, σ2
t .

For the general working MSM from Petersen2013, we have that the component corresponding with
the t-th time point equals

D∗t (P) = ∑
d∈D

h1(d, t)
I(Ā(t−) = d(L̄(t−)))
g0:t−(Ā(t−), L̄(t−))

(Q̄d
t+(Ā(t), L̄(t))− Q̄d

t )(Ā(t
−), L̄(t−)))

= ∑
d∈D

Ct(P,d)(Q̄d
t+− Q̄d

t ).

Similar to above, we want to obtain a representation of the variance of this component so that
we can use a semi-substitution estimator of this part of the variance of the EIF, hopefully, thereby
obtaining a variance estimator that is more accurate under violations of practical positivity, and a
variance estimator that can be used as a red flag for lack of identifiability. This variance σ2

t can
thus be written as

σ
2
t = ∑

d1,d2

h1(d1, t)h1(d2, t)E

[
I(Ā(t−) = d1)I(Ā(t−) = d2)

Σt(d1,d2)

g2
0:t−

(Ā(t−), L̄(t−))

]
where

Σt(d1,d2)(Ā(t−), L̄(t−)) = E
[
(Q̄d1

t+− Q̄d1
t )(Q̄d2

t+− Q̄d2
t )
∣∣ Ā(t−), L̄(t−)

]
is the conditional covariance of Q̄d1

t+ and Q̄d2
t+ , given (Ā(t−), L̄(t−)). Note that this can be obtained

by regressing this cross-product on (Ā(t−), L̄(t−)). The latter sum can be further worked out giving
us

σ
2
t = ∑

d1∈D
h1(d1, t)EZd1(d1, t),

where

Z(d1, t) =

(
∑

d2∈D
h1(d2, t)I(d1(L̄(t−)) = d2(L̄(t−)))

)
Σt(d1,d2)

g0:t−
(d1,t−(L̄(t

−)), L̄(t−)).

so that the counterfactual of Zt under intervention d1 is given by

Zd1(d1, t) =

(
∑

d2∈D
h1(d2, t)I(d1(L̄d1(t

−)) = d2(L̄d1(t
−)))

)
Σt(d1,d2)

g0:t−
(d1,t−(L̄d1(t

−)), L̄d1(t
−)).

With this expression, we can now use a TMLE to estimate EZd1(d1, t) for each d1 ∈ D by
using the longitudinal data structure with final outcome Z(d1, t), for each d1 separately. To create
the observed outcome Z(d1, t) we need a fit of the treatment mechanism gA(m) : m = 0,1, . . . , t−,
evaluated at Ā(t−) = dt−(L̄(t−)), and for each rule compatible with d1 (for that subject) we need to
have an estimate of Σt(d1,d2). Thus, given a priori estimates of the full treatment mechanism and
all (Σt(d1,d2) : d1,d2 ∈ D) we can construct this observed outcome Z(d1, t) and run the TMLE.



APPENDIX B. EFFICIENT INFLUENCE FUNCTION VARIANCE FOR WORKING
MARGINAL STRUCTURAL MODELS 89

B.3 Estimation of the variance of the EIF
The above approach defines for each time point t and each rule d an observed longitudinal outcome
Z(d, t), where Z(d, t) is a function of (Ā(t), L̄(t)). The TMLE of EZd(d, t) can then be computed
based on the longitudinal data structure (L(0),A(0), . . . ,L(t),A(t),Z(d, t)) for each d and each
t ∈ {0,1, . . . ,K +1}. As a result, we have that σ2

t = ∑d∈D h1(d, t)EZd(d, t) and

σ
2 =

K+1

∑
t=0

σ
2
t

= ∑
d∈D

(
K+1

∑
t=0

h1(d, t)EZd(d, t)

)

= ∑
d∈D

E

[
K+1

∑
t=0

h1(d, t)Zd(d, t)

]
.

Let’s now define the counterfactual outcome

Z̄d(d)≡
K+1

∑
t=0

h1(d, t)Zd(d, t),

and the corresponding observed outcome

Z̄(d)≡
K+1

∑
t=0

h1(d, t)Z(d, t).

We could apply the TMLE to estimate EZ̄d(d) based on the longitudinal data structure
(L(0),A(0), . . . ,L(K),A(K), Z̄(d,K +1)), for each d ∈ D, and use that

σ
2 = ∑

d∈D
EZ̄d(d).

In applying TMLE here, we should be using that

E
[
Z̄d
∣∣ Ā(m), L̄(m)

]
= ∑

t≤m
h1(d, t)Z(d, t)+E

[
∑

t>m
h1(d, t)Z(d, t)

∣∣∣ Ā(m), L̄(m)

]
.

To start with, let

Q̄Z(K+1)
d = E[Z̄(d) | Ā(K), L̄(K)]

= ∑
t≤K

h1(d, t)Z(d, t)+E[h1(d,K +1)+Z(d,K +1) | Ā(K), L̄(K)].

Denote last conditional expectation with Q̄Z(K+1),d
d so that

Q̄Z(K+1)
d = ∑

t≤K
h1(d, t)Z(d, t)+ Q̄Z(K+1),d

d .
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Then,

Q̄Z(K)
d = E

[
Q̄Z(K+1)

d

∣∣∣ Ā(K−1), L̄(K−1)
]

= ∑
t≤K−1

h1(d, t)Z(d, t)+E
[
h1(d,K)Z(d,K)+ Q̄Z(K+1),d

d

∣∣∣ Ā(K−1), L̄(K−1)
]
.

