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Abstract

Quantum Measurement with Atomic Cavity Optomechanics

by

Sydney Frances Schreppler

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Dan M. Stamper-Kurn, Chair

A cloud of ultracold atoms trapped within the confines of a high-finesse optical cavity shakes
from the pressure of the light that probes it. This form of measurement backaction, a central
component of quantum measurement theory, is the subject of this dissertation. Enlisting
the collective motion of ultracold atoms as the mechanical degree of freedom in a cavity
optomechanical system, we reach settings cold and quiet enough to allow for the effects of
measurement backaction to manifest. We report predictions for and experimental observa-
tions of the Standard Quantum Limit for force sensitivity, optical ponderomotive squeezing,
and the possibility of complex squeezing through generalized optical correlations.
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Chapter 1

Introduction

The glass must stretch
Down his middle,
Or rather down the edge.
But he’s in doubt
As to which side’s in or out
Of the mirror.
There’s little margin for error,
But there’s no proof, either.
And if half his head’s reflected,
Thought, he thinks, might be affected.

Elizabeth Bishop, “The Gentleman of Shalott”, 1936

1.1 Quantum measurement
This dissertation grapples with quantum measurement as a means, and an obstacle, to

probing the interactions between light and motion. The theory of quantum mechanics intro-
duces fundamental limits to the characterization of an object where the classical world has
none. The existence of these limits has long been an underlying tenet of the theory, though
experimental validation has only been recent. As we explore the boundaries, new methods
to surpass them by harnessing quantum mechanical interactions proliferate, ensuring that
the field of quantum measurement is as dynamic and relevant as ever.

Almost as soon as the process of codifying a quantum theory began, concern about the
measurement problem arose. How could the classical and the quantum be teased apart ex-
perimentally? Though certain delightfully spooky features of quantum mechanics quickly
cemented the theory’s appeal in popular culture (Heisenberg’s uncertainty principle and
Schrödinger’s cat being favorites), the development of a theory for quantum measurement
did not match that of the general quantum mechanics theory in pace. In particular, the
collapse of an object’s wave function was considered by the founders of quantum mechanics,
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but was not relevant for the probability amplitude measurements of the mid-20th century.
Rather, attention waned as many of the experiments testing quantum theory were either
destructive by design (the Stern-Gerlach measurement [1], for example), strongly and irre-
versibly projecting the quantum objects into an eigenstate of the measurement, or they were
ensemble measurements of, for example, many nuclei interacting with strong magnetic fields
(as in nuclear magnetic resonance [2]).

Nonetheless, in the early days of the quantum mechanics revolution, Dirac [3] and soon
after von Neumann [4] realized that in order to test the predictions of quantum mechanics, the
results must somehow be linked to us – classical beings who interact with classical detectors.
Therein lies the importance of rigorous treatment of the quantum measurement theory.
Any tests of quantum mechanics we perform must necessarily include such a quantum-
classical leap, and we must account for it when matching laboratory data to theory. How
does quantum measurement theory differ from classical measurement theory? Wiseman and
Milburn [5] put it well:

As we have discussed, with a classical system an ideal measurement can deter-
mine with certainty the values of all of the system variables. In this situation
of complete knowledge, all subsequent ideal measurement results are determined
with certainty. In consequence, measurement and probability do not play a sig-
nificant role in the foundation of classical mechanics (although they do play a
very significant role in practical applications of classical mechanics, where noise
is inevitable.)

Quantum mechanics, by contrast, does not allow for complete knowledge of the values of
all system variables. Instead, we are given uncertainty relations among variables, telling us
that any additional knowledge of one always comes at the expense of increased uncertainty
in another.

Consider, for example, the bosonic creation and annihilation operators, â and â†, which
are applicable both for describing the motion of a mechanical oscillator and the fluctuations
of electromagnetic field modes. The commutation relations for modes k and k′ are given by,
[âk, âk′ ] = [â†k, â

†
k′ ] = 0 and [âk, â

†
k′ ] = δkk′

1. These operators are not Hermitian, and since we
deal in the realm of real observables in our laboratory, we are more inclined to consider the
canonical quadrature operators X̂AM =

(
â† + â

)
/
√

2 and X̂PM = i
(
â† − â

)
/
√

2. We easily

find that the quadrature operators obey the commutation relation
[
X̂AM, X̂PM

]
= i. This

leads to an inequality in the product of their variances: ∆X2
AM∆X2

PM ≥ 1/4.
This is the famous Heisenberg uncertainty principle, which I will recall and derive in

greater detail later in this dissertation. It can be considered both from the perspective of
the intrinsic uncertainty in the object’s state and from the perspective of the uncertainty in
the measurement record of the object’s state. Ultimately, these uncertainties come from the

1I regret inconsistencies in my use of the Schrödinger picture (â |ψ(t)〉) and the Heisenberg picture
(a(t) |ψ〉) of quantum mechanics throughout this dissertation, though I hope that my inclusion of the depen-
dence of certain terms on t or ω will suggest which representation I am employing in a given case.
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Force

Figure 1.1 : Laser light provides a sensitive meter for the displacement of a forced pendulum. To
further enhance sensitivity, one can enclose the pendulum within an optical cavity that increases
the likelihood that it will interact with the light.

same physical origin, though the latter also relies on the uncertainty in the measurement
device itself. On this subtlety, Braginsky et al. [6] offer philosophical discussion:

The impossibility of describing the quantum measurement process within the frame-
work of the standard evolutionary apparatus of quantum mechanics can be traced
to the fact that the receiver of the measurement’s information is a macroscopic
observer... One thing, however, is evident: The observer cannot even in principle
write down a wave function for himself.

The solution to the problem of classical observers is that of indirect measurement, using a
quantum probe as an intermediary. In this case, the ultimate perturbation of the probed
system is due to the internal uncertainty of the quantum probe, which can be well understood.
An obvious and extensively studied quantum probe is a well-behaved electromagnetic field
mode, the sort that experimentalists can harness thanks to the revolutionary introduction
of the laser to laboratories worldwide.

Imagine that we desire to measure the position of a pendulum (shown schematically in
Fig. 1.1) after it has been subjected to some unknown force. Because of its precise and
minute wavelength, laser light is a desirable meter for such a measurement. We could reflect
light off of the pendulum and then mix the reflected light with reference light to produce
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an interference pattern detectable on a photodiode. Any change in the position of the pen-
dulum will shift the interference fringes in such a way as to give a sensitive displacement
measurement with precision at a fraction of the wavelength of the light. Now suppose that
the interaction of the light with the pendulum is slight – that only some of it reflects while
the rest passes through the space between the atoms that compose the pendulum, unaffected
by their presence. To enhance the likelihood of establishing a detectable signal, we could
place a high-reflectivity mirror on either side of the pendulum, such that light injected into
the region between the mirrors would bounce back and forth many times, increasing its
probability of encountering the pendulum before finally leaking back out of the input mir-
ror, now carrying information about the displacement record. Finally, consider the impact
of quantum measurement theory on such a scheme. Not only does the pendulum have some
fundamental uncertainty in its position at any given time, but also the light we use to probe
it has its own uncertainty. Both contribute to the precision of the measurement. However,
this is not the end of our troubles. Because light carries momentum in the form of radiation
pressure, any light that interacts with the pendulum pushes on it slightly, altering its tra-
jectory. These disruptive kicks, known in quantum measurement parlance as “backaction”,
will further affect the result of the measurement.

Despite the absurdity of the scales2 presented in Fig. 1.1, the schematic nonetheless
demonstrates important aspects of the two testbeds of quantum measurement theory I will
describe in the remainder of this chapter: cavity quantum electrodynamics (CQED) and
cavity optomechanics. Both rely on the technological advances of the latter half of the 20th
century to perform quantum measurements via indirect probing, and both make use of an
electromagnetic resonator, or cavity, which isolates an electromagnetic field mode to assist
in measurement.

1.2 Cavity quantum electrodynamics
Quantum measurement theory is most important at the single-particle level, where back-

action perturbations are strongly felt and cannot be averaged away in a statistical ensemble.
Additionally, weak measurements (those that do not strongly project an object into a certain
state, but rather perturb it minimally) are more reliant on the theory, since they permit the
system to continue its evolution after it has been measured. Braginsky et al. [6] identify the
historical turning point for application of quantum measurement theory:

Although the main principles of the field were elaborated in the 1930s by Bohr,
Schroedinger, Heisenberg, von Neumann and Mandelstam, it was not until the
1980s that technology became sufficiently advanced to allow its application in real
experiments.

2Dirac made the distinction between “big” and “small” objects in his treatment of the measurement
problem, assigning the former to the classical realm, where measurement disturbances could be neglected,
and the latter to the quantum realm, where they could not [3].
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Figure 1.2 : Overlapping a single electromagnetic field mode isolated by an optical cavity with the
electric dipole moment of a two-level atom realizes the Jaynes-Cummings Hamiltonian. Red curve
indicates electric field and circles are atom’s ground and excited electronic states.

The 1970’s and 80’s brought the production of monophotonic light states [7, 8] and the ability
to trap single atoms and ions [9, 10]. These single light and matter particles could then be
subjected to repeated measurements, with the evolution between measurements governed by
quantum measurement theory.

Among the simplest quantum measurement interactions one can consider is that between
a two-level system and a harmonic oscillator3. This basic interaction is exactly the interplay
realized in CQED (Fig. 1.2), where the ground and excited states of an atom play the role
of the two-level system which couples to a resonant mode of an electromagnetic cavity. Such
coupling was first isolated and measured in the 1980’s (Serge Haroche summarizes the early
days of CQED in his Nobel acceptance speech [12]). Tremendous experimental effort resulted
in the realization the Jaynes-Cummings Hamiltonian [13], which was originally constructed
in order to compare the fully quantum and semiclassical treatments of spontaneous emission
in masers, and then reappropriated as a simple and accurate description of CQED dynamics4.

The Hamiltonian itself can be divided into three terms.

HJC = Ha +Hc +Hca

=
1

2
~ωaσ̂z + ~ωcâ†â+ ~g0

[
σ̂+â+ â†σ̂−

] (1.1)

The first term gives the energy of the two-level atom, assuming that a magnetic field oriented
along ẑ has produced the energy splitting between ground and excited states ~ωa, and with
σ̂z the Pauli operator. The second term is the well-known harmonic oscillator Hamiltonian
(with vacuum energy set to zero), here representing the energy of the electromagnetic field,
with ~ωc the spacing between optical energy levels and â the annihilation operator. Finally,
the third term, Hca, is the CQED interaction term, allowing for the exchange of excitations

3This introduction to CQED borrows from the work of Haroche and Raimond [11].
4It took some 20 years from its publication for the Jaynes-Cummings Hamiltonian to find its proper

audience. Frederick Cummings said of the delay, “The silence and zero feedback...for so many years following
1965 was a bit deafening, so I thought it would be best that I go mostly onto other topics... One day in about
1989, I got a tap on the shoulder from a colleague at UCR: ‘I saw your name on the title of a paper’.”[14]
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between the field and the atom at a rate g0. This interaction results in a hybridization of
the states of the two elements, creating an avoided crossing in their energy spectrum given
by ∆EJC = ~

√
∆2
ca + 4g20. Here, ∆ca = ωc−ωa is the relative detuning of the light from the

atomic transition. The coupling rate g0, also called the vacuum Rabi splitting, is found to be
the product of the dipole matrix element of the atomic transition, d, with the cavity mode
electric field strength E0 (which depends on the cavity mode volume and optical frequency),
modified by the overlap of the field with the atomic dipole: g0 = dE0εa

∗ ·εc/~. εa and εc are
polarization unit vectors for the atomic transition and the cavity electric field, respectively.
In the Heisenberg picture, Hca actually contains terms that oscillate both at ωc − ωa and at
ωc + ωa, with the latter being eliminated under the rotating wave approximation.

