UC Merced

Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Efficient navigation using a scalable, biologically inspired spatial representation

Permalink
https://escholarship.org/uc/item/4z99g5pd
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 42(0)

Authors
Komer, Brent
Eliasmith, Chris

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0J

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/4zg9g5pq
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Efficient navigation using a scalable, biologically inspired spatial representation

Brent Komer (bjkomer @uwaterloo.ca)
Chris Eliasmith (celiasmith @uwaterloo.ca)
Centre for Theoretical Neuroscience, University of Waterloo
Waterloo, ON, Canada, N2L 3G1

Abstract

We present several experiments demonstrating the efficiency
and scalability of a biologically inspired spatial representation
on navigation tasks using artificial neural networks. Specifi-
cally, we demonstrate that encoding coordinates with Spatial
Semantic Pointers (SSPs) outperforms six other proposed en-
coding methods when training a neural network to navigate to
arbitrary goals in a 2D environment. The SSP representation
naturally generalizes to larger spaces, as there is no definition
of a boundary required (unlike most other methods). Addition-
ally, we show how this navigational policy can be integrated
into a larger system that combines memory retrieval and self-
localization to produce a behavioural agent capable of finding
cued goal objects. We further demonstrate that explicitly incor-
porating a hexagonal grid cell-like structure in the generation
of SSPs can improve performance. This biologically inspired
spatial representation has been shown to be able to produce
spiking neural models of spatial cognition. The link between
SSPs and higher level cognition allows models using this rep-
resentation to be seamlessly integrated into larger neural mod-
els to elicit complex behaviour.

Keywords: Semantic Pointer Architecture; spatial semantic
pointer; spatial representation; navigation; policy learning

Introduction

An important part of solving any task involves having an ef-
fective representation. All animals are embodied in space and
interact with other animals and objects around them. In order
for an animal to act intelligently and survive in this world
their brains must be able to form useful representations of
the space around them. The same information merely pre-
sented in a different manner to a neural network can produce
profoundly different results (Bengio, Courville, & Vincent,
2013).

A proposed method for encoding spatial information in a
cognitive system is Spatial Semantic Pointers (SSPs) (Komer,
Stewart, Voelker, & Eliasmith, 2019; Lu, Voelker, Komer, &
Eliasmith, 2019). The key question we investigate in this
work is whether this encoding designed for spiking neural
models of spatial cognition is also an effective representa-
tion for artificial neural networks in general. We compare the
effectiveness of SSPs to various other commonly used repre-
sentations in machine learning for solving spatial tasks.

We begin with an overview of the mathematical formula-
tion of SSPs along with an improvement to this formulation
inspired by grid cells. We then show how encoding spatial
information using SSPs provides an excellent representation
for a neural network to learn a goal-finding policy. Finally,

we demonstrate how the learned policy can be incorporated
into a larger system to produce behaviour which solves the
navigation task.

Spatial Semantic Pointers

Often when building cognitive models it is useful to be able
to construct complex relations from simpler components.
Vector Symbolic Architectures (VSAs) are one class of ap-
proaches that define algebras over high dimensional vector
spaces, where each vector in the space can represent a par-
ticular concept. VSAs essentially allow vectors to be used as
‘slots’ and ‘fillers’; where a slot is some property (e.g. colour)
and the filler is the value of that property (e.g. red). An oper-
ator is required to perform the binding between the two vec-
tors, in our case we use circular convolution (denoted by ®)
(Plate, 1995).

