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It is well-understood that many bacteria have evolved to survive
catastrophic events using a variety of mechanisms, which include
expression of stress-response genes, quiescence, necrotrophy, and
metabolic advantages obtained through mutation. However, the
dynamics of individuals leveraging these abilities to gain a compet-
itive advantage in an ecologically complex setting remain unstudied.
In this study, we observed the saliva microbiome throughout the
ecological perturbation of long-term starvation, allowing only the
species best equipped to access and use the limited resources to
survive. During the first several days, the community underwent a
death phase that resulted in a ∼50–100-fold reduction in the num-
ber of viable cells. Interestingly, after this death phase, only three
species, Klebsiella pneumoniae, Klebsiella oxytoca, and Providen-
cia alcalifaciens, all members of the family Enterobacteriaceae,
appeared to be transcriptionally active and recoverable. Klebsiella
are significant human pathogens, frequently resistant to multiple
antibiotics, and recently, ectopic colonization of the gut by oral
Klebsiella was documented to induce dysbiosis and inflammation.
MetaOmics analyses provided several leads for further investiga-
tion regarding the ecological success of the Enterobacteriaceae.
The isolates accumulated single nucleotide polymorphisms in known
growth advantage in stationary phase alleles and produced natural
products closely resembling antimicrobial cyclic depsipeptides. The
results presented in this study suggest that pathogenic Enterobacter-
iaceae persist much longer than their more benign neighbors in the
salivary microbiome when faced with starvation. This is particularly
significant, given that hospital surfaces contaminated with oral flu-
ids, especially sinks and drains, are well-established sources of out-
breaks of drug-resistant Enterobacteriaceae.

oral microbiome | microbial ecology | Klebsiella

Many bacteria are well-equipped to deal with exposure to
adverse environmental events such as starvation, oxidative

stress, and antimicrobials, as well as fluctuations in temperature,
pH, and osmolality. Diverse strategies for coping with these
stresses have evolved, including expression of stress response
genes (1), quiescence (2), necrotrophy (3), and growth advan-
tages gained through mutation (4). Although these systems are
increasingly understood, little is known regarding the dynamics
of individual species leveraging these abilities to gain a com-
petitive advantage in an ecologically complex setting. In the case
of long-term starvation, the bulk of research on bacterial dy-
namics and survival mechanisms has been performed using
monospecies cultures of Escherichia coli (4–9). In E. coli, pop-
ulations exhibited a death phase at ∼3 d of starvation, resulting
in a loss of >99% of the population (4). This death phase was
followed by a long-term stationary phase, in which viable cell
counts plateau virtually indefinitely (i.e., for years) (4). During
the long-term stationary phase, various subpopulations carrying
advantageous mutations (growth advantage in stationary phase
[GASP] mutants) arose and came to dominate the culture, dis-
placing their less-fit siblings (4). These mutations frequently
resulted in increased ability to catabolize one or more amino

acids as a source of carbon and energy (4). Therefore, it was
likely that in a complex multispecies community, a succession of
species and strains would increase and decrease in relative
abundance throughout the course of the experiment, based on
which species were most fit in the changing environment.
To our knowledge, there have been no previous reports on the

interplay of a complex community of human-associated bacteria
subjected to long-term starvation. To begin to address this knowl-
edge gap, the present study monitored a saliva-derived complex
oral microbiota during starvation in saline solution and saliva for
100 d. The bacterial community residing in the human oral cavity is
a particularly unique microbiota that undergoes cyclical expansions
and contractions of microbial diversity as a result of both host food
ingestion intervals and hygienic practices, such as brushing and use
of mouthwash. These perturbations respectively result in cycles of
relative feast or famine and regular killing or removal of large
swaths of the microbial population, after which ecological succes-
sion begins anew (10). Dental caries and periodontitis represent
two extremely prevalent and costly diseases that are now rec-
ognized as the result of localized ecological catastrophes of the
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oral microbiome (11–14). One of the major impediments to the study
of complex, human-associated microbial communities is the difficulty
cultivating such diverse ecologies in a well-controlled laboratory
setting. The oral microbiota was chosen as a model system for this
pilot study because of the existence of a well-established in vitro
culture system using media that allows for the growth of a diversity of
species approaching that of an in vivo human mouth (15).