Again, denote the latter conditional expectation by Q̄Z(K),d
d so that

Q̄Z(K)
d = ∑

t≤K−1
h1(d, t)Z(d, t)+ Q̄Z(K),d

d .

Then,

Q̄Z(K−1)
d = E

[
Q̄Z(K)

d

∣∣∣ Ā(K−2), L̄(K−2)
]

= ∑
t≤K−2

h1(d, t)Z(d, t)+

E
[
h1(d,K−1)Z(d,K−1)+ Q̄Z(K),d

d

∣∣∣ Ā(K−2), L̄(K−2)
]
.

Again, denote the latter conditional expectation with Q̄Z(K−1),d
d so that

Q̄Z(K−1)
d = ∑

t≤K−2
h1(d, t)Z(d, t)+ Q̄Z(K−1),d

d .

This is then iterated:
Q̄Z(m)

d = ∑
t≤m−1

h1(d,m)Z(d,m)+ Q̄Z(m),d
d ,

where Q̄Z(m),d
d = E

[
h1(d,m)Z(d,m)+ Q̄Z(m+1),d

d

∣∣∣ Ā(m−1), L̄(m−1)
]
.

Before we go to the next conditional expectation we need to target with a parametric submodel,
such as

Logit Q̄m
d (ε) = Logit Q̄m

d + ε
I(Ā(m−1) = d(L̄(m−1)))

g0:m−1
.

In this way, we will only have to run one TMLE for each rule d, which still utilizes that the outcome
is a sum of outcomes that are known for histories including that outcome.
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Appendix C

R code for intervention specific mean
outcome estimators

C.1 Data generation

#############################

## GENERATE SIMULATED DATA ##

#############################

#’ @export

generateData = function(n, time.pt, abar=NULL) {

#Time ordering: W, Y(t), L(t), A(t) : W=(W1,W2) and L(t) = (L2(t),L1(t))

#n.b. Within L(t) there is no implied time-ordering...i.e. either of L2(t)

or L1(t) can go first

rexpit = function(x) rbinom(n=length(x), size=1, prob=x)

QW1 = function(n) rnorm(n, mean=0, sd=1)

QW2 = function(n) rep(plogis(-1), n)

QW3 = function(n) rnorm(n, mean=0, sd=1)

QY.t = function(prev_y, w1, w2, w3, prev_l1, prev_l2, prev_a) ifelse(

prev_y==1, 1, plogis(-1.9 + 1.2*w1 - 2.4*w2 - 1.8*prev_l1 - 1.6*prev_l2

+ 1*prev_l1*prev_l2 - 1*prev_a))

QL1.t = function(y, w1, prev_l1, prev_l2, prev_a) ifelse(y==1, prev_l1,

0.1 + 0.4*w1 + 0.6*prev_l1 - 0.7*prev_l2 - 0.45*prev_a - rnorm(length(

w1), sd=0.5))

QL2.t = function(y, w1, w2, prev_l1, prev_l2, prev_a) ifelse(y==1,

prev_l2, -0.55 + 0.5*w1 + 0.75*w2 + 0.1*prev_l1 + 0.3*prev_l2 - 0.75*

prev_a - rnorm(length(w1), sd=0.5))

gA.t = function(y, w1, w2, l1, l2, prev_a) ifelse(y==1, prev_a, ifelse(

prev_a==1, 1, plogis(-1 - 1.5*w1 + 1.75*w2 + 1.2*l1 - 1.8*l2 + 0.8*l1*

l2)))
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# nb. Distribution is set up such that:

# Y(0)=0 for everyone, ie. Everyone is alive at the beginning of

follow-up

# if Y(t)=1, then all remaining covariate last values get carried

forward

# if A(t-1)=1 then A(t)=1

g.matrix = matrix(ncol=time.pt, nrow=n, dimnames=list(NULL, paste0("A.",

0:(time.pt-1))))

## CHECKS ##

if(time.pt==0) stop("time.pt has to be greater than 0")

if(any(cummax(abar)!=abar)) stop("A is a counting process & cannot

decrease")

if(!is.null(abar) & length(abar) != time.pt) stop("abar has to be either

NULL or length of time.pt")

## INITIALIZATION ##

o.names = NULL

for(i in 0:time.pt){

if(i<time.pt) {

o.names = c(o.names, paste0(c("Y", "L1","L2", "A"), ".", i))

} else {

o.names = c(o.names, paste0(c("Y"), ".", i))

}

}

O = matrix(nrow=n, ncol=length(o.names)+3, dimnames=list(NULL, c("W1", "W2

", "W3", o.names)))

## OBSERVED VALUES ##

O[,"W1"] = QW1(n)

O[,"W2"] = rexpit(QW2(n))

O[,"W3"] = QW3(n)

for(i in 0:time.pt){

#nb. "prev" values are set to 0 for t=0

if(i==0) {

#Y(t)

O[,"Y.0"] = rep(0,n)

#L1(t)

O[,"L1.0"] = QL1.t(y=O[,"Y.0"], w1=O[,"W1"], prev_l1=rep(0,

n), prev_l2=rep(0, n), prev_a=rep(0, n))

#L2(t)

O[,"L2.0"] = QL2.t(y=O[,"Y.0"], w1=O[,"W1"], w2=O[,"W2"],

prev_l1=rep(0, n), prev_l2=rep(0, n), prev_a=rep(0, n))
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#A(t)

if(is.null(abar)) {

g.matrix[,"A.0"] = gA.t(y=O[,"Y.0"], w1=O[,"W1"], w2

=O[,"W2"], l1=O[,"L1.0"], l2=O[,"L2.0"], prev_a=

rep(0, n))

