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A Cognitive Economic Approach∗
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Forthcoming in Journal of Economic Theory

Abstract

We investigate whether the predictions of modern machine learning algorithms are
consistent with economic models of human cognition. To test these models we run
an experiment in which we vary the loss function used in training a leading deep
learning convolutional neural network to predict pneumonia from chest X-rays. The
first cognitive economic model we test, capacity-constrained learning, corresponds with
an intuitive notion of machine learning: that an algorithm chooses among a feasible
set of learning strategies in order to minimize the loss function used in training. Our
experiment shows systematic deviations from the testable implications of this model.
Instead, we find that changes in the loss function impact learning just as they might if
the algorithm was a human being who found learning costly.
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1 Introduction

Machine learning is increasingly central to the modern economy. Virtually all industries,
jobs, and consumer experiences have been impacted in some way by the rapid rise of this
technology. Economically important applications of machine learning include facial recog-
nition, language translation, credit scoring and loan default predictions, medical diagnoses,
product recommendations, driving routes, fraud alerts, and so on.

In this paper, we test whether the predictions generated by a leading machine learning
algorithm are consistent with standard economic models of human cognition. This is a
natural class of models to investigate because they are built on a mechanistic information-
theoretic foundation. In these models, individual decision makers engage in gathering signals,
updating beliefs according to Bayes rule, and maximizing expected utility.

The first model we test is capacity-constrained learning, characterized by Caplin et al.
(2024), which generalizes the fixed capacity version of rational inattention theory proposed
by Sims (2003) and the noisy cognition model proposed by Woodford (2014). With this
model, the decision-maker chooses among a feasible set of ways to learn about observations.
Importantly, capacity-constrained learning aligns with an intuitive notion of machine learn-
ing, which is that a machine learning algorithm learns by choosing from a feasible set of
mathematical operations to best match the loss function used to train the algorithm.

The second model of human cognition we test is costly learning, characterized by Caplin
and Dean (2015), which itself generalizes the specialized version using Shannon entropy
characterized by Matejka and McKay (2015) and Caplin, Dean, and Leahy (2017). With this
model, the decision-maker adjusts their learning in response to the relative costs of different
ways of learning.1 In the context of machine learning, we imagine that the algorithm chooses
the mathematical operations that best balance losses and costs. We call these costs the
algorithm’s pseudo-costs because they may not have any relationship with any real resource
costs incurred while running the algorithm. Instead, these are costs that an algorithm
implicitly assigns to different ways of learning.

When testing these models with humans, it is typical to treat both the decision-maker’s
utility and learning costs as unobservable to the researcher. However, in the case of machine
learning, we treat utility as observable (the loss function used to train the algorithm) and
the algorithm’s pseudo-costs as unobservable. Thus, our test of the costly learning model
links to an active literature in computer science on implicit regularization (e.g., Neyshabur,
Tomioka, and Srebro 2015; Gunasekar et al. 2017; Arora et al. 2019; Barrett and Dherin
2021). To explain why deep learning models generalize well even without explicit regular-

1The first model is a special case of the second because the feasible set can be represented by a cost
function that is zero for feasible learning strategies and infinite otherwise.
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ization, this literature argues that algorithms implicitly implement some regularization in
optimization and seeks to understand these implicit incentives. In other words, they posit
that an algorithm selects a model as if there is an extra term in the training loss function that
penalizes model complexity. This implicit extra term in the training problem is analogous
to having an implicit extra pseudo-cost in the learning problem.

To test capacity-constrained learning and costly learning in a machine learning context,
we run an experiment with CheXNeXt, an influential deep learning convolutional neural
network for predicting thoracic diseases from chest X-ray images (Rajpurkar et al. 2018). In
addition to being widely-adopted in the field, this algorithm has also been used in studying
joint human and AI decision-making. For example, a variant of CheXNeXt is leveraged
by Agarwal et al. (2023) to study how expert radiologists make decisions when aided by
artificial intelligence (AI) recommendations. In addition, Alur, Raghavan, and Shah (2024)
use a variant of the CheXNeXt algorithm to assess ways of combining human decisions with
AI-generated ones.

Our experimental intervention is to vary the algorithm’s loss function, which we do by
varying its class weights. These dictate the relative value a loss function places on correct
and incorrect predictions across different class labels. In a binary setting, these weights
dictate the benefits and costs of avoiding Type I and Type II errors. Class weighting is
frequently used in machine learning when one class is less common (Thai-Nghe, Gantner,
and Schmidt-Thieme 2010) or with the hope of achieving some external objective (Zadrozny,
Langford, and Abe 2003). Rajpurkar et al. (2018) follow standard practice by choosing class
weights that increase the value that the algorithm places on mistakes made for observations
in the underrepresented class, which is important given that only 1.3% of chest X-rays are
in fact labeled with pneumonia.

We first show that CheXNeXt predictions in this experiment are consistent with Bayesian
updating and expected loss minimization, key assumptions that underlie both of the models
we are testing.2 It is consistent with these assumptions because it distorts its predictions
in line with the incentives for making different predictions. This result can have important
downstream consequences. For example, if we use the highly asymmetric class weights
implemented by Rajpurkar et al. (2018), then the confidence scores reported by the algorithm
are extremely misleading about the likelihood of pneumonia, which necessitates ex-post
recalibration methods.

Next, we show that CheXNeXt predictions are not consistent with capacity-constrained
learning. Capacity-constrained learning requires that lower losses could not have been

2We thank a referee for noting that while there seems to be no consensus in the machine learning literature
on whether machines are Bayesians or frequentists philosophically, this paper provides a testable condition
for Bayesian learning and presents evidence that this condition, loss calibration, is satisfied in our experiment.
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achieved by training an algorithm with a different loss function than the one that it was
trained with. This is because the alternative ways of learning produced by training with
other loss functions were in principle feasible and thus could have been selected. In our
experiment, we find a systematic deviation from this requirement of capacity-constrained
learning, as losses would always be minimized by training with a lower weight on pneumonia
instances.

However, while CheXNeXt predictions are not consistent with capacity-constrained learn-
ing, we show that they are consistent with costly learning. Costly learning makes a related
prediction to capacity-constrained learning, but allows for ways of learning not to be selected,
even when they generate lower losses, because they are viewed as too costly. In our experi-
ment, while losses would always be minimized by training with lower weight on pneumonia
instances, this can be rationalized with recourse to additional, unobserved pseudo-costs.
Namely, by placing relatively lower weight on pneumonia instances the algorithm acts as
if it is worth incurring higher learning costs, which is sensible given that doing so places
relatively higher weight on non-pneumonia instances, which are far more common.

