
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Hermitian Sums of Squares Modulo Hermitian Ideals

Permalink
https://escholarship.org/uc/item/4zj4024f

Author
Frost, Glen

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4zj4024f
https://escholarship.org
http://www.cdlib.org/


University of California
Santa Barbara

Hermitian Sums of Squares Modulo Hermitian Ideals

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Glen A. Frost

Committee in charge:

Professor Mihai Putinar, Chair
Professor Dave Morrison
Professor Ken Goodearl

December 2020



The Dissertation of Glen Frost is approved.

Professor Dave Morrison

Professor Ken Goodearl

Professor Mihai Putinar, Committee Chair

December 2020



Hermitian Sums of Squares Modulo Hermitian Ideals

Copyright c© 2020

by

Glen Frost

iii



Dedicated to my parents.

iv



Acknowledgements

The author acknowledges University of California, Santa Barbara for the mathemat-

ical environment and financial support.

v



Curriculum Vitæ
Glen Frost

Education

2020 Ph.D. in Mathematics, University of California, Santa Barbara.

2016 M.A. in Mathematics, University of California, Santa Barbara.

2014 B.S. in Mathematics, University of Florida

Publications

• G. Frost, “Hermitian Sums of Squares Modulo Hermitian Ideals”, preprint (2020)

vi



Abstract

Hermitian Sums of Squares Modulo Hermitian Ideals

by

Glen Frost

In this work we study the problem of writing a Hermitian polynomial as a Hermi-

tian sum of squares modulo a Hermitian ideal. We investigate a novel idea of Putinar-

Scheiderer to obtain necessary matrix positivity conditions for Hermitian polynomials to

be Hermitian sums of squares modulo Hermitian ideals. We show that the conditions are

sufficient for a class of examples making a connection to the operator-valued Riesz-Fejer

theorem and block Toeplitz forms. The work fits into the larger themes of Hermitian

versions of Hilbert’s 17-th problem and characterizations of positivity.
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Chapter 0

Introduction

0.1 Problem Statement

In this work we study the problem of writing a Hermitian polynomial as a Hermitian

sum of squares modulo a Hermitian ideal. We first introduce these concepts and state

the problem.

Let C[z, z̄] denote the polynomial algebra in the variables z = (z1, . . . , zn) and z̄ =

(z̄1, . . . , z̄n) with coefficients in C. We can write each element f ∈ C[z, z̄] using standard

multinomial notation:

f(z, z̄) =
∑
α,β

aαβ z̄
αzβ (0.1)

Or in dimension one (n = 1) using matrix notation:

f(z, z̄) =



1

z

...

zd



∗ 

a00 a01 · · · a0d

a10 a11 · · · a1d

...
...

. . .
...

ad0 ad1 · · · add





1

z

...

zd


= ψd(z)∗Aψd(z) (0.2)

1



Introduction Chapter 0

where

ψd(z) =



1

z

...

zd


(0.3)

denotes the tautological monomial map and A = [ajk] is an (d+ 1)× (d+ 1) matrix with

complex entries. We often write ψ(z) for ψd(z) when d is understood.

Here we use standard matrix notation and operations. If A is an n × m matrix,

then AT denotes the transpose, A denotes the conjugate, and A∗ denotes the conjugate

transpose. We think of elements v ∈ Cn as column vectors and 〈v, w〉 = v∗w denotes the

standard inner product on complex Euclidean space, with the convention being conjugate

linear in the first component.

We have an involution f 7→ f ∗ given by conjugation:

f ∗(z, z̄) := f(z, z̄) = ψ(z)∗A∗ψ(z) (0.4)

Say f is Hermitian if f = f ∗. Hermitian polynomials are real-valued on Cn. Let Ch[z, z̄]

denote the collection of Hermitian polynomials. An ideal I in Ch[z, z̄] is called a Hermi-

tian ideal.

If h(z) ∈ C[z] is a holomorphic polynomial, then

|h(z)|2 = h(z)h(z) ∈ Ch[z, z̄] (0.5)

is a Hermitian square. A Hermitian polynomial of the form

|h1(z)|2 + · · ·+ |h`(z)|2 (0.6)

2



Introduction Chapter 0

is called a Hermitian sum of squares. Let Σ2
h ⊂ Ch[z, z̄] denote the collection of Hermitian

sums of squares. We now state the main problem:

Problem 1 Suppose f is a Hermitian polynomial and I is a Hermitian ideal. Under

what conditions on f and I does there exist an identity:

f(z, z̄) =
∑̀
j=1

|hj(z)|2 + g(z, z̄) (0.7)

where h1, . . . , h` are holomorphic polynomials and g ∈ I.

We easily obtain the trivial necessary condition, point-wise positivity on the zero set

of I:

f(p, p̄) ≥ 0 ∀p ∈ Z(I) (0.8)

where Z(I) denotes the zero-set of I:

Z(I) = {p ∈ Cn | g(p, p̄) = 0 ∀g ∈ Z(I)} (0.9)

The following example shows that this condition is not sufficient.

Example In dimension one (n = 1) consider

f(z, z̄) = (z + z̄)2 I = (0) (0.10)

Note that Z(I) = C and f(z, z̄) ≥ 0 for all z ∈ C since z + z̄ = 2Re(z), where Re(z)

denotes the real part of z.

Suppose for sake of contradiction that f ∈ Σ2
h. Then

z2 + 2zz̄ + z̄2 = |h1(z)|2 + · · ·+ |h`(z)|2 (0.11)

3



Introduction Chapter 0

where h1, . . . , h` ∈ C[z]. We compare coefficients of the diagonal monomial zj z̄j. Write

hj(z) = hj0 + hj1z + · · · + hjmz
m. Then by equating coefficients of diagonal monomials

we obtain:

0 = |h10|2 + · · ·+ |h`0|2

2 = |h11|2 + · · ·+ |h`1|2

0 = |h12|2 + · · ·+ |h`2|2

...

The equations with 0 on the left hand side imply that all hjk = 0 for k 6= 1. Hence each

hj(z) is of the form h(z) = h1jz with only the degree 1 term. Then

z2 + 2zz̄ + z̄2 = (|h11|2 + · · ·+ |h`1|2)zz̄ (0.12)

is a contradiction from equating the off-diagonal coefficients. Hence f /∈ Σ2
h.

�

The following two examples show classical situations where the trivial necessary con-

dition is sufficient.

Example: Riesz-Fejer Lemma Consider I = (zz̄ − 1) in dimension one. Then

Z(I) = T ⊂ C is the complex unit circle. In this case the trivial positivity condition is

sufficient. The idea goes back to the Riesz-Fejer lemma:

Lemma 1 (Riesz-Fejer [15][7] ) Every non-negative trigonometric polynomial agrees

with the modulus squared of a holomorphic polynomial on the unit circle.

A trigonometric polynomial is a polynomial of the form
∑m

j=−m cje
ijθ with cj ∈ C. Sup-

pose f(z) =
∑m

j=−m cjz
j ∈ C[z, z−1] is a Laurent polynomial. The Riesz-Fejer lemma

4



Introduction Chapter 0

states that if f(eiθ) ≥ 0 for all real θ, then there exists a holomorphic polynomial

p(z) =
∑m

j=0 ajz
j such that

f(eiθ) = |p(eiθ)|2 (0.13)

In our terminology:

Theorem 2 Let f be a Hermitian polynomial. The following statements are equivalent:

1. f(ξ, ξ̄) ≥ 0 for all ξ ∈ T

2. f ∈ Σ2
h + (zz̄ − 1)

The Riesz-Fejer lemma is known to be equivalent to the spectral theorem for unitary

operators.[16, p.281]

�

Example: Hermitian Linear Forms In arbitrary dimension n, consider the Her-

mitian ideal I = (0) and take the Hermitian polynomial f to be homogeneous linear:

f(z, z̄) =


z1

...

zn


∗ 
a11 · · · a1n

...
. . .