O[,"A.0"] = rexpit(g.matrix[,"A.0"])

} else {

g.matrix[,"A.0"] = gA.t(y=O[,"Y.0"], w1=O[,"W1"], w2

=O[,"W2"], l1=O[,"L1.0"], l2=O[,"L2.0"], prev_a=

rep(0, n))

O[,"A.0"] = rep(abar[i+1], n)

}

} else if (i<time.pt) {

#Y(t)

O[,paste0("Y.",i)] = rexpit(QY.t(prev_y=O[,paste0("Y.",i-1)

], w1=O[,"W1"], w2=O[,"W2"], w3=O[,"W3"], prev_l1=O[,

paste0("L1.",i-1)], prev_l2=O[,paste0("L2.",i-1)],

prev_a=O[,paste0("A.",i-1)]))

#L1(t)

O[,paste0("L1.",i)] = QL1.t(y=O[,paste0("Y.",i)], w1=O[,"W1

"], prev_l1=O[,paste0("L1.",i-1)], prev_l2=O[,paste0("L2

.",i-1)], prev_a=O[,paste0("A.",i-1)])

#L2(t)

O[,paste0("L2.",i)] = QL2.t(y=O[,paste0("Y.",i)], w1=O[,"W1

"], w2=O[,"W2"], prev_l1=O[,paste0("L1.",i-1)], prev_l2=

O[,paste0("L2.",i-1)], prev_a=O[,paste0("A.",i-1)])

#A(t)

if(is.null(abar)) {

g.matrix[,paste0("A.",i)] = gA.t(y=O[,paste0("Y.",i)

], w1=O[,"W1"], w2=O[,"W2"], l1=O[,paste0("L1.",i

)], l2=O[,paste0("L2.",i)], prev_a=O[,paste0("A

.",i-1)])

O[,paste0("A.",i)] = rexpit(g.matrix[,paste0("A.",i)

])

} else {

g.matrix[,paste0("A.",i)] = gA.t(y=O[,paste0("Y.",i)

], w1=O[,"W1"], w2=O[,"W2"], l1=O[,paste0("L1.",i

)], l2=O[,paste0("L2.",i)], prev_a=O[,paste0("A

.",i-1)])

O[,paste0("A.",i)] = rep(abar[i+1], n)

O[O[,paste0("Y.",i)]==1,paste0("A.",i)] = O[O[,

paste0("Y.",i)]==1,paste0("A.",i-1)]

}

} else if (i==time.pt) {
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#Y(t)

O[,paste0("Y.",i)] = rexpit(QY.t(prev_y=O[,paste0("Y.",i-1)

], w1=O[,"W1"], w2=O[,"W2"], w3=O[,"W3"], prev_l1=O[,

paste0("L1.",i-1)], prev_l2=O[,paste0("L2.",i-1)],

prev_a=O[,paste0("A.",i-1)]))

}

}

O = data.frame(O)

O$Y.0 = NULL

return(list(O=O, g.matrix=g.matrix))

}

C.2 Augmented Inverse Probability of Treatment Weighted
Estimation

####################

## AIPW ESTIMATOR ##

####################

#’ Augmented Inverse Probability of Treatment Weighted Estimation

#’

#’ \code{aiptw} Estimates the parameter of interest (E[Y_d]) by directly solving

the efficient influence function as an estimating equation.

#’

#’ Please refer to Scharfstein (1999), Robins (2000), or van der Laan and Gruben

(2007) for details regarding derivation of the efficient influence function,

which this estimator solves.

#’

#’ @param data data frame following the time-ordering of the nodes.

#’ @param cum.g a matrix of the cumulative probabilities of treatment (and being

uncensored) given the parents.

#’ @param Ynodes column names or indicies in \code{data} of outcome nodes.

#’ @param Anodes column names or indicies in \code{data} of treatment nodes.

#’ @param Cnodes column names or indicies in \code{data} of censoring nodes.

#’ @param abar binary vector (numAnodes x 1) of counterfactual treatment

#’ @param Qform character vector of regression formulas for Q.

#’ @param SL.library optional character vector of libraries to pass to

SuperLearner. NULL indicates glm should be called instead of SuperLearner.

#’ @param stratify if \code{TRUE} condition on following \code{abar} when

estimating Q and g. If \code{FALSE}, pool over all subjects.

#’

#’ @return \code{BangRobinsDR} returns a list of items as an object of class \

code{aiptw}, which include
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#’ \itemize{

#’ \item {The estimate of the parameter value under the intervention \code{

abar}}

#’ \item {The empirical influence function for the point estimate}

#’ \item {The time-specific empirical influence functions}

#’ \item {The conditional expectation fits for \code{Qbar}}

#’ \item {The call to the function}

#’ }

#’

#’ @references

#’ Scharfstein, D. O., A. Rotnitzky, and J. M. Robins (1999a): "Adjusting for

Nonignor- able Drop-Out Using Semiparametric Nonresponse Models," Journal of the

American Statistical Association, 94, 1096-1120.

#’ Robins, J. M., A. Rotnitzky, and M. J. van der Laan (2000b): "Discussion of

On profile likelihood by Murphy and van der Vaart," Journal of the American

Statistical Association, 95, 477-482.

#’ van der Laan, M. J. and S. Gruber (2011): "Targeted Minimum Loss Based

Estimation of an Intervention Specific Mean Outcome," The Berkeley Electronic

Press.