Our paper provides a natural join between three growing literatures: machine learning,
cognitive economics, and rational inattention. Cognitive economics integrates economic and
psychological research methods to better understand how human cognitive limits, such as
on perception or information processing abilities, impact key decisions (Caplin 2024). For
instance, cognitive imprecision and efficient coding, long central in psychology, have been
shown to underlie many of the heuristics and biases that have featured prominently in behav-
ioral economics (Woodford 2014). Sims (2003) introduced entropy-based limits to cognition
in the context of sluggish and delayed responses to macroeconomic policy, and this launched
a large subsequent literature on rational inattention that highlights the costs of cognition. In
addition to new modeling approaches, psychological methods of measurement have increas-
ingly been adopted by economists and have themselves inspired modeling advances. Included
are decision times (Alós-Ferrer, Fehr, and Netzer 2021) and patterns in psychometric “state-
dependent stochastic choice” (SDSC) data that records patterns of choice conditional on
underlying facts about the world (Caplin and Martin 2015).

As a result, our paper is also connected to both a growing literature that considers
stochastic choice to be essential for studying limited attention in human decision making
(e.g., Manzini and Mariotti 2014; Cattaneo et al. 2020) and a growing literature that studies
the theoretical properties of costly learning (e.g., Gentzkow and Kamenica 2014; De Oliveira
et al. 2017; Hébert and Woodford 2017; Denti 2022; Lipnowski and Ravid 2022). As with
many of the models developed in the literature on costly learning, our models build off
the core objects of information design (e.g., Kamenica and Gentzkow 2011; Bergemann and
Morris 2019; Kamenica 2019).3

3Liang, Lu, and Mu (2022) draw a point of connection between information design and machine learning
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The exercise in this paper is also in the spirit of a long literature in economics, psychology,
and neuroscience that uses human choices in perceptual tasks to test models of human
cognition. For instance, Dean and Neligh (2017) and Almog and Martin (2023) show that,
like machine learners, human learners are consistent with a general model of costly learning
and then study whether they are consistent with specific models of rational inattention,
such as the Shannon model.4 An alternative and complementary approach is to investigate
whether humans can be modeled as machine learners. Samuelson and Steiner (2024) and
Aridor, Silveira, and Woodford (2024) propose and study the variational autoencoder (VAE)
model (Kingma and Welling 2013) as a model of human cognition, making connections and
comparisons with existing models of rational inattention.

Our analysis illustrates several advantages of applying cognitive economic methods and
rational inattention theory to machine learners. First, the machine’s loss function is a known
and manipulable primitive of the decision problem, whereas a human’s utility function must
be inferred and is only indirectly manipulable. In contrast, Pattanayak and Krishnamurthy
(2021) assume that each algorithm has an unobservable “utility” function that dictates the
priorities it assigns to correct and incorrect predictions rather than treating the algorithm’s
objective as known and subject to external control as we do. A second advantage is that
machines naturally generate SDSC data, which is particularly well-suited for analyzing such
models. For human decision making, such data is harder to come by.5 Finally, machines
may better approximate and emulate the costly learning paradigm. Human decisions contain
strong and possibly immutable deviations from Bayesian updating and optimal choice, as
documented by an extensive literature in behavioral economics. For example, a human may
update beliefs in a biased manner, possibly for self-protective reasons.

Despite these advantages, it is striking how little is known about algorithms as decision
makers.6 We help to fill this gap in the literature by showing that a leading modern machine
learning algorithm is consistent and rationalizable according to standard models of human
cognition. We hope that this opens the door to better understanding these increasingly

to study the tradeoffs between accuracy and fairness.
4Unfortunately, machine learning experiments can be more expensive and resource intensive to run. For

example, our experiment required approximately 1,800 wall-clock hours of compute time using Nvidia V100
and A100 GPUs on our university high-performance computing clusters (approximately 90 minutes a run ×
400 runs per weight × 3 weights).

5Exceptions include sports (Archsmith et al. 2021; Bhattacharya and Howard 2021; Almog et al. 2024),
quality control settings, and lab experiments (Dean and Neligh 2017; Almog and Martin 2023). When
observational data falls short because of issues such as selective labels, this requires further econometric
work to address (Rambachan 2021).

6Notable exceptions include Zhao et al. (2020), who embed behavioral forces in a neural net structure,
Danan, Gajdos, and Tallon (2020), who apply decision-theoretic approaches to recommendation systems,
and Chen et al. (2023) and Kim et al. (2024), who look at whether Large Language Models (LLMs) satisfy
lottery choice axioms.

5



important learners.

For instance, future work may uncover that machine learning algorithms can be modeled
as having their own important set of biases that lead to departures from standard models of
capacity-constrained and costly learning. It is known that some machine learning algorithms
are consistently overconfident (Guo et al. 2017), which would violate the testable conditions
for both of our proposed models. Can we model these algorithms as having a bias in their
belief updating or a distortion in the loss function that they actually implement? Do machine
learning algorithms fall prey to standard behavioral biases? Frank, Gao, and Yang (2023)
show that algorithmic predictions of stock prices overreact to news using the standard test
of overreaction, which is a conditional form of calibration.

Alternatively, future work could test more specialized models with specific functional
forms of revealed algorithmic pseudo-cost. Restricting to classes of revealed algorithmic
pseudo-cost, such as posterior separability (Caplin, Dean, and Leahy 2022; Denti 2022),
might offer strengthened predictions. For example, using Shannon entropy as the algorithm’s
pseudo-cost would offer especially strong results about the predictions of the trained model
under specific loss functions used in training.

The rest of the paper is as follows. Section 2 provides background details for the analysis
and results that follow. Section 3 provides the foundation for the models and tests this
foundation. Section 4 formally defines both the capacity-constrained learning model and the
costly learning model and tests both models. Section 5.1 concludes with a discussion.

2 Background

In this section, we provide background details that are helpful for contextualizing the analysis
and results that follow. First, we explain the difference between as if and as is approaches to
modeling and why we follow the as if approach that is standard in economic theory. Second,
we introduce the kind of data that we use in our analysis and why it is valuable for model
testing. Finally, we provide details on the machine learning experiment that generates this
data.

2.1 “As If” not “As Is”

Some might ask if there is any point in modeling machine learning using tools from economic
theory. Why do we not just detail the actual inner workings of the algorithm? After all, that
approach works for such algorithms as the simplex method for linear programming. Why
not do the same for modern machine learning algorithms, such as those based on neural nets
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or transformer architectures?