Results
Long-Term Starvation of a Complex Oral Community Results in a
Death Phase, Followed by a Long-Term Stationary Phase. The start-
ing community in this study was derived from a previous study
that optimized media (SHI media) and growth conditions to
stably maintain the highest diversity of oral bacteria achievable
in vitro to date (15). The community was generated from the
pooled saliva of six healthy adults, had a microbial diversity
approaching that of human oral cavity, and responded to a
carbohydrate pulse in a manner similar to in vivo dental plaque
(15). After overnight batch growth in SHI media, the community
was harvested and subsequently starved in aliquots of either PBS
or a 1:1 mixture of PBS and cell-free saliva. Reminiscent of
monospecies cultures of E. coli (4), the communities (both in
PBS and PBS:saliva) first experienced a death phase with a rapid
decrease in colony-forming units per milliliter over time, fol-
lowed by a stabilization, a long-term stationary phase (Fig. 1A).
It is important to note that many taxa that are viable in the liquid
culture of the community cannot grow as isolated colonies on
solid media, and thus are not measured in Fig. 1A. Therefore,
although the colony-forming unit measurement is useful for il-
lustrating the overall trend of viable cells in the community, the
results are likely an underestimate, making it critical to com-
plement this assay with mRNA-based taxonomic profiling, as
described below, to determine the living members of the com-
munity during starvation. Illumina sequencing of 16S rDNA V3-
V4 amplicons revealed that alpha diversity was higher in the
PBS:saliva community than the PBS community, reflective of the
supplementary substrates provided by the sterilized saliva at the
start of the starvation (Fig. 1B). Intrasample diversity (alpha
diversity) of the community increased across the first several days
of starvation and then decreased to levels similar to that of the
starting community after day 32 (Fig. 1C). Intercommunity di-
versity (beta diversity) also shifted over time, particularly during
the first 12 d (Fig. 1D), followed by relative stabilization. The
presence of saliva in the starvation medium also had an effect on
the community, as the two starvation communities separated in
Principal Coordinates Analysis (PCoA) space over time (Fig.
1D). There were shifts in the relative abundances of many taxa,
with by far the most notable change being an increase in the
number of Enterobacteriaceae, particularly Klebsiella, at the
expense of Streptococci, which had been the most abundant
genera in the starting communities (Fig. 1 E and F). Because the
DNA harvested from the starving community was likely to con-
tain the DNA of dead cells, aliquots of the starvation culture
from various points were used to inoculate fresh SHI media, and
the outgrowth culture was investigated with 16S rDNA sequencing
after overnight growth to observe the “live” species from the initial
starvation experiment (Fig. 1 E and F). The increase in Enter-
obacteriaceae 16S rDNA observed during long-term starvation
was much more dramatic in the outgrowth communities. After only
4 d of starvation, the proportion of Klebsiella in the communities
had increased dramatically, and by day 12, Enterobacteriaceae
accounted for more than 90% of the relative abundance of the
16S rDNA in the outgrowth communities (Fig. 1 E and F). Al-
though Klebsiella was the genus with the highest relative abundance,
species of “unclassified” Enterobacteriaceae (highly likely to be P.
alcalifaciens, as described below) increased in relative abundance
during the later points of the outgrowth. The community starving
in PBS underwent a transition similar to that of the community
starving in PBS:saliva, albeit with a reduced abundance of Neisseria
and Porphyromonas (Fig. 1F), indicating that components in the
filtered saliva made these genera more competitive.