#’ @export

aiptw = function(data, cum.g, Ynodes, Lnodes, Anodes, Cnodes=NULL, abar, Qform,

SL.library=NULL, family="quasibinomial", stratify=TRUE) {

## Initializes ##

Q.kplus1 = data[,Ynodes[length(Ynodes)]]

if(is.null(dim(cum.g))) {

cum.g = matrix(cum.g, ncol=1)

}

IC.all = matrix(nrow=nrow(data), ncol=length(Ynodes), dimnames=list(NULL,

Ynodes))

Qfits = list()

## Recursive regression ##

for(i in length(Ynodes):1) {

## Initializes ##

if(family %in% c("quasibinomial", "binomial")) {

# nb. In binary setting, rather than using previous outcome

as predictor, we stratify

Q.kplus1[data[,Ynodes[i]]==1] = 1

if(i==1) {

at.risk = rep(TRUE, nrow(data))

} else {

at.risk = data[,Ynodes[i-1]]==0

}
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} else if(family=="gaussian") {

at.risk = rep(TRUE, nrow(data))

} else {

stop("Function will only work with two scenarios (see help

file).")

}

P_na.data = data

for(a in 1:length(Anodes)) {

P_na.data[,Anodes[a]] = abar[a]

}

P_n = cbind(Q.kplus1, data[,all.vars(as.formula(Qform[i])[[3]])])

P_na = cbind(Q.kplus1, P_na.data[,all.vars(as.formula(Qform[i])

[[3]])])

## Followed regime of interest ##

followed.abar = apply(data[,Anodes[1:i], drop=FALSE], 1, function(x

) all(x==abar[1:i], na.rm=T))

if(is.null(Cnodes)) {

uncensored = rep(TRUE, nrow(data))

} else {

uncensored = apply(data[,Cnodes[1:(i*2)], drop=FALSE], 1,

function(x) all(x=="uncensored", na.rm=T))

}

followed.abar = followed.abar * uncensored

## Fits Qbar ##

if(stratify) {

fitData = P_n[at.risk & followed.abar & uncensored,, drop=

FALSE]

} else {

fitData = P_n[at.risk & uncensored,, drop=FALSE]

}

if(is.null(SL.library)) {

Qfit.abar = glm(as.formula(Qform[i]), data=fitData, family=

family)

} else {

tmp = complete.cases(P_n[,-1, drop=FALSE])

if(family=="quasibinomial") family = "binomial"

if(ncol(fitData[,-1, drop=FALSE])>0) {

Qfit.abar = mcSuperLearner(Y=fitData$Q.kplus1, X=

fitData[,all.vars(as.formula(paste(Qform[i]))

[[3]]), drop=FALSE], newX=P_na[tmp,all.vars(as.

formula(paste(Qform[i]))[[3]]), drop=FALSE], SL.

library=SL.library, family=family, control = list
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(trimLogit=.001, saveFitLibrary=FALSE), cvControl

=list(V=8), method="method.NNloglik.LT", verbose=

TRUE)

}

}

## Gets Q.k ##

if(is.null(SL.library)) {

Q.k = suppressWarnings(predict(Qfit.abar, newdata=P_na, type

="response"))

} else {

Q.k = rep(NA, length(tmp))

if(ncol(fitData[,-1, drop=FALSE])>0) {

library.predict = Qfit.abar$library.predict

library.predict[is.na(library.predict)] = 0

Qfit.abar$SL.predict = library.predict %*% Qfit.

abar$coef

Q.k[tmp] = Qfit.abar$SL.predict

} else {

Q.k[tmp] = mean(fitData$Q.kplus1)

}

}

if(family %in% c("quasibinomial", "binomial")) {

Q.k[!at.risk] = 1

}

## IC and Updates Q.kplus1 ##

IC.all[,i] = calcIC(Q.kplus1=Q.kplus1, Q.k=Q.k, h.g.ratio=1/cum.g[,

i], uncensored=uncensored, intervention.match=followed.abar)

Q.kplus1 = Q.k

Qfits = c(Qfits, list(Qfit.abar))

names(Qfits)[length(Qfits)] = Ynodes[i]

}

## Temp IC ##

tmpIC = apply(IC.all, 1, sum) + Q.kplus1

out = list(estimate=mean(tmpIC), IC=tmpIC-mean(tmpIC), IC.all=IC.all,

Qfits=Qfits, call=match.call())

class(out) = "aiptw"

return(out)

}

#’@export
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print.aiptw = function(x, ...) {

PrintCall(x$call)

cat("AIPTW Estimate:\t", x$estimate, "\n")

invisible(x)

}

C.3 Double Robust Sequential Regression Estimation

#####################

## DRICE ESTIMATOR ##

#####################

#’ Double Robust Sequential Regression Estimation

#’

#’ \code{drice} Estimates the parameter of interest (E[Y_d]) by using the

sequential

#’ regression approach as presented by Bang and Robins (2005). This function only

#’ works in the setting where the outcome is binary.

#’

#’ @param data data frame following the time-ordering of the nodes.

#’ @param Anodes column names or indicies in \code{data} of treatment nodes.

#’ @param Cnodes column names or indicies in \code{data} of censoring nodes.

#’ @param Lnodes column names or indicies in \code{data} of time-dependent

covariate nodes.

#’ @param Ynodes column names or indicies in \code{data} of outcome nodes.

#’ @param Qform character vector of regression formulas for \code{Qbar}.

#’ @param cum.g a matrix of the cumulative probabilities of treatment (and being

uncensored) given the parents.

#’ @param abar binary vector (numAnodes x 1) of counterfactual treatment

#’ @param stratify if \code{TRUE} condition on following \code{abar} when

estimating \code{Qbar}. If \code{FALSE}, pool over all subjects.