The fundamental reason is the extraordinary complexity of state-of-the-art machine learn-
ing algorithms. While we might understand and be able to fully characterize how the indi-
vidual components of modern machine learning algorithms work, the entirety of the system
is no longer analytically tractable. In addition, most enterprise machine learning protocols
include many custom add-ons that make it even more challenging to understand how the
totality of a system works.7

Therefore we use the as if approach that is standard in economic theory. With this
approach, one asks whether the behavior of a complex system (a human, factory, economy,
etc.) aligns with a simplified model that can be solved analytically. This alignment is
tested using representation theorems that indicate that if a system’s behavior follows certain
properties or conditions, then it is “as if” they are behaving according to a specific model.
For instance, economic models of human cognition do not summarize all visual saccades,
neural firing rates, physical processes underlying information storage or processing, etc.;
rather, they focus on actions to see if they aligned with a model in which choices are driven
by optimal learning and utility maximization.

In this paper we adapt these same as if methods to characterize how machines learn.
However, there is a critical difference with classical models of human choice and production.
In these cases it is common to specify particular functional forms and estimate parametric
classes of utility functions and production functions from appropriate data sets. The distinc-
tion is that we are at a more nascent phase in our understanding of how to model machine
learning. Therefore our method involves testing applicability of broad classes of models,
rather than estimating a single model within a fixed class.

In broad terms we pose three qualitative questions:

1. Does the algorithm learn in a manner that is optimal?

2. If so, what are the trade-offs implicit in that optimization?

3. Does the algorithm choose optimally given what it has learned?

To answer these questions we provide representation theorems such that if the data generated
by algorithms satisfy properties or conditions, then it is “as if” they are behaving according
to models of human cognition that specify a particular process of optimal learning and choice.

All of the models we explore involve treating the algorithm as an optimizing agent.
This generates implications on counterfactuals involving feasible yet unchosen alternatives.

7We thank Tom Cunningham of OpenAI for pointing out this additional challenge to understanding why
machine learning-based systems, particularly recommendation systems, make the predictions that they do.

7



Within decision problems, we observe the actions that are chosen; across decision problems,
we observe other actions that are feasible but (depending on the model) may be differentially
costly. In the capacity-constrained model, what is revealed to be feasible cannot be preferred
to what is chosen. In the costly learning model, it can be preferred up to an information-
dependent cost, which imposes a cyclical consistency condition on the payoffs of chosen
alternatives.8 Given that the logic is based on simple comparisons of chosen with feasible
alternatives, our characterizations are transparent and facilitate simple statistical testing of
these models. In particular, they reveal that it is possible to test these models by varying the
machine’s loss function. This is analogous to testing models of costly learning with humans
by varying the incentives provided to them in decision problems, as in Dean and Neligh
(2017).

As will be seen, two of our model class tests are passed, while one, despite its intuitive
appeal, is rejected. We see this rejection in a positive light. It shows the power of our
revealed preference approach. More generally, rejection improves understanding of what an
algorithm does (or rather does not do), which also has relevance for the machine learning
literature on cost-sensitive learning (Elkan 2001) and class imbalance (e.g., Provost 2000).

2.2 SDSC Data in Machine Learning

The key qualitative difference between classical revealed preference theory and the version
that we apply to machine learning is the need to allow for mistaken decisions that result
from imperfect learning. This moves us into the branch of the theory that makes allowance
for limited cognition by changing the ideal data from classical choice data to state dependent
stochastic choice data (SDSC), starting with Caplin and Martin (2015). Key to this data is
that it records not only what is chosen, but also what is true. This provides rich insights into
mistakes, which is why the data set is so important in cognitive psychology and cognitive
economics. What is important for current purposes is that SDSC is precisely the data that is
generated when gauging the performance of standard supervised machine learning algorithms
as now specified.

The key components of data are a finite set of outcomes Y (e.g., image types, disease
severity levels, etc.) that the algorithm can learn about. There is also a set of predictions A

that the algorithm can make. For example, many classification algorithms output a numeric
confidence score for each possible outcome. In turn, confidence scores can be translated into
discrete outcome predictions using a downstream classification rule, such as predicting an

8These conditions are respectively analogous to the weak (Samuelson 1938) and generalized (Varian
1982, Afriat 1967) axioms of revealed preference. However, an important difference in our context is that
the machine’s losses (i.e., utility) are observed and manipulable, and play a role analogous to observed
expenditure in classical revealed preference theory.
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outcome if its confidence score exceeds a given threshold or the confidence scores of the other
possible outcomes.

In our experiment, the set of possible outcomes Y = {0, 1} is an indicator for the presence
of pneumonia, and the set of possible predictions A = [0, 1] is a continuous measure of the
algorithm’s “confidence” about the presence of pneumonia. We test numeric confidence
scores instead of discrete downstream outcome predictions because confidence scores are
more closely tied to machine incentives and yield stronger tests and sharper identification.
However, our framework also accommodates situations where the analyst only has data on
predicted outcomes or wishes to model the scoring algorithm jointly with a downstream
classification rule.

An important input to the training of an algorithm is a loss function L : A × Y → R,
which indicates the value of a particular prediction given the outcome. One standard loss
function is squared error, L(a, y) = (a − y)2, for which failure to align the prediction with
the outcome produces increasingly larger losses. Loss functions typically differ in how they
value different types of mispredictions. For example, squared error puts a higher penalty on
larger mispredictions than absolute error, L(a, y) = |a− y|.

For a given algorithm, using loss function L in training generates a series of predictions
a1, ..., aN , one for each observation in a data set of size N . The performance of the trained
model is assessed on how well its predictions align with actual outcomes in a data set. To
perform this assessment, the analyst has access to the actual outcomes for observations in
the data, which is a series of outcomes y1, ..., yN . Specifically, we use the labeling of Wang
et al. (2017) for whether each chest X-ray indicates pneumonia or not. As is standard when
evaluating algorithms, we assume this ground truth is correct, but our approach could be
extended to include uncertainty about the ground truth.

We follow the standard practice of evaluating how well an algorithm performs on aggre-
gate for each outcome. For example, chest X-rays that indicate pneumonia can vary in a
multitude of ways, so the focus in Rajpurkar et al. (2017) is on how often the algorithm
correctly predicts pneumonia instead of whether it correctly predicts pneumonia for a par-
ticular X-ray.9 Formally, aggregate level performance for each outcome is summarized by
performance data P L : A × Y → [0, 1], which is the joint distribution of predictions and
outcomes for the trained model,

P L(a, y) = 1
N

∑
n∈{1,...,N}

1an=a & yn=y

Because the data set is finite, the support of P L over A, given by supp(P L
A ), is also finite.