...

an1 · · · ann



z1

...

zn

 (0.14)

where A = [ajk] is a Hermitian matrix. Note Z(I) = Cn and Σ2
h + I = Σ2

h. In this

situation the trivial necessary condition is sufficient.

Theorem 3 Suppose f(z, z̄) is a linear Hermitian homogeneous form. The following

statements are equivalent:

1. f(v, v̄) ≥ 0 for all v ∈ Cn

2. f ∈ Σ2
h

5



Introduction Chapter 0

The main idea is diagonalization of a Hermitian matrix with origins in Hermite (1854),

Sylvester’s inertia (1853), and Sturm’s algorithm (1835).

�

0.2 Context

A generalization of the Riesz-Fejer lemma to the odd-dimensional sphere S2n−1 ⊂ Cn

appears in Quillen [14]:

Theorem 4 (Quillen-Catlin-D’Angelo) Suppose f(z, z̄) ∈ Ch[z, z̄] is bihomogeneous.

The following conditions are equivalent:

1. f(z, z̄) > 0 for all nonzero z ∈ Cn

2. There exists positive integer N such that ||z||2Nf(z, z̄) ∈ Σ2
h

The theorem is rediscovered by Catlin-D’Angelo [2]. Both proofs are analytic. A

purely algebraic proof appears in [12] by applying the Archimedean Positivstellensatz of

real algebra, allowing the following formulation in our terminology:

Theorem 5 Suppose f ∈ Ch[z, z̄] is a Hermitian polynomial and I = (z1z̄1 + · · ·+znz̄n−

1). The following conditions are equivalent:

1. f(ξ, ξ̄) > 0 for all ξ ∈ S2n−1 ⊂ Cn

2. f ∈ Σ2
h + I

For the story to here and other directions, see the survey [11].

The sphere is the prototypical example of a pseudoconvex hypersurface. At the 2006

AIM Conference “CR Complexity Theory” in Palo Alto, D’Angelo asks the following

generalization of Quillen’s theorem:

6



Introduction Chapter 0

D’Angelo’s Question 1 If f is a Hermitian polynomial on a pseudoconvex hypersur-

face, then does f agree with a Hermitian sum of squares along the hypersurface?

The answer to this paper lies in the paper [12]. Two main ideas of this paper:

1. An obstruction to the question is introduced and a counterexample is constructed.

The obstruction provides necessary matrix positivity conditions for the Hermitian

polynomial f beyond pointwise positivity given by the trivial necessary condition.

2. A characterization of the Hermitian ideals for which every positive Hermitian poly-

nomial is a Hermitian sum of squares is obtained using the Archimedean Posi-

tivstellensatz.

The first point is explored further in the paper [4], and the second point is explored

further in the paper [13].

Our goal is to continue the idea of the matrix positivity conditions for Hermitian poly-

nomials, and obtain equivalent characterizations for Hermitian sums of squares modulo

Hermitian ideals, thereby going beyond the Archimedean positivstellensatz and pointwise-

positivity conditions.

0.3 Matrix Positivity Conditions for Hermitian Poly-

nomials

In this section we describe the idea of matrix positivity conditions used in [12] to

construct the counterexample to D’Angelo’s question.

If A is an n× n Hermitian matrix, then we say A is positive (denoted A ≥ 0) if

v∗Av ≥ 0 ∀v ∈ Cn (0.15)

7
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Given points p1, . . . , p`, we construct the Gram matrix of pairwise inner products:

Gram(p1, . . . , p`) :=


〈p1, p1〉 · · · 〈p`, p1〉

...
. . .

...

〈p1, p`〉 · · · 〈p`, p`〉

 (0.16)

Let B be the matrix with columns p1, . . . , p`. Then

Gram(p1, . . . , p`) = B∗B (0.17)

and hence

v∗Gram(p1, . . . , p`)v = v∗B∗Bv = 〈Bv,Bv〉 ≥ 0 (0.18)

for all v ∈ C`. This demonstrates the classical idea: every Gram matrix is positive. In

fact this provides a characterization of positivity (existence of a Cholesky factorization).

Theorem 6 Let A be a Hermitian matrix. The following statements are equivalent:

1. A ≥ 0

2. A = B∗B for some matrix B.

A holomorphic polynomial map is a map h : Cn → C` whose components are holo-

morphic polynomials. Every Hermitian sum of squares may be written as the squared

norm of a holomorphic polynomial map:

|h1(z)|2 + · · ·+ |h`(z)|2 = 〈h(z), h(z)〉 (0.19)

where h(z) = (h1(z), . . . , h`(z)) is a holomorphic polynomial map.

8
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Given a Hermitian polynomial f and a Hermitian ideal I, we now show how to obtain

necessary matrix positivity conditions which must be satisfied by f .

For a Hermitian polynomial f(z, z̄), we may “polarize” and treat z,z̄ as independent

variables.

Suppose f is a Hermitian sum of squares modulo I:

f(z, z̄) = 〈h(z), h(z)〉+ g(z, z̄) (0.20)

where h is a holomorphic polynomial map and g ∈ I.

Suppose further that p1, . . . , p` ∈ Cn are points such that

g(pj, p̄k) = 0 ∀g ∈ I ∀j, k = 1, . . . , ` (0.21)

Then

f(pj, p̄k) = 〈h(pj), h(pk)〉 ∀j, k = 1, . . . , ` (0.22)

And since a Gram matrix is positive, we have

[f(pj, p̄k)]
`
j,k=1 ≥ 0 (0.23)

Thus we conclude:

Lemma 7 (Matrix Positivity Conditions) Let f be a Hermitian polynomial and I

a Hermitian ideal. If f ∈ Σ2
h + I, then f satisfies (0.23) for all collections of points

p1, . . . , p` satisfying (0.21)

Using this idea we obtain necessary conditions for f ∈ Σ2
h + I. Our main question of

interest: are these conditions sufficient?

9
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Example Again consider f = (z + z̄)2 and I = (0). Choose p1 = 0 and p2 = 1. Then

consider the Gram matrix of f on p1, p2:

Gram(f)[p1, p2] =

f(p1, p̄1) f(p1, p̄2)

f(p2, p̄1) f(p2, p̄2)

 =

0 1

1 1

 (0.24)

The matrix has determinant −1, hence is not positive. Therefore f /∈ Σ2
h.

Example We discuss the matrix positivity conditions for the ideal I = (zN z̄N − 1),

where N is a positive integer. Let P (z, z̄) = zN z̄N − 1 and ω = e2πi/N . Then:

P (ωjξ, ωkξ) = 0 ∀ξ ∈ T ∀j, k = 0, . . . , N − 1 (0.25)

Therefore by the idea of matrix positivity conditions, if f ∈ Σ2
h + (zN z̄N − 1), then

[f(ωjξ, ωkξ)]N−1
j,k=0 ≥ 0 ∀ξ ∈ T (0.26)

Our main result (Chapter 3) is to show that these conditions are sufficient. The case

N = 1 is the classical Riesz-Fejer lemma. We make a connection to the operator-valued

RF lemma [5] by way of block Toeplitz forms and orthogonal polynomials on the circle.