The Semantic Pointer Architecture (SPA) (Eliasmith,
2013) proposes a means of implementing VSAs for explain-
ing cognitive behaviour in biologically plausible spiking net-
works. Inspiration for SSPs comes from models of serial
working memory, where position in a list is encoded by an
‘index’ vector bound to itself a number of times equal to the
position (Choo & Eliasmith, 2010). A vector B can be repeat-
edly bound with itself Xk — 1 times as follows:

B*=B®B®...®B. (1)

B appears k times
While the equation above applies to positive integer values
of k, the definition can be expanded to allow k to be any real
value, by using the fact that convolution in the time domain
becomes multiplication in the frequency domain. This opera-
tion, which we call ‘fractional binding’, is defined as follows:

B =5 {7 (B}, KeR, 2

where 7 {-} is the Fourier transform, and ¥ {B}* is
an element-wise exponentiation of a complex vector—
analogous to exponentiation using fractional powers
(e.g., b*>>)—permitting k to be real. In this work we choose
B to be a unitary vector, meaning its length does not change
with multiple bindings to itself and its inverse is equal to its
approximate inverse.

This representation is extended to multiple spatial dimen-
sions by repeating Equation 2 with a different semantic

1532
©2020 The Author(s). This work is licensed under a Creative
Commons Attribution 4.0 International License (CC BY).

Figure 1: Projection to Hexagonal Coordinates. Left: Plane
in 3D. Middle: Perspective aligned to the normal vector of the
plane. Right: Coordinate system of the plane with principal
axes of the 3D system overlaid.

pointer for each dimension (referred to as ‘axis vectors’) and
then binding all of the resulting vectors together. For the 2D
case, the SSP that represents the point (x,y) is defined as the
vector resulting from the function:

S(x,y)=X*®Y, 3

where X and Y are fixed unitary semantic pointers, x and y
are reals, and we are using fractional binding as defined by
Equation 2. In the language of ‘slots’ and ‘fillers’, SSPs can
be seen as a continuous slot that can be filled with an object
to represent an object at a location.

SSPs have been shown to be a powerful model of spatial
cognition. They have the capability to represent arbitrary ob-
jects at any location in continuous space. They can also repre-
sent collections of objects and regions of space. Many spatial
operations can be performed on a memory containing SSPs,
such as translating items in memory, querying object rela-
tions and mental image scanning (Komer et al., 2019; Lu et
al., 2019). SSPs can be implemented efficiently in a spiking
neural network using the methods of the Neural Engineering
Framework (Eliasmith & Anderson, 2003).

An Improved Spatial Representation

In the initial introduction of SSPs, the vectors corresponding
to the x and y axes were chosen randomly and independently.
While this method performed well in many applications, there
is still room for improvement. In this section we demonstrate
how changing the generation method of the axis vectors can
lead to improvements in the representation.

Inspiration from Grid Cells

Neurons in the medial entorhinal cortex have been shown to
produce hexagonally symmetric firing across spatial locations
(Hafting, Fyhn, Molden, Moser, & Moser, 2005).

One way to interpret a hexagonal coordinate system is as
a standard 3D coordinate system projected onto a 2D plane.
By choosing the plane to have a normal vector of [1 1 1] ,
movement along any of the principal axes in the 3D system
corresponds to moving along the 120 degree apart principal
axes in the hexagonal coordinate system. A visualization of
this relation is shown in Figure 1.

1533

In the original SSP formulation, two high-dimensional vec-
tors, X and Y, are chosen to define the encoding. In the mod-
ified formulation for a hexagonal coordinate system, three
high-dimensional unitary vectors, X, Y, and Z, are used. The
convolutional exponents for each of these vectors are deter-
mined by transforming a given 2D coordinate into a 3D coor-
dinate constrained to lie on a 2D plane. This transformation
is carried out by multiplying the 2D coordinate by a 2x3 ma-
trix. This matrix is formed by stacking two orthogonal unit
vectors that lie on the plane. The hexagonal SSP formulation
is shown in Equation 4.

S3(x,y) =X" @Y ®Z¥
T T
Wy] =[xy Axg
It is important to note that there is no additional computa-
tional cost associated with defining the representation using
three axis vectors, as an equivalent two axis vector system

can be constructed and used instead. The axis vectors of this
equivalent system are defined in Equation 5.

4)

X= S3(1a0)

Y = $5(0.1) ®

These vectors can be thought of as spanning a 2D subspace
of the 3D space being represented. Since the original three
axis vectors are chosen randomly, this operation can also be
interpreted as a change in the distribution where possible axis
vectors are sampled from and the new X and Y vectors are no
longer independent.