As is standard practice in the machine learning literature, we study algorithmic predictions
9Our model and results can be readily extended to account for characteristics of instances by conditioning

performance data on these characteristics.
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over a test sample that is independently drawn from the same population as the data on
which the algorithm is trained.10

An adjustment is needed if the action space is sufficiently rich (say, the continuous unit
interval) that each action is observed only once because this makes all probabilities in the
performance data either 0 or 1. In such cases our approach can instead be applied to bins of
actions, with binning achieved for example by rounding real numbers or aggregating them
into empirical quantiles. Such binning introduces its own fine points that are not central
to our theoretical approach, and so we do not introduce these additional formalities in our
framework. We do, however, discuss them where empirically relevant in what follows.

2.3 Experimental Design

We test economic models of machine learning by revisiting CheXNeXt, an influential deep
convolutional neural network for predicting thoracic diseases from chest X-ray images (Ra-
jpurkar et al. 2018). Our training models are generated using the ChestX-ray14 data set,
which consists of 112,120 frontal chest X-rays which were synthetically labeled with the pres-
ence of fourteen thoracic diseases (Wang et al. 2017). The main modification we make to
the CheXNeXt training procedure is that we isolate the task of pneumonia detection as in
the earlier implementation of Rajpurkar et al. (2017).

When training deep learning neural networks to predict to which of two classes an observa-
tion belongs, it is standard practice to use cross-entropy L(a, y) = −y log a−(1−y) log(1−a)
over confidence scores and outcomes. In addition, it is also standard practice to re-weight
the loss function to make losses higher or lower for a particular outcome; such class weighting
is often employed when one outcome is less common (Thai-Nghe, Gantner, and Schmidt-
Thieme 2010) or with the hope of achieving some external objective (Zadrozny, Langford,
and Abe 2003). For example, to give more weight to cross-entropy when a chest X-ray in-
dicated pneumonia (y = 1), the loss function in Rajpurkar et al. (2017) was approximately
−.99 log(a) when y = 1 and −.01 log(1 − a) when y = 0. For that reason, we train the
algorithm across various β-weighted cross-entropy loss functions:

Lβ(a, y) = −βy log(a)− (1− β)(1− y) log(1− a). (1)

Specifically, we vary the loss function by considering β = 0.7, 0.9, 0.99.11 In addition, we
employ ensemble (model-averaging) methods to isolate the substantive effects of what the
machine learns from random noise inherent to the stochastic training procedure. That is,

10Our approach can be applied to any data set, but since algorithmic performance is typically evaluated
on a hold-out or test set of instances, a natural interpretation is that this data set is the test set.

11For reference, the class weight used in the analysis of Rajpurkar et al. (2017) is approximately 0.99
because the probability of positive pneumonia cases in the data set is 0.0127.
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for observation n, an is the average prediction across training runs. Using nested cross-
validation methods, this yields an ensemble model prediction at each β for each of the 112,120
X-ray images in the original data. Further technical details of our training procedure are
relegated to Appendix A. We return to our experiment in Subsection 3.3 after introducing
our fundamental representation of machines as Bayesian expected loss minimizers.

3 Machines as Bayesian Expected Loss Minimizers

In this section we present the information-theoretic foundation of the learning models we
consider, the testable implications of this foundation, and positive evidence of this foundation
in our experiment.

In this foundation we follow the Blackwell (1953) model of experimentation, signal pro-
cessing, and choice. For both capacity-constrained and costly learning, we model an algo-
rithm as an optimizing agent that i) starts with a prior µ ∈ ∆(Y ) over outcomes, ii) gets
signal realizations that provide information about the outcome, iii) forms posterior beliefs
γ ∈ ∆(Y ) via Bayesian updating, and iv) chooses predictions based on these posteriors
to minimize expected losses. As in Kamenica and Gentzkow (2011) we define Q as those
distributions of posteriors with finite support that satisfy Bayes’ rule,

Q ≡ {Q ∈ ∆(∆(Y ))|
∑

γ∈supp(Q)
γQ(γ) = µ}.

Posteriors are translated into probabilistic predictions through a prediction function q :
supp(Q)→ ∆(A). For a given loss function L and distribution of posteriors Q ∈ Q, the set
of optimal prediction functions is defined as,

q̂(L, Q) ≡ argmin
q

∑
γ∈supp(Q)

Q(γ)
∑
a∈A

q(a|γ)
∑
y∈Y

γ(y)L(a, y),

where q is a prediction function with domain supp(Q) and codomain ∆(A). Note that
any pair (Q, q) produces a joint distribution of predictions and outcomes given by P(Q,q) :
A× Y → [0, 1] where,

P(Q,q)(a, y) ≡
∑

γ∈supp(Q)
Q(γ)q(a|γ)γ(y).

With these elements in place we can define the foundation of our subsequent learning models.

Definition 1. For a given loss function L, P L has a signal-based representation (SBR)
if there exists a prior µ ∈ ∆(Y ), a Bayes consistent distribution of posteriors Q ∈ Q, and a
prediction function q : supp(Q)→ ∆(A) such that:
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1. The prior is correct: µ(y) = ∑
a∈supp(P L

A ) P L(a, y).

2. Predictions are optimal at all possible posteriors: q ∈ q̂(L, Q).

3. Predictions are generated by the model: P L(a, y) = P(Q,q)(a, y).

If P L has an SBR, then it is as if the algorithm makes predictions to minimize the loss
function given the Bayesian posterior beliefs induced by its signal structure.

3.1 Testable Condition: Loss Calibration

The SBR foundation is characterized by a simple condition, called loss calibration, which
requires that switching every prediction a to any alternative prediction a′ — what we term
a “wholesale” switch from a to a′ — would never strictly reduce losses. To the best of our
knowledge, no such condition has been proposed in the machine learning literature. Loss
calibration is a restatement of the No Improving Action Switches (NIAS) condition of Caplin
and Martin (2015) into the machine learning setting.

Definition 2. Performance data P L is loss calibrated to loss function L if a wholesale
switch of predictions does not reduce losses according to L:

a ∈ argmin
a′∈A

∑
y∈Y

P L(a, y)L(a′, y) for all a ∈ supp(P L
A ).

Applying the theoretical results of Caplin and Martin (2015) and Bergemann and Morris
(2016), it is straightforward to show that loss calibration is necessary and sufficient for an
SBR. For completeness we include a formal statement of the equivalence below.

Proposition 1 (Caplin and Martin 2015; Bergemann and Morris 2016). P L has an SBR if
and only if predictions are loss calibrated to L.