0.4 Summary of Chapters

• Chapter 1: Elementary Theory of Hermitian Polynomials introduce ma-

trix terminology and notation, concept of Hermitian matrix, concept of positive

matrix, characterizations of positivity, Hermitian polynomials, polarization, holo-

morphic decomposition, Hermitian sums of squares, semirings, Hermitian modules,

Archimedean positivstellensatz, matrix positivity conditions,

10
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• Chapter 2: Main Results basic computations on the circle, Toeplitz forms,

the functional FN , representing v∗Aw with FN , trigonometric representations,

operator-valued RF theorem.

The main result is full characterization of Hermitian sums of squares modulo

(zN z̄N − 1)

• Chapter 3: General Case We discuss how the general case might be solved by

analogy of development of the real spectrum solving Hilbert’s 17-th problem.

11



Chapter 1

Elementary Theory of Hermitian

Polynomials

1.1 Hermitian Matrices

For standard references on Hermitian matrix analysis, see [10, Horn, Johnson], [8,

Gantmacher]. Let H be the Hilbert space Cn with inner product:

〈x, y〉 = x∗y (1.1)

with the convention of conjugate linear in the first component. Regard elements of H as

column vectors.

Cn×m denotes the collection of n ×m matrices with entries from C. Let Mn denote

Cn×n the collection of square matrices. Standard rules for matrix algebra. If A ∈ Cn×m

we wrote A = [ajk] to denote the components. Denote A = [ājk] the conjugate. Denote

AT = [akj] the transpose.

Let A∗ := A
T

denote the conjugate transpose. This gives an involution Mn → Mn

12



Elementary Theory of Hermitian Polynomials Chapter 1

by A 7→ A∗. We say A ∈ Mn is Hermitian if A = A∗. Let Hermn ⊆ Mn denote the

collection of Hermitian matrices.

We say A ∈Mn is normal if A∗A = AA∗. Say A ∈Mn is unitary if U∗U = UU∗ = I.

Hermitian matrices and unitary matrices are normal. Let Un ⊂ Mn denote the group of

unitary matrices.

Theorem 8 (Spectral Theorem) Let A ∈ Mn. The following conditions are equiva-

lent:

1. A is normal

2. A = U∗DU for U ∈ Un and D diagonal.

Furthermore, D is real if and only if A is Hermitian.

The diagonal entries of D are the eigenvalues of A.

We say A ∈ Hermn is positive semidefinite if

v∗Av ≥ 0 ∀v ∈ Cn (1.2)

We say A ∈ Hermn is positive definite if

v∗Av > 0 ∀0 6= v ∈ Cn (1.3)

If A is positive semidefinite, then A is positive definite if and only if A is nonsin-

gular. For convenience we use the term (strictly) positive matrix when A is positive

(semi)definite and we write (A > 0)A ≥ 0. Let (Herm>
n ) Herm≥n denote the collection of

(strictly) positive matrices.

13



Elementary Theory of Hermitian Polynomials Chapter 1

For integers 1 ≤ i1 < i2 < · · · < ik ≤ n, let D(i1, . . . , ik) denote the determinant of

the k × k submatrix of A formed by the ij-th rows and columns of A. D(i1, . . . , ik) is

called a principal minor of A. D(1, . . . , k) is called a leading principal minor of A.

The next theorem collects classical characterizations of matrix positivity: (see [1])

Theorem 9 Let A ∈ Hermn. The following conditions are equivalent:

1. A ≥ 0

2. all eigenvalues of A are ≥ 0.

3. (Sylvester Criterion) All principal minors of A ≥ 0.

4. (Gram Factorization) A = B∗B for some B.

5. (Cholesky Factorization) A = T ∗T for some upper triangular T . T can be chosen

to have non-negative diagonal entries.

6. A = B2 for some unique positive matrix B, denoted B = A1/2.

7. There exist v1, . . . , vn ∈ Cn such that ajk = 〈vj, vk〉.

8. v∗Aw is an inner product

9. There exist v1, . . . , vn ∈ Cn such that A =
∑
vjv
∗
j

Theorem 10 Let A ∈ Hermn. The following conditions are equivalent:

1. A > 0

2. all eigenvalues of A are > 0.

3. all principal minors of A are > 0.

4. A = B∗B for nonsingular matrix B.

14



Elementary Theory of Hermitian Polynomials Chapter 1

5. A = T ∗T for a nonsingular upper triangular matrix T . T can be chosen to have

strictly positive diagonal entries.

6. A = B2 for some strictly positive matrix B.

7. There exist linearly independent v1, . . . , vn ∈ Cn such that ajk = 〈vj, vk〉.

8. v∗Aw is a non-degenerate inner product

9. There exists linearly independent v1, . . . , vn ∈ Cn such that A =
∑
vjv
∗
j

1.2 Hermitian Polynomials

Let C[z, z̄] denote the algebra of polynomials in the variables z = (z1, . . . , zn) and

z̄ = (z̄1, . . . , z̄n) with coefficients in C. We can write each element f ∈ C[z, z̄] using

standard multinomial notation:

f(z, z̄) =
∑
α,β

aαβ z̄
αzβ (1.4)

In dimension n = 1 we denote the variables as simply z and z̄ and we can write polyno-

mials with matrix notation:

f(z, z̄) =
d∑

j,k=0

ajkz̄
jzk

=



1

z

...

zd



∗ 

a00 a01 · · · a0d

a10 a11 · · · a1d

...
...

. . .
...

ad0 ad1 · · · add





1

z

...

zd


= ψd(z)∗Aψd(z)

15



Elementary Theory of Hermitian Polynomials Chapter 1

where A ∈ Md+1 and ψd(z) =

[
1 z · · · zd

]T
denotes the tautological monomial map.

We often write ψ(z) for ψd(z) when d is understood.

We have an involution

C[z, z̄]→ C[z, z̄]

f 7→ f ∗

given by conjugation

f ∗(z, z̄) := f(z, z̄) =
∑
α,β

āαβ z̄
βzα (1.5)

We say that f is a Hermitian polynomial if f = f ∗ and let

Ch[z, z̄] := {f ∈ C[z, z̄] | f = f ∗} (1.6)

denote the collection of Hermitian polynomials. Ch[z, z̄] is an R-algebra isomorphic to

R[x, y], where x = (x1, . . . , xn) and y = (y1, . . . , yn), under the standard correspondence

zj = xj + iyj (1.7)

z̄j = xj − iyj (1.8)

We have the following characterization of Hermitian polynomials:

Lemma 11 Let f ∈ C[z, z̄]. The following statements are equivalent:

1. f(z, z̄) = f(z, z̄)

2. f(z, w̄) = f(w, z̄)

3. the coefficient matrix of f is Hermitian: aβα = āαβ

16



Elementary Theory of Hermitian Polynomials Chapter 1

1.3 Hermitian Sums of Squares

A polynomial h ∈ C[z, z̄] is holomorphic if ∂
∂z̄
h = 0. In other words, h depends only

on z and we denote the dependence by h(z). If h(z) is a holomorphic polynomial, then

|h(z)|2 := hh∗ = h(z)h(z) (1.9)

is a Hermitian polynomial. Hermitian polynomials of this form are called Hermitian

squares. A sum of Hermitian squares is a Hermitian polynomial of the form

|h1(z)|2 + · · ·+ |h`(z)|2 (1.10)

where h1(z), . . . , h`(z) are holomorphic polynomials.

Let Σ2
h ⊂ Ch[z, z̄] denote the collection of Hermitian sums of squares.