The relative contributions of g0 and ∆ca to ∆EJC set the two limits of CQED coupling.
When ∆ca � g0, the atom can easily absorb a photon and change its state. This limit is
thus appropriately called the absorptive regime. By contrast, when ∆ca � g0, the light
does not excite an atomic transition, but rather shifts the atomic energy levels slightly. In
complementary fashion, the energy levels of the optical field are shifted by the presence of the
atom, effectively altering the optical path within the cavity and thus changing its resonance
frequency. This is the dispersive regime of CQED, and choosing such a detuning ∆ca allows
for weak probing of either the light by the atom or the atom by the light.

CQED coupling is now realized using many cavity geometries with different kinds of
two-level systems (among them Rydberg atoms [12] and ions [15, 16]), requiring varying
electromagnetic energy scales. Its close cousin, circuit QED [17], couples artificial atoms to
microwave circuits such that the Jaynes-Cummings Hamiltonian is again realized. When the
two-level system is harmonically confined within the cavity, as is the case for some neutral
atom and ion experiments, the particle’s motion can alter the CQED coupling. Though at
first this additional degree of freedom may seem like a hindrance to quantum measurement
pursuits, the remainder of this thesis will explore the kinds of measurements such motionally
inflected coupling permits.

1.3 Cavity optomechanics
When motion intrudes on a CQED measurement, as is the case for a harmonically sus-

pended atom coupled to a cavity mode, the interaction now depends on an additional os-
cillator mode, this time mechanical rather than electromagnetic. This comes about because
the CQED coupling rate g0 acquires a dependence on the position of the atom. In the
dispersive regime, and assuming that the phonon/photon excitation number is conserved
(consistent with the rotating wave approximation), the Jaynes-Cummings interaction term
becomes Hca = ~g0(z)â†âσ̂z. We can describe the atom’s position, z, in terms of bosonic field
operators like those used for the quadratures X̂AM and X̂PM that we built at the beginning
of this chapter, with

ẑ = zHO

(
b̂† + b̂

)
(1.2)
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describing the position fluctuations atop some classical displacement5. The characteristic
harmonic oscillator length is zHO =

√
~

2mωm
for an oscillator of mass m and resonance

frequency ωm. If we assume that the system consists of a ground state atom and n photons
in the cavity on average, such that the eigenstates of the coupled system can be written
as |g(e), n〉 for the ground (excited) state, then

〈
â†âσ̂z

〉
=
〈
e, n

∣∣â†âσ̂z∣∣ g, n− 1
〉

= −n/2 =
−
〈
â†â
〉
/2. Finally the interaction term, Hca = −~g0(ẑ)â†â/2, begins to look like one useful

for a new kind of measurement, more similar to that depicted in the cartoon in Fig. 1.1. By
pushing far to the dispersive regime, where atomic excitation is unlikely, we have isolated
motion as the driver of the dynamics of the light field.

Such interplay between cavity light and mechanical motion is called “cavity optomechan-
ics”. I have just described a special case of its realization through the motional degree of
freedom for a two-level system in CQED. However, in practice, the cavity optomechani-
cal interaction can be realized any time there is dispersive coupling between a mechanical
degree of freedom and a cavity field (See Fig. 1.3), such that the cavity mode frequency
can be expanded in terms of its dependence on the position of the mechanical element:
ωc(z) = ωc(z = 0) + z∂ωc/∂z + z2∂2ωc/∂z

2 + ... . In this dissertation, I will focus on terms
only up to first order in z in this expansion, assuming therefore that the optomechanical cou-
pling, gom = zHO∂ωc/∂ẑ, is constant and describes the frequency shift per unit displacement
of the mechanical oscillator about some static displacement.

Assuming the linear expansion of ωc and substituting Eq. 1.2, we recover a cavity op-
tomechanics Hamiltonian of the form:

Hom = Hm +Hc +Hcm

= ~ωmb̂†b̂+ ~ωcâ†â− ~gomâ
†â
(
b̂+ b̂†

)
.

(1.3)

As was the case with the CQED interaction, this optomechanical interaction should work
both ways. As the oscillator position alters the cavity resonance frequency, so too should
the cavity light alter the position of the oscillator.

But is this second effect realistic? When we consider two canonical optomechanical
geometries, those shown in Fig. 1.3, it seems unlikely. The left schematic is of an optical
cavity with one mirror free to move in such a way that the cavity length will change. Such a
scenario is a simplification of the enormous interferometers built to detect gravitational waves
[18]. Isolated as they are from seismic vibrations, the giant mirrors in these observatories are
free to move, even as they are subjected to large amounts of circulating light. Questions about
the possible backaction of the light on the mirrors motivated early investigations of cavity
optomechanics, leading to a variety of tabletop experiments (Kippenberg and Vahala [19]
and Aspelmeyer et al. [20] provide good reviews) to investigate optomechanics predictions.

One major advance in the field was the realization that the movable object need not
be one of the mirrors. Thompson et al. [21] demonstrated that a partially reflective object

5I am not using a factor of
√

2 in my definition of ẑ so as to be consistent with later chapters of this
dissertation and with some of our publications. Without this factor, the commutator between ẑ and the
momentum operator p̂ = i

(
b̂† − b̂

)
is [ẑ, p̂] = 2i.
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Figure 1.3 : The canonical cavity optomechanical system (left) couples the position of a movable
end mirror to a field resonant within the cavity. An alternative geometry, called “membrane-in-the-
middle” (right), realizes the same optomechanical interaction using fixed mirrors and a partially-
reflective element within the cavity that is free to move.

within the cavity, if positioned appropriately and allowed to move (as shown on the right
side of Fig. 1.3), could realize the same optomechanical Hamiltonian. This is known as a
“membrane-in-the-middle” geometry. By releasing experimentalists from the requirement of
creating mirrors that are both high quality reflectors of light and also high quality mechanical
oscillators, in favor of inserting more accommodating elements like silicon nitride membranes,
this alternative option has contributed to numerous experimental advances.

Another important consideration for realizing the optomechanical interaction is tempera-
ture. Radiation presure-driven motion is always a small effect, and it can be easily swamped
by thermal motion of the oscillator. Experiments in cavity optomechanics, then, often be-
come exercises in the cooling and quieting of mechanical motion. In this sense, an approach
that recalls CQED by employing atoms as mechanical elements has an advantage. The field
of ultracold atomic physics has a long and well-trodden history of cooling atoms [22] and
ions [23] to their electronic and motional ground states. The experimental apparatus upon
which this dissertation is built does just that, placing ground-state atoms inside a cavity and
observing the interaction between their motional modes and the cavity field. I will discuss
our cavity optomechanics platform in greater detail in Ch. 2.

Cavity optomechanics has blossomed from an offshoot of gravitational wave observatories
to its own branch of quantum optics experiments (see Aspelmeyer et al. [20] for a recent
review). As in CQED, there now exist numerous cavity-oscillator geometries that can test
the mechanics of quantum measurement (or the measurement of quantum mechanics). To
date, experiments have demonstrated such effects as cavity cooling of mechanics [24] even
to the motional ground state [25], the squeezing of light [26–28] and of mechanical motion
[29], and entanglement between mechanical motion and an electromagnetic field [30]. Still
there are outstanding goals yet to be achieved, though ever-improving experimental control
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suggests that tests of quantum gravity [31] or classical decoherence [32], for example, are not
far off.

1.4 Combining the elements
I joined the effort for performing quantum measurement using atomic cavity optome-

chanics in the fall of 2010, the same year that ground-state cooling of a macroscopic object
[33] was voted by AAAS as the “Breakthrough of the Year”, galvanizing the optomechanics
community in its quest to observe quantum effects. It was a time of excitement, too, for
the cavity optomechanics experiment embedded in Dan Stamper-Kurn’s Ultracold Atomic
Physics group at UC Berkeley. The apparatus that graduate students Tom Purdy and Dan
Brooks had designed and built (called “E3” within the group) to combine the effects of CQED
and cavity optomechanics was functioning and had produced results confirming its ability to
isolate and measure optomechanical interactions [34] between the center-of-mass motion of
a cloud of rubidium atoms and a laser field within a high-finesse cavity. Now Dan, graduate
student Thierry Botter, and postdoc Nathan Brahms, were excited to take advantage of the
very cold mechanical oscillator to measure an effect long predicted but never demonstrated:
ponderomotive squeezing, the mechanically-mediated reduction of optical fluctuations below
the vacuum limit.

My introduction to cold atomic physics in general and to E3 in particular came during
the pursuit of this measurement [26]. It took many hands to maintain the stability of
the apparatus through the long session of data taking. One of my contributions was a
wavemeter feedback scheme for long-term laser frequency stabilization that I will describe in
Ch. 2. In the years since, we have revisited the theory of ponderomotive squeezing and have
taken some exploratory data to understand how it changes with experimental parameters,
as I will describe in Ch. 4. I enjoyed two years of collaboration with Dan, Thierry, and
Nathan, taking advantage of their wealth of experience and their patient teaching as we
explored optomechanical calorimetry [35] and measurements in an optical superlattice [36],
a new experimental tool I will discuss in Ch. 2. Soon after their departure, a new postdoc,
Nicolas Spethmann, joined me just as we began measurements of force sensitivity [37], an
experiment that benefited from the contributions of undergraduate Maryrose Barrios. For
this experiment, we had to develop the technique of calibrated force application using a
superlattice and new analysis techniques, described in Ch. 3. Accompanied by a new graduate
student, Jonathan Kohler, we next set out to explore multi-oscillator optomechanics [38].
Lukas Buchmann, a theory postdoc, helped us to understand the cavity-mediated coupling
between the oscillators and guided us through our theoretical investigation of a new form of
optical squeezing: complex squeezing [39]. I include a theoretical description of the effect in
Ch. 5 that differs from that in Buchmann et al. [39] and some early experimental efforts to
observe complex squeezing. Throughout my time, I have benefited from the guidance and
encouragement of Dan Stamper-Kurn and the assistance and wisdom of my colleagues from
the other experiments within the Ultracold group as well. Now, as Nicolas and I prepare to
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leave E3, Jonathan has already tuned the apparatus to couple atomic spin dynamics to cavity
light, a novel interaction that has been termed “spin optodynamics” [40] and will allow for
analogous measurements that can surpass the limitations of atomic mechanical oscillators.