As noted above, the characterization of optimizing models in SDSC rests on the idea
that each model rules out improving changes in behavior. The key counterfactual in the
SBR case is to imagine switching predictions. Whatever signals cause any prediction a to be
chosen, the machine learner can in principle switch wholesale to any alternative prediction
a′. The testable condition is that no switch of this type can be loss-reducing. Note that the
wholesale nature of the switches is critical here. There is no way to know from the data alone
what more sophisticated switches might have been possible based on the algorithm’s actual
signal structure. That makes it clear why loss calibration is necessary for an SBR. That it
is sufficient is straightforward also: absent improving switches, one can construct an SBR
straightforwardly using the probabilities of each state associated with any given prediction
in the data.
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Note that this axiom has “face credibility” in that it rules out clear errors in predic-
tion. Any algorithm that fails this condition makes predictions that are not suitable for
the loss function and that are thus inconsistent with an SBR and Bayesian expected loss
minimization.12

Under weighted cross-entropy loss with binary outcomes (1), it is straightforward to show
that loss calibration takes a unique closed form as a function of posterior probabilities. Let
aβ(γ) be the optimal prediction when the class weight is β and the posterior probability that
the outcome is y = 1 is given by γ. In the case of binary outcomes, posterior probabilities
are summarized by the scalar probability that the outcome is y = 1, and we associate this
scalar with the posterior in what follows.

Observation 1. Consider weighted cross-entropy loss (1). For any weight β ∈ (0, 1) and
all posterior probabilities γ ∈ supp(Q) that the outcome is y = 1, the unique loss calibrated
confidence score is given by:

aβ(γ) = βγ

1− β − γ + 2βγ
. (2)

In the case of unweighted cross-entropy loss (β = 0.5), the loss calibrated scoring function
(2) collapses to the optimal prediction being the posterior probability itself, α0.5(γ) = γ.
Thus, as is well-known, unweighted cross-entropy incentivizes truthful revelation of beliefs.
Such a loss function is said to be proper (Brier 1950; McCarthy 1956).

When β > 0.5, there is an incentive to overscore αβ(γ) > γ, whereas when β < 0.5 there
is an incentive to underscore αβ(γ) > γ all interior posteriors γ ∈ (0, 1). The impact of β

on optimal scores can be quite strong, especially since class weights are frequently used in
settings where class imbalance is large. For example, at posterior belief γ = 0.5, the optimal
prediction for a given β is αβ(0.5) = β.

3.2 Calibration in Machine Learning: Theory and Practice

In general, any proper loss function incentivizes truthful reporting under an SBR. Thus, an
observable implication of SBR is that if the loss function is proper, an algorithm should be
(unconditionally) calibrated to ground truth probabilities. That is, each confidence score
should equal the true probability of the outcome given that score. This form of calibration is
an important and much-studied property in machine learning because calibrated predictions

12Nevertheless, this is easy to rectify. Whenever this loss function is input into the algorithm, a single
line of code at the end of the computer program making a wholesale switch to predicting a whenever it
would have predicted a′ would make this algorithm loss calibrated for this loss function. We say that an
algorithm has been loss re-calibrated when it has been transformed through wholesale switches to become
loss calibrated.
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correctly reflect their uncertainty. While there is no inherent tension between the aims of
accuracy and calibration in our as if model of the machine, the relationship is more nuanced
in the as is practice of machine learning.

Deep learning convolutional neural networks have been shown to suffer from miscali-
bration, specifically overconfidence, with the severity of miscalibration increasing in model
size (Guo et al. 2017). However, the calibration of deep neural nets is improved with reg-
ularization procedures such as weight decay (Guo et al. 2017) as well as model ensembling
(Lakshminarayanan, Pritzel, and Blundell 2017). This is consistent with the intuition that
both of these procedures reduce overconfidence. More recently, Minderer et al. (2021) con-
duct a comprehensive comparison of 180 image classification models and find that the most
accurate current models, such as non-convolutional MLP-Mixers (Tolstikhin et al. 2021) and
Vision Transformers (Dosovitskiy et al. 2021), are not only well-calibrated compared to ear-
lier models, but also that their calibration is more robust to distributions that differ from
training. We now turn to the experimental evidence for our generalized implication of loss
calibration.

3.3 Experimental Test: Loss Calibration

In the deep learning algorithm we consider — which regularizes through early stopping and
aggregates over an ensemble of trained neural nets — we find that confidence scores are loss
calibrated as in (2) across various weights in weighted cross entropy loss (1). Recall that
this includes unconditional calibration for unweighted cross-entropy loss (β = 0.5), which is
a proper loss function.

Graphical evidence of calibration and loss calibration is provided in the left and right pan-
els of Figure 1, respectively. In each plot, the horizontal axis represents the confidence score,
and the vertical axis the corresponding pneumonia rate in the data (both on a log scale).
The shapes in the figure provide the empirical decile-binned calibration curves (DeGroot and
Fienberg 1983; Niculescu-Mizil and Caruana 2005). That is, for a given loss function, each
point represents a decile bin of confidence scores, with the mean confidence score within bin
on the horizontal axis, and the mean pneumonia rate within bin on the vertical axis. The
solid lines represent the situation where confidence scores are calibrated. Thus, the algorithm
appears effectively calibrated for the unweighted loss function β = 0.5, and miscalibrated
otherwise. The dashed lines in the right plot show the theoretical relationship (2) between
scores and pneumonia rates for the relative positive class weights β = 0.7, 0.9, 0.99 if an
algorithm is loss calibrated (note that the loss calibrated and calibrated lines coincide on the
left when β = 0.5). As β increases, the algorithm is increasingly incentivized to provide a
score that is higher than the machine’s actual “belief” about the probability of pneumonia,
which causes the lines to bow out. The alignment of theoretical predictions and empirical
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Figure 1: Theoretical relationship (2) between confidence score and pneumonia rate for a
loss calibrated algorithm with calibration target (solid lines), loss calibration targets varying
class weights (dashed lines), and empirical decile-binned calibration curves (shapes) for the
pneumonia-detection algorithm presented in Subsection 2.3. All objects are displayed on a
log-10 scale to improve readability. This figure provides visual evidence that the algorithm
is calibrated for β = 0.5 (left panel) and loss calibrated generally (left and right panels).
This ensures an SBR representation and simplifies computation of the objects introduced in
Section 4.

estimates suggests that the algorithm is generally very close to being loss calibrated, and
very close to being calibrated when the loss function is unweighted.

Finally, note that our finding of calibration with an unweighted loss function is consis-
tent with previously documented calibration for deep learning convolutional neural networks
that use regularization (i.e., weight decay in Guo et al. 2017) and deep ensembling (Laksh-
minarayanan, Pritzel, and Blundell 2017). With a viable SBR in hand, we now turn to the
models of what the machine learns.

4 Models of Machine Learning

SBR leaves open the question of how a machine learning algorithm arrives at its signal
structure – that is, what the machine learns based on the incentives provided by the loss
function. We now provide two nested alternatives: choosing among a set of feasible signal
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structures or choosing among signal structures of different costs. Note that the latter class of
models nests the former because one possible cost function is a simple indicator of feasibility,
which takes a constant value for feasible signal structures and an infinite value otherwise.