A holomorphic polynomial map is a map h : Cn → C` whose components h(z) =

(h1(z), . . . , h`(z)) are holomorphic polynomials. Every Hermitian sum of squares can be

written as the squared norm of a holomorphic polynomial map

〈h(z), h(z)〉 =
∑

hj(z)hj(z) (1.11)

Let Σ2 ⊂ Ch[z, z̄] be the collection of finite sums of squares of Hermitian polynomials.

Then Σ2 is the collection of sums of squares in R[x, y], a common object in real algebraic

geometry.

We have the inclusion Σ2
h ⊂ Σ2 from the identity:

|h(z)|2 = (
h+ h∗

2
)2 + (

h− h∗

2i
)2 (1.12)
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where 1
2
(h+ h∗), 1

2i
(h− h∗) ∈ Ch[z, z̄].

The inclusion is proper for a few reasons.

Lemma 12 Let f ∈ Σ2
h. Then Z(f) ⊂ Cn is a complex algebraic set.

Example Consider f(z, z̄) = (z + z̄)2. Then Z(f) is the imaginary axis in C, not a

complex algebraic set. Thus f /∈ Σ2
h.

�

An additional reason the inclusion is proper: elements of Σ2
h are plurisubharmonic.

We say f(z, z̄) is plurisubharmonic (psh) at p if the Levi matrix of f at p is positive:

[
∂2

∂zj∂z̄k
f ](p, p̄) ≥ 0 (1.13)

And say f is plurisubharmonic on a domain if f is psh at all points of the domain. Note

in particular that if f is psh at p, then by Sylvester’s criterion we see ( ∂2

∂zk∂z̄k
f)(p, p̄) ≥ 0

for all k.

Lemma 13 If h(z) is a holomorphic polynomial, then |h(z)|2 is plurisubharmonic on

Cn.

Example Consider f = (|z1|2 − |z2|2)2. Then f is not psh, hence f ∈ Σ2 \ Σ2
h.

�

We now describe a construction due to D’Angelo [3] known as the holomorphic de-

composition.

Let f ∈ Ch[z, z̄]. Write f = ψd(z)∗Aψd(z), where A is a Hermitian matrix. Apply

the spectral theorem to A:

A = U∗DU

18
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where U ∈ U(d+ 1) is unitary and D is a real diagonal matrix.

For a Hermitian matrix A, denote by sign(A) = (a, b, c) the signature of A, where a

is the number of positive eigenvalues of A, b is the number of negative eigenvalues of A,

and c is the number of zero eigenvalues of A.

Write D = diag(ρ1, . . . , ρa, η1, . . . , ηb, ζ1, . . . , ζc), where the ρj are the positive eigen-

values, the ηj are the negative eigenvalues, and the ζj are zero. Then:

f(z, z̄) = ψd(z)∗U∗DUψd(z) (1.14)

The entries of the column vector Uψd(z) are holomorphic polynomials. Write:

Uψd(z) =

[
F1(z) · · · Fa(z) G1(z) · · · Gb(z) H1(z) · · ·Hc(z)

]T
(1.15)

Then we have:

f(z, z̄) =
a∑
j=1

|
√
λjFj(z)|2 −

b∑
j=1

|
√
λjGj(z)|2 (1.16)

From this decomposition we have the following basic test for a Hermitian polynomial to

be a Hermitian sum of squares:

Lemma 14 (Basic Test) Let f ∈ Ch[z, z̄] be a Hermitian polynomial. Write f(z, z̄) =

ψ(z)∗Aψ(z) where ψ(z) is a vector of monomials and A is a Hermitian matrix. The

following statements are equivalent:

1. f ∈ Σ2
h

2. A ≥ 0

19
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Example Consider f = (z + z̄)2. Write f using matrix notation:

f =


1

z

z2


∗ 

0 0 1

0 2 0

1 0 0




1

z

z2

 (1.17)

The Hermitian coefficient matrix not positive (by Sylvester’s criterion) since the deter-

minant is −2. Thus f /∈ Σ2
h.

�

1.4 Hermitian Modules

Let A be an R-algebra. A semiring in A is a subset S ⊂ A such that

S + S ⊂ S SS ⊂ S R≥0 ⊂ S (1.18)

Two examples of semirings in Ch[z, z̄] are Σ2
h and Σ2.

Let A = [ajk], B = [bjk] ∈ Cn×m. The Hadamard product of A and B is obtained by

entrywise multiplication and denoted A ◦B:

A ◦B = [ajkbjk] (1.19)

The Schur product theorem states that if A ≥ 0 and B ≥ 0, then A ◦ B ≥ 0. A simple

proof follows from Sylvester’s criterion and the inequality det(A ◦B) ≥ det(A) det(B).

Example Hermn has the structure of a ring with matrix addition and Hadamard prod-

uct. By the Schur product theorem, we see that Herm≥n is a semiring in Hermn.
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�

Let S be a semiring in A. An S-module is a subset M ⊂ A such that

M +M ⊂M SM ⊂M 1 ∈M (1.20)

We refer to Σ2
h-modules as Hermitian modules. Σ2-modules are known in real algebraic

geometry as quadratic modules.

Let M be an S-module in A. We say M is Archimedean if A = R+M . This condition

encodes a notion of compactness: regular functions are bounded.

The following lemma provides a basic characterization of the Archimedean property:

Lemma 15 ([12] [13]) Let M be a Hermitian module. The following statements are

equivalent:

1. M is Archimedean.

2. C − ||z||2 ∈M for some C ∈ R

Let I be a Hermitian ideal. Then S = Σ2
h + I is a semiring in Ch[z, z̄]. We say I is

Archimedean if C − ||z||2 ∈ Σ2
h + I for some C ∈ R. We say I is Quillen if f(z, z̄) > 0

for all z ∈ Z(I) implies f ∈ Σ2
h + I.

The following result appears in [12] and [13] as an application of the Archimedean

positivstellensatz:

Theorem 16 (Archimedean Positivstellensatz [12] [13]) Let I be a Hermitian ideal.

The following statements are equivalent:

1. I is Archimedean

21



Elementary Theory of Hermitian Polynomials Chapter 1

2. I is Quillen and Z(I) is compact

As a corollary we obtain Quillen’s theorem since the ideal of the sphere is Archimedean.

Note that if I is Archimedean, then I is Quillen. However the converse is false. For ex-

ample, consider I = (Im(z)). Then I is Quillen, not Archimedean, and Z(I) is the

noncompact real axis.

1.5 Matrix Positivity Conditions for Hermitian Poly-

nomials

This is the main idea of Putinar and Scheiderer to construct the counterexample to

the question of D’Angelo. It provides necessary conditions for f ∈ Σ2
h + I.

Let f be a Hermitian polynomial and I a Hermitian polynomial.

Suppose p1, . . . , p` ∈ Cn are points such that

g(pj, p̄k) = 0 ∀g ∈ I ∀j, k = 1, . . . ` (1.21)

We say such a collection of points p1, . . . , p` is orthogonal with respect to I.

Suppose f ∈ Σ2
h + I and p1, . . . , p` are orthogonal with respect to I. Write:

f(z, z̄) = 〈h(z), h(z)〉+ g(z, z̄) (1.22)

where h(z) is a holomorphic polynomial map and g ∈ I. Then

f(pj, p̄k) = 〈h(pj), h(pk)〉 ∀j, k = 1, . . . , ` (1.23)
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Since a Gram matrix is always positive, we have:

Gram(f)[p1, . . . , p`] := [f(pj, p̄k)]
`
j,k=1 ≥ 0 (1.24)

We summarize the discussion:

Lemma 17 Let f be a Hermitian polynomial and I a Hermitian ideal. If f ∈ Σ2
h + I,

then Gram(f)[p1, . . . , p`] ≥ 0 for all collections of points p1, . . . , p` orthogonal with respect

to I.