This dissertation will describe three of the quantum measurement experiments performed
(or in one case, proposed) during my tenure in the Ultracold group. I have chosen to focus on
experiments that emphasize the nature of measurement backaction: how it can be detected,
tuned, and perhaps, through careful accounting, avoided. This follows a trend of recent
work in quantum optics measurement (both theoretical [6, 41, 42] and experimental [43])
investigating whether and where we can move backaction to improve upon limits.

Chapter 2 will describe the apparatus in greater detail and step through some of the
technologies we have introduced that allow access to new limits of quantum measurement. Of
particular importance are tools that permit us to assemble statistical ensembles by exerting
stabilizing influences over the days and sometimes weeks when we must acquire data in an
unchanging environment. Chapter 3 will describe a specific quantum measurement these
tools allow us to perform – measuring forces near the Standard Quantum Limit. This lower
bound on force sensitivity is the result of a careful balance of measurement imprecision from
probe fluctuations and the additional uncertainty introduced by the same probe through
measurement backaction. Chapter 4 introduces the concept of ponderomotive squeezing,
including our experimental realization of the effect. Chapter 5 builds and generalizes upon
the concepts in Ch. 4 to develop the concept of complex squeezing, and offers prospects for
its application to quantum measurement.
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Chapter 2

Tools

Here come real stars to fill the upper skies,
And here on earth come emulating flies,
That though they never equal stars in size,
(And they were never really stars at heart)
Achieve at times a very star-like start.
Only, of course, they can’t sustain the part.

Robert Frost, “Fireflies in the Garden”, 1928

2.1 Introduction
Performing an experiment that exhibits the characteristics of quantum measurement re-

quires fine control of the environment. In Ch. 1, I described methods of separating quantum
systems from classical observers so as to be sensitive to the effects of quantum limits. This
chapter will review some of the tools used in our atomic cavity optomechanics experiment,
particularly highlighting those relevant for experimental realizations of quantum-limited force
sensing, ponderomotive squeezing, and complex squeezing, as these efforts will be discussed
in later chapters. First, I will describe the atom chip and optical cavity that generate
our optomechanical interaction. Then, I will detail the installation and use of an optical
fiber-switch and wavemeter-based lock for optical frequency stability necessary for multi-
day data acquisition. Next, I will give an overview of the superlattice potential we use to
separate spectrally mechanical oscillators and how it can be additionally employed to apply
well-calibrated forces to the oscillators. Finally, I will introduce our experimental optical
heterodyne detection scheme and phase-insensitive heterodyne lock for data acquisition.
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2.2 Atom chip and optical cavity
In Ch. 1 I introduced the concepts of cavity QED and cavity optomechanics, describing

how a two-level atom coupled to a cavity could, through its mechanical degree of freedom,
realize both CQED and cavity optomechanical couplings. I took the time to describe both
CQED and cavity optomechanics interactions because the experimental system employed
throughout this dissertation is a combination of the two.

The apparatus we use for investigating quantummeasurement with atomic cavity optome-
chanics was expertly designed and built by Tom Purdy and Dan Brooks, as documented in
Tom’s dissertation [44]. That the apparatus has continued to run beautifully for so many
years is a testament to their good planning and technical prowess. Then and now, each
experiment begins with the a spray of rubidium-87 atoms into an ultrahigh-vacuum cham-
ber. The spray comes from an alkali metal dispenser1 containing a stable salt that releases
rubidium gas when the dispenser is heated by an applied dc current. The first step of a mul-
tistage cooling and trapping procedure (shown in Fig. 2.1) is to capture some of these atoms
in a magneto-optical trap (MOT). Use of a MOT is the first indication of our experimental
requirement for ultrahigh vacuum. Within the MOT, the atoms are cooled from 300 K down
more than 6 orders of magnitude in temperature, enough so that they cannot escape the
confines of their trapping potentials. However, a particle not subjected to the same cooling
could easily collide with a trapped Rb atom and impart enough energy to free it from its
trap. Thus, if we want to be able to collect a large sample of atoms in the MOT over many
seconds, we must limit the number of disruptive particles present.

The steel vacuum chamber that encloses the atom chip-cavity setup has ports for electrical
feedthroughs (important for the signals that produce chip-based magnetic fields and lock the
cavity), vacuum pumps, and optical access to the experimental procedure. Optical access
allows us to characterize the temperature of the atoms at each stage of their preparation,
extrapolating via time-of-flight measurements2 to determine the size and temperature of the
cloud in each kind of trap.

After the MOT stage, the atoms are transferred (via a second MOT stage during which
they are compressed, cooled through forced RF evaporation, and optically pumped into the
|F = 2,mF = −2〉 state) to a magnetic trap generated by wires on an atom chip. The atom
chip is crucial to the measurements I will describe in this dissertation because it allows for
the application of very strong magnetic field gradients that can compress the atomic cloud to
dimensions smaller than an optical wavelength. When combined with an external bias field,
a single current-carrying wire can produce a magnetic field gradient ∇B ∝ I/r2, where r is
the distance from and I is the current through the wire. Proximity to the wire is therefore
essential for strong gradients. The atom chip in E3 is placed very close to the atoms and
still supports substantial currents through its wires, with magnetic traps approximately 100

1SAES Getters rubidium dispensers
2A time-of-flight measurement gives the temperature of an atomic cloud by comparing the size of the

cloud as a function of time since it was released from a trap to a temperature-dependent expansion model.
Hot clouds expand faster than cold clouds.
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Figure 2.1 : Schematic (top, not to scale) and photograph (bottom) of the atom chip and cavity.
The procedure of creating an atomic optomechanical sample is: 1) Load MOT from background
vapor. 2) Transfer to U-MOT with magnetic fields produced by U-wires on chip. 3) Compress,
cool with evaporation and polarization gradient cooling, and optically pump atoms to magnetically
trappable state. 4) Transfer to magnetic trap produced by waveguide and conveyer-belt wires. 5)
Translate magnetic trap toward optical cavity by modulating currents in chip wires. 6) Use chip-
based and bias fields to position atoms at desired location along cavity axis, perform compression
and evaporative cooling before turning off magnetic traps as optical traps are ramped on. 7) Perform
optical evaporative cooling by temporarily reducing lattice depth. Photograph by Tom Purdy.



2.2. ATOM CHIP AND OPTICAL CAVITY 14

microns from the chip surface and currents of a few Amperes. The first in the sequence of
magnetic traps generated by the chip, however, is large and shallow, so that it overlaps well
with the large and shallow MOT, optimizing the handoff of the atoms by reducing heating
and losses. Once the atoms are fully in the chip’s control, the currents through the chip wires
are modulated so as to translate the magnetic field minimum, and therefore the atomic cloud,
to a region between the mirrors of the optical cavity, as depicted in Fig. 2.1.

In the final part of this translation, we additionally use magnetic bias fields produced
by large magnetic coils outside of the vacuum chamber to help the chip direct the atoms
carefully to overlap with a region of interest along the cavity. Our goal is to isolate atoms
to a particular single site of a one-dimensional optical lattice produced by a standing-wave
of light within the optical cavity, an important factor in tuning optomechanical coupling, as
I will soon explain. To this end, the atom chip’s final contribution is to compress further
the cloud before we apply another forced RF evaporation. This second stage of cooling also
ensures that the all of the atoms are in the ground state of the optical lattice potential within
the cavity once the chip-based trap is turned off. Occupying the ground state of mechanical
motion is the first step for each of the quantum measurements discussed in this dissertation,
as warm oscillators can obscure quantum effects. We will see, for example, that even slight
excursions from the ground state increase the mechanical linewidth due to the anharmonic
nature of the optical potential.

The cavity itself is a high-finesse near-planar Fabry-Pérot resonator with the output
mirror eight times more transmissive than the input mirror. Both mirrors have a radius
of curvature of 5 cm and are separated by 250 µm. Each mirror has a multilayer dielectric
coating that makes it maximally reflective for light near 780 nm, the D2 transition wavelength
of 87Rb, where the cavity has a measured half-linewidth of κ = 2π×1.82 MHz. An important
parameter of the cavity for its use in CQED and cavity optomechanics experiments is the
mode waist, since for a near-planar cavity the CQED coupling rate g0 is inversely proportional
to this value. With a mode waist of 25 µm, our cavity allows us to reach the strong-coupling
regime of CQED, where the CQED cooperativity C = g20/2κγ > 1, with γ the full-linewidth
of the atomic transition.

The one-dimensional optical lattice potential within the cavity is generated by one or
two standing-waves of laser light resonant with separate TEM00 modes of the cavity. All of
the lasers that enter the cavity have been previously frequency-referenced to each other by a
transfer cavity locking chain, which I will discuss later in this chapter. The trapping lasers
have wavelengths of approximately 850 nm, very far detuned from the atomic transition
so as to produce an optical dipole trapping (ODT) potential. Once the atoms are in the
all-optical trap, we perform an additional stage of evaporative cooling to bring them to their
final temperature. We have found that this final evaporation is necessary to limit the number
of atoms heated out of the motional ground state, especially in cases where we introduce a
second trap laser which seems to contribute some additional heating, as quantified by time-
of-flight measurements and sideband asymmetry thermometry [35]. This heating manifests
as a broadening of the mechanical linewidth. In Ch. 3, we will see that in some cases we have
sufficient resolution of this broadening to count the atoms that have been heated out of the
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Figure 2.2 : Because of incommensurate wavelengths of trap light (850 nm) and probe light (780
nm), the potential minima (intensity maxima) of the trap sometimes align with a local probe field
that changes linearly and sometimes with one that changes quadratically.

ground state. Optical evaporative cooling also serves to eliminate most of the residual atoms
in wells neighboring our lattice site of interest. Since those neighboring sites have slightly
different optomechanical coupling rates, we are therefore able to evaporate to a more pure
linear optomechanical interaction.

The cooling, trapping, transport, and placement stages complete, the atoms finally are
allowed to interact with a weak probe we introduce as yet another standing wave within the
cavity (see Fig. 2.2). Since the trap and probe fields are of incommensurate wavelength,
some anti-nodes of the trap light (which attract the atoms and define the potential wells)
overlap with regions of the probe field that change linearly with position along the cavity
axis, z, others with a quadratically changing probe field, and others with some combination
of the two.