4.1 Capacity-Constrained Learning

The first model assumes the algorithm chooses among a set of feasible signal structures to
best match the incentives provided by the loss function.

To translate this into the SBR framework of Section 3, we define a feasible set of ex-
periments Q∗ ⊂ Q. This feasible set depends only on the algorithm’s capability and is not
specific to the loss function provided. We define the algorithm’s strategy space Λ to include
both Q and q:

Λ = {(Q, q)|Q ∈ Q, q : supp(Q)→ ∆(A)}.

For a given loss function L and feasible set Q∗, the set of optimal strategies Λ̃(L,Q∗) is,

Λ̃(L,Q∗) ≡ argmin
(Q,q)∈Λ,Q∈Q∗

∑
γ∈supp(Q)

Q(γ)
∑
a∈A

q(a|γ)
∑
y∈Y

γ(y)L(a, y).

With this we can define all performance data sets that are consistent with optimality for a
given feasible set Q∗ as,

P̃ (L,Q∗) ≡ {P(Q,q)|(Q, q) ∈ Λ̃(L,Q∗)}.

Capacity-constrained learning requires that there exist a feasible set Q∗ such that the per-
formance data produced by an algorithm are optimal given that feasible set for all L ∈ L.

Definition 3. An algorithm is consistent with capacity-constrained learning if there
exists a feasible set Q∗ ⊂ Q such that P L ∈ P̃ (L,Q∗) for all L ∈ L.

4.2 Testing Capacity-Constrained Learning

In order to simplify the characterizations of capacity-constrained learning, we restrict con-
sideration to performance data sets with an SBR representation (or its empirically verifiable
counterpart, loss calibration). Because indexing is useful in what follows, we take as given
a finite set of M loss functions, indexed by 1 ≤ m ≤ M . For notational simplicity, we
denote the performance data set from training the algorithm with the m-th loss function as
P m = P Lm .

Our characterization is taken directly from Caplin et al. (2024), who characterize capacity-
constrained learning for human decision makers. In the context of machine learning, the key
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idea is to ensure that losses cannot be lowered by counterfactually switching to the predic-
tions from training with a different loss function. As shown in Caplin, Martin, and Marx
(2023), all such comparisons are visible in the value of learning (VoL) matrix G with generic
element Gmn in row m and column n that specifies the minimized expected losses when the
loss function is Lm and the performance data is P n:

Gmn ≡
∑

a∈supp(P n
A)

min
a′∈A

∑
y∈Y

Lm(a′, y)P n(a, y).

The operation on the right hand side of the equation takes any prediction a ∈ supp(P n
A),

picks some alternative prediction a′ ∈ A to replace it wholesale, computes the corresponding
expected losses for Lm, and then minimizes.

A capacity-constrained learning representation requires that no such switch of perfor-
mance data can lower losses. To formalize we define the M × M direct value difference
matrix D0 by,

Dmn
0 ≡ Gmn −Gmm. (3)

An algorithm with an SBR is strongly loss adapted if for all 1 ≤ m, n ≤M ,

Dmn
0 ≥ 0, or equivalently Gmn ≥ Gmm.13

This condition has a natural interpretation in our setting. For a capacity-constrained ratio-
nalization to be possible, we would expect that when the loss function is Lm, training with
Lm generates lower losses than can be achieved by training with any other loss function.

The results in Caplin et al. (2024) can be used to show that, together with loss calibration,
an algorithm being strongly loss adapted is necessary and sufficient for capacity-constrained
learning. As indicated above, the theory implies that every signal structure chosen at one
loss function is also feasible under another. For the theory of capacity-constrained learning
to apply, no switches of chosen signal structures across loss functions can be improving after
also accounting for changes in optimal predictions. That the theory also requires optimal
predictions at all revealed posteriors establishes necessity of its being strongly loss adapted.
Sufficiency is straightforward when we define the feasible set of signal structures as precisely
those revealed in the data.

4.3 Costly Learning

Our second model assumes the algorithm chooses among signal structures of different costs.
Again, these are not necessarily related to the monetary costs incurred in running the algo-
rithm, but rather reflect the pseudo-costs of the algorithm (the as if learning costs of the
algorithm).

13Strongly loss adapted is a restatement of the No Improving (Action and Attention) Switches (NIS)
condition of Caplin et al. (2024) into the machine learning setting.
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To formalize this, we define a pseudo-cost function K : Q → R∪∞ and denote the set of
all possible pseudo-cost functions as K. An algorithm’s pseudo-cost function depends only
on its capabilities and is not specific to the loss function provided. Given loss function L ∈ L
and pseudo-cost function K ∈ K, the cost-adjusted loss L̂ of strategy (Q, q) is,

L̂((Q, q)|L, K) ≡
∑

γ∈supp(Q)
Q(γ)

∑
a∈A

q(a|γ)
∑
y∈Y

γ(y)L(a, y) + K(Q).

The corresponding set of optimal strategies Λ̂(L, K) is then defined as,

Λ̂(L, K) ≡ argmin
(Q,q)∈Λ

L̂((Q, q)|L, K).

This optimization problem formalizes the way in which the algorithm trades off losses with
pseudo-costs. Given any L ∈ L the set of all performance data sets that are consistent with
optimality for a given pseudo-cost function K ∈ K are,

P̂ (L, K) ≡ {P(Q,q)|(Q, q) ∈ Λ̂(L, K)}.

Definition 4. An algorithm is consistent with costly learning if there exists a pseudo-cost
function K ∈ K such that P L ∈ P̂ (L, K) for all L ∈ L.

The second learning model generalizes the first model because a feasible set of posterior
distributions Q∗ is equivalently specified as a pseudo-cost function K∗ for which the cost is
zero for every feasible posterior distribution Q ∈ Q∗ and infinite otherwise.

4.4 Testing Costly Learning

The costly learning model generalizes the capacity constrained model. It is consistent with
the theory to find improving switches that characterized capacity constrained learning. Such
switches may be improving provided they do not lower losses more than they raise costs.
The question is how to characterize conditions for a costly learning representation without
doing a precise cost-benefit comparison. This question has a definitive answer in the No
Improving Attention Cycles (NIAC) conditions of Caplin and Dean (2015). Define H(m, n)
as all sequences of indices h⃗ = (h(1), h(2), . . . , h(J (⃗h)+1)) of edge length J (⃗h) with h(1) = m

and h(J (⃗h)+1) = n in which the first J (⃗h) entries are distinct. The indirect value difference
matrix D collects minimal summed loss differences across such paths

Dmn ≡ min
{h⃗∈H(m,n)}

J (⃗h)∑
j=1

D
h(j)h(j+1)
0 . (4)

Formally, an algorithm with an SBR is loss adapted if for all 1 ≤ m ≤M ,

Dmm ≥ 0.14 (5)
14Loss adapted is a restatement of the No Improving Attention Cycles (NIAC) condition of Caplin and

Dean (2015) into the machine learning setting.
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This condition requires that no cycle of switches could lower losses. In fact, the inequality
of loss adaptedness can be replaced with an equality, since the identity cycle with h(m) = m

for all 1 ≤ m ≤M is feasible and trivially yields a summed loss difference of zero. Applying
the results in Caplin and Dean (2015), an algorithm with an SBR has a costly learning
explanation if and only if it is loss adapted.