Our main problem is the following:

Problem 2 Are the necessary Gram matrix positivity conditions for f ∈ Σ2
h + I also

sufficient?

The matrix positivity conditions lead to non-Archimedean semirings as follows.

Let I be a Hermitian ideal. Suppose p1, p2 are distinct points orthogonal with respect

to I. Then by the method of [12] we can construct a Hermitian polynomial f such that

f > 0 on Z(I) and f /∈ Σ2
h ∈ I. Let S = Σ2

h + I be the semiring. By the Archimedean

positivstellensatz, S is not Quillen, hence S is non-Archimedean.

For instance, Σ2
h and Σ2

h + (zN z̄N − 1) for N > 1 are non-Archimedean semirings.
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Chapter 2

Main Results

Our main result is to characterize Hermitian sums of squares modulo the Hermitian ideal

I = (zN z̄N−1), where N is a positive integer. The case N = 1 is the classical Riesz-Fejer

lemma. For N > 1, matrix positivity conditions are necessary and pointwise-positivity

on the circle is not sufficient. Matrix positivity conditions are obtained as follows. Let

ω = e2πi/N and P (z, z̄) = zN z̄N − 1. For every ξ ∈ T and for every j, k ∈ {0, . . . , N − 1}

we have

P (ωjξ, ωkξ) = 0 (2.1)

Thus, for a Hermitian polynomial f , if f ∈ Σ2
h + I, then it is necessary that

Gram(f)[ξ, ωξ, . . . , ωN−1ξ] := [f(ωjξ, ωkξ)]N−1
j,k=0 ≥ 0 ∀ξ ∈ T (2.2)

We want to show that these conditions are sufficient. The next example supplies evidence

to the investigation.

Example 18 (N = 2) We demonstrate an example of a Hermitian polynomial f such

that:
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(i) f /∈ Σ2
h

(ii) Gram(f)[eiθ,−eiθ] ≥ 0 for all θ

(iii) f ∈ Σ2
h + (z2z̄2 − 1)

Consider:

f(z, z̄) = 10 + 2z + 2z̄ + 10zz̄ − 2z2z̄ − 2zz̄2 (2.3)

=


1

z

z2


∗ 

10 2 0

2 10 −2

0 −2 0




1

z

z2

 (2.4)

(i) By Sylvester’s criterion, the Hermitian coefficient matrix is not positive, hence

f /∈ Σ2
h.

(ii) We compute Gram(f)[eiθ,−eiθ]:

Gram(f)[eiθ,−eiθ] =

 20 8i sin(θ)

−8i sin(θ) 20

 (2.5)

We have:

det Gram(f)[eiθ,−eiθ] = 400− 64 sin2(θ) > 0 (2.6)

Thus by Sylvester’s criterion:

Gram(f)[eiθ,−eiθ] ≥ 0 ∀θ ∈ [0, 2π] (2.7)
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(iii) Now

f(z, z̄) + 5(z2z̄2 − 1) =


1

z

z2


∗ 

5 2 0

2 10 −2

0 −2 5




1

z

z2

 (2.8)

By Sylvester’s criterion, the Hermitian coefficient matrix is positive. Thus:

f ∈ Σ2
h + (z2z̄2 − 1) (2.9)

This chapter is organized as follows:

In section 1 we prove some basic lemmas and computations involving orthogonal

polynomials on the circle inspired by the N = 1 case.

In section 2 we define a functional FN , then discuss basic properties and how to use

the functional to represent matrix inner products.

In section 3 we discuss trace parametrization of trigonometric polynomials and the

operator-valued Riesz-Fejer lemma.

In section 4 we utilize the developed tools to prove the full characterization of Her-

mitian sums of squares modulo the Hermitian ideal I = (zN z̄N − 1).

2.1 Basic Computations on the Circle

To begin, let hj(z) = zj for j ∈ Z. We have the classical formulae:

1

2π

∫ π

−π
hj(e

iθ)dθ = δj0 (2.10)

and

1

2π

∫ π

−π
hj(e

iθ)hk(eiθ)dθ = δjk (2.11)
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where δjk is the standard Kronecker symbol:

δjk =


1 if j = k

0 if j 6= k

We also note the identities:

hj(eiθ) = h−j(e
iθ) (2.12)

hj(z)hk(z) = hj+k(z) (2.13)

Given f ∈ C[z, z̄], we can integrate around the circle to obtain the trace of the

coefficient matrix:

Lemma 19 Let f(z, z̄) =
∑m

j,k=0 ajkz̄
jzk ∈ C[z, z̄]. Then:

1

2π

∫ π

−π
f(eiθ, eiθ)dθ =

m∑
`=0

a`` (2.14)

Proof:

1

2π

∫ π

−π
f(eiθ, eiθ)dθ =

1

2π

∫ π

−π
(

m∑
j,k=0

ajke
−ijθeikθ)dθ (2.15)

=
m∑

j,k=0

ajk(
1

2π

∫ π

−π
eiθ(k−j)dθ) (2.16)

=
m∑

j,k=0

ajkδjk (2.17)

=
m∑
`=0

a`` (2.18)
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Consider a Hermitian polynomial g(z, z̄) written in matrix notation:

g(z, z̄) =



1

z

...

zm



∗ 

b00 b01 · · · b0m

b10 b11 · · · b1m

...
...

. . .
...

bm0 bm1 · · · bmm





1

z

...

zm


(2.19)

By reducing the coefficients modulo (zz̄ − 1), we see that g is congruent modulo

(zz̄ − 1) to a unique polynomial of the form:

f(z, z̄) =



1

z

...

zm



∗ 

a0 a1 · · · am

a−1 0 · · · 0

...
...

. . .
...

a−m 0 · · · 0





1

z

...

zm


(2.20)

where a−j = āj. A Hermitian polynomial of this form is called a trigonometric polynomial

with data (a0, . . . , am).

Since g(z, z̄) = f(z, z̄) + q(z, z̄)(zz̄ − 1) for some Hermitian polynomial q(z, z̄), we

have the following observations:

(i) f(eiθ, eiθ) ≥ 0 for all θ ∈ [0, 2π] if and only if g(eiθ, eiθ) ≥ 0 for all θ ∈ [0, 2π]

(ii) f ∈ Σ2
h + (zz̄ − 1) if and only if g ∈ Σ2

h + (zz̄ − 1)

It is known [9, pg. 17] that the condition

f(eiθ, eiθ) ≥ 0 ∀θ ∈ [0, 2π] (2.21)
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is equivalent to positivity of the associated Toeplitz matrix

Toep(a0, . . . , am) :=



a0 a1 a2 · · · am

a−1 a0 a1
. . .

...

a−2 a−1 a0
. . .

...

...
. . . . . . . . . a1

a−m · · · · · · a−1 a0


(2.22)

A matrix is Toeplitz if the entries are constant along the diagonals. We collect the

information in the following lemma:

Lemma 20 [9, pg. 17] Suppose f is a trigonometric polynomial with data (a0, . . . , am).

Let w =

[
w0 · · · wm

]T
∈ Cm+1. Define w(z) = w0 +w1z+ · · ·+wmz

m ∈ C[z]. Then:

1

2π

∫ π

−π
|w(eiθ)|2f(eiθ, eiθ)dθ = w∗Toep(a0, . . . , am)w (2.23)

In particular, if f(eiθ, eiθ) ≥ 0 for all θ ∈ [0, 2π], then Toep(a0, . . . , am) ≥ 0.