#’ @param type if \code{weight}, then use the g fits as weights in the \code{Qbar

} fit. If \code{covariate}, then use the g fits as a covariate.

#’

#’ @return \code{icedr} returns a list of items as an object of class \code{icedr

}, which include

#’ \itemize{

#’ \item {The estimate of the parameter value under the intervention \code{

abar}}

#’ \item {A matrix of the condition expectation fit \code{Qbar.hat} under \

code{abar} for each time point.}

#’ \item {The conditional expectation fits for \code{Qbar}}

#’ \item {The call to the function}

#’ }

#’
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#’ @references

#’ Bang, H. and J. M. Robins (2005): "Doubly robust estimation in missing data

and causal inference models." Biometrics, 61, 962-73, URL http://www.ncbi.nlm.

nih.gov/pubmed/16401269.

#’ @export

drice = function(data, Anodes, Cnodes=NULL, Lnodes, Ynodes, Qform, cum.g, abar,

stratify=FALSE, type="covariate") {

## INITIALIZE ##

Qbar.hat = IC.all = matrix(nrow=nrow(data), ncol=length(Ynodes), dimnames=

list(NULL, Ynodes))

Q.kplus1 = data[,Ynodes[length(Ynodes)]]

Q = list()

P_na = data

for(k in 1:length(Anodes)) P_na[,Anodes[k]] = rep(abar[k], each=nrow(data)

)

## ICE ##

for(k in length(Ynodes):1) {

if (k>1) is.deterministic = !is.na(data[,Ynodes[k-1]]) & data[,

Ynodes[k-1]]==1 else is.deterministic = rep(FALSE,nrow(data))

intervention.match = !is.na(data[,Anodes[k]]) & data[,Anodes[k]]==

abar[k]

if(is.null(Cnodes)) {

uncensored = rep(TRUE, nrow(data))

} else {

uncensored = apply(data[,Cnodes[1:(k*2)], drop=FALSE], 1,

function(x) all(x=="uncensored", na.rm=T))

}

intervention.match = intervention.match & uncensored

Qform.icedr = paste(Qform[k], "+ cleverCov")

if (stratify) {

index = intervention.match & !is.deterministic

} else index = !is.deterministic

if(type=="covariate") {

QbarData = model.frame(Qform.icedr, cbind(data, Q.kplus1,

cleverCov = ifelse(intervention.match, 1/cum.g[,k], 0)),

na.action=NULL)

tmpData = model.frame(Qform.icedr, cbind(data, Q.kplus1,

cleverCov = ifelse(intervention.match, 1/cum.g[,k], 0))[

index,])

icedrFit = glm(Qform.icedr, data=tmpData, family="

quasibinomial", control=glm.control(trace=FALSE, maxit

=1000))
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coef = icedrFit$coef[!is.na(icedrFit$coef)]

X = model.matrix(as.formula(Qform.icedr), QbarData, na.

action=NULL)[,names(coef), drop=FALSE]

X_a = model.matrix(as.formula(Qform.icedr), cbind(P_na,

cleverCov=1/cum.g[,k]), na.action=NULL)[, names(coef),

drop=FALSE]

if (nrow(X)!=nrow(QbarData) | nrow(X_a)!=nrow(P_na)) {

X = as.matrix(cbind("(Intercept)"=1, QbarData)[,

names(coef), drop=FALSE])

X_a = as.matrix(cbind("(Intercept)"=1, P_na,

cleverCov=1/cum.g[,k])[, names(coef), drop=FALSE

])

}

score.icedrFit = CalcScore2(coef=coef, X=X, Q.kplus1=Q.

kplus1, h.g.ratio=1/cum.g[,k], uncensored=uncensored,

intervention.match=intervention.match, is.deterministic=

is.deterministic)

if (score.icedrFit>0.0001) {

icedrFix = FixScore2(X, Q.kplus1, 1/cum.g[,k], rep(

TRUE,nrow(data)), intervention.match, is.

deterministic, start=coef)

## nb. If couldn’t solve, just stuck with glm

if (icedrFix$solved) {

icedrFit = icedrFix

}

}

} else if (type=="weight") {

QbarData = cbind(model.frame(Qform.icedr, cbind(data, Q.

kplus1, cleverCov = ifelse(intervention.match, 1, 0)),

na.action=NULL), weight.vec=1/cum.g[,k])

tmpData = cbind(model.frame(Qform.icedr, cbind(data, Q.

kplus1, cleverCov = ifelse(intervention.match, 1, 0)),

na.action=NULL)[index,], weight.vec=1/cum.g[index,k])

icedrFit = glm(Qform.icedr, data=tmpData, weight=scale(

weight.vec, center=FALSE), family="quasibinomial",

control=glm.control(trace=FALSE, maxit=1000))

coef = icedrFit$coef[!is.na(icedrFit$coef)]

X = model.matrix(as.formula(Qform.icedr), QbarData)[,names(

coef), drop=FALSE]

X_a = model.matrix(as.formula(Qform.icedr), cbind(P_na,

cleverCov=1/cum.g[,k]))[, names(coef), drop=FALSE]

if (nrow(X)!=nrow(QbarData) | nrow(X_a)!=nrow(P_na)) {

X = as.matrix(cbind("(Intercept)"=1, QbarData)[,

names(coef), drop=FALSE])
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X_a = as.matrix(cbind("(Intercept)"=1, P_na,

cleverCov=1)[,names(coef), drop=FALSE])

}

score.icedrFit = CalcScore2(coef=coef, X=X, Q.kplus1=Q.