One way to measure the effectiveness of an encoding
method is to compare the representation of a location to all
other locations. Ideally if the representations are similar, the
locations should be similar (i.e. nearby) and if the represen-
tations are different, the corresponding locations should be
different. Similarity is measured as the cosine distance be-
tween two vectors. A comparison of the similarity heatmaps
generated from the two approaches encoding the coordinate
(0, 0) are is shown in Figure 2.

In the original formulation there are clear noise patterns
aligned with the axes, visible in both a single choice of axis
vectors as well as averaging across many choices. For the
hexagonal formulation, there is less distinct structure in the
noise pattern and only when averaged across many choices of
axis vectors does a faint hexagonally symmetric pattern arise.
When comparing the heatmaps to an ideal Gaussian fit, the
original formulation results in an RMSE of 0.043 while the
hexagonal formulation has an RMSE of 0.019.

Navigation

The first experiment consists of generating a policy to solve
a navigation task. The primary goal is to assess the effec-
tiveness of the representation for a behavioural policy. Since
an optimal policy can be computed for this task, supervised
learning can be used to train a network to match this de-
sired policy. This allows training to converge much faster

Single Square Heatmap Single Hexagonal Heatmap

1.00
0.75
-4 -2 0 2 4

Mean Hexagonal Heatmap

4

-2

-4
-a -2 0 2 4

Mean Square Heatmap

Figure 2: Similarity Heatmap of Different SSP Formulations.
Top: Heatmaps for a single randomly generated SSP. Bottom:
Mean heatmaps across 50 randomly generated SSPs. Left:
Original formulation using two independent unitary vectors.
Right: Hexagonal formulation using three independent uni-
tary vectors projected onto a 2D space.

Encoding

Current Location {".‘\

\Q‘w. Up / Down
S 9,

S 70 Left / Right

utput

Goal Location

Context Signal

Hidden Layer

Figure 3: Navigation Policy Diagram

and avoids many of the difficulties in parameter sensitivity
and reproducability with reinforcement learning approaches.

Policy Network

The policy network produces a mapping from states to ac-
tions. In this case, the state consists of the location of the
agent, the location of the current goal, and a context signal
indicating which of several mazes the agent is currently ex-
ploring. The output of the network is a two dimensional vec-
tor corresponding to the direction the agent should move from
the current location to get to the goal. A diagram of the net-
work structure is shown in Figure 3.

Optimal Policy

The optimal policy for a given goal location is computed
using a modified version of Dijkstra’s search algorithm
(Dijkstra et al., 1959). The space is discretized into a 64 by
64 array. For each element in the array, a continuous direc-
tion is computed indicating the direction to move in order to
optimally reach the goal. Optimality is defined as traversing
the least total distance and only moving through free space
and not obstacles.

1534

Direction

D

Goal 1

wall] 2

Figure 4: Ground Truth Optimal Policy. Left: Policy com-
puted using search algorithm. Right: Policy with additional
bias added to avoid contact with walls.

Traversing the least distance involves paths that cut corners
very tightly and stay near walls. This is not ideal behaviour
in the real world, where there is noise involved in motion,
and the agent takes up physical space. To account for this,
an additional bias is added to avoid contact with walls and to
traverse closer to the center of hallways. This bias is created
by applying an energy function to all obstacles that pushes the
optimal policy direction away from the obstacle, similar to a
potential field planner (Latombe, 2012). The energy function
chosen was a Gaussian with a ¢ of 0.25 and a magnitude of
0.75.

Figure 4 shows a visualization of the optimal policy com-
puted for a given goal location in a maze. The colour of each
pixel indicates the direction an agent should move from that
location in order to reach a specific goal. Black indicates im-
passable obstacles.