Now consider a holomorphic polynomial h(z) = h0 + h1z+ · · ·+ hmz
m ∈ C[z]. Then

|h(z)|2 =



1

z

...

zm



∗ 

h0h̄0 h1h̄0 · · · hmh̄0

h0h̄1 h1h̄1 · · · hmh̄1

...
...

. . .
...

h0h̄m h1h̄m · · · hmh̄m





1

z

...

zm


(2.24)

Suppose further that f is a trigonometric polynomial with data (a0, . . . , am). Then, after

reducing coefficients modulo (zz̄−1), we see that the following conditions are equivalent:

(i) f(z, z̄) ≡ |h(z)|2 mod (zz̄ − 1)
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(ii) ak =
∑m

j=k hjh̄j−k for k = 0, . . . ,m

From which we can conclude that the following conditions are equivalent:

(i) f ∈ Σ2
h + (zz̄ − 1)

(ii) There exist h0, . . . , hm ∈ C such that ak =
∑m

j=k hjh̄j−k for k = 0, . . . ,m

These equations characterize the coefficients of the holomorphic polynomial h(z) (see

[9, pg. 22]), and can be solved by the method of spectral factorization.

Our plan for the case N > 1 is to develop block analogues of these ideas and invoke

the operator-valued Riesz-Fejer lemma.

2.2 Block Trace Parametrization

In this section we discuss a block analog of the trace parametrization technique uti-

lized throughout [6].

Now consider a Hermitian polynomial g(z, z̄). We may write g in block matrix form:

g(z, z̄) =



ψ(z)

zNψ(z)

...

zNmψ(z)



∗ 

B00 B01 · · · B0m

B10 B11 · · · B1m

...
...

. . .
...

Bm0 Bm1 · · · Bmm





ψ(z)

zNψ(z)

...

zNmψ(z)


(2.25)

where Bjk ∈ CN×N and Bkj = B∗jk. By reducing the coefficients modulo (zN z̄N − 1) we
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see that g is congruent modulo (zN z̄N − 1) to a unique polynomial of the form

f(z, z̄) =



ψ(z)

zNψ(z)

...

zNmψ(z)



∗ 

A0 A1 · · · Am

A−1 0 · · · 0

...
...

. . .
...

A−m 0 · · · 0





ψ(z)

zNψ(z)

...

zNmψ(z)


(2.26)

where Aj ∈ CN×N , A−j = A∗j and ψ(z) =

[
1 z · · · zN−1

]T
. If a Hermitian

polynomial f has the above form, then we say f is trigonometric modulo (zN z̄N − 1) of

degree m with data (A0, . . . , Am).

Since

g(z, z̄) = f(z, z̄) + q(z, z̄)(zN z̄N − 1) (2.27)

for some Hermitian polynomial q, we see that

Gram(f)[ξ, ωξ, . . . , ωN−1ξ] = Gram(g)[ξ, ωξ, . . . , ωN−1ξ] (2.28)

Hence the Gram matrices are simultaneously positive.

Furthermore, we have that f ∈ Σ2
h + (zN z̄N − 1) if and only if g ∈ Σ2

h + (zN z̄N − 1).

If f is trigonometric modulo (zN z̄N − 1) with data (A0, . . . , Am), then our goal is to

show that the condition

Gram(f)[ξ, ωξ, . . . , ωN−1ξ] ≥ 0 ∀ξ ∈ T (2.29)
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implies positivity of the associated block Toeplitz matrix

Toep(A0, . . . , Am) :=



A0 A1 A2 · · · Am

A−1 A0 A1
. . .

...

A−2 A−1 A0
. . .

...

...
. . . . . . . . . A1

A−m · · · · · · A−1 A0


(2.30)

which allows us to apply the operator-valued RF theorem to obtain f ∈ Σ2
h+(zN z̄N −1).

The idea of the trace parametrization depends on the following observation: Let Tk

denote the elementary block Toeplitz matrix with I on the k-th diagonal and 0 elsewhere,

where the main diagonal is counted as k = 0 and positive diagonals count to the right.

Let trace[Q] denote the sum of the diagonal blocks of Q = [Qjk]
m
j,k=0. Then

trace[T−kQ] =
m∑
j=k

Qj−k,j (2.31)

is the sum of the k-th diagonal of Q.

Suppose h(z) is a holomorphic polynomial of degree N(m+ 1). We can write |h(z)|2

in block matrix form:

|h(z)|2 =



ψ(z)

zNψ(z)

...

zNmψ(z)



∗ 

Q00 Q01 · · · Q0m

Q10 Q11 · · · Q1m

...
...

. . .
...

Qm0 Qm1 · · · Qmm





ψ(z)

zNψ(z)

...

zNmψ(z)


(2.32)

where Q = [Qjk]
m
j,k=0 is a positive Hermitian block matrix with Qjk ∈ CN×N and Qkj =

Q∗jk.

32



Main Results Chapter 2

Suppose further that f is trigonometric modulo (zN z̄N − 1) with data (A0, . . . , Am).

Then, after by considering the reduction of coefficients modulo (zN z̄N − 1), we see that

the following conditions are equivalent:

(i) f(z, z̄) ≡ |h(z)|2 mod (zN z̄N − 1)

(ii) Ak = trace[T−kQ]

From which we conclude that the following conditions are equivalent:

(i) f ∈ Σ2
h + (zN z̄N − 1)

(ii) There exists a positive block matrix Q = [Qjk]
m
j,k=0 such that Ak = trace[T−kQ],

k = 0, . . . ,m.

2.3 Operator-Valued RF Theorem

We recall the operator-valued Riesz-Fejer theorem:

Theorem 21 [5, Theorem 2.1] Let A(z) =
∑m

k=−mAkz
k be a Laurent polynomial with

matrix coefficients Ak ∈ CN×N . The following conditions are equivalent:

(i) A(ξ) ≥ 0 for all ξ ∈ T

(ii) Toep(A0, . . . , Am) ≥ 0

(iii) There exists P (z) = P0 + P1z + · · · + Pmz
M with matrix coefficients Pk ∈ CN×N

such that A(z) = P (z)∗P (z)

Let Qjk = P ∗j Pk and let Q = [Qjk]
m
j,k=0. If A(z) = P (z)∗P (z), then we can equate

coefficients to get Ak = Trace[T−kQ]. Thus we get:

Corollary 22 Let A0, . . . , Am ∈ CN×N . The following conditions are equivalent:
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(i) Toep(A0, . . . , Am) ≥ 0

(ii) There exists a positive block matrix Q = [Qjk]
m
j,k=0 such that Ak = trace[T−kQ].

With these considerations in mind, starting with f trigonometric modulo (zN z̄N − 1)

with data (A0, . . . , Am), we will assume

Gram(f)[ξ, ωξ, . . . , ωN−1ξ] ≥ 0 ∀ξ ∈ T (2.33)

and show that this implies

Toep(A0, . . . , Am) ≥ 0 (2.34)

from which we can obtain f ∈ Σ2
h + (zN z̄N − 1).

2.4 The Functional FN

In this section we define a functional FN : C[z, z̄]→ C and use it to represent matrix

products. The goal is to transfer the matrix positivity conditions into block Toeplitz

positivity conditions.

2.4.1 Definition and Basic Properties

Definition 23 For f(z, z) ∈ C[z, z], define:

FN(f) :=
1

2π

∫ π

−π
[

1

N2

N−1∑
j,k=0

f(ωjeiθ, ωkeiθ)]dθ (2.35)

Observe that the integrand is the average of the entries of Gram(f)[eiθ, . . . , ωN−1eiθ].