After 20 d of Starvation, Only Enterobacteriaceae Are Recoverable on
Solid Media. When plated on SHI media agar, the day 0 com-
munity produced colonies with a wide variety of morphologies,
reflective of the diversity of species present (Fig. 2). During the
death phase, the relative number of the large mucoid colonies
obtained increased dramatically, such that by day 20, and all
following times, all the colonies obtained were large and mucoid
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Fig. 1. Shifts in diversity and relative abundances of constituents of the
saliva microbiome during long-term starvation. (A) Number of viable cells in
the community, as determined by colony-forming units during starvation in
PBS:saliva or PBS over the course of 100 d. (n = 3). (B) Alpha diversity of the
PBS:saliva or PBS communities across 84 d of starvation. ***P < 0.001, unpaired
t test. (C) Alpha diversity of the PBS:saliva and PBS starvation communities over
the course of 84 d of starvation. ****P < 0.0001, Brown-Forsythe test. (D)
PCoA plot of unweighted UNIFRAC distances illustrating beta diversity of the
PBS:saliva and PBS communities over the course of 84 d of starvation. (E)
Relative abundances of bacterial genera in the PBS:saliva starvation exper-
iment, and the starvation community after overnight outgrowth in fresh
media, as determined by Illumina sequencing of 16S amplicons. (F) Relative
abundances of bacterial genera in the PBS starvation experiment, and the
starvation community after overnight outgrowth in fresh media, as determined
by Illumina sequencing of 16S amplicons.
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(Fig. 2). A selection of diverse colony morphologies across three
times was isolated and identified, using Sanger sequencing of full-
length 16S rDNA amplicons (Dataset S1). At day 1, several species
of Streptococcus were recovered, as were Gamella sanguinis, Kleb-
siella pneumoniae, and Klebsiella oxytoca. At day 20, K. pneumoniae,
K. oxytoca, Enterobacter homaechei, and Providencia alcalifaciens
were the only recoverable species. Finally, at day 84 and day 100,
only K. pneumoniae and P. alcalifaciens were recoverable under the
conditions tested. This is a particularly interesting result because all
the surviving organisms are documented pathogens and are fre-
quently drug resistant (16–18).

RNA Sequencing Confirms That Enterobacteriaceae Are the Dominant
(and Likely Only Living) Community Members After Long-Term
Starvation. To obtain a finer resolution of the viable and ac-
tively transcribing species, shotgun sequencing of cDNA from
the transcriptome of the community at five points during the
long-term starvation was performed, followed by Metaphlan2
analysis to calculate the relative abundances of taxa (19) (Fig. 3).
In the PBS:saliva starvation community, Firmicutes, namely, the
genera Streptococcus, Gamella, Peptostreptococcus, and Veillo-
nella, represented >90% of the RNA at day 0. At day 4, there
was a diversity of RNA from Streptococcus, Peptostreptococcus,
Neisseria, Veillonella, Klebsiella, Porphyromonas, and Fusobacte-
rium. By day 20, Klebsiella increased in number such that the
genus represented 46% of all RNA. This increase was largely at
the expense of Firmicutes, which decreased to <3% of RNA.
By day 84, Providencia accounted for 69% of the RNA, whereas
Neisseria accounted for 20%. Ultimately, after 100 d of starva-
tion, Providencia accounted for 90% of the RNA, indicating that it
was the major living organism remaining in the community. As with
the 16S rDNA profiling, the changes in abundance of taxa in the
PBS community were similar to the major trends of the PBS:saliva
community. Dataset S2 contains Krona (20) visualizations of Met-
aphlan2 analysis of the transcriptome from both PBS:saliva and
PBS communities, as well as Metaphlan2 analysis of metagenomes
(DNA) from both communities. Collectively, the above analyses
indicate that species other than Enterobacteriaceae quickly lose
viability and are no longer transcriptionally active after ∼10 d of
long-term starvation. K. pneumoniae quickly becomes the most
abundant member of the community, based on RNA, early during
the long-term stationary phase, but is overtaken by P. alcalifaciens
by days 84 and 100. Notably, ∼10 d is also the length of time re-
quired for starved cultures of E. coli to develop GASP mutations
that allow them to displace wild-type siblings (4).