kplus1, h.g.ratio=1/cum.g[,k], uncensored=uncensored,

intervention.match=intervention.match, is.deterministic=

is.deterministic)

if (score.icedrFit>0.0001) {

icedrFix = FixScore2(X, Q.kplus1, 1/cum.g[,k],

uncensored, intervention.match, is.deterministic,

start=coef)

## nb. If couldn’t solve, just stuck with glm

if (icedrFix$solved) {

icedrFit = icedrFix

}

}

}

IC.all[,k] = calcIC(Q.kplus1, plogis(X_a %*% coef), 1/cum.g[,k],

uncensored, intervention.match)

Q.kplus1 = plogis(X_a %*% coef)

if(sum(is.deterministic)>0) Q.kplus1[is.deterministic] = 1

Qbar.hat[,k] = Q.kplus1

Q = c(Q, list(icedrFit))

names(Q)[length(Q)] = Ynodes[k]

}

out = list(estimate=mean(Q.kplus1), Qbar.hat=Qbar.hat, fit=list(Q=Q), IC=

IC.all, call=match.call())

class(out) = "drice"

return(out)

}

#’@export

print.drice = function(x, ...) {

cat("Call:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n

", sep = "")

cat("DRICE Estimate:\t", x$estimate, "\n")

invisible(x)

}

C.4 Targeted minimum loss-based estimation

####################
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## TMLE ESTIMATOR ##

####################

#’ Targeted minimum loss-based estimation

#’

#’ \code{icedr} Estimates the parameter of interest (E[Y_d]) by using the

sequential regression approach as presented by van der Laan (2011).

#’ This function only works in the setting where the outcome is binary.

#’

#’ @param data data frame following the time-ordering of the nodes.

#’ @param Anodes column names or indicies in \code{data} of treatment nodes.

#’ @param Cnodes column names or indicies in \code{data} of censoring nodes.

#’ @param Ynodes column names or indicies in \code{data} of time-dependent

covariate nodes.

#’ @param Ynodes column names or indicies in \code{data} of outcome nodes.

#’ @param Qform character vector of regression formulas for \code{Qbar}.

#’ @param cum.g a matrix of the cumulative probabilities of treatment (and being

uncensored) given the parents.

#’ @param abar binary vector (numAnodes x 1) of counterfactual treatment

#’ @param stratify if \code{TRUE} condition on following \code{abar} when

estimating \code{Qbar}. If \code{FALSE}, pool over all subjects.

#’ @param type if \code{weight}, then use the g fits as weights in the submodel

fit. If \code{covariate}, then use g fits as covariate.

#’

#’ @return \code{icedr} returns a list of items as an object of class \code{tmle

}, which include

#’ \itemize{

#’ \item {The estimate of the parameter value under the intervention \code{

abar}}

#’ \item {A matrix of the condition expectation fit \code{Qbar.hat} under \

code{abar} for each time point.}

#’ \item {The conditional expectation fits for the initial fit \code{Q} and

update step \code{Qstar}}

#’ \item {The call to the function}

#’ }

#’

#’ @references

#’ van der Laan, M. J. and S. Gruber (2011): "Targeted Minimum Loss Based

Estimation of an Intervention Specific Mean Outcome," The Berkeley Electronic

Press.

#’ @export

tmle = function(data, Anodes, Cnodes=NULL, Lnodes, Ynodes, Qform, cum.g, abar,

stratify=FALSE, type="weight", SL.library=NULL) {

## INITIALIZE ##
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Qbar.hat = IC.all = matrix(nrow=nrow(data), ncol=length(Ynodes), dimnames=

list(NULL,Ynodes))

Q.kplus1 = data[,Ynodes[length(Ynodes)]]

Q = Qstar = list()

P_na = data

for(k in 1:length(Anodes)) P_na[,Anodes[k]] = rep(abar[k], each=nrow(data)

)

## ICE ##

for(k in length(Ynodes):1) {

if (k>1) is.deterministic = !is.na(data[,Ynodes[k-1]]) & data[,

Ynodes[k-1]]==1 else is.deterministic = rep(FALSE, nrow(data))

intervention.match = !is.na(data[,Anodes[k]]) & data[,Anodes[k]]==

abar[k]

if(is.null(Cnodes)) {

uncensored = rep(TRUE, nrow(data))

} else {

uncensored = apply(data[,Cnodes[1:(k*2)], drop=FALSE], 1,

function(x) all(x=="uncensored", na.rm=T))

}

intervention.match = intervention.match & uncensored

if (stratify) {

index = intervention.match & !is.deterministic

} else index = !is.deterministic & uncensored

if(is.null(SL.library)) {

QbarData = model.frame(Qform[k], cbind(data, Q.kplus1)[index

,], na.action=NULL)

Qinit = glm(Qform[k], data=QbarData, family="quasibinomial",

control=glm.control(trace=FALSE, maxit=1000))

Qbar = predict(Qinit, newdata=P_na)

} else {

QbarData = cbind(data, Q.kplus1)[index,]

tmp = complete.cases(P_na[,-1, drop=FALSE])

if(ncol(QbarData[,-1, drop=FALSE])>0) {

Qbar = rep(NA, length(tmp))

vars = all.vars(as.formula(Qform[k])[[3]])

Qinit = mcSuperLearner(Y=QbarData$Q.kplus1, X=

QbarData[, vars, drop=FALSE], newX=P_na[tmp, vars

, drop=FALSE], SL.library=SL.library, family="

binomial", control = list(trimLogit=.001,

saveFitLibrary=FALSE), cvControl=list(V=8),

method="method.NNloglik.LT", verbose=TRUE)

library.predict = Qinit$library.predict
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library.predict[is.na(library.predict)] = 0