We require the following computation for the next proposition.
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Lemma 24

1

N2

N−1∑
j,k=0

ω`(j−k) =


1 if ` | N

0 if ` - N
(2.36)

Proof:

Define the symbol:

µ(`) :=


N if N | `

0 if N - `
(2.37)

Then

N−1∑
j=0

ω`j = 1 + ω` + ω2` + · · ·+ ω`(N−1) (2.38)

= µ(`) (2.39)

which gives

N−1∑
j,k=0

ω`(j−k) =
N−1∑
j=0

N−1∑
k=0

ω`jω−`k (2.40)

=
N−1∑
j=0

ω`j(
N−1∑
k=0

ω−`k) (2.41)

=
N−1∑
j=0

ω`jµ(`) (2.42)

= µ(`)2 (2.43)

The key idea is that FN(f) computes the sum of the diagonal entries a`` of the

coefficient matrix of f such that ` is a multiple of N .
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Proposition 25 Let f(z, z̄) =
∑
ajkz̄

jzk ∈ C[z, z̄]. Then:

FN(f) = a0,0 + aN,N + a2N,2N + · · · =
m∑
`=0
N |`

a`` (2.44)

Proof:

FN(f) =
1

2π

∫ π

−π
[

1

N2

N−1∑
j,k=0

f(ωjeiθ, ωkeiθ)]dθ (2.45)

=
1

N2

∑
j,k=0

[
1

2π

∫ π

−π
f(ωjeiθ, ωkdiθ)dθ] (2.46)

=
1

N2

N−1∑
j,k=0

[
m∑
`=0

a``ω
`(j−k)] (2.47)

=
m∑
`=0

a``[
1

N2

N−1∑
j,k=0

ω`(j−k)] (2.48)

=
m∑
`=0
N |`

a`` (2.49)

where we use Lemma 19 and Lemma 24.

Corollary 26 FN satisfies the following properties:

(i) FN(zN z̄Nf(z, z̄)) = FN(f(z, z̄)) for all f ∈ Ch[z, z̄]

(ii) FN is a C-linear map C[z, z̄]→ C

(iii) FN is an R-linear map Ch[z, z̄]→ R

Proof: Follows from Proposition 25.
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Proposition 27 Let f ∈ Ch[z, z̄]. Suppose Gram(f)[eiθ, ωeiθ, . . . , ωN−1eiθ] ≥ 0 for all

θ ∈ [0, 2π]. Then:

FN(f(z, z̄)) ≥ 0 (2.50)

Furthermore:

FN(|h(z)|2f(z, z̄)) ≥ 0 (2.51)

for all holomorphic polynomials h(z) ∈ C[z].

Proof:

The average of the entries of a positive matrix is positive. Thus:

1

N2

N−1∑
j,k=0

f(ωjeiθ, ωkeiθ) ≥ 0 for all θ ∈ [0, 2π] (2.52)

The average of positive numbers is positive. Thus:

FN(f) :=

∫ π

−π
[

1

N2

N−1∑
j,k=0

f(ωjeiθ, ωkeiθ)]
dθ

2π
≥ 0 (2.53)

For a Hermitian polynomial g ∈ Ch[z, z̄], for ease of notation, let Gram(g) denote the

matrix Gram(g)[eiθ, ωeiθ, . . . , ωN−1eiθ]. We know Gram(|h(z)|2) ≥ 0 for all holomorphic

polynomials h(z) ∈ C[z]. Then

Gram(|h(z)|2f(z, z̄)) = Gram(|h(z)|2) ◦Gram(f(z, z̄)) ≥ 0 (2.54)

by the Schur product theorem (where ◦ denotes the Hadamard product).

Then FN(|h(z)|2f(z, z̄)) ≥ 0 follows from the first part of the proof.
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2.4.2 Representing Matrix Products with FN

Given v, w ∈ CN and A ∈ MN , our goal is to construct a polynomial f such that

FN(f) = v∗Aw. Let us expand the expression v∗Aw so that we may recognize its

appearance later. Write

v =

[
v0 · · · vN−1

]T

w =

[
w0 · · · wN−1

]T
A = [ajk]

N−1
j,k=0

Then

v∗Aw =
N−1∑
j,k=0

ajkv̄jwk (2.55)

The following example demonstrates the construction for the case N = 2.

Example 28 Let v, w ∈ C2 and A ∈ C2×2. Write:

v =

v0

v1

 w =

w0

w1

 A =

a00 a01

a10 a11


Define

f(z, z̄) =
1∑

j,k=0

ajkz̄
jzk

ṽ(z) = v0z
2 + v1z

w̃(z) = w0z
2 + w1z

Then

ṽ(z)w̃(z)f(z, z̄) = a00v̄0w0z
2z̄2 + za01v̄0w1zz̄

2 + z̄a10v̄1w0z
2z̄ + zz̄a11v̄1w1zz̄
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Then

F2(ṽ(z)w̃(z)f(z, z̄)) = a00v̄0w0 + a01v̄0w1 + a10v̄1w0 + a11w̄1w1 = v∗Aw

by Proposition 25.

Written in matrix notation: (consider the coefficient of z2z̄2 before applying F2)

F2(

z2

z


∗ v̄0

v̄1


w̄0

w̄1


∗ z2

z


1

z


∗ a00 a01

a10 a11


1

z

) =

v0

v1


∗ a00 a01

a10 a11


w0

w1

 (2.56)

We generalize the previous example to obtain the desired construction:

Proposition 29 Let:

v =

[
v0 · · · vN−1

]T
∈ CN

w =

[
w0 · · · wN−1

]T
∈ CN

A = [ajk]
N−1
j,k=0 ∈ CN×N

Define:

ṽ(z) =
N−1∑
j=0

vjz
N−j ∈ C[z] (2.57)

w̃(z) =
N−1∑
j=0

wjz
N−j ∈ C[z] (2.58)

f(z, z̄) =
N−1∑
j,k=0

ajkz̄
jzk ∈ C[z, z̄] (2.59)

Then:

FN(ṽ(z)w̃(z)f(z, z̄)) = v∗Aw (2.60)
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Furthermore, for integers s, t ≥ 0 we have:

FN(z̄NszNtṽ(z)w̃(z)f(z, z̄)) = δstv
∗Aw (2.61)

Proof: We have

ṽ(z)w̃(z) =
N−1∑
j,k=0

v̄jwkz̄
N−jzN−k

and

f(z, z̄) =
N−1∑
c,d=0

acdz̄
czd

Thus

ṽ(z)w̃(z)f(z, z̄) =
N−1∑

j,k,c,d=0

acdv̄jwkz̄
N−j+czN−k+d

Use the C-linearity of FN :

FN(ṽ(z)w̃(z)f(z, z̄)) =
N−1∑

j,k,c,d=0

acdv̄jwkFN(z̄N−j+czN−k+d)

Since 0 ≤ j, k, c, d ≤ N − 1, applying Proposition we get

FN(z̄N−j+czN−k+d) = δjcδkd

Therefore only terms with j = c and k = d will survive FN :

FN(ṽ(z)w̃(z)f(z, z̄)) =
N−1∑
j,k=0

ajkv̄jwk = v∗Aw

In order to prove the second part, for a Hermitian polynomial f , let Mon(f) ⊂ N×N

denote the monomial support (the set of monomials corresponding to nonzero coefficients

of f). Note Mon(fg) = Mon(f) + Mon(g). Say a monomial in N × N is N-divisible if
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both components are divisible by N and say the monomial is diagonal if both entries are

equal. We know that FN(f) is the sum of the coefficients corresponding to monomials

of f which are both diagonal and N -divisible.