The probe frequency is close to the atoms’ |F = 2,mF = −2〉 → |F = 3,mF = −3〉 tran-
sition, yet still detuned sufficiently to be well within the dispersive limit of CQED. In Ch. 1
I described CQED coupling for a single atom in the dispersive limit, and showed how an
optomechanical interaction could come about. At this point in our experimental proce-
dure, we have a few thousand atoms trapped in one to two sites of the optical lattice. The
Tavis-Cummings Hamiltonian [45] is the expansion of the Jaynes-Cummings Hamiltonian to
the many-atom case, such that g0 →

∑N
i=1 g

2
0(zi). Even assuming that the atoms are non-

interacting, it is not obvious whether the system should behave as it does in the single-atom
case, since each atom may move in any direction relative to the others. Kater Murch’s the-
sis [46] provides a careful derivation of how optomechanical coupling to the center-of-mass
motion of the atoms within the cavity comes about from the Tavis-Cummings CQED inter-
action. Though there are as many motional modes along the cavity axis as there are atoms,
the degeneracy of these modes is lifted by the presence of a static optical spring shift pro-
portional to the number of atoms, and the collective center-of-mass mode is selected as the
fundamental eigenmode of the system. We refer to this motional mode as our atomic “me-
chanical oscillator”, and observe that it behaves according to the same equations of motion
as apply to solid-state mechanical oscillators [34].

Though the dynamics we observe suggest that this picture is mostly true, we find that
in some circumstances we must reexamine the assumptions made in concluding that all
of the atoms contribute to the collective ground-state center-of-mass mode. In particular,
we typically assume that excursions of the atoms are small compared to both the trap
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and the probe wavelengths, justified for ground-state atoms with zHO � k where k is the
optical wavenumber. This allows us to simplify the spatial-dependence of the coupling as
g20 sin2(kpz)→ g20kpz. In practice, however, we observe that in certain settings a substantial
fraction of the atoms explore greater and greater extents of the trap, no longer settled in their
ground states. This requires us to consider higher orders in the expansion of gom. Recall
that in transitioning from the CQED to the cavity optomechanics Hamiltonian in Ch. 1,
we assumed that |g(e), n〉 were the only system eigenstates available. This is no longer the
case when additional mechanical excitations can occur. These excitations contribute to a
broadening of the mechanical linewidth that we can capture by expanding to higher order
the approximations made in deriving the linear optomechanical Hamiltonian for our system.
I will discuss the effects of this in greater detail in Ch. 3.

As in the case of, for example, a silicon nitride membrane [21], the initial position of our
atoms along the cavity axis is of great importance for determining their coupling to the probe
field. The linear optomechanical coupling described in Ch. 1 is most nearly achieved at the
location of linear probe intensity gradient, such that as the atoms make small excursions
from the minimum of their potential well they encounter probe power that is proportional
to their displacement. Again, in practice, we are imperfect. We have a limited number of
lattice sites from which to choose, none of which will overlap precisely with the node of the
probe’s electric field (we are especially sensitive to this when we try to match the coupling of
two mechanical oscillators in Spethmann et al. [38]). Nonetheless, the atom chip’s dexterity
in placing the atoms allows us to optimize for the linear case. We can calibrate the coupling
observed in various lattice sites by placing the atoms at a variety of locations along the cavity
axis and measuring the resulting cavity frequency shift, a technique I will expand upon in
Ch. 3.

Finally, I will point out the ease with which we can adjust the optomechanical cooper-
ativity Com = 4n̄g2om/κΓ (where Γ is the mechanical linewidth and gom = Nag

2
0kpzHO/∆ca

is the optomechanical coupling rate, with Na the atom number, kp the probe wavenumber,
and zHO the harmonic oscillator length) in our system by changing either the average probe
photon number n̄ or its detuning from atomic resonance ∆ca. This tunability is important
for investigating the effects of measurement backaction, as will be seen especially in Ch. 3.

2.3 Fiber switch
Two aspects of the quantum measurements we perform with our apparatus necessitate

long-term stability of experimental conditions. Because many of the signals we measure are
small when compared to the various noise sources that surround them, the experimental
averaging time must surpass the signal coherence time by at least the noise-to-signal ratio.
Additionally, we construct measurements of the quantum mechanical state through ensemble
averages, requiring many realizations of the same experiment to fill a region in phase space.
However, because of limited trapping times and steady heating of our oscillator due to its
coupling to other motional modes, each experimental realization is limited to measurement
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records of only about 10 ms, after which the atomic oscillator must be discarded and the
preparation and measurement process begun anew. The experimental duty cycle is usually
30-40 seconds. Thus, though the signals we measure are usually at frequencies of 100 kHz
with decay rates of a few kHz (meaning their coherence typically lasts less than a millisecond),
we require the stability of optical frequencies, for example, over weeks at a time.

A common way to stabilize an optical frequency, particularly of a laser which will be
employed in the probing of atoms, is to reference the frequency to an atomic transition [47].
We use such stabilization for the cooling lasers that prepare our atomic sample. This light
needs to be detuned at most by a few hundred MHz from the atomic transition, an offset
which can be achieved using standard acousto-optic modulators. The lasers that we inject
into the cavity to trap and probe the atoms, however, are farther detuned from resonances
of interest (10’s of THz and 10’s of GHz offset, respectively). Furthermore, the sensitivity
of the trapping and measurement to small frequency differences is not acute. Nonetheless,
it is important for our experiment that we stabilize the cavity lasers relative to each other
and to the cavity, and that the probe light frequency not drift on the order of GHz over the
period of data taking.

The relative stabilization of probing and trapping lasers is achieved by referencing them
to a common “transfer cavity”3 using a Pound-Drever-Hall lock. The length of the “science
cavity” used for optomechanical measurement is subsequently locked to one of the trapping
lasers, completing the chain of frequency referencing. Thus the lasers and the science cavity
itself all follow any drifts in the length of the transfer cavity. During measurements of
ponderomotive squeezing (presented in Ch. 4), we noticed that the long-term changes in
the length of the transfer cavity occasionally allowed the probe light frequency to drift up
to several GHz from week to week, as measured on a high precision wavemeter4. Not only
were these frequency changes enough to affect the cooperativity of our measurements, but
also they would frequently drag the laser frequency to the edge of the range of the Pound-
Drever-Hall lock, such that the referencing would be lost and the lock chain would have to
be reestablished.

To remedy this, we introduced an additional slow feedback system (see Fig. 2.3) to stabi-
lize the long-term drifts of probe frequency. In addition to selecting a small portion of probe
light to use for the transfer cavity lock, we send some light to a 12 channel serial-controlled
optical fiber switch 5 that directs the input channels to the wavemeter. We introduce a dig-
ital proportional-integral-derivative (PID) controller that compares the wavemeter monitor
to a frequency setpoint and produces an error signal with proportional and integral gain
that can be tuned in-loop. We then feed the error signal back to a thermoelectric cooling
(TEC) element attached to the the transfer cavity. The TEC can control the temperature,
and therefore the length, of the cavity, so as to restrict one of its modes (the one resonant
with the probe) to maintain the probe’s frequency setpoint.

3Toptica FPI 100 Confocal Fabry-Pérot Interferometer, inside an evacuated chamber, set atop Sorbothane
for vibrational isolation

4Toptica WS-7 HighFinesse Wavelength Meter
5DiCon Fiberoptics MEMS 1× 12 optical switch, customized for near IR wavelength range
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Figure 2.3 : Wavemeter lock schematic. The fiber switch receives light from the probe laser that
has been referenced to the transfer cavity. The switch then directs the light to the high precision
wavemeter. Wavelength measurements made on the fiber switch channel of interest are directed to a
digital PI control (no derivative gain) which feeds back to the TEC that adjusts the transfer cavity
length. In this diagram, blue components signify electrical connections, and black components are
optical. An additional digital system controls the switch position, typically allowing it to cycle
constantly through the open channels.
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Figure 2.4 : Two trapping tones (red and purple, top) are superimposed within the cavity to create an
overall superlattice potential (red-purple gradient, bottom) which provides varied trap frequencies
at its trapping sites. We can choose a set of neighboring loading sites that maximize spectral
separation between α and β so that we can easily resolve their responses and address the oscillators
individually.

The fiber-switch allows us to share the functionality of the high precision wavemeter
among the several rooms that house our research group. It is usually set to cycle constantly
through its input channels in such a way that light piped in from nearby rooms is sampled
at rates high enough to allow for slow feedback to be implemented in multiple laboratories.
The fiber switch, wavemeter readout, and transfer cavity feedback are all controlled through
LabView codes interfacing with the three components through RS-232, USB, and analog
output channels, respectively. The feedback protocol is a digital PID controller with gain
parameters that can be adjusted in-loop.

2.4 Mechanical superlattice
The task of stabilizing and referencing the cavity lasers is made more difficult by our

use of two separate lasers to produce optical lattice potentials, which together combine to
form a one-dimensional superlattice. The added ability to create multiple spectrally separate
oscillators and apply forces to them individually, though, makes the increased complexity of
the experimental apparatus well worth the trouble.

We inject two lasers with wavelengths of approximately 840 nm and 860 nm (red and
purple lines in Fig. 2.4) into the cavity. The cavity length is adjusted using feedback to a
piezoelectric device upon which one of the cavity mirrors is mounted so that one of the lasers
is always resonant with one of the cavity’s TEM00 modes. Because the lasers have already
been referenced to each other on the transfer cavity, both are subsequently resonant with sep-
arate TEM00 modes of the science cavity. The atoms experience the sum of their intensities,
an optical superlattice, with total potential U(z) = |UA| sin2(kAz+φA)+ |UB| sin2(kBz+φB)
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Figure 2.5 : Spectra of mechanical response for different loading parameters of the superlattice
potential, offset for clarity. By tuning the chip-based magnetic fields when loading atoms into the
superlattice and changing the levels of evaporation to vary overall atom number, we can select to
load either site α or β or both. We see a clear spectral separation between the sites. Since the
mechanical response spectrum also follows the susceptibility to applied force, the distinct peaks
mean that we can individually address the oscillators with forces as well.

(where I am neglecting the small contribution of the probe to the optical dipole potential).
We can find the minima of the potential, the locations of the trap sites, by solving ∂U/∂z = 0.
The minima occur at locations z for which this equality holds:

∂UA
∂z

= −∂UB
∂z

. (2.1)

Noting that these derivatives give the force of the optical traps, we recover the (admittedly
unsurprising) result that the minima of the superlattice potential are locations for which the
forces from the optical fields are equal and opposite, such that FA(z) = −FB(z). A careful
accounting of the components of force within the superlattice will be necessary in Ch. 3,
when we calibrate forces we apply by modulating one of the optical traps.

With incommensurate wavelengths, the two trap lasers produce a superlattice with a
trap frequency (assuming harmonic confinement), ωm(z) =

√
− 1
m
∂2U
∂z

, that varies along the
cavity axis. In practice, we are able to separate trap frequencies in adjacent sites by as much
as 15 kHz, enough to distinguish well the spectra of neighboring oscillators with few kHz
linewidths [36].

Figure 2.5 shows power spectral densities for noise-driven oscillators in our superlattice
potential. These curves also demonstrate the spectral susceptibility of each oscillator to
applied forces. Because the peaks do not overlap, we can modulate the superlattice at the
resonance frequency of one oscillator, forcing it strongly, without disrupting the other [36, 38].
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Figure 2.6 : Scheme of lattice modulation for applying forces. (a) By modulating the amplitude of
one trapping laser, we cause the mechanical oscillator to follow the potential minimum as it shifts
along the cavity axis. This shift is then imprinted onto the probe. (b) A close-up of the trap
potential near the atoms yields the components of the force. The two trap lasers provide equal and
opposite force against the atoms, and this force changes as the potential minimum shifts.