Qinit$SL.predict = library.predict %*% Qinit$coef

Qbar[tmp] = qlogis(Qinit$SL.predict)

Qbar[!tmp] = qlogis(mean(QbarData$Q.kplus1))

} else {

Qbar[tmp] = mean(QbarData$Q.kplus1)

}

}

Qbar[is.deterministic] = qlogis(.9999)

Qstar.data = data.frame(Q.kplus1, Qbar)

Qupdate = Qupdate(Q.kplus1=Q.kplus1, Qbar=Qbar, cum.g=cum.g[,k],

uncensored=uncensored, intervention.match=intervention.match,

is.deterministic=is.deterministic, type=type)

IC.all[,k] = calcIC(Q.kplus1, Qupdate$Q.kplus1, 1/cum.g[,k],

uncensored, intervention.match)

Q.kplus1 = Qbar.hat[,k] = Qupdate$Q.kplus1

Q = c(Q, list(Qinit))

Qstar = c(Qstar, list(Qupdate$Qstar))

names(Q)[length(Q)] = names(Qstar)[length(Qstar)] = Ynodes[k]

}

out = list(estimate=mean(Q.kplus1), Qbar.hat=Qbar.hat, fit=list(Q=Q, Qstar

=Qstar), IC=IC.all, call=match.call())

class(out) = "tmle"

return(out)

}

#’@export

print.tmle = function(x, ...) {

cat("Call:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n

", sep = "")

cat("TMLE Estimate:\t", x$estimate, "\n")

invisible(x)

}

C.5 Customized optimizers solving the EIF

####################

## TMLE OPTIMIZER ##

####################

FixScore = function(Qstar.kplus1, Qlogit, h.g.ratio, uncensored, intervention.

match, is.deterministic, weight, max.objective = 1e-8) {
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m <- nlminb(start=0, objective=CalcScore, Qstar.kplus1=Qstar.kplus1,

Qlogit=Qlogit, h.g.ratio=h.g.ratio, uncensored=uncensored, intervention

.match=intervention.match, is.deterministic=is.deterministic, weight=

weight, control=list(abs.tol=0.0001^2, eval.max=500, iter.max=500, x.

tol=1e-14, rel.tol=1e-14))

m$minimizer = "nlminb"

names(m)[which(names(m)=="objective")] = "value"

if (m$convergence!=0) {

m = optim(par=0, fn=CalcScore, Qstar.kplus1=Qstar.kplus1, Qlogit=

Qlogit, h.g.ratio=h.g.ratio, uncensored=uncensored,

intervention.match=intervention.match, is.deterministic=is.

deterministic, weight=weight, control=list(abstol=max.objective

, reltol=1e-14, maxit=2000))

m$minimizer = "optim"

if (m$convergence!=0) {

return("Convergence unsuccessful.")

}

}

names(m)[which(names(m)=="par")] = "coef"

return(m)

}

#####################

## DRICE OPTIMIZER ##

#####################

FixScore2 = function(X, Q.kplus1, h.g.ratio, uncensored, intervention.match, is.

deterministic, start) {

FindMin = function(minimizer, start, objective, X, Q.kplus1, h.g.ratio,

uncensored, intervention.match, is.deterministic, num.tries = 30 , max.

objective = 1e-8) {

for (i in 1:num.tries) {

if (minimizer == "nlminb") {

m <- nlminb(start=start, objective=CalcScore2, X=X,

Q.kplus1=Q.kplus1, h.g.ratio=h.g.ratio,

uncensored=uncensored, intervention.match=

intervention.match, is.deterministic=is.

deterministic, control=list(abs.tol=0.0001^2,

eval.max=500, iter.max=500, x.tol=1e-14, rel.tol

=1e-14))

coef <- m$par

obj.val <- m$objective



APPENDIX C. R CODE FOR INTERVENTION SPECIFIC MEAN OUTCOME
ESTIMATORS 106

} else if (minimizer == "optim") {

m = optim(par=start, fn=CalcScore2, X=X, Q.kplus1=Q.

kplus1, h.g.ratio=h.g.ratio, uncensored=

uncensored, intervention.match=intervention.match

, is.deterministic=is.deterministic, control=list

(abstol=max.objective, reltol=1e-14, maxit=2000))

coef <- m$par

obj.val <- m$value

} else if (minimizer == "nlm") {

m <- nlm(f=CalcScore2, p=start, X=X, Q.kplus1=Q.

kplus1, h.g.ratio=h.g.ratio, uncensored=

uncensored, intervention.match=intervention.match

, is.deterministic=is.deterministic)

coef <- m$estimate

obj.val <- m$minimum

} else {

stop("bad minimizer")

}

if (obj.val < max.objective) {

return(list(coef=coef, solved=TRUE, m=m))

}

init.e = rnorm(length(start)) #if the first try didn’t work,

try a random initial estimate of epsilon

}

return(list(coef=numeric(length(start)), solved=FALSE, m="score

equation not solved!"))