For integers a, b ∈ Z let [a, b] := {j ∈ Z|a ≤ j ≤ b}. Then:

Mon(ṽ(z)w̃(z)) = [1, N ]× [1, N ] (2.62)

Mon(f(z, z̄) = [0, N − 1]× [0, N − 1] (2.63)

Hence

Mon(ṽ(z)w̃(z)f(z, z̄)) = [1, 2N − 1]× [1, 2N − 1] (2.64)

whose only diagonal N -divisible element is (N,N).

We have

Mon(ṽ(z)w̃(z)f(z, z̄)z̄NszNt) = [1 +Ns, 2N − 1 +Ns]× [1 +Nt, 2N − 1 +Nt] (2.65)

For convenience, denote Q(s, t) = Q(s, t)(z, z̄) = ṽ(z)w̃(z)f(z, z̄)z̄NszNt.

As we vary (s, t) ∈ Z≥0 × Z≥0 we obtain a partition of Z>0 × Z>0 by squares

Mon(Q(s, t)). Only the bottom right monomial of each tile is N -divisible. If s = t,

then the bottom right element of Mon(Q(s, t)) is both N -divisible and diagonal. If s 6= t,

then no elements of Mon(Q(s, t)) are both N -divisible and diagonal. From these obser-

vations the result follows.
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2.5 Proof of Main Results

We are now in position to utilize all the tools developed so far and show that the

matrix positivity conditions imply positivity of the associated block Toeplitz matrix. We

then prove the theorem characterizing Hermitian sums of squares modulo (zN z̄N − 1).

Proposition 30 Let ω = e2πi/N .

Let f ∈ Ch[z, z̄] be trigonometric mod (zN z̄N − 1) with data (A0, . . . , Am).

Suppose Gram(f)[eiθ, ωeiθ, . . . , ωN−1eiθ] ≥ 0 for all θ ∈ [0, 2π].

Then Toep(A0, . . . , Am) ≥ 0.

Proof:

Let v(0), . . . , v(m) ∈ CN be arbitrary.

Write v(j) =

[
v

(j)
0 · · · v

(j)
N−1

]T
with v

(j)
k ∈ C.

Let v =

[
v(0) · · · v(m)

]T
∈ (CN)m+1.

It suffices to show v∗Toep(A0, . . . , Am)v ≥ 0.

Observe that

v∗Toep(A0, . . . , Am)v =
m∑

j,k=0

v(j)∗Ak−jv
(k)

For j = 0, . . . ,m define ṽ(j)(z) =
∑N−1

k=0 v
(j)
k zN−k ∈ C[z].

Define v(z) =
∑m

j=0 z
Nj ṽ(j)(z) ∈ C[z].

Let ψ(z) = φN(z) =

[
1 z · · · zN−1

]T
.

Claim: FN(|v(z)|2f(z, z̄)) = v∗Toep(A0, . . . , Am)v ≥ 0.

Introduce double-index notation for matrix coefficients of f in order to simplify com-
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putations:

f(z, z̄) =



ψ(z)

zNψ(z)

...

zNmψ(z)



∗ 

A00 A01 · · · A0m

A10 A11 · · · A1m

...
...

. . .
...

Am0 Am1 · · · Amm





ψ(z)

zNψ(z)

...

zNmψ(z)


where Ajk = 0 if min(k, j) 6= 0 and Ajk = Ak−j otherwise.

Then:

f(z, z̄) =
m∑

j,k=0

z̄jNzkNψ(z)∗Ajkψ(z)

We have:

|v(z)|2 =
m∑

j,k=0

z̄NjzNkṽ(j)(z)ṽ(k)(z)

Hence:

|v(z)|2f(z, z̄) =
m∑

j,k,c,d=0

z̄N(c+j)zN(d+k)ṽ(j)(z)ṽ(k)(z)ψ(z)∗Acdψ(z)

Then using Proposition 25 and passing between the double and single index coefficients
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for f :

FN(|v(z)|2f(z, z̄)) =
m∑

j,k,c,d=0

FN(z̄N(c+j)zN(d+k)ṽ(j)(z)ṽ(k)(z)ψ(z)∗Acdψ(z)) (2.66)

=
m∑

j,k,c,d=0

δc+j,d+kv
(j)∗Acdv

(k) (2.67)

=
m∑

j,k,c,d=0
c+j=d+k

v(j)∗Acdv
(k) (2.68)

=
m∑

j,k,c,d=0
j−k=d−c

v(j)∗Ad−cv
(k) (2.69)

=
m∑

j,k=0

v(j)∗Aj−kv
(k) (2.70)

= v∗Toep(A0, . . . , Am)Tv (2.71)

By Proposition 27 we have

v∗Toep(A0, . . . , Am)Tv ≥ 0 ∀v ∈ (CN)m+1

Therefore Toep(A0, . . . , Am)T ≥ 0, and hence Toep(A0, . . . , Am) ≥ 0.

Theorem 31 Let ω = e2πi/N .

Let f ∈ Ch[z, z̄] be trigonometric mod (zN z̄N − 1) with data (A0, . . . , Am).

The following conditions are equivalent:

(i) f ∈ Σ2
h + (zN z̄N − 1)

(ii) Gram(f)[eiθ, ωeiθ, . . . , ωN−1eiθ] ≥ 0 for all θ ∈ [0, 2π]

(iii) Toep(A0, . . . , Am) ≥ 0
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Proof:

( (i) =⇒ (ii) ) By Lemma 17, the idea of matrix positivity conditions.

( (ii) =⇒ (iii) ) By Proposition 30.

( (iii) =⇒ (i) ) By Corollary 22 and the conclusion of Section 2.2.
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Conclusion

The original contribution of this thesis is to show that the matrix positivity conditions

for the Hermitian ideal I = (zN z̄N − 1). Some reasons why this is interesting:

(i) The characterization of Σ2
h+I was not covered by the application of the Archimedean

positivstellensatz. Pointwise positivity is never sufficient and Σ2
h + I is a non-

Archimdean semiring. The ideas of real algebra are not enough.

(ii) The matrix positivity conditions are parametrized by a continuum. This is in

contrast to the following example: let p1, p2 ∈ C and let I = ((z − p1)(z −

p2), (z − p1)(z − p2). Then f ∈ Σ2
h + I if and only if Gram(f)[p1, p2] ≥ 0. This is

the basic idea of the Kolmogorov factorization of a positive kernel. Only the one

positivity condition is required, and Z(I) = {p1, p2} ⊂ C.

In the case of (zN z̄N − 1), we have an N -th order matrix positivity condition for

each point on the unit circle.
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The question remains: are the matrix positivity conditions sufficient in general?

Let f be a Hermitian polynomial and I a Hermitian ideal.

Suppose

[f(pj, p̄k)]
`
j,k=1 ≥ 0

for all collections of points p1, . . . , p` ∈ Cn such that

g(pj, p̄k) = 0 ∀j, k = 1, . . . , ` ∀g ∈ I

Then do we have f ∈ Σ2
h + I?
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[7] Leopold Fejér. Über trigonometrische Polynome. J. Reine Angew. Math., 146:53–82,
1916.

[8] F. R. Gantmacher. The theory of matrices. Vol. 1. AMS Chelsea Publishing, Prov-
idence, RI, 1998. Translated from the Russian by K. A. Hirsch, Reprint of the 1959
translation.
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