Other Encoding Methods

In order to gauge the effectiveness of the SSP encoding, it
must be compared to other commonly used methods. In
this work we compare against Radial Basis Functions (RBF),
One-Hot encoding, Tile-coding (Albus, 1975), learning the
encoding, and directly using 2D coordinates with no encod-
ing. An additional comparison is made with a random encod-
ing to create a baseline for all of these methods.

One parameter common to all encoding methods is the di-
mensionality of the encoding. For comparisons, this param-
eter is held constant across all methods and set to a value of
256.

For RBEF, the basis function used is a 2D Gaussian with a
¢ of 0.75. This value was chosen by performing a parame-
ter sweep on the task and choosing the result that produced
the lowest error. The locations of the Gaussians are chosen
uniformly at random within the bounds of the environment.
For one-hot encoding, the environment is discretized into 256
evenly sized square bins, resulting in a 16 by 16 grid. For tile-
coding the environment is discretized into four overlapping 8
by 8 grids with random offsets. These values were chosen to
maintain a total dimensionality of 256. For the learned en-
coding, an additional layer with 256 neurons is added to the
network. This layer is applied to both the current location and
the goal location with weights shared, to ensure a consistent

encoding. The random encoding uses the input coordinates
as the seed to generate a random 256D unit vector.

Experiments

In all experiments the context signal is set to a 256D random
unit vector unique to each maze layout. When concatenated
with the 256D encoding of the current location and 256D en-
coding of the goal location, the total size of the input vector is
768 (or 260 for the no encoding case). The hidden layer size
is set to 256 neurons. A ReLU activation function is used be-
tween the input layer and the hidden layer. The output is a
linear readout from the hidden layer.

The network is implemented in PyTorch (Paszke et al.,
n.d.). It is trained using the Adam optimizer (Kingma & Ba,
2015) with a learning rate of 0.001 for 50 epochs on a train-
ing dataset of 100,000 data points. Initial experiments were
run for 500 epochs, but performance on a validation dataset
plateaued by 50 epochs, indicating that any additional train-
ing would only result in overfitting. All results shown are
from an independently generated test dataset of 100,000 data
points.

One task parameter that was explored is the number of
unique environments that the network must learn to navigate.
The more environments, the greater the difficulty of the task
as the network is fixed in size and the same learned weights
are used in every environment. Experiments were performed
using 10, 25, and 50 different environments. Each environ-
ment layout is generated randomly following one of two dis-
tributions from mazelab (Zuo, 2018). The 'maze’ generation
method creates environments with winding narrow hallways
(example in Figure 11) and the ’blocks’ generation method
creates environments with open space and scattered obstacles
(example in Figure 10). A mix of styles is used to prevent
overfitting to a particular kind of environment. All environ-
ments are generated such that a path exists from any free
space to any other free space.

Performance is measured by comparing the output of the
network to the optimal policy. Root Mean Squared Error
(RMSE) is calculated based on the difference is angle be-
tween the movement direction computed by the network and
the optimal direction. The angle between two directions can
be different depending on whether a clockwise or counter-
clockwise rotation is used to align the directions. In terms
of error, we are always interested in whichever rotation pro-
duces the smallest angle. A general way to obtain the smallest
angular distance between two angles is shown in Equation 6.

0, = min(|0, — 6, —27/,|0, — 6,],16, — 6, +27|) (6)

Where O, is the error, 0, is the predicted angle, and 6; is
the target angle. Both the predicted and target angle are con-
strained to be between —7 and 7. This equation enforces that
the error is within the same range. This equation can be vec-
torized in Python to compute the error for all data points effi-
ciently.

1535

1.24

Number of Mazes
== 10
. 25

1.04 . 50

RBF Tile-Code One-Hot Learned 2D
Encoding

Random

Figure 5: Comparison of Encoding Methods

Ground Truth
RMSE = 0.000

Hex SSP

SSP RBF
RMSE = 0.504 RMSE = 0.542 RMSE = 0.556

One Hot
RMSE = 0.764

Tile Code
RMSE = 0.644

Random
RMSE = 0.944

Learned
RMSE = 0.580

Figure 6: Policy Visualization. The colour of each pixel cor-
responds to the output direction computed by the policy for
an agent at the location of the pixel. Shown is one goal lo-
cation in one particular maze for all encoding methods. The
image is created using a mix of training and test samples to
tile the space.