}

## Minimizes ##

l <- FindMin("nlminb", start, objective, X, Q.kplus1, h.g.ratio,

uncensored, intervention.match, is.deterministic, max.objective = 1e-8)

if (!l$solved) l <- FindMin("optim", start, objective, X, Q.kplus1, h.g.

ratio, uncensored, intervention.match, is.deterministic, max.objective

= 1e-8)

if (!l$solved) l <- FindMin("nlm", start, objective, X, Q.kplus1, h.g.

ratio, uncensored, intervention.match, is.deterministic, max.objective

= 1e-8)

if (l$solved) return(l)

if (!l$solved) return(l) #stop("all minimizers failed")

}

C.6 Utility functions
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########################

## INFLUENCE FUNCTION ##

########################

calcIC = function(Q.kplus1, Q.k, h.g.ratio, uncensored, intervention.match) {

IC = rep(0, length(Q.k))

index = uncensored & intervention.match

if (any(h.g.ratio[index] != 0)) {

IC[index] = (Q.kplus1[index] - Q.k[index]) * h.g.ratio[index]

}

return(IC)

}

####################

## SCORE FOR TMLE ##

####################

CalcScore <- function(e, Qstar.kplus1, Qlogit, h.g.ratio, uncensored,

intervention.match, is.deterministic, weight=TRUE) {

if (weight) {

Qstar <- QstarFromE(e, Qlogit, rep(1,length(Qlogit)), is.

deterministic)

} else Qstar <- QstarFromE(e, Qlogit, h.g.ratio, is.deterministic)

ICtemp <- calcIC(Qstar.kplus1, Qstar, h.g.ratio, uncensored, intervention.

match)

return(sum(ICtemp)^2)

}

#####################

## SCORE FOR DRICE ##

#####################

CalcScore2 = function(coef, X, Q.kplus1, h.g.ratio, uncensored, intervention.

match, is.deterministic) {

coef[is.na(coef)] = 0

Q.k = plogis(X %*% coef)

Q.k[is.deterministic] = rep(1, sum(is.deterministic))

ICtemp <- calcIC(Q.kplus1, Q.k, h.g.ratio, uncensored, intervention.match)

return(sum(ICtemp)^2)

}

#######################

## TMLE PERTURBATION ##

#######################
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QstarFromE <- function(e, off, X, is.deterministic) {

Qstar <- plogis(off + e*X)

Qstar[!is.na(is.deterministic) & is.deterministic] = rep(1, sum(is.

deterministic, na.rm=TRUE))

return(Qstar)

}

##########################

## TMLE UPDATE (WEIGHT) ##

##########################

Qupdate.wt = function(Q.kplus1, Qbar, cum.g, uncensored, intervention.match, is.

deterministic) {

cleverCov = ifelse(intervention.match, 1/cum.g, 0)

Qstar.data = data.frame(Q.kplus1, Qbar)

Qstar = glm(Q.kplus1 ~ offset(Qbar), weight=scale(cleverCov, center=FALSE)

, data=Qstar.data, subset = !is.deterministic & (cleverCov > 0), family

="quasibinomial", control=glm.control(trace=FALSE, maxit=1000))

Qstar$cleverCov = cleverCov

score.tmle.wt = CalcScore(e=Qstar$coef, Qstar.kplus1=Q.kplus1, Qlogit=Qbar

, h.g.ratio=1/cum.g, uncensored=uncensored, intervention.match=

intervention.match, is.deterministic=is.deterministic, weight=TRUE)

if (score.tmle.wt>0.0001) {

Qstar = FixScore(Qstar.kplus1=Q.kplus1, Qlogit=Qbar, h.g.ratio=1/

cum.g, uncensored=uncensored, intervention.match=intervention.

match, is.deterministic=is.deterministic, weight=TRUE)

}

Q.kplus1 = plogis(Qbar + Qstar$coef)

Q.kplus1[is.deterministic] = 1

return(list(Qstar=Qstar, Q.kplus1=Q.kplus1))

}

#############################

## TMLE UPDATE (COVARIATE) ##

#############################

Qupdate.cov = function(Q.kplus1, Qbar, cum.g, uncensored, intervention.match, is.

deterministic) {

cleverCov = ifelse(intervention.match, 1/cum.g, 0)

Qstar.data = data.frame(Q.kplus1, Qbar, cleverCov)

Qstar = glm(Q.kplus1 ~ -1 + offset(Qbar) + cleverCov, data=subset(Qstar.

data,!is.deterministic), family="quasibinomial", control=glm.control(

trace=FALSE, maxit=1000))

score.tmle.cov = CalcScore(e=Qstar$coef, Qstar.kplus1=Q.kplus1, Qlogit=

Qbar, h.g.ratio=1/cum.g, uncensored=uncensored, intervention.match=

intervention.match, is.deterministic=is.deterministic, weight=FALSE)
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if (score.tmle.cov>0.0001) {

Qstar = FixScore(Qstar.kplus1=Q.kplus1, Qlogit=Qbar, h.g.ratio=1/

cum.g, uncensored=uncensored, intervention.match=intervention.

match, is.deterministic=is.deterministic, weight=FALSE)

}

Q.kplus1 = plogis(Qbar + Qstar$coef/cum.g)

Q.kplus1[is.deterministic] = 1

return(list(Qstar=Qstar, Q.kplus1=Q.kplus1))

}

#################

## TMLE UPDATE ##

#################

Qupdate = function(Q.kplus1, Qbar, cum.g, uncensored, intervention.match, is.

deterministic, type = c("covariate", "weight")) {

type <- match.arg(type)

switch(type,

covariate = Qupdate.cov(Q.kplus1=Q.kplus1, Qbar=Qbar, cum.g=

cum.g, uncensored, intervention.match=intervention.match

, is.deterministic=is.deterministic),

weight = Qupdate.wt(Q.kplus1=Q.kplus1, Qbar=Qbar, cum.g=cum.

g, uncensored, intervention.match=intervention.match, is

.deterministic=is.deterministic))

}