Intuitively, the construction and argument follow in two steps. The first step, as in
the capacity-constrained model, is to construct the value of learning matrix G and thereby
the direct value difference matrix D0, with element Dmn

0 ≡ Gmn − Gmm (defined in (3))
summarizing the difference in loss between chosen and feasible performance data m and
n for loss function m. Recall that if performance data n is strictly preferred to chosen
performance data m under loss function m — that is, if Dmn

0 < 0 — then this violates
capacity-constrained learning; however, it may still be rationalizable by costly learning if the
information underlying performance data n is more costly.

The second step determines whether such a cost-based rationalization exists. Letting
Km denote a candidate information cost associated with performance data P m, a cost-based
rationalization requires:

Gmm + Km ≤ Gmn + Kn, equivalently
Km −Kn ≤ Dmn

0

for all decision problems m, n. The key is to consider summing such direct value difference
inequalities across cycles of performance data because information cost differences Km −
Kn across cycles sum to zero, regardless of the information cost function (which is to be
inferred). This yields necessity of loss adaptedness by its definition (5); conversely, it can be
constructively shown that loss adaptedness is sufficient for a costly learning representation
(Caplin and Dean 2015; Caplin, Martin, and Marx 2023).

For example, consider a simple hypothetical value of learning matrix and corresponding
direct and indirect value difference matrices in a two-loss case:

G =
 1 0

1 0.5

 , D0 =
 0 −1

0.5 0

 , D =
 −0.5 −1

0.5 −0.5


The performance data under the second loss function yields lower losses under either the first
or second loss function (comparing entries within row of G). Therefore, using performance
data 2 under loss function 1 reduces losses under loss function 1 by D12

0 = −1 < 0, and so
the capacity-constrained model is violated. This does not necessarily imply a violation of the
costly learning model since the performance data under loss function 2 may be more costly.
However, the net gain from using data 2 under loss function 1 (reducing loss by D12

0 = −1)
exceeds the net cost of using data 1 under loss function 2 (increasing loss by D21

0 = 0.5);
consequently, cycling performance data across the decision problems reduces aggregate losses
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by D11 = D22 = D12
0 + D21

0 = −0.5, which violates loss adaptedness and thus the costly
learning model.

With more than two loss functions, the matter of computing aggregate losses across
cycles — in turn embedded in the indirect loss difference matrix D — becomes slightly
more complex. However, Caplin, Martin, and Marx (2023) show that if an algorithm is
loss adapted, then the indirect value difference matrix can be computed by applying the
polynomial-time algorithm of Floyd (1962) and Warshall (1962) (in economics, see also
Varian 1982) to the complete weighted directed graph with weight Dmn

0 on the directed edge
from node 1 ≤ m ≤ M to node 1 ≤ n ≤ M . The Floyd-Warshall algorithm initializes with
the direct value difference matrix W ← D0 and computes the minimal aggregate loss as one
adds the possibility of passing through intermediate nodes {1, . . . , k} for 1 ≤ k ≤ M . At
step k, there are two possibilities for the minimal aggregate loss W mn across the subset of
paths H(m, n) passing through elements of {1, . . . , k}: either aggregate losses are strictly
reduced by allowing paths to pass through node k, in which case W mn ← W mk + W kn, or
not, in which case W mn is left unchanged. At its conclusion k = M , the Floyd-Warshall
algorithm recovers the indirect value difference matrix W = D if the data is loss adapted,
and a matrix W with some strictly negative entries on its diagonal otherwise. This provides
an easy test of the costly learning model: an algorithm is loss adapted if and only if the
candidate matrix thus computed has a zero diagonal.

4.5 Experimental Results

The main products of our experiment are estimates of the VoL matrix G and indirect value
difference matrix D introduced in the previous subsection. To facilitate their computation,
we rely on the strong evidence for an SBR representation provided in Subsection 3.3. This
strong evidence of loss calibration allows us to compute losses in the G matrix, as given below,
by analytically recalibrating confidence scores inverting (2) to recover optimal confidence
scores across weights.15

G = 0.01

P 0.7 P 0.9 P 0.99
3.750 3.752 3.762 L0.7

3.349 3.352 3.362 L0.9

1.365 1.366 1.370 L0.99

Recall that a necessary and sufficient condition for capacity-constrained learning is that
15In turn, this analytical mapping circumvents the need to bin data to recover posterior beliefs, avoiding

the finite sample issues associated therewith.
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the algorithm is strongly loss adapted:

H0 : Dmn
0 ≡ Gmn −Gmm ≥ 0 for all 1 ≤ m, n ≤M .

In order to statistically test this multivariate one-sided hypothesis, we first estimate a 9× 9
covariance matrix for the VoL matrix G via 10,000 bootstrap samples from the data set of
ensemble predictions. We then compute p-values for the constituent univariate one-sided
Wald tests and apply a Bonferroni correction. Even using this conservative approach to
bounding the family-wise error rate, we reject the null hypothesis at standard levels of
significance with p = 0.001. Further inspection of G reveals a systematic reason for why we
reject the null hypothesis: loss functions have a common preference for the performance data
from training with lower β. Thus, while the predictions for the loss function with weight
β = 0.7 are consistent with the algorithm being strongly loss adapted, the predictions for
the loss functions with weight β = 0.9, 0.99 are not.

Our second question is whether the algorithm is loss adapted, and thereby consistent
with costly learning:

H0 : Dmm ≥ 0 for all 1 ≤ m ≤M .

The estimated D matrix, given below, satisfies this null hypothesis.

D = 0.15

P 0.7 P 0.9 P 0.99
0 2.548 12.467 L0.7

−2.529 0 9.938 L0.9

−6.993 −4.463 0 L0.99

We therefore fail to reject that the algorithm is consistent with costly learning at any level of
significance.16 Intuitively, a necessary condition for this is that, even though all loss functions
are minimized by switching to lower-β performance data, the gains from switching are lower
for higher-β loss functions.

We conclude the section with a brief observation on the power of our test for costly
learning: any reordering of chosen information structures would have resulted in a pointwise
rejection of loss adaptedness. Thus, we failed to reject the null hypothesis in spite of —
rather than in the absence of — a powerful test.

16Pointwise consistency with loss adaptedness is satisfied in 53% of our bootstrap samples.
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5 Conclusion

5.1 Discussion

Machine learning is increasingly central both to the modern economy and to the field of
economics itself, where it has yielded improvements in policy-relevant predictions (Kleinberg
et al. 2015), causal inference with high-dimensional data (Belloni, Chernozhukov, and Hansen
2014, Athey 2017), and the analysis of rich new sources of data (Gentzkow, Kelly, and Taddy
2019).17 Furthermore, machine learning has been usefully applied in microeconomic theory,
for example as a complement to economic theory (Fudenberg and Liang 2019) and as a
benchmark of model completeness (Fudenberg et al. 2022).

However, state-of-the art machine learning algorithms lack what Lipton (2018) refers to
as algorithmic transparency: an understanding of why an algorithm chooses the prediction
model that it does. For example, standard OLS has high algorithmic transparency because
the resulting model is the unique solution to a convex optimization problem and has a closed-
form expression in terms of the training data. Because modern machine learning algorithms
lack such transparency, we propose two parsimonious as if representations of them. As
with human decision-making, having a parsimonious representation that reasonably approx-
imates machine learning behavior could enhance the theoretical and empirical analysis of
modern machine learning, and more generally, would open the door to applying many tools
of economics to better understand the latest approaches in machine learning.

This paper introduces an economic approach to algorithmic transparency through mod-
eling machine learning. Combining the methods of Bayesian revealed preference theory with
the unique feature that algorithm training uses a known and manipulable loss function, we
provide methods for testing and recovery of our models using data on machine learning
predictions. Applying the theory to a state-of-the-art deep neural network for pneumonia
detection in chest X-rays, we find empirical support for the information-theoretic, signal-
based model foundations and for a costly model of machine learning. We statistically reject
a stronger capacity-constrained learning model, in which machines optimally choose what
to learn from a feasible set of information structures determined by the training data and
algorithmic technology.

5.2 Future Directions

We expound two classes of extensions and directions for future work. The first class ex-
pands the applications of the existing modeling approach. One such possibility is to explore

17See Varian (2014), Mullainathan and Spiess (2017), Athey (2018), and Athey and Imbens (2019).
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whether attention costs are a proxy of the actual resource usage of the machine. For instance,
the amount of computational resources spent could be driven by the algorithm’s choice of a
particular hyperparameter, which can be influenced by the loss function through hyperpa-
rameter optimization (e.g., Bergstra and Bengio 2012). In our experiment, for example, an
algorithm might perform more or fewer epochs if the losses under a particular loss function
have not converged sufficiently (e.g., as implemented by the “ReduceLROnPlateau” function
in Keras). Another possibility expands the set of experiments conducted on the machine.
While this paper has focused on varying the algorithm’s loss function, in future work it would
also be interesting to vary a classification algorithm’s choice set in multi-class problems, in
the tradition of revealed preference for demand analysis.

The second and more speculative class of future directions expands the scope of the
modeling approach. While this paper has focused on modeling the choices of the algorithmic
training procedure, the question of machine learning interpretability is broader and forms
an active and important literature. Beyond algorithmic transparency, interpretability is
focused on understanding the resulting prediction model and why it makes the classification
decisions or predictions that it does.18 As articulated by Athey (2018), structural economic
models naturally provide interpretability for such questions, and their interpretability can
easily exceed that of “simpler” models, such as a linear model that nevertheless lacks such
an interpretation.
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A Experiment: Technical Details

Here we summarize the technical details of the experiment introduced in Section 2.3. Our
model training procedure essentially follows that of the CheXNeXt algorithm (Rajpurkar
et al. 2018), in which a deep neural network was trained using the ChestX-ray14 data set
of Wang et al. (2017). The ChestX-ray14 data set consists of 112,120 frontal chest X-rays
that were synthetically labeled with up to fourteen thoracic diseases. Our code for model
training is adapted from the publicly available CheXNeXt codebase of Rajpurkar et al.
(2018). However, we follow the earlier CheXNet implementation of Rajpurkar et al. (2017)
in three ways. First, we restrict to the binary classification task of pneumonia detection,
where the labels of interest are pneumonia (y = 1) or not (y = 0). In addition, we trade off a
higher batch rate of 16 at the expense of a slightly smaller imaging scaling size of 224 by 224
pixels (instead of a batch size of 8 and an image rescaling of 512 by 512 pixels, respectively).
As in Rajpurkar et al. (2018), we adopt random horizontal flipping, and normalize based on
the mean and standard deviation of images in the ImageNet data set (Deng et al. 2009). For
each model, we train a 121-layer dense convolutional neural network (DenseNet, Huang et al.
2016) with network weights initialized to those pretrained on ImageNet, using Adam with
standard parameters 0.9 and 0.999 (Kingma and Ba 2014), and using batch normalization
(Ioffe and Szegedy 2015). We use an initial learning rate of 0.0001 that is decayed by a factor
of 10 each time the validation loss plateaus after an epoch, and we conduct early stopping
based on validation loss. Each model was trained using either an Nvidia Tesla V100 16GB
GPU or an Nvidia Tesla A100 40GB GPU on the Louisiana State University or Northwestern
University high performance computing clusters, respectively.
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Given the inferential nature of our exercise, we deviate from this prior art in two ways.
First, we induce variation in the cross-entropy loss function (1) across multiple positive
class weights β1 = 0.7, 0.9, 0.99, with 0.99 approximately equal to the inverse probability
class weights for pneumonia detection adopted in Rajpurkar et al. (2017). In addition to
varying class weights, the main difference in our implementation and the implementation of
Rajpurkar et al. (2017) are our data splits and our recourse to additional ensemble methods
to account for randomness in the training procedure. This use of ensemble methods also
likely explains why our confidence scores are loss calibrated, despite recent evidence that
deep neural networks and cross-entropy loss may inherently produce poor calibration because
of overconfidence (Bai et al. 2021, Liu et al. 2022). Specifically, we adopt a nested cross-
validation approach where we randomly split the data set into ten approximately equal folds
and then iterate through 70-20-10 train-validation-test splits (the split distribution also used
in Wang et al. 2017 and a secondary application of Rajpurkar et al. 2017). We train a total
of 480 models, yielding an ensemble of 96 trained models for each observation in the data set
where that observation was in a test fold. The final score for each observation in the data
set is then obtained by averaging confidence scores across the observation’s ensemble. This
procedure is repeated on the same set of data splits for each class weight β = 0.7, 0.9, 0.99
we consider.
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