The superlattice potential therefore provides us with both the spectral separation of and the
means to address individually multiple oscillators. Though we can alternatively apply forces
to the atoms using the probe light or magnetic fields, we find that forces applied with the
superlattice afford us the best control without introducing additional noise or confounding
our measurements6.

I will go into greater quantitative detail about the calibration of the forces applied by
modulation of one component of the superlattice in Ch. 3. Here, I offer a schematic rep-
resentation of force application using an optical lattice in Fig. 2.6. By modulating the
power of one lattice component, UB, we shift the minimum of the entire superlattice along
a path that has some non-zero projection along the cavity axis. This is possible because,
although the atoms are trapped at an intensity maximum of the total superlattice poten-
tial, they actually encounter a linear intensity gradient of each individual trap laser, where
∂UA/∂z = −∂UB/∂z 6= 0. These intensity gradients produce equal and opposite forces from
the two trap lasers, which are modified by the shaking of one of the traps. The resulting
motion of the atoms imprints onto the probe light in the usual optomechanical interaction.

2.5 Heterodyne detection
Once the probe light has been allowed to interact with the mechanical oscillator and carry

information about its motion out of the cavity, we wish to collect that information from the
light. The first measurements made with our apparatus used a detector that counted single
photons, gleaning spectral information from the photon arrival times. For a measurement
like ponderomotive squeezing, it is advantageous to have phase-sensitive detection, since
the signal of interest can appear in the phase of the light. A photon counting detector

6When we modulate the probe light in order to apply a force, a record of that modulation will appear
in the heterodyne measurement, though this can be taken into account through network analysis, as was
performed in Ref. [26].
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is completely insensitive to the light’s phase. A homodyne receiver, by providing a phase
reference in the form of a local oscillator (LO), offers the ability to tune the detection phase7.
In homodyne detection, the signal of interest (usually modulations on top of some classical
carrier wave) is beat with LO light with the same carrier frequency as the signal, realizing
an effective Mach-Zehnder interferometer. The relative phase of the LO light determines
whether the beat note measured by a photodetector carries information about the phase
modulation (PM) or amplitude modulation (AM) of the signal light.

Because the LO and the signal have the same carrier frequency, spectral analysis of the
homodyne beat note shows the information of interest at frequencies near dc, with spectral
density (assuming the measurement of amplitude fluctuations in the AM quadrature)

SHom(ω) = Ssn + 2PLOPsδ(ω) + Pmod [δ(ω + ωmod) + δ(ω − ωmod)] , (2.2)

where Ssn is the shot-noise spectral density, PLO is the power of the LO, Ps the power
of the signal, and Pmod the power of the modulation of interest at frequency ωmod. This is
problematic experimentally, since some unavoidable sources of laboratory noise (LO intensity
fluctuations, electrical noise in detectors) occur at low frequencies. Instead, we opt for
heterodyne detection by detuning the LO by 10 MHz from the signal. Frequencies around
10 MHz are ideal for our particular experiment because they are well above most noise
sources and also above frequencies of experimental interest like the mechanical resonance
frequency of the atoms, while remaining low enough that the beat spectrum can be captured
by standard photodetectors and oscilloscopes. A heterodyne power spectral density has the
form

SHet(ω) =Ssn + PLOPs [δ(ω − ωHet) + δ(ω + ωHet)]

+
Pmod

2

[
δ(ω − ωHet + ωmod) + δ(ω − ωHet − ωmod)

+ δ(ω + ωHet − ωmod) + δ(ω + ωHet + ωmod)

]
,

(2.3)

The beat note is a large signal at ωHet with the modulations of interest now displaced in
frequency to ωHet ± ωmod. The LO cycles through its phase relative to the signal at a rate
set by ωHet. It therefore gathers information about PM half the time and AM half the time.
These two sets of information can be disentangled through demodulation of the measurement
record.

Because heterodyne detection is designed for sensitivity to small phase differences between
the signal and the local oscillator, drifts in path length difference due to thermal fluctuations
of optics could spoil the signal of interest. In our case, the signals we are trying to measure
occur at frequencies at and above 100 kHz. Environmentally-induced fluctuations in path
length should be restricted to much lower frequency bands. In the past, we actively stabilized
the path length difference through a phase-lock feedback scheme by inserting a piezo-driven
mirror into the LO path (see Fig. 2.7). The additional complexity of this solution made

7Thierry Botter’s thesis [48] provides a detailed and accessible review of the quantum optics of balanced
homodyne detection.
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Figure 2.7 : Top: old heterodyne lock for referencing probe frequency to cavity frequency. The
heterodyne signal is demodulated in parallel three times, once at the heterodyne frequency ωHet

to establish an error signal for feedback to a piezo-electrically driven mirror that maintains the
relative LO phase, and once each at the modulation sideband frequencies ωHet ± ωmod to recover
(demodulation-phase-sensitive) power in each sideband. We can then compare the power in each
sideband to determine the detuning of the probe. Though all demodulation frequencies are refer-
enced to the same clock, the demodulation phase required for the lock sidebands must be optimized
based on detuning. Bottom: new locking scheme that eliminates demodulation phase dependence
and piezo-electric driven mirror. Heterodyne signal is now demodulated at an intermediate fre-
quency which falls in the narrow bandpass of an RF filter (Murata ceramic filter, 455 kHz center
frequency, 10 kHz stopband) before a logarithmic amplifier and RF power detector select the power
in each sideband to compare as before.



2.5. HETERODYNE DETECTION 24

the locking chain for experimental operation cumbersome, since the phase of the signal fed
into the phase lock had to be adjusted depending on detuning of the probe light. Instead,
we moved to correct environmental phase drifts digitally, without bothering to perform any
phase-locking of the signal and LO paths. Appendix A describes the process and shows
an example of the code we use for demodulation. The choice of digital filters for such a
process is important, since errors in quadrature correction could affect the signal we hope to
measure.

The heterodyne signal also contains the information we use to stabilize the frequency of
the probe laser relative to the cavity resonance. Before the probe is injected into the cavity,
we phase-modulate it using an electro-optic modulator (EOM). The resulting sidebands
appear in our heterodyne measurement record, where the ratio of the power of the sidebands
reveals the location of the probe tone along the spectral slope of the cavity. For example,
in Fig. 2.7, the blue sideband is slightly taller than the red sideband, suggesting ∆pc =
ωp − ωc < 0 for probe frequency ωp. To feed back to the probe frequency, thus maintaining
its detuning from cavity resonance during measurements, we direct a copy of the heterodyne
signal first through an slightly offset demodulation stage and then to a set of narrow analog
filters that isolate the locking sidebands, as shown in Fig. 2.7.

We then use matched pairs of RF logarithmic amplifiers and power detectors to measure
the power in each sideband. The difference in the powers is the error signal for our feedback
loop. In addition to feeding back to the difference, we also digitally record the derived
detuning,

∆pc =
−ωmod +

√
ω2

mod − r2(ω2
mod + κ2)

r
, (2.4)

where r = (Sb − Sr)/(Sb + Sr) is the normalized difference between the power in the blue
sideband Sb and that in the red sideband Sr, for each experimental realization. This probe
frequency locking method is an improvement over a previous version that required analog de-
modulation of the heterodyne signal. Though we phase-referenced the demodulation signals
to the modulating tones used on the EOM, the quadrature rotation imprinted by the cavity
at different detunings required us to adjust the demodulation phase regularly. By contrast,
a phase-insensitive scheme that only picks out power in a narrow bandwidth around the
locking tones is more robust. Regardless of how we generate the error signal, we feed back to
an acousto-optic modulator (AOM) that is shared between the signal and LO paths. This is
important because in feeding back to the frequency of the probe we do not want to change
the relative heterodyne frequency as well.

Figure 2.8 reveals the importance of phase sensitive detection. Optomechanically medi-
ated modulations in the cavity resonance frequency shift the cavity transmission maximum
relative to the static probe tone. When the probe light is resonant with the cavity, this has
little impact on the amplitude of the light transmitted, but greatly alters the phase. Thus
optomechanical signals appear in the PM detection quadrature. Halfway down the slope, at
a detuning of the cavity half-linewidth κ, these roles are mostly reversed, and the optome-
chanical signals appear in the AM. Therefore, for maximal sensitivity to the optomechanical
signal, we would choose to detect in the correct output quadrature.
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Figure 2.8 : The probe light is referenced to the cavity resonance by comparing the power in two
locking sidebands. When the probe is resonant with the cavity (equal power sideband condition), the
optomechanical signal appears in sidebands at frequencies ±ωm in the PM quadrature. Detuning the
probe from cavity resonance allows the optomechanical response to appear in the AM quadrature.

Optical path component Signal transduction efficiency
Cavity 0.3
Detection path optics 0.9
LO/signal mode matching 0.9
Photodetector quantum efficiency 0.8
Heterodyne penalty 0.5
Total ε 0.1

Table 2.1 : Components of overall heterodyne detection efficiency in our optical path, with typical
values for their transduction efficiency.

As a final consideration for heterodyne detection, I note the importance of identifying and
quantifying all of the loss mechanisms that lead to reduced detection efficiency in our system.
Because of its importance for experimental calibration and for generating theory calculations
to match our data, we measure (and make improvements to) our detection efficiency daily.
Its measured value includes losses due to absorption and scattering out of the cavity, due to
absorption by additional optical elements and polarization imperfections along the detection
path, due to mode-mismatch between the LO and signal beams when they are combined,
and due to the quantum efficiency of the photodiodes used for detection. Finally, because a
heterodyne detector, by cycling through AM and PM, measures the wrong quadrature half
the time, the overall detection efficiency is reduced by half compared to homodyne. Typical
loss values are tabulated in Tab. 2.1. We measured the losses from the cavity once, and
do not expect them to change as we have not observed any of the other cavity parameters
(linewidth, finesse, etc.) to drift in that time. We check the value for efficiency through the
post-cavity optical path every day, and occasionally must adjust beam pointing through, for
example, an optical isolator. The mode-matching between the LO and the signal light is
the most fickle, requiring frequent optimization by adjusting pointing of one or both beams.
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To do so, we observe the steady heterodyne signal on a spectrum analyzer and attempt
to maximize the height of the 10 MHz beat note. We have found that the photodetector
quantum efficiency has not changed.

Because of the importance of detection efficiency for so many measurements, we have
considered ways to improve it. One idea is to build a cavity that is constructed out of
optical fibers [49], such that the output coupling efficiency should be excellent. Additionally,
we could consider pushing for photodetectors with better quantum efficiency, as detection of
infrared photons with total system efficiency of greater than 93% has been reported [50].
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Chapter 3

Force Sensitivity Measurement

For such evasive dust
Can make so little clear:
Much less is known than not,
More far than near.