A comparison of the different encoding methods is shown
in Figure 5. "Hex SSP’ refers to the formulation in Equa-
tion 4. While the SSP encodings performed the best over-
all, some of the other methods are still comparable on this
task. For the 50 maze case, Hex SSP produced an RMSE of
0.538 (SD 0.004), SSP 0.545 (SD 0.004), and the next closest
encoding was RBF with 0.568 (SD 0.007). The differences
in mean performance are all significant; Student’s t-test be-
tween Hex SSP and SSP (p=0.02079), between SSP and RBF
(p=0.00021). However, the SSP method becomes uniquely
effective when generalizability is taken into account, as de-
tailed in the next section.

Generalization

A natural advantage of using a SSP encoding of space is there
are no explicitly defined limits of the space that need be rep-
resented. When using a method such as Radial Basis Func-
tions or Tile-Coding, boundaries must be chosen for the space
to be represented. Any region outside of the boundary cannot

1.4 Number of Mazes
. 10
. 25
. 50

0.0-
Hex SSP SSP RBF

Tile-Code One-Hot Learned 2D
Encoding

Random

Figure 7: Performance Outside of Bounds

be encoded effectively without changing the representation to
include additional basis functions or tiles. In contrast, SSPs
can represent any location and the dimensionality of the SSP
does not have to increase to incorporate more space.

To illustrate this point, experiments were conducted where
the encoding is designed for a particular region of space, but
the network learns from a larger region that goes outside of
these bounds. In this experiment the encodings were designed
for a space of half the width and half the height of the entire
maze. For SSPs, the only available parameter to change is the
scaling of the coordinates used as the convolutional power.
The scaling that is used in all previous experiments was in-
creased by a factor of two, to indicate being chosen for a
smaller space. As can be seen in Figure 7, the SSP encod-
ing method outperforms all other methods by a large margin.

To further test the scalability of this method, an additional
experiment is performed using significantly larger environ-
ments and a larger network. To keep the optimal policy com-
putation tractable, sets of smaller environments from the pre-
vious experiments are tiled together to form the larger en-
vironments. The same pre-computed optimal policy can be
used for training within each sub-environment. Experiments
are conducted on a square tiling of 25 and 100 environments.
The encoding dimension is set to 1024 and network hidden
size to 2048. Training is conducted on a single large environ-
ment, so the context signal is not required. Results are shown
in Figure 8. Parameters for RBF and Tile Code are scaled to
account for the larger environment size, without scaling per-
formance is extremely poor. The learned encoding method
receives normalized input coordinates. The Hex SSP method
requires no parameter change and its definition remains that
same as the smaller environment case. Visualization of the
policy learned for one sub-environment of the 25 tiling case
is shown in Figure 9.

Integrated System

A policy for generating actions is just one component of a
navigation system. In this section we demonstrate how this
component can fit into a larger circuit that allows an agent

1536

Number of Mazes
1.0 - 25
s 100

o o
o o

Angular RMSE
o
IS

0.2

0.0
Hex SSP RBF

Tile-Code
Encoding

Learned

Figure 8: Performance on Larger Task

to navigate towards semantically specified goals. Crucially
this system contains a memory for storing remembered ob-
jects and their locations, a method of retrieving the location
of an object from memory, a method of estimating the agent’s
current location given its visible surroundings, and choosing
motor actions based on estimated current location and esti-
mated goal location. A diagram of this system is shown in
Figure 10.

Memory

The agent’s memory is implemented as a single Semantic
Pointer containing the summation of all goal objects and their
locations as an SSP.

M=) OBJ;®S§;, (N

m
i=1

The resulting vector M is then normalized to maintain unit
length.

The estimated location of a given goal object S'goal is re-
trieved by performing a circular convolution between the
memory M and the inverse of the Semantic Pointer corre-
sponding to the goal OB. g_afll. The result of the circular con-
volution can also be passed through a cleanup function f to
remove noise from the result.

Seoat = [(M® OBJ), ®)

In this work, f is a denoising autoencoder trained on pairs
of clean and noisy SSPs. The network will be most effective
when the noise used in training matches the true distribution
that the network will encounter. To facilitate this, a series of
memories are created as in Equation 7 with random unit vec-
tors as objects and SSPs encoding random 2D points within
an environment. To retrieve a noisy vector, a query is per-
formed to get the location of a random object in this memory.
A database of 100,000 such pairs of noisy and clean vectors
was created. The network has a single hidden layer with a
ReLU activation function. The hidden layer is set to be the
same size as the input. The loss function used during training

Ground Truth
RMSE = 0.000

Hex SSP
RMSE = 0.204

RBF
RMSE = 0.556

Tile Code
RMSE = 0.843

Learned
RMSE = 0.990

Figure 9: Policy Visualization on Larger Task

is the cosine distance between the vector produced by the net-
work from the noisy input and the true target. Since SSPs are
unit length and defined by their direction, this loss function
works well on this problem.

Localization

The agent does not inherently know its own location within
its cognitive map, it must estimate its location from its sur-
roundings. In this simplified 2D world, the agent’s visual
system consists of a series of distance measures to nearby
walls, effectively forming a picture of the visible geometry of
its surroundings. A context signal is also provided to the net-
work to help disambiguate geometry shared across environ-
ments. For example, many environments may contain a long
hallway which would return the same sensor readings. The
context signal is meant to represent additional information an
agent would have in the real world, such as colours, textures,
or other cues that would signal which environment the agent
is currently in. The output of the localization subsystem is a
SSP corresponding to the agent’s estimated current location.

The localization subsystem is also implemented as a neu-
ral network and trained in a supervised fashion. A database
of 100,000 samples of locations within an environment and
corresponding distance measurements and SSP encoding are
used for training. For this problem, the best results were
achieved using a loss function that is a summation of the mean
squared error and cosine distance.

Policy

The goal representation from the memory subsystem is com-
bined with the agent location from the localization subsystem
and fed into the policy network along with the context sig-
nal. This is the same network as depicted in Figure 3 except
that no explicit encoding step is required as the outputs of the
memory and localization subsystems are already SSPs.

Results

A series of trials is conducted with different goals being cued
on each trial. A trial ends when the agent successfully reaches
the cued goal object, or after 1000 time steps (100 seconds)
have elapsed without reaching the goal.

At the beginning of a trial the agent is placed in a ran-
dom location in a randomly selected environment. A single

1537

Memory Retrieval

Me&OB)—*

Cued Object

Localization

Vision

Context

Environment Action

Figure 10: Full Navigation Task Diagram

256D memory is initialized to contain a set of possible goal
objects bound with their location SSPs. At each time step it
is given a 256D context signal corresponding to its current
environment, a 256D semantic pointer corresponding to the
goal object, and 36 sensor measurements corresponding to
the distance to obstacles at an array of angles from the agent
evenly covering 360 degrees. Every time step the network
will output a 2D action corresponding to the x and y velocity
the agent will move with. Gaussian noise is added to these
motor commands. A set of trajectories from a particular start
location and multiple cued goals is shown in Figure 11.

Discussion

We have demonstrated that Spatial Semantic Pointers provide
an excellent means of encoding continuous valued location
information in a neural network. This biologically inspired
representation permits the use of continuous structures, as op-
posed to standard discrete data structures, including VSAs,
typically used in cognitive models. The use of circular con-
volution as the binding operation defining this representation
leads to nice integration with the SPA, providing a natural
method of linking to spiking neural models of higher level
cognition.

Figure 11: Goal-Finding Behaviour. This example shows the
behaviour of the agent depending on which food item it is
told to find. 10 trials for each goal are overlaid on the envi-
ronment. The colour of the trajectory corresponds to which
goal was cued. On each trial in this example, the agents starts
at the location indicated by the mouse icon.

Many properties of SSPs are beneficial to machine learn-
ing systems operating on spatial data. No explicit boundary
of the space being represented needs to be defined, allow-
ing straightforward generalization to larger spaces. There is
no discrete binning of the space, allowing a high degree of
precision if necessary. The magnitude of the encoded value
is fixed and independent of the magnitude of the coordinate
being represented, allowing the network to scale to handling
larger spaces without requiring larger weights.

Empirical results show superior performance on a naviga-
tional policy learning task compared to commonly used en-
coding methods for spatial information. While performance
is only slightly better than other methods when all methods
are optimized for a small space being trained over, this differ-
ence becomes much larger when the space is expanded. This
indicates that the SSP representation is more general and less
dependent on parameter settings.

We also show that incorporating hexagonal structure in-
spired by grid cells into the SSP representation can further
improve the results on these spatial tasks. An area of future
work is to explore this link to biology in more detail.

Another area of future work is exploring how sophisticated
navigation behaviour can be learned in an online fashion and
how it can adapt to changing environments. In this work,
each subsystem of the navigation network is trained individu-
ally to achieve a sub-goal. It would be interesting to see how
well a system trained end to end would perform and what the
internal representations of that system would look like.

All source code required to reproduce these experiments

1538

and generate all figures in this paper are made publicly avail-
able on GitHub.'

Acknowledgments

This work was supported by CFI and OIT infrastructure fund-
ing as well as the Canada Research Chairs program, NSERC
Discovery grant 261453, AFOSR grant FA9550-17-1-0026
and NSERC graduate funding.

References

Albus, J. S. (1975). Data storage in the cerebellar model ar-
ticulation controller (cmac). Journal of Dynamic Systems,
Measurement, and Control, 97(3), 228-233.

Bengio, Y., Courville, A., & Vincent, P. (2013). Repre-
sentation learning: A review and new perspectives. [EEE
transactions on pattern analysis and machine intelligence,
35(8), 1798-1828.

Choo, X., & Eliasmith, C. (2010, 08/2010). A spiking neu-
ron model of serial-order recall. Portland, OR: Cognitive
Science Society.

Dijkstra, E. W., et al. (1959). A note on two problems in con-
nexion with graphs. Numerische mathematik, 1(1), 269—
271.

Eliasmith, C. (2013). How to build a brain: A neural archi-
tecture for biological cognition. Oxford University Press.
Eliasmith, C., & Anderson, C. H. (2003). Neural engineer-
ing: Computation, representation, and dynamics in neuro-

biological systems. MIT press.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., & Moser,
E. I. (2005). Microstructure of a spatial map in the entorhi-
nal cortex. Nature, 436(7052), 801-806.

Kingma, D., & Ba, J. (2015). Adam: A method for stochastic
optimization in: Proceedings of the 3rd international con-
ference for learning representations (iclr’15). San Diego.

Komer, B., Stewart, T. C., Voelker, A. R., & Eliasmith, C.
(2019). A neural representation of continuous space using
fractional binding. In 41st annual meeting of the cognitive
science society. Montreal, QC: Cognitive Science Society.

Latombe, J.-C. (2012). Robot motion planning (Vol. 124).
Springer Science & Business Media.

Lu, T., Voelker, A. R., Komer, B., & Eliasmith, C. (2019).
Representing spatial relations with fractional binding. In
41st annual meeting of the cognitive science society. Mon-
treal, QC: Cognitive Science Society.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., ... Chintala, S. (n.d.). Pytorch: An imperative
style, high-performance deep learning library. In Advances
in neural information processing systems 32.

Plate, T. A. (1995). Holographic reduced representations.
IEEE Transactions on Neural networks, 6(3), 623-641.
Zuo, X. (2018). mazelab: A customizable frame-
work to create maze and gridworld environments.
https://github.com/zuoxingdong/mazelab. GitHub.

"https://github.com/ctn-waterloo/cogsci2020-ssp-nav