Whole-Genome Sequencing of Enterobacteriaceae Isolates Reveals
Single Nucleotide Polymorphism Accumulation During Starvation.
DNA obtained from Enterobacteriaceae isolates from days 0,
20, and 84 (Dataset S1) was subjected to Illumina shotgun se-
quencing. Genomes were assembled from each point and com-
pared with the earliest available point for each species (in the
PBS community). There were six nonsynonymous single nucle-
otide polymorphisms (SNPs) observed in the K. pneumoniae and

P. alcalifaciens strains that increased in prevalence to >95%, in
both PBS and PBS:saliva long-term starvation communities
(Dataset S3). In K. pneumoniae, these SNPs occurred in the topB
topoisomerase, the allS_2 LysR family transcriptional regulator,
the glyS glycine tRNA ligase, and the lamB_1 maltoporin. Most
intriguingly, both topoisomerase and LysR-type regulators were
previously identified as GASP alleles, although the mechanism of
the contribution of mutations in these genes to the GASP phenotype
remains unknown (6, 21). Maltoporin, an outer membrane trans-
porter of maltose, has been shown to be critical during adaptation to
new growth conditions (22), and thus likely represents a GASP allele.
In P. alcalifaciens, two SNPs that increased in frequency during long-
term starvation were located in the tamB component of the TAM
translocation and assembly module and in Toxin B (toxB). In-
terestingly, tamBmutants have significantly decreased virulence in K.
pneumoniae and Salmonella enterica (23, 24). Although it is cur-
rently unclear whether these SNPs contributed to the success of
these Enterobacteriaceae during long-term starvation, the fact that
these variants increased in frequency several times, independently,
highlights a need for further investigation.

Enterobacteriaceae Exhibit Shifts in the Transcriptome During Long-
Term Starvation. To obtain information about transcriptional ac-
tivity among the Enterobacteriaceae during the long-term starva-
tion, the cDNA Illumina sequencing reads were mapped to the
assembled genomes of K. pneumoniae, K. oxytoca, and P. alcalifa-
ciens. Genes that were differentially abundant between day 0 and
subsequent times were identified using DeSeq2 (Dataset S4). Gene
ontology terms for each differentially abundant gene were sum-
marized and visualized using Revigo (25) and a custom R script (SI
Appendix, Fig. S1). Eleven, 14, 15, and 5 nonredundant biological
processes exhibited increased expression at days 4, 20, 84, and 100
compared with day 0, respectively. Meanwhile, 22, 10, 20, and 40
nonredundant biological processes exhibited decreased expression
on days 4, 20, 84, and 100, respectively. Interestingly, day 20, the
point at which Enterobacteriaceae had become the most abundant
members of the community, was the only observed point at which
the number of biological processes with increased expression
exceeded the number of biological processes with decreased ex-
pression. Negative regulation of flagellum motility, negative regu-
lation of biofilm formation, and positive regulation of carbohydrate
metabolic processes were the biological processes with the most
highly elevated expression at days 20, 84, and 100 compared
with day 0. By day 100, these three biological processes, along with
positive regulation of catalytic activity, and oxidation-reduction
process were the only biological processes that were up-regulated
compared with day 0. This may suggest that the Enterobacteriaceae
may be attempting to conserve energy and passively transport to
a location with a novel food source. Xylose metabolism, valine
biosynthetic process, and xylose transport were the three most
highly up-regulated biological pathways at day 4, indicating that
these pathways may be important to the Enterobacteriaceae early
during long-term starvation, and that they may play a role in
adapting to new conditions. Collectively, pathway analysis provides

Day 0 Day 4 Day 20 Day 100Day 84

Fig. 2. Colony morphology during long-term starvation. Representative image of the PBS:saliva community on SHI agar after the indicated number of days
of long-term starvation.
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leads for further research into the mechanism behind the success
of the Enterobacteriaceae during long-term starvation.

Natural Products Analysis Indicates Generation of Cyclic Depsipeptides
by Enterobacteriaceae. To explore the dynamics of the small mole-
cules produced by the communities during long-term starvation,
harvested cells, as well as culture supernatants, of both the com-
munity and the isolated strains were analyzed by liquid chroma-
tography mass spectrometry, followed by spectral analysis using
Global Natural Products Social Molecular Networking (GNPS)
(26). As is the present case with most metabolomics analysis, the
majority of MS spectra were unannotated/unknown, with only
∼40% of the spectral clusters mapping to known annotations.
Twenty-five unknown spectral clusters were assigned a putative
molecule class based on molecular networking analysis. The com-
plete molecular network was visualized using Cytoscape (27) and is
available in the SI Appendix, Fig. S3. A large number of the MS
spectra that networked with known lipid spectra were found only in
the cell pellets, congruent with the concept that these are
membrane-associated molecules and are unlikely to be secreted.
There were a large number of MS spectra that only appeared in the
community, either because the species synthesizing them were not
species that were isolated or because isolates that were analyzed did
not make the natural products in a single-species culture. There
were more spectra associated with the Enterobacteriaceae
species than the Streptococci, which could be expected given that
the Enterobacteriaceae quickly increased in relative abundance
in the communities during starvation. Interestingly, valine was sig-
nificantly more abundant at later points (Fig. 4A and SI Appendix,
Fig. S2), in agreement with up-regulation of transcription of valine
biosynthetic processes among the surviving Enterobacteriaceae (SI
Appendix, Fig. S1; day 20). The GNPS Dereplicator identified two

spectral clusters with a GNPS library hit to a cyclic depsipeptide
with a parent mass of 1,124.6 and a cyclic peptide sequence of
MeGlu-O-ξIle-Phe-Pro-Gly-MeVal-MeGlu-ξIle-Pro-Val (Fig. 4 B
and C). Cyclic depsipeptides are a fascinating class of small mole-
cules that frequently have antimicrobial and/or anticancer activity
and are the subject of ongoing research (28–32). These two spectral
clusters networked with two other unidentified spectral clusters
with a parent mass of 1,025.5, which may indicate loss of a valine
residue from the structure of the known cyclic depsipeptide (Fig.
4B). All four cyclic depsipeptide spectral clusters appeared to be
associated with Enterobacteriaceae, based on the number of spec-
tra associated with single-species isolates. This family of molecules
also appeared in the community samples during early times, when
the main shift in species abundance was occurring (∼day 4; Fig.
4A). These molecules may be bactericidal compounds secreted
by the Enterobacteriaceae to kill the neighboring species during
starvation for use in necrotrophy, and further study of these compounds
is warranted.

Enterobacteriaceae Increase in Abundance During Starvation in
Additional Communities from Individual Donors. To ensure that
the phenomenon of the Enterobacteriaceae species becoming
the dominant, living members of the starving community was not
unique to this consortium of bacteria, the same long-term star-
vation experiment (using PBS as starvation media) was performed
on five additional salivary communities, each isolated from the
saliva of a single, healthy individual. 16S rDNA PCR-denaturing
gradient gel electrophoresis was used to monitor taxonomic pro-
files of the five communities during the first 20 d of starvation (SI
Appendix, Fig. S4). The denaturing gradient gel electrophoresis
profiles of Community numbers 1 and 5 contained bands repre-
senting Enterobacteriaceae, as determined by Sanger sequencing of
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the DNA contained within the excised band. Most importantly, the
density of the Enterobacteriaceae bands increased during starva-
tion, concurrent with a decrease in the density of most other bands
within the denaturing gradient gel electrophoresis profile. This
finding signifies an increase in the relative abundance of Enter-
obacteriaceae at the expense of other taxa, indicating that the
phenomenon observed in the main experiment was not exclusive
to that starting community of bacteria. The other three communities
did not appear to have significant numbers of Enterobacteriaceae at
any point (SI Appendix, Fig. S4).

Discussion
This study provides an account of a complex, human-associated
microbial community experiencing the ecological perturbation of
long-term starvation. The finding that Klebsiella and Providencia
species were the apparent sole survivors in a community after long-
term starvation is significant and highly intriguing. K. pneumoniae, K.
oxytoca, and P. alcalifaciens are all members of the Enter-
obacteriaceae family of Proteobacteria. K. pneumoniae is a significant
pathogen and represents the ‘K’ in the ESCKAPE pathogens, a
group of organisms frequently resistant to multiple antibiotics (16).
K. oxytoca and P. alcalifaciens are also opportunistic pathogens and
are frequently drug resistant (17, 18). Oral K. pneumoniae was re-
cently shown to induce inflammation and dysbiosis in the gut after
ectopic colonization, and it was hypothesized that the oral cavity

provides a reservoir for would-be intestinal pathogens, such as
Klebsiella (33). Furthermore, aside from being a substantial path-
ogen in its own right, evidence is accumulating that K. pneumoniae
serves as a key trafficker of drug resistance loci from the environ-
ment to human pathogens (34).
The mechanisms employed by these Enterobacteriaceae to outlast

their neighbors during long-term starvation await investigation. The
Enterobacteriaceae encode among the largest genomes in the oral
microbiome (35) and, as such, have added metabolic flexibility
compared with Streptococci and other common constituents of the
oral cavity (36). It is likely that during long-term starvation, species
with reduced genomes have less metabolic flexibility and are at a
significant disadvantage to Enterobacteriaceae (37). Klebsiella are
diazotrophs, and all Enterobacteriaceae are capable of using nitrate,
S-oxides, and N-oxides as terminal electron acceptors (36). Thus, the
concept that these abilities were advantageous during long-term
starvation remains an attractive hypothesis. In addition, the
MetaOmics analyses performed in this study provided several
additional hypotheses for further investigation. The increased abun-
dance of SNPs in several genes in K. pneumoniae and P. alcalifaciens
may represent GASP mutations, which were originally discovered
in E. coli, another member of the family Enterobacteriaceae (4).
Overall analysis of the Enterobacteriaceae transcriptome
indicated that the species may be attempting to conserve energy and
use passive transport to locate a novel food source. Meanwhile,
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several intriguing cyclic depsipeptides may have been employed by
the Enterobacteriaceae to kill their neighbors.
The results presented here also illustrate the value of RNA-based

detection methods. Although a large number of taxa were present at
all points, according to sequencing of 16S amplicons, as well as met-
agenomes, sequencing of mRNA revealed a much more drastic re-
duction of species during and after the death phase. This loss of
diversity was also reflected in the sequencing of the outgrowth com-
munities and the plating assay, from which only the three Enter-
obacteriaceae species were recoverable at day 20 under the conditions
tested, despite the presence of DNA from amultitude of species in the
community at that time. Because some bacteria are known to enter a
viable but not culturable state during adverse growth conditions, the
lack of taxonomic diversity at the transcriptional level during the later
points of starvation serves as an important validation that the colony-
forming units per milliliter and recoverable species on solid media
reported here are not largely underestimated.
The ability of the Enterobacteriaceae to survive longer than other

members of the saliva microbial community may have a great deal of
clinical significance. Although the long-term starvation model used in
this study is unlikely to simulate the oral cavity, where periods of
starvation are much shorter, it is presumably analogous to the suc-
cession that occurs when human saliva is deposited in environmental
locations not exposed to rapid desiccation. Contaminated hospital
surfaces, particularly sinks, have been the source of outbreaks of
multidrug-resistant Klebsiella (17, 38, 39). It is therefore easy to
imagine a scenario in which Enterobacteriaceae survive for extended
periods in mixtures of saliva and water in sinks and drains, where

aerosol formation after subsequent use of the sink leads to spread of
the infection. This danger is compounded by the frequent horizontal
gene transfer of resistance genes employed by Enterobacteriaceae
(34, 39). Elucidation of the mechanisms used by the Enter-
obacteriaceae to survive long-term starvation in a community setting
is highly important, and further research is currently in progress.

Materials and Methods
More detailedmethods withadditional references areavailable in the SIAppendix.
The starting bacterial community (S-mix), derived from the saliva of six healthy
subjects, ages 25–35 y, has been described previously (15). After overnight growth in
SHI medium in microaerophilic conditions (2%O2, 5%CO2, 93%N2), 1 mL aliquots of
S-mix were starved in either 1× PBS or a 1:1 mixture of 1× PBS and cell-free saliva.
Colony-forming units per milliliter was determined by growth for 72 h on SHI media
agar under microaerophilic conditions. 16S rDNA taxonomic profiling was per-
formed by Illumina sequencing of V2-V4 amplicons, followed by analysis using
QIIME. Metagenomes were assembled de novo using SPAdes and aligned using
Mauve. Metatranscriptomic reads were mapped to Enterobacteriaceae genomes
using Burrows-Wheeler alignment, and genes that were significantly differen-
tially expressed were identified using DeSeq2. Natural products analysis was
performed using reverse-phase high-pressure liquid chromatography followed
by tandem mass spectrometry, as detailed in the SI Appendix. Raw sequencing
data have been deposited in the Sequence Read Archive (SRA) (40, 41).
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