Philip Larkin, “Far Out”, 1959

3.1 Introduction
Two properties of our atomic cavity optomechanical system encouraged us of its ability

to perform the most precise force and displacement measurements. First, our mechanical
oscillator, the center-of-mass mode of the atoms’ motion, is cold from its creation. Given the
extensive knowledge of cooling and trapping techniques for alkali atoms, creating a ground-
state mechanical mode is a relatively easy feat. By the time the atoms are trapped within the
confines of our optical cavity, they are already at a temperature of only a few microkelvin,
sharing only about one phonon of thermal excitation among thousands of atoms in a 40
µK deep trap. Compare this, for example, to more macroscopic mechanical oscillators that
must be placed in dilution refrigerators [33] or addressed with cavity cooling techniques [25]
in order to reach the ground state. The advantage of a cold mechanical oscillator is its
ability to measure small perturbations that would otherwise be masked by the Brownian
motion that comes with coupling to a thermal bath. This is particularly important for force
measurements, since the oscillator’s motional response to broadband thermal noise is peaked
at the same frequencies where it is most susceptible to force noise.

The second advantage of our system is that the oscillator position is well referenced to
the probe light. Our atoms are trapped in an optical lattice, such that the relative position
of the lattice sites is pinned to our probe by the boundary conditions of an optical cavity
(that is, unless we deliberately modulate the lattice, as will be discussed). Should the trap
which holds the atoms – and thus the atoms themselves – move due to trembling of the cavity
mirrors, the probe light moves along with it, preserving the calibration of the measurement.
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This is not to say that the movement of the mirrors does not exert forces on the atoms – it
does. However, these forces occur at much lower frequencies than those we care to measure.
More important for our measurements is the coupling of the probe light to the atoms at their
trapped location, which we must calibrate carefully in order to extract a value of force from
the optical record. The optical cavity boundary conditions assure us that this coupling does
not change over the duration of the measurement.

The optical lattice also provides isolation from the room temperature environment, since
the mechanical support structure, the light, is effectively very cold, despite its prior propa-
gation through a 300 K room. By contrast, experiments with macroscopic oscillators must
carefully ensure that the physical tether holding the oscillator in place does not couple in
additional mechanical noise or heat. Although optical trapping has been shown to im-
prove oscillator quality factor in solid-state systems [51], ours remains a rather humble
Q = ωm/Γ ≈ 100. A higher Q, as will be seen when we derive sensitivity equations, would
result in improved force sensitivity. We concede this improvement in favor of the ease of low
temperature preparation made possible using an atomic center-of-mass mode.

In this chapter I will describe the calibrations and analysis that characterize the force
sensing capabilities of our optomechanical system, culminating in measurements near the
standard quantum limit (SQL) of force detection. I will first summarize the theoretical
underpinnings of the SQL and derive a formula for its value. I will draw a contrast between
displacement and force sensitivity. Next I’ll detail the experimental calibrations necessary
for force application and detection. (Because we had already quantified the optical shot-noise
in our experiment in several previous works [26, 35, 36], calibrating the applied force, and
assuring ourselves that the calibration remained true throughout, was the main challenge of
the experiment.) I will then show how we extract phase-sensitive results from our apparatus.
Finally, I will advocate for efforts to overcome the SQL.

3.2 The Standard Quantum Limit
How well can a measuring device resolve a small force? This question has more than

just philosophical merit, as many existing technologies rely on the detection of very small
forces. Atomic force microscopy, for example, exploits force detection to map surfaces beyond
the diffraction limits of optical microscopy [52]. State-of-the-art intertial sensing technolo-
gies employ nanofabricated oscillators [53, 54] and even cold atoms [55] to discern minute
orientation-dependent accelerations. And before these technologies had ever approached fun-
damental limits, the designers of the gravitational wave observatories had begun to question
the ultimate limits to achievable sensitivities [41].

In Ch. 1 I gave some motivation for the use of CQED and cavity optomechanics for
quantum measurement. With these platforms in mind, I will first tell a qualitative story
of how the standard quantum limits (SQLs) of force and displacement measurement come
about. I will follow this with more detailed derivations.

As just described, one obstacle to sensitive force measurement is a warm detector. Tech-
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Figure 3.1 : The sensitivity (or total measurement imprecision) of an optomechanical measurement
of position or force, as a function of measurement strength Com (green curve). Note that lower
values of sensitivity are preferred for finer measurement. The three noise sources that contribute
to SFF,tot are each plotted separately. The optimal measurement condition occurs where shot-noise
imprecision is equal to backaction noise, and defines the SQL.

nical noise affecting either the mechanical oscillator or the probing light can obscure the
signal of interest. However, even if every experimental precaution is taken, one is left with
fundamental vacuum fluctuations, often referred to as “zero-point motion” for mechanical
modes and “shot-noise” for electromagnetic ones. An experimentalist’s first instinct might
be that a fundamental limit to measurement precision would then be the vacuum noise
power. She would be partially right. Consider the black line in Fig. 3.1. It shows a flat lower
bound on the sensitivity of an optomechanical measurement for all values of optomechani-
cal cooperativity Com (recall that Com quantifies the measurement strength), and is due to
half a phonon’s worth of mechanical wiggle that is unavoidable for a ground-level coherent
mechanical state. The blue line, on the other hand, represents the shot-noise of the optical
probe, which contributes measurement imprecision that now falls off1 with increasing Com.
The intuition for this comes from the Poisson statistics of a coherent light beam. If the
probe has n photons on average, it also has

√
n photons of shot-noise. Since Com ∝ n, as

Com increases, the relative contribution of shot-noise (equal to
√
n/n) falls.

Now the experimentalist might imagine that as long as she measures her system strongly
enough, shot-noise imprecision will be negligible and she will again be limited only by
the zero-point-motion of the mechanics. However, this would be ignoring the Heisenberg-

1Sensitivity is quantified by the sum of all sources of measurement imprecision, and is usually described as
the measurement variance over the measurement bandwidth. As such, when a contribution of measurement
imprecision decreases, the sensitivity decreases as well. This is a favorable effect, since lower sensitivity is
finer sensitivity, which is preferable.
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mandated backaction of her measurement. Along with the n photons she uses for her mea-
surement come

√
n shot-noise photons that can randomly kick her oscillator, spoiling the

measurement. Clearly, this effect rises with increasing Com, as shown by the pink line in
Fig. 3.1. Without deviating from coherent mechanical and optical states (an option I will
explore further in Chapters 4 and 5), the experimentalist finds that her best recourse is a
compromise between shot-noise imprecision and measurement backaction: the SQL. This
occurs when each of these effects contributes an additional quarter-phonon of imprecision,
meaning that the SQL has the equivalent of twice the zero-point imprecision.

This qualitative description of the SQL holds for both displacement and force detection.
While at first it might seem that optimal conditions for these two measurements should be
the same, as force measurement relies on detecting the displacement of an oscillator after
it has been forced, a more careful derivation will illuminate the differences. In deriving the
sensitivity of an optomechanical system to applied forces, we can consider two approaches
that eventually yield the same result. The first, more intuitive, approach is to sum up the
various noise sources, optical and mechanical, that limit the force sensitivity. The second,
more experimentally motivated, approach is to write down the equation for the transduction
of an applied force by the optomechanical system – the signal – and that for the noise power
spectral density of the same system – the noise. The ratio of these gives the force sensitivity.
I will briefly describe each, and note that a longer derivation is available in Schreppler et al.
[37].

First we will derive the sensitivity by adding up force noise contributions. This approach
follows the reasoning of Clerk et al. [42]. We begin with the sensitivity of the system to
displacements of the mechanical oscillator. The spectrum of optomechanical position noise
has three contributions.

Szz,tot(ω) = Sth
zz(ω) + Simp

zz (ω) + SBA
zz (ω) (3.1)

The first term is due to the intrinsic motion of the mechanical oscillator, and has con-
tributions both from native zero-point motion and from any additional thermal phonon
occupation. The symmetrized spectrum of oscillator motion is

Sth
zz(ω) = z2HO(2νth + 1)

Γ

(ω − ωm)2 + (Γ/2)2
, (3.2)

where zHO =
√
~/2mωm is the characteristic harmonic oscillator length for an oscillator of

mass m and resonance frequency ωm, with Γ the mechanical decay rate of the oscillator,
and νth the thermal phonon occupation in addition to the “+1” term that already accounts
for the vacuum energy. The second term in Eq. 3.1 is the imprecision of any measurement
of oscillator position due to the shot-noise of the measurement tone. Optical shot-noise is
white (constant at frequencies away from its large coherent tone), but, as discussed earlier,
its imprecision is inversely proportional to Com.

Simp
zz (ω) = z2HO

1

2ΓεCom

(3.3)
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We have included here the heterodyne detection efficiency, ε. Remember that the heterodyne
efficiency is exactly half the homodyne efficiency, ε = εhom/2. Finally, we have the contribu-
tion from measurement backaction. The oscillator is susceptible to backaction over the same
spectrum for which it exhibits thermal motion. The backaction noise is proportional to the
measurement strength, Com.

SBA
zz (ω) = z2HOCom

Γ

(ω − ωm)2 + (Γ/2)2
(3.4)

Thus we have three terms contributing to position sensitivity, one of which decreases with
Com, one that is constant, and one that rises. They roughly follow the trends of Fig. 3.1.

The force sensitivity is just the total position sensitivity divided by the susceptibility to
applied force, χ(ω) = {m [(ω2

m − |ω|2)− iΓω]}−1, squared. In the limit of a high Q oscillator
(that is, if ωm/Γ � 1), this can be simplified to χ(ω) = {2mωm [−(|ω| − ωm)− iΓ/2]}−1,
and gives us for force sensitivity:

SFF,tot(ω) = Szz,tot(ω)/|χ(ω)|2

= 2Γp2HO

[
(2νth + 1) +

1

4εCom

(ω − ωm)2 + (Γ/2)2

(Γ/2)2
+ Com

]
.

(3.5)

Now the terms for the force sensitivity are again, in order from first to last, due to thermal
and zero-point noise, shot-noise imprecision, and measurement backaction. We can see from
Eq. 3.5 and Fig. 3.1 that when ω = ωm the sensitivity has a minimum, occurring at Com =
1/2
√
ε in the case of SFF . The sensitivity at this point is the force sensing SQL for the system,

SSQLFF = 4Γp2HO (1/
√
ε+ 1), where pHO is the characteristic harmonic oscillator momentum.

The second line of reasoning that allows us to derive the force measurement sensitivity of
our system is that sensitivity is the ratio of noise to signal in a measurement. In the case of
forces acting on an optomechanical oscillator, it is then the ratio of the noise spectral density
(as measured in the phase quadrature of heterodyne detection) of the measured light,

SPMhet (ω) =
εComΓ

z2HO

SSN

2
Szz,tot(ω), (3.6)

to the transduced force. Here, SSN = PLO~ωLO is the heterodyne shot-noise power, usually
dominated by a strong coherent local oscillator tone. In order to calculate the spectral power
of the transduced force, we consider the application of an external force Fext = F0 cosωdt,
at driving frequency ωd, to our oscillator. In the frequency domain, the force has the form
F̃ext(ω) = F0

2
(δω,ωd + δω,−ωd). It affects the position of the mechanical oscillator according to

the mechanical susceptibility:
ẑ(ω) = χ(ω)F̃ext(ω) (3.7)

Now we consider the subsequent transduction of these position fluctuations onto the light
that exits the cavity. We use the linear amplifier model for optomechanics of Botter et al. [56]
for this treatment. In the case of linear optomechanical coupling and probe light resonant
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with the cavity, we expect the entire optical response to be contained within the phase
fluctuations of the light,

X̂PM(ω) = −i(â(ω)− â†(ω))

=
gc
κ

ẑ(ω)

zHO

,
(3.8)

where gc = 2gom
√
n̄ =
√
ComκΓ is the collective optomechanical coupling. Using the bound-

ary conditions of the cavity, X̂out = X̂in +
√

2κX̂, we describe the PM quadrature light
exiting the cavity,

X̂PM
out (ω) =

√
2κX̂PM(ω) (3.9)

The power in this quadrature as measured by the heterodyne detector (after beating with a
local oscillator) is

P̂PM = −i
√
SSNω2

BW

2

√
ε〈âout(ω)− â†out(−ω)〉, (3.10)

where ωBW is the detection bandwidth, and I have omitted additional terms that occur
frequencies with only incoherent shot-noise, as these will average out in the next step.. We
average the power over a discrete Fourier window, measuring

〈P̂PM〉 =

√
εSSNω2

BW

2

√
〈âout(ω)â†out(ω)〉

=

√
εSSN

2
〈X̂PM〉

=

√
εSSNComΓF 2

0

4z2HO

χ(ω).

(3.11)

Now we normalize the signal we measure by our calibrated force (the method of calibration
will be described in the next section), noting that the calibration is an rms force so we need
an extra factor of

√
2. This gives us a measured force transduction (with units of W/N):

Tsig =

√
2〈P̂PM〉
F0

=

√
εSSNComΓ

2z2HO

χ(ω)

(3.12)

Finally, we can take the ratio of SPM
het (ω)/|Tsig(ω)|2 and recover Eq. 3.5.

This second derivation is useful to include as it gives intuition for how we extract force
sensitivity from our acquired data. I will return to this later in the chapter.

Now that we have derived forms for the position (Eq. 3.1) and force (Eq. 3.5) sensitivity,
we can compare their spectra and limits. The SQL is defined for each by the minimum
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Figure 3.2 : Displacement (left) and force (right) sensitivity as a function of frequency and Com.
The red plane is the SQL for each case, defined as the minimum sensitivity for measurements at
ω = ωm. Sensitivities are in harmonic oscillator units and the oscillator Q = 100.

sensitivity when νth = 0, ε = 1, and ω = ωm, occurring at Com = 1/2
√

2ε for position
measurements and Com = 1/2

√
ε for force measurements. We can additionally see from

Eq. 3.5 that the force sensitivity is in fact always minimized whenever ω = ωm. This is
shown on the right plot in Fig. 3.2, where the sensitivity only touches the SQL-valued plane
at a single point in the ω vs Com spectrum. By contrast, Eq. 3.1 (specifically the terms Sth

zz
and Sba

zz ) suggests that sensitivity to displacement can always be improved by measuring at
frequencies ω increasingly far from resonance. This is evident on the left plot of Fig. 3.2,
where sensitivities can easily beat the SQL over a range of Com for frequencies above and
below ωm. Physically, this can all be understood by the factor of |χ(ω)|2 that separates
force from position sensitivity. Because the noise in position measurements has a Lorentzian
spectral lineshape, meaning that most of it occurs near the resonance frequency, one can
always improve one’s precision by choosing to measure at frequencies where the noise isn’t,
namely outside of a region that is approximately ωm±Γ. For measuring forces, on the other
hand, we have seen that it is not enough to escape the noise, as one must still choose a
frequency at which the oscillator can be used to detect a force. As such, the sensitivity
has an inverse Lorentzian spectral lineshape, which can only be optimized on resonance.
Again, these conditions are true so long as we restrict ourselves to coherent optical and
mechanical states. A far more colorful and interesting set of circumstances arises if we relax
this restriction, and we will return to this idea in later chapters.

3.3 DC force measurement
With the derivation of force sensitivity behind us, I will now begin to describe the de-

tails of our actual experimental force measurement. The first step in characterizing force
sensitivity is to calibrate the forces to be applied. As described in Ch. 2, we use an optical
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Figure 3.3 : Power spectral density of multiple loading sites in an optical superlattice. Both the
mechanical frequency change and the optomechanical coupling change (response power, as shown
by color) with loading position are apparent.

superlattice to trap our atoms and to apply forces. Since we expect our system to be most
sensitive to forces at frequencies near ωm, we choose to apply a force to our atomic oscillator
by modulating the power of one of the components of the superlattice at that frequency.
The force applied is therefore given by the dc force of that component of the trap potential
modified by some the modulation index at the frequency of interest. We thus needed both
pieces of information to go about determining our system’s sensitivity.

The superlattice potential that the atoms experience can be easily modeled as the sum of
three sinusoidal potentials Ui = |Ui| sin2 (kiz + φi). The magnitude |Ui| of each component
can be deduced from the observed motional frequency associated with atoms trapped in the
minima of either ODT (for i = {A,B}) or from a measurement of n̄, the average number of
probe photons in the cavity (for i = p), together with knowledge of the CQED coupling rate.
For the former, we assume that the trapping potential is approximately harmonic near its

minimum, such that ωm =
(
− 1
m
∂2U
∂z2

)1/2
. This approximation is valid so long as the oscillator

is in its ground state, but breaks down with excitation of the oscillator, as will be seen later
in this chapter. Knowledge of the strength of each superlattice component in turn allows us
to deduce their relative phases φi by following the work of Botter et al. [36] and spectrally
mapping the trap frequency of a range of loading sites along the superlattice, as shown in
Fig. 3.3.

To further confirm this model, we use our magnetic trap to load our atoms first into
a particular starting location within our superlattice, measuring the static cavity shift that
results from their presence. After time, we decrease the power in one of the ODTs, noting that
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Figure 3.4 : Cavity shift (relative to empty cavity resonance) as a function of atomic loading position
for initial ODT power (top) and final ODT power (middle) after we forcibly moved the potential
minima. The difference in shift (bottom) matches the superlattice potential theory well and confirms
our model’s accuracy in measuring the static force of the ODTs.

this will produce a different superlattice potential with shifted minima. We again measure
the cavity shift due to the atoms, and note that any frequency change is the consequence of
the altered potential landscape that the atoms experience. The change in the cavity shift
due to the displacement of the atoms (from ∆N to ∆′N , is shown in Fig. 3.4). We then repeat
this measurement for the same range of loading positions along the cavity axis as in Fig. 3.3.
The cavity shift is a direct measurement of the displacement of our atomic oscillator, since
the optomechanical coupling relates them by the equation ∆N = Nag

2
0 sin2(kpz)/∆ca.

Having confirmed our understanding of the potentials, we can then calculate from our
model the precise location of the superlattice minima along the cavity axis and find the
location of our oscillator of interest. This finally allows us to determine the static force
applied by each component of the trapping potential at these minima, Fi = ∂Ui

∂z
|z=zmin , as

plotted in Fig. 3.5. Here we see why a superlattice potential allows for application of forces
by modulating one ODT. When the atoms sit undriven at the trap minimum, the ODT’s
in the two-color lattice apply equal and opposite forces FA = −FB (neglecting the force of
gravity and the very small Fp). If ODT-A were removed, returning the atoms to a single-color
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Figure 3.5 : Model-derived force from each component of the optical potential (A is ODT-A, B
is ODT-B, and p is the probe) for the loading positions considered. Model input parameters are
experimentally-calibrated Ui and φi, i = {A,B, p}. The components of the force should sum to zero
for the trapping condition to hold. Lighter colors indicate forces for conditions before the ODT was
stepped and darker colors indicate conditions after the step.

lattice, its force contribution FA would vanish and the atoms would fall into the minimum
of ODT-B, where FB = −FA = 0. In this case, modulating either ODT would not result in
a net force. A two-color lattice is therefore required to achieve FA = −FB 6= 0. In this case,
modulating one ODT does change the net center-of-mass force on the atoms.

3.4 Calibrating applied force
Having determined the dc force, our next step is to measure how it is modified by mod-

ulating the intensity of one of the trapping lasers. We observe the transduction of this
modulation onto the laser light by recording its fluctuations on a photodiode. In this case,
then, a rigorous optical treatment is best for deducing the modulation index. The ODT
has some dc power, already determined, to which we apply a very small ac modulation
(m = Pmod/PL � 1). We represent this as a traveling field with weak sidebands applied.

〈X̂L(ω)〉 =
√

2πPL

{
δ(ω − ωL) +

√
m/2 [δ(ω − ωL − ωmod) + δ(ω − ωL − ωmod)]

}
(3.13)

The photodetector measures the mean optical power modulations.

〈Î(t)〉 =
√
εG〈X̂†L(t)〉〈X̂L(t)〉 (3.14)
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G is the gain of the detector and ε is its quantum efficiency. We observe the power spectral
density of the photocurrent.

SII(ω)

εG2
=P 2

Lδ(ω) + 2PL
√

2PLPmod(δω,ωmod + δω,−ωmod)

+ 2PLPmod(δω,2ωmod + δω,−2ωmod) +
PL~ωL

2π

(3.15)

We analyze only the negative frequency components of the power spectral density (though
they are equal to those at positive frequencies since SII is a real signal). Taking the ratio of
the squared power of the positive frequency sideband to the squared power of the ODT at
dc gives

SII(ωmod)

εG2
= 2
√

2Pmod/PL. (3.16)

From this we have our modulation index of interest (squared), which we then multiply by
the squared static force applied by the ODT and by the squared number of atoms to give us
our overall calibrated applied force.

F 2
0 =

1

2

SII(ωmod)

SII(0)
N2
a (force per atom)2 (3.17)

This is the force we normalize our coherent response by to get our measured |Tsig|2.

3.5 Fitting the data
Having calibrated our applied force, our experimental sequence proceeds as follows. We

load atoms into our superlattice potential, then apply a constant modulation to that potential
at a single frequency. While this modulated force persists, we introduce probe light at a given
Com and resonant with the optical cavity. After its interaction with the atoms, we measure its
beating with a local oscillator using our heterodyne receiver. We collect between 1 and 5 ms
of data, depending on the strength of the probe light. We repeat this procedure many times
to create a statistical ensemble of measurements for each of several values of modulation
frequency at and near ωm and for values of Com that span two orders of magnitude, thus
assuring that we will be observe regions of sensitivity that are both shot-noise and backaction
dominated. The heterodyne time signal, together with additional calibrations, gives us the
phase-sensitive information we need to separate the coherent force signal from the incoherent
noise of the measurement. In this section, I will detail the process of determining SFF from
our acquired signal.

3.5.1 Separating signal from noise

As described in Ch. 2, heterodyne detection is phase sensitive detection that rotates be-
tween in-phase and out-of-phase quadratures at the heterodyne frequency. It is an important
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Figure 3.6 : Phase space schematic of a vacuum state (red) and a displaced coherent state (blue).
The vacuum state is composed of incoherent fluctuations, while the displaced coherent state has
large average displacement of constant phase with additional incoherent noise around its mean.

tool, therefore, for separating phase-coherent signals from incoherent ones. To understand
the importance of the coherence distinction, it is useful to imagine the signal in phase space,
as in Fig. 3.6. The Fourier spectrum of a time series is in general complex, such that every
frequency point in the spectrum has a magnitude and phase. The vacuum state has zero
magnitude when averaged over a statistical ensemble. However, any single measurement can
yield a non-zero magnitude and an associated phase. The black arrows emanating from the
origin in Fig. 3.6 are examples of individual measurements of a vacuum state. They could
be recovered, for example, by plotting the magnitude and phase of a frequency point in the
heterodyne Fourier spectrum that contains only photon shot-noise. If we were to average
over very many such measurements, we would find that the vectors we plot fill in a disk
in phase space centered at the origin, suggesting that the average vector does in fact have
zero magnitude. However, the non-zero radius of the disk represents a non-zero standard-
deviation: the incoherent noise power. A displacement of the circle in phase space, like the
gray “signal” vector, corresponds to a coherent drive. For example, if we look at the hetero-
dyne beat frequency in the spectrum, we expect to see a large magnitude response with a
definite phase. Vacuum fluctuations are still present, but they do not cancel out the average
coherent displacement. In this section, I will describe how we separate such coherent signals
from incoherent noise in practice. We will return to the phase-space picture later in this
chapter when we plot the state of our forced mechanical oscillator.

In the case of our force measurements, so long as the applied force has a constant phase
over the ensemble of measurements, the transduced force response, derived in Eq. 3.12,
is phase-coherent, with a frequency-dependent phase relative to the drive given by χ(ω).
Because we have carefully avoided any coherent technical noise in our setup, the measurement
noise, on the other hand, should consist only of vacuum-driven fluctuations and some residual
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Figure 3.7 : Force sensitivity data for Com = 4. Left: The complex coherent response to applied
force at at 108, 109, 110, 111, and 112 kHz driving frequency, together with a complex fit. Right:
Blue and green traces are the phase and amplitude, respectively, of the complex response at left.
Red is the incoherent noise spectral density for the same conditions, together with its fit.

thermal noise, all incoherent. Therefore, by averaging together the complex heterodyne
signal for many experimental realizations, the incoherent noise should average to zero while
the coherent signal should remain.

We can divide this transduced force signal by the power spectral density (which gives
the absolute value of the heterodyne signal, and is thus not sensitive to phase angle) of the
unforced oscillator to determine force sensitivity. Data for several values of force driving
frequency ωd and fixed Com = 4 are shown in Fig. 3.7. The complex coherent response
is shown in the blue and green data points, while the incoherent noise response is in red.
We simultaneously fit both the complex coherent response and the real incoherent response
in order to take advantage of increased statistics for shared parameters. The fits yield the
sensitivity at mechanical resonance, as well as Com, allowing us to compare the data to
theoretical predictions for the SQL.

Incidentally, though this experiment strove to measure the force sensitivity of our sys-
tem, any time we measured the undriven oscillator to record the noise power, we were also
performing a test of displacement sensitivity. As shown in Fig. 3.2, at high enough Com we
expect frequencies away from mechanical resonance to give displacement sensitivity beyond
the SQL. Figure 3.8 shows the magnitude of the averaged coherent spectral response (red)
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Figure 3.8 : Averaged coherent response to resonant force drive (red) and incoherent noise response
(blue) for a range of Com. For each Com, both traces are normalized to the peak coherent response.
Qualitatively, the peak of the blue curve shows the force sensitivity, while its value away from the
peak is proportional to the displacement sensitivity.

plotted with the incoherent noise spectrum across the measured range of Com. For each value
of Com, both data sets are normalized to the peak coherent value (red trace maximum). The
peaks of the blue data traces therefore are proportional to the force sensitivity, though they
lack some corrections for varying experimental parameters for different values of Com. Inter-
estingly, if we look at the noise levels in the blue traces away from their peaks, we see that the
values continue to drop as Com increases, even after the peaks begin their backaction-driven
upswing. This is exactly due to the continued improvement in displacement sensitivity for
increasing measurement strength, as long as we consider frequencies away from ωm.

3.5.2 Anharmonic trap

In our first attempts at force sensitivity measurements, we had difficulty probing our
driven atomic oscillator with high Com. As we increased the probe power, the mechanical
response seemed to saturate and broaden. Its broadening was asymmetric, and upon closer
inspection showed second and even third peaks arising at frequencies below the resonant
response, as observed in Fig. 3.9. These spectral bumps were in fact vibrations in higher
bands of the anharmonic oscillator potential. Recall that the standing wave ODT potential
is defined by the intensity landscape of the light, and therefore actually has the form of
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Figure 3.9 : Left: Power spectral density of undriven oscillator at Com ≈ 2. A second peak is clearly
visible at lower frequency and a third peak is somewhat suppressed. Right: Energy level spacing of
sinusoidal vs quadratic potential. The quadratic potential shows evenly spaced levels corresponding
to harmonic oscillator eigenvalues. The squared sine potential is more relaxed at higher energy,
leading to decreasing level spacing as excitation rises.

sin2(z) rather than its approximation z2. In order to calibrate the mechanical oscillator
parameters and also to achieve good fits to the data, we needed to predict both the higher
band frequencies and the coupling of these bands to the probe light. This would allow us to
deduce the population of atoms in each band, since only those in the lowest band contributed
to the coherent response to a force applied at that band’s frequency.

First, we calculate the frequency spacing of the levels of a one-dimensional optical lattice
potential, V (z) = V0 sin2 (kT z), where kT is the trap wavenumber. Assuming that our atoms
are very cold, we expand around small displacements z from the potential minimum:

V (z) ≈ V0

(
k2T z

2 − 1

3
k4t z

4

)
. (3.18)

The first (quadratic) term is just the harmonic oscillator potential, which justifies our usual
approximation of atomic motion as harmonic. The frequency of motion in the quadratic
potential is then given by ωm = 2

~
√
V0ER, where ER = ~2k2T/2m is the single photon recoil

frequency for the trapping light. In such a harmonic potential, spacing between energy
levels is constant and proportional to ωm, as shown by the black lines in the schematic in
Fig. 3.9. Since a sinusoidal potential is more relaxed away from the minimum compared to
a quadratic potential, we expect that higher energy levels have increasingly smaller spacing.
We will therefore treat the second (quartic) term in the potential expansion as a perturbation
on the harmonic oscillator solution states |n〉. We express the perturbation in terms of the
quantum operator ẑ, where z = zHOẑ = zHO

(
b̂+ b̂†

)
, zHO is the harmonic oscillator length
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associated with state |n〉, and b̂ is the lowering operator for that state.

E(1)
n = −V0

3
(kT zHO)4〈n|ẑ4|n〉

= −V0
3

(kT zHO)4〈n|
(
b̂+ b̂†

)2 (
b̂+ b̂†

)2
|n〉

= −ER
4

(2n2 + 2n+ 1)

(3.19)

We are interested in the energy difference between the nth and (n− 1)th state of the anhar-
monic oscillator, to this quartic order in ẑ.

En − En−1 = E(0)
n + E(1)

n − E
(1)
n−1 − E

(1)
n−1

= ~ωm − nER
(3.20)

We find that each energy level splitting decreases by an additional recoil frequency. For the
harmonic oscillator shown in fig. 3.9, this amounts to a difference of a couple of kilohertz for
each level, enough to resolve spectrally the different peaks.

Now let’s return to the optomechanical Hamiltonian for the entire atomic oscillator:

HOM = ~
Na∑
i=1

(
g20 sin2(kpzi)

∆ca

)
(â†â). (3.21)

Let’s consider the Hamiltonian for just one atom of this oscillator, at the point of linear
coupling to the probe light.

HOM,i =
~g20
∆ca

(â†â) sin2(kpzi)

≈ ~g20
∆ca

(â†â)kpzi

(3.22)

We are interested in the coupling between harmonic oscillator states |n〉 and |n′〉 for a single
atom by this optomechanical Hamiltonian. Note that even though we just showed that
the oscillator is anharmonic, we will approximate the wave functions as harmonic oscillator
solutions.

〈n′|Hom,i|n〉 =
~g20kp
∆ca

(â†â)〈n′|zi|n〉

=
~g20kp
∆ca

(â†â)zHO〈n′|b̂+ b̂†|n〉
(3.23)

We see that the matrix element of interest gives us the scaling of the coupling with harmonic
oscillator level.

〈n′|b̂+ b̂†|n〉 =
√
nδn′,n−1 +

√
n+ 1δn′,n+1 (3.24)

Therefore, at the point of linear coupling of the probe to the atom’s position, we expect that
displacement of an atom on the nth excited transition couples

√
n+ 1 times more strongly

than displacement of an atoms in the next lower transition.
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3.5.3 Discrepancies in Com

The final piece necessary for comparing our sensitivity measurements to theory is an
accurate accounting of optomechanical cooperativity. In the past [35], we inferred Com from
a combination of calibration values and fit parameters:

Com =
g2c
κΓ

=
4n̄g2om
κΓ

. (3.25)

The value for n̄ comes from a ratio of the heterodyne carrier height to the shot-noise floor,
taking into account the measured detection efficiency. Over the years, we have measured κ
and found that it has not changed. Γ, the full width at half maximum of the mechanical
response, is measured from the data fits. Finally,

gom =
g20

∆ca

kp

√
~Na

2mRbωm
(3.26)

gives the optomechanical coupling, where g0 =
√

d2ωa
2~ε0Vm , with Vm the mode volume of the

cavity and ωa the atomic transition frequency. The value for kp comes from our high precision
wavemeter, ∆ca and ωa from knowledge of rubidium D2 lines, Vm from calculations and
measurements when the cavity was installed, and ωm from our fits. Na is measured using
the cavity shift ∆N , with corrections for anharmonicity as described in the last section. d is
the dipole moment assuming we have perfect σ+ polarized light within our cavity. Because
the value for d comes into the calculation of Na by way of g0, in the end Com is quadratically
dependent on g0 and therefore quadratically on d as well.

In the reporting of our sensitivity measurements, we instead measured Com using the
height of the undriven incoherent response to probe shot-noise. As described earlier, the
incoherent response peak (that is, on resonance) is expected to take the form:

SPM
het =

SSN

2
[1 + 4εCom(2νth + Com + 1)]. (3.27)

Solving this equation for Com allows us to determine its value based on the peak height of
the incoherent response normalized by shot-noise:

