
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Autopoiesis meets mechanistic computation: A proof of concept of computational post-
cognitivism

Permalink
https://escholarship.org/uc/item/4zg8b1m1

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Riegl, Stefan
Thill, Serge

Publication Date
2024

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4zg8b1m1
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Autopoiesis meets mechanistic computation:
A proof of concept of computational post-cognitivism

Stefan Riegl (science@stefanriegl.com)
Radboud University Nijmegen

6525GD Nijmegen, Netherlands

Serge Thill (serge.thill@donders.ru.nl)
Donders Institute for Brain, Cognition, and Behaviour

Radboud University Nijmegen
6525GD Nijmegen, Netherlands

Abstract

Recent research suggests that post-cognitivist and computa-
tionalist paradigms are not necessarily incompatible. Here, we
provide further support in favour of this proposition. Specif-
ically, we demonstrate that it is possible to provide an imple-
mentation of two relevant verbal theories, Autopoietic Theory
and Mechanistic Computation, that can analyse the AND-gate
in Game of Life from the point of view of an autopoietic ob-
server, identifying unities that show the property of either au-
topoiesis, mechanistic computation, or both. The explicit im-
plementation also highlights the kind of considerations that a
formalisation of a computational post-cognitivist theory has to
address, which are not necessarily apparent from verbal theo-
ries alone.
Keywords: Autopoietic Theory; Mechanistic Computation;
Computational Post-Cognitivism

Introduction
Cognitivism usually assumes a form of Computationalism
(Co), treating cognition as a kind of information process-
ing. Cognitivist paradigms are rejected by various flavours
of Post-Cognitivism (PC), in particular because they reject
the representationalism these entail. Autopoietic Theory (AT)
(Varela, 1979) is, for example, a prominent and theory of PC.

For a long time, it was assumed that computation requires
representation, which meant that PC naturally rejected com-
putationalism as well. However, recent advances in neural
network research showed that computation is possible with-
out explicit representation1 (Piccinini, 2004, 2008), which
led to the proposal that PC does not necessarily imply anti-
computationalism (Villalobos & Dewhurst, 2017). The pro-
posal, however, remains debated, with most of the discussions
philosophical in nature (Casper & Artese, 2020).

In this paper, we provide initial empirical support that such
a theory of Comutational Post-Cognitivism (CoPC) is feasi-
ble. Specifically, we demonstrate that it is indeed possible,
as postulated by Villalobos and Dewhurst (2017), for an ob-
server to interpret a system as being both computationalist
and autopoietic. We achieve this using a simulation built on
Game of Life (GoL) as virtual environment, as it has previ-
ously been shown that autopoietic properties can be identified
in GoL (Beer, 2015). We employ Mechanistic Computation
(MC), a modern theory of computation that does not imply
representation, as suggested by Villalobos and Dewhurst.

1For a more detailed discussion on the historical context of the
complete argument, see (Villalobos & Dewhurst, 2017).

To provide a strong demonstration in line with underlying
theory, we first formalised the verbal theories AT and MC
into mathematical descriptions (Riegl, 2022). Development
of the implementation (and running the corresponding simu-
lations) interleaved with updates of the formalisations, which
were checked against the verbal theories2. Here, we focus on
the simulation part of the development process as demonstra-
tion, in particular to provide a demonstration that it is indeed
possible to implement both verbal theories without contradic-
tion. This serves as a proof of concept that a formalisation of
CoPC is feasible and paves the way for further refinements of
the initial formalisation underlying this implementation.

Background
Autopoietic theory
AT is an ear early post-cognitivist theory (Maturana & Varela,
1980). It proposes a functional view of what processes under-
lie the phenomenological organism and how those processes
interact (autopoiesis meaning “self-producing”). Essentially,
an organism must actively preserve the processes that make
up this organism such that it (and said processes) can persist
continuously. The definition of autopoiesis evolved over time,
but can be roughly summarized as follows (Varela, 1979,
p. 13): An autopoietic system is a network of processes that
transform components into components, which satisfies two
properties: (1) Through the processes, the components con-
tinuously regenerate and realize the network that produced
them. (2) The components constitute the autopoietic system
as a concrete unity in space.

Here, a process can be understood as a course of action
extended over time that turns a set of interacting components
into a (possibly empty) set of components. Linked by compo-
nents, processes can be seen as forming a chain in the simple
case, or generally a network. Processes can be compared by
the relations between components they maintain or change.
When a network of processes maintains the same relations of
processes over time, the network is an autopoietic system.

Mechanistic computation
Established accounts of computation (such as Turing ma-
chines, algorithms, and so on) have to deal with the “prob-

2See also (Guest & Martin, 2021) for reasoning behind this ap-
proach to computational modelling.

5183
In L. K. Samuelson, S. L. Frank, M. Toneva, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Conference of the Cognitive
Science Society. ©2024 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).



lem of computational implementation” (Piccinini, 2015): If
a specific instance of computation is defined in an abstract
formalism, how can we tell whether a physical system is im-
plementing that computation? To solve this, MC (Piccinini,
2015) proposes a mechanistic framework as well as criteria
for computationally relevant mechanistic properties based on
logic and computability theory. Computing systems are thus
seen as a kind of functional mechanism implemented phys-
ically. In other words, a physical computing system is “a
mechanism whose teleological function is computing a math-
ematical function f from inputs I (and possibly internal states
S) to outputs O” (Piccinini, 2015, p. 121). Importantly, com-
putation in this sense does not require representations and
does not invoke “the notion of syntax (or formal property)”.

Game of life
GoL was conceived by John Horton Conway and is in its orig-
inal form a cellular automaton on a two-dimensional grid that
evolves over discrete time, sometimes also described as zero-
player game (Berlekamp, Conway, & Guy, 2004). Despite
having very few and simple rules to determine the automa-
ton’s next state, the cellular automaton allows very complex
behaviour to emerge, which motivated a lot of research.

Each cell of a typical GoL cellular automaton is in one of
two states, traditionally called alive and dead state. A cell can
change its state from one time step to the other, depending on
its Moore-neighbourhood (i.e. the eight other cells touching
by edge or corner). The state of a cell in the next time step is
determined by the rules: a dead cell comes alive iff it has ex-
actly three alive surrounding cells while a living cell remains
alive iff it has either two or three living neighbours. GoL fea-
tures a number of frequently emerging patterns, even from
random initialization of the grid. Researchers and enthusiasts
created a thorough classification of many of those patterns in
an openly accessible online resource3 over many years.

In the past, many simulation environments were specifi-
cally developed to study AT . In contrast, GoL happened to
provide suitable abstractions and enough complexity such
that autopoietic concepts can be applied to recurring patterns
of GoL like the glider (Beer, 2004, 2014, 2015, 2018). For
example, the pattern known as glider can be described as an
autopoietic system, where cells are components and the ap-
plication of a GoL rule forms a process.

Methods
GoL simulation
The demonstration described below is implemented in
Python, using Golly4 as GoL simulator. Visualisations were
created using Cytoscape5. The simulation environment con-
sists of a prepared world of 56×63 cells (figure 1), containing
an AND-gate typical for GoL. While it has been shown that
cellular automata can perform binary computations and that

3LifeWiki, https://conwaylife.com/wiki/
4Golly, http://golly.sourceforge.net/
5Cytoscape, https://cytoscape.org/

Figure 1: The AND-gate used in this work. Red blocks serve
as spatial reference markers and have no role in the model
itself. A Gosper glider gun including two blocks (orange,
yellow) produces a stream of gliders (green) moving towards
an eater (purple) that consumes them. “Input” gliders (blue)
can start at either or both locations indicated by red blocks on
the left side. If one of these gliders passes through the red
blocks at the bottom, the output of the gate is TRUE, else it is
FALSE When only one input glider is used, it will collide with
the stream and disintegrate. With two gliders (left figure), the
first glider crashes into a glider in the stream and both disin-
tegrate without leaving “debris”. The second glider can now
pass through the hole in the stream of gliders and reach the
output location (right figure). Note that this assumes appro-
priate timing of the input gliders.

GoL is Turing-complete (Berlekamp et al., 2004), the objec-
tive here instead is to discuss how elements of AT and MC can
be identified based on the respective theoretical foundations.

Identifying necessary components of autopoietic
systems and computational mechanisms

Observer In AT , “everything said is said by an observer”
(Varela, Maturana, & Uribe, 1974), which is the starting point
for further investigation of the world, including autopoiesis.
However, if we assume an observer to be realised as a liv-
ing organism, it is necessarily an autopoietic system itself
(Maturana & Varela, 1980). This introduces an explanatory
circularity that requires us to take a step back and look at the
observer-environment-system as a whole with the aid of the
concepts below. For the present purposes, the implementation
and GoL simulation is evaluated from the point of view of
such an observer. However, for simplicity the observer here
is assumed to literally only observe, i.e. it does not interact
actively with the GoL world and is not part of the simulation.

Unities The state of the environment in the GoL simulation
is analysed after each time step. Unities are initially iden-
tified as single cells alive at one moment in time (a property
spatially bounded to that cell). Later, unities can be composed
of other unities and extend over time.

On that basis, the link between two surrounding alive cells
can be identified as a relation. Linked cells (i.e. a set of unities

5184



Figure 2: The alive cells of a glider without (left) and with
(centre) a boundary of dead cells around them. Only five alive
cells without a boundary in some arbitrary background (right)
are not enough to successfully distinguish it as complex unity.

and a set of relations) then form a structure. This structure,
by extension, is spatially bounded again and, if it can be sepa-
rated from a background by the property of being linked alive
cells with a boundary, it can be understood as complex unity
(as illustrated in figure 2). This procedure is repeated to dis-
tinguish more and more complex unities such as the glider,
and continues until no further unities can be found.

Processes A process is a transformation of a set of compo-
nents6 at one moment in time into a set of components at a
later moment. To identify a process, we recall two suitable
moments in time and consider the set of components from
each. What suitable means is not trivial to define, but gen-
erally it holds that if two moments are close enough to each
other, the spatial distance of the sets of components cannot
be very large. For a pair of sets of consecutive moments,
the joined subspace of all components from the first set must
overlap with the joined subspace of all components from the
second set. A process is then defined on the two sets of com-
ponents at different moments in time, where the first set is
transformed to the second set. In particular, processes that
transform into less or no components can be considered de-
structive processes.

Autopoietic systems Given the definition of autopoiesis,
the subordinate goal of distinguishing autopoietic systems re-
quires identifying cyclical patterns, i.e. sub-networks of pro-
cesses (sub-graphs) that repeat after a certain period. This
opens up a number of questions:

(A) How to handle sub-networks that start and end with
two or more processes that do not share components? First,
the identified processes are understood as a linked network of
processes. This network can be modelled as a directed graph,
where each process is a node. Two nodes have an edge, if the
corresponding processes are such that the set of “outgoing”
components of one process and the set of “incoming” compo-
nents of the other process overlap (i.e. they share at least one
component). This operation corresponds to the “concatena-
tion” (Maturana & Varela, 1980) of processes into a network,
which can be repeated recursively.

(B) How to treat patterns (like the glider), if spawned from
a larger, repeating pattern (like the glider gun)? Each process

6For more clarity, a unity is referred to as a component, when it is
part of a larger (complex) unity or appears in the scope of a process.

in the network transforms components from one moment in
time to the one following afterwards. This means that pro-
cesses in the network can be ordered (keeping their links to
other processes). Over the ordered processes we can slide a
time window of some size. The window size corresponds to
the length of the cycle (of processes) to be detected. Then, for
a given time window, only the processes within the time win-
dow are considered further and split into sub-networks that
are graph-islands, where any two nodes within a graph-island
are connected, and any two nodes between two graph-islands
are not connected. For detection of different cycle lengths the
procedure is repeated. Starting with smaller window sizes
and removing processes involved in detected cycles from fur-
ther consideration allows to only identify smaller unities first.

(C) Can two processes at different times be equal if they
happen at different locations (e.g. glider movement after
4 steps)? We can call set of processes of a sub-network,
where all processes of the set start at a given moment in time,
a “segment”. Two segments are considered equal, if the same
number and type of processes happen, and the spatial arrange-
ment of components for all those processes is the same for
“incoming” and “outgoing” components respectively.

If the first and the last segment can be considered equal,
a candidate for a cycle is found. After a cycle has been
found, all current segments are remembered and the current
time window can be slid stepwise further to see how far the
cyclical system extends into the future. The analysis above
depends on two assumptions: (1) that no interaction with the
environment (perturbations) happened between the first and
the last segment; and (2) that the environment is determinis-
tic. Assumption (1) holds because one would, in general, also
observe the interaction with the environment, including the
chain of processes that lead up to the interaction. Those pro-
cesses would then also appear in the sub-network from which
the segments are derived, and a cycle could not be found. As-
sumption (2) is trivially true in the GoL setting, hence we can
expect the sub-network to continue evolving at the end of the
time window just as it evolved at the start of the time window.

Determining the temporal extent of the cyclical system dis-
tinguishes it as a unity that extends over time. This unity con-
sists in a network of processes that regenerates itself and has
a clear boundary. This satisfies the definition of autopoiesis
and hence the unity can be identified as autopoietic system
(Beer, 2015).

Computational mechanisms If the argument of Villalobos
and Dewhurst (2017) pans out, we should be able to make use
of the properties identified so far to identify computational
mechanisms. Below, we illustrate the implementation using
the AND-gate above as a working example for simplicity, but
the algorithm itself is not limited to such simple cases and
does not depend on GoL-specific properties.

We first define an episode as a set of linked processes (i.e.
a network) that was observed within a certain subspace and
a given time window. Figure 3 demonstrates this on a more
abstract level. To discover a computational mechanism, the

5185



Figure 3: An example of an incomplete detection of the com-
putational process of a logical AND based on one episode
of observed processes. Shown is a two-dimensional coor-
dinate system, with time on one axis and (simplified) space
on the other. Components are denoted by blue circles with
pictograms, connected by a line where there is a correspond-
ing process. The small pictograms in circles represent the
unities at a moment in time independently of their (possibly
varying) concrete structures, such as the glider, the block, or
the event of a clash of two gliders and subsequent annihi-
lation. Glider-unities move through time and space, while
block-unities only move through time. Some gliders enter or
leave the fixed subspace of observation, which is denoted by
the left or right spatial boundary. The horizontal grey bars
denote the first and last moment of observation.

defining elements of a mechanism need to be worked out,
including input elements, output elements, supporting “scaf-
fold” of the mechanism, and remaining observed elements
that do not matter for the mechanism. For this, consider the
highlighted areas in figure 3, which display the assignment
of certain roles to unities. Green and orange are normative
sets of components: The green set of components should be
included in the mechanism, while the orange set should not.
With only one episode observed, it is possible to identify po-
tential input and scaffold (both currently violet) elements and
output (red) elements. It is also possible to understand the
sub-network that only has output components without also
having input or scaffold components (see bottom-right in the
diagram) as irrelevant. In other words, if there is an effect
without known cause, we cannot make an inference. How-
ever, some problems remain: the connection between all the
sub-networks of relevant components is not clear, it is not ob-
vious how to distinguish relevant components from the irrel-
evant, and there is not enough information to infer a function
like the logical AND.

To mitigate this situation, we observe more than one
episode and then look out for what different input condi-
tion may result in different output condition. With more
than one episode it becomes possible to compare components
across episodes in terms of e.g. identified inputs and out-
puts (see figure 4). Distinctions can be made between in-
put components (violet), which may change across episodes,
and scaffold components (blue), which are the same across
all episodes and enable the computational mechanism. It is
also possible to separate relevant (green) from irrelevant (or-

Figure 4: An example of a successful detection of the com-
putational process of a logical AND based on four episodes.

ange) components by removing all sub-networks that do not
have any non-scaffolding input components, possibly linked
across episodes.

Using the same kind of reasoning as before it is now pos-
sible to identify two non-scaffolding input components. This
is already possible with one more episode, but the formally
complete domain of the logical AND-function is only cap-
tured with all four episodes, based on an interpretation that
maps the states glider present/not-present to TRUE/FALSE.
While each episode features an instance of a computational
mechanism, the interpretation allows mapping the total of all
episodes to an extensively defined mathematical function.

Simulation results
Components and processes in the AND-gate
To demonstrate detection of components and processes in the
sense of AT , the GoL world was let run and the model ob-
server “observed”, i.e. analyses were made for each GoL step
and related with each other over time. The simulation was

5186



(a) The glider gun. (b) The eater.

Figure 5: Networks of components (orange) and processes
(blue) for a limited time window of observation.

(a) The glider gun. (b) The eater.

Figure 6: Simplified networks of only processes, coloured
based on their distinguished unities over time: static blocks
(blue), South-West-flying glider (yellow), and eater (purple),
the glider gun (green), and undistinguished processes (cyan).

run for 35 steps after the initial condition, allowing to contain
a bit more than one full cycle of the glider gun. The network
of processes and components for the glider gun producing a
new glider and the eater while absorbing a glider, as iden-
tified by the implementation described above, can be seen in
figure 5. Similar graphs can be produced, e.g. for static blocks
or South-West-flying gliders, but as they show no interaction
with other unities they are less interesting.

Each network of components and processes can be ab-
stracted into a network of only processes, with an edge only
between processes connected by a component (Beer, 2015).
Figure 6 shows the process-networks for the glider gun and
the eater. Nodes of the same colour were identified as be-
longing unambiguously to the same trajectory of a unity that
extends over time. Here, the process-networks for the glider
gun can be seen to be more complex. First, it contains two
blocks (represented by blue nodes) that are so-called still lives
and remain passive unless perturbed by other unities. As the
glider gun cycles through its structures, the blocks interact
for a few time steps with the other part of the glider gun until
they return to their previous form. Also clearly visible is the
glider (yellow nodes) that emerges somewhere in the middle
of the simulation. All the other nodes (green) were identified

as not belonging to any oscillator of shorter period, but being
part of a bigger oscillator i.e. the glider gun.

Meanwhile, the eater, being another still life, can be seen
as an oscillator of period 1, and thus the cycle of processes
contains only one kind of process. Hence, all the processes
belonging to the trajectory of a still life in this graph are the
same (unlike the processes that belong to e.g. a glider). The
pre-existing eater (purple nodes on the left) and the approach-
ing glider (yellow nodes) merge during the impact (cyan
nodes). After a short time of instability (also cyan nodes) the
dead-or-alive cells arrive back in a configuration, that forms
the structure of an eater pattern, such that the processes of
maintaining the eater components are visible after the impact
(purple nodes on the right).

The autopoietic unities of the glider gun and the eater are
circular in their kind of processes, and the entirety of com-
posing components is spatially bounded (seen by the limited
number of edges). They also have phases of interactions with
other unities (production or destruction of a glider), but regen-
erate their bounded network after a limited number of steps.

Computational mechanisms

To demonstrate the detection of computational mechanisms,
the same GoL world was run for 68 steps and observed in
the same rectangular subspace over each of the four episodes.
The number of steps was chosen based on the time it takes
for the more distant glider to pass through the hole in the
stream of gliders. For each episode a network of processes
was observed. The network of processes for episode 1 can
be seen in figure 7. The different parts match in principle the
different types of sub-networks as illustrated in figure 4.

The sub-networks that feature light-blue nodes are counted
towards the computational mechanism. The sub-networks
with orange nodes appear in all episodes and were considered
irrelevant to the computational mechanism. They include the
trajectories of a double-block over the all observed time steps
(with blue scaffold and red output nodes), two gliders at the
start of the observation over 9 and 39 steps (with blue scaffold
nodes), and two incomplete gliders at the end of the observa-
tion over 5 and 35 steps (no input or output nodes).

The sub-networks that were identified as being part of the
mechanism mirror the more abstract description presented in
figure 4: Episode 1 includes two input, one scaffold, and one
output unity. The smaller sub-network with light-blue nodes
represents the collision between one input and the scaffold
unity, such that the other input unity (glider) can fill the role
as output unity in the end. The sub-networks for episodes 2
and 3 would similarly include one input and scaffold unity
each and no output unity; and for episode 4 it would include
no input and one scaffold unity, and the single output unity
is the glider about to crash into the eater. The networks of
processes of all four episodes in concert are then matched
up as outlined in the previous section. Given that the sub-
networks are reproducible, each one reflects one mapping rule
for an extensively defined mathematical function.

5187



Figure 7: The observed network of processes for episode 1. The colours denote the same component roles in the scope of the
algorithm, except for light-blue nodes, which are green in the earlier diagram. The number of required input/scaffold and output
nodes to match over episodes was set to 8 and 4, respectively.

Discussion
We demonstrated how in the GoL environment an observer
can find things that are autopoietic (the glider and others),
things that are computational (the AND-gate mechanism), and
things that are neither (e.g. the “debris” left after sufficiently
many steps of a randomly initialised world). The remaining
question is whether there can be things that are both autopoi-
etic and computational.

For any thing (i.e. a network of processes) to be computa-
tional it is sufficient to be a computational mechanism, that
is it needs to consist of a certain configuration or structure
of unities, which however could over time. A computational
mechanism can thus be seen as one process or a network of
processes. Hence, having a network of processes that is au-
topoietic and computational is not in principle impossible.

Note that, generally, a computational mechanism also in-
cludes other formal properties, such a set of rules. Here
we only consider the spatio-temporal components, since they
have the potential for contradiction, i.e. falsifying the hy-
pothesis that “there are things that are both”. According to
Maturana and Varela (1980) any autopoietic system is nec-
essarily operationally closed and structurally coupled, which
is a very different approach from defining systems as input-
output-machines. However, this does not preclude the pos-
sibility for autopoietic organisms to also behave like input-
output-machines (Varela, 1979) under certain circumstances.

In his analysis of autopoiesis in GoL, Beer (2015) con-
cludes not only the glider to be an autopoietic unity, but also
still lives such as the block or the blinker, with which we
agree. While it may seem like preservation of components is
trivial for simple unities like block or blinker, it is important
to remember that the maintenance of the same components
depends on few, but active processes that (as a network) sat-
isfy the definition of autopoiesis.

Going beyond these examples, the eater also is a still life,
like the block, and likewise autopoietic (Beer, 2015). The
glider gun as a whole (including its two blocks) can also be
considered autopoietic, since it is (like the glider) a network

of processes that is operationally closed (first criterion in the
definition of autopoiesis), realised in space, and establishes
a boundary to its surroundings (second criterion). As a con-
sequence, the system of glider gun, eater, and the stream of
gliders that is connecting both, can be considered one large,
linked network of processes (complex unity) that is an au-
topoietic system, since as a whole it properly satisfies the def-
inition of autopoiesis as outlined earlier (Varela, 1979).

Adding input and output vehicles to that system leads to the
computational mechanism of the AND-gate. However, this
mechanism is not autopoietic, since the respective network of
processes has no means of regenerating the input and output
unities. So the answer to the initial question is that only the
scaffolding-part that realises the functional mechanism of the
AND-gate (i.e. everything but input and output unities) could
be understood as a computational, autopoietic system. In an-
other, looser meaning of the word, the actual (computational)
mechanism that “does the work” may be autopoietic, without
the (computational) vehicles that are being “worked with”.

Note however that not all computational systems (minus
inputs and outputs) are necessarily autopoietic. In the case
of the GoL-specific AND-gate, the computational mechanism
(seen as process) is autopoietic because it is operationally
closed (while remaining to open to interaction), reproduces its
original state (including an uninterrupted stream of gliders),
and then maintains this state until the next possible instance
of computation takes place.

Conclusion
We illustrated a proof of concept implementation of a sim-
ple observer in GoL able to distinguish both an autopoi-
etic system and a computational mechanism, supporting the
idea that computationalist post-cognitivism is indeed possible
(Villalobos & Dewhurst, 2017). In particular, the implemen-
tation makes explicit details that a formal theory of CoPC has
to address, which remain implicit in current verbal formula-
tions of AT and MC. The next step is to elaborate the working
formalisation into a rigorous mathematical framework.

5188



References
Beer, R. D. (2004, July). Autopoiesis and Cognition in

the Game of Life. Artificial Life, 10(3), 309–326. doi:
10.1162/1064546041255539

Beer, R. D. (2014, April). The Cognitive Domain of a Glider
in the Game of Life. Artificial Life, 20(2), 183–206. doi:
10.1162/ARTL a 00125

Beer, R. D. (2015, February). Characterizing Autopoiesis
in the Game of Life. Artificial Life, 21(1), 1–19. doi:
10.1162/ARTL a 00143

Beer, R. D. (2018, July). On the Origin of Gliders. In ALIFE
2018: The 2018 Conference on Artificial Life (pp. 67–74).
MIT Press. doi: 10.1162/isal a 00019

Berlekamp, E. R., Conway, J. H., & Guy, R. K. (2004). Win-
ning ways for your mathematical plays, volume 4. AK Pe-
ters/CRC Press.

Casper, M.-O., & Artese, G. F. (2020, October). Main-
taining coherence in the situated cognition debate: What
computationalism cannot offer to a future post-cognitivist
science. Adaptive Behavior, 105971232096705. doi:
10.1177/1059712320967053

Guest, O., & Martin, A. E. (2021, January). How Compu-
tational Modeling Can Force Theory Building in Psycho-
logical Science. Perspectives on Psychological Science,
1745691620970585. doi: 10.1177/1745691620970585

Maturana, H. R., & Varela, F. J. (1980). Autopoiesis and
Cognition: The Realization of the Living (Vol. 42). Dor-
drecht: Springer Netherlands. doi: 10.1007/978-94-
009-8947-4

Piccinini, G. (2004, September). Functionalism, Computa-
tionalism, and Mental Contents. Canadian Journal of Phi-
losophy, 34(3), 375–410. doi: 10.1080/00455091.2004.
10716572

Piccinini, G. (2008, January). Computation without Repre-
sentation. Philosophical Studies, 137(2), 205–241. doi:
10.1007/s11098-005-5385-4

Piccinini, G. (2015). Physical computation: A mechanistic
account. Oxford: Oxford University Press.

Riegl, S. (2022). Computational autopoietic theory? How
post-cognitivism does not (necessarily) entail anti-compu-
tationalism. Unpublished master’s thesis, Radboud Univer-
sity, Nijmegen, The Netherlands.

Varela, F. J. (1979). Principles of biological autonomy. New
York: North Holland.

Varela, F. J., Maturana, H. R., & Uribe, R. (1974, May).
Autopoiesis: The organization of living systems, its char-
acterization and a model. Biosystems, 5(4), 187–196. doi:
10.1016/0303-2647(74)90031-8

Villalobos, M., & Dewhurst, J. (2017). Why post-cognitivism
does not (necessarily) entail anti-computationalism. Adap-
tive Behavior, 25(3), 117–128.

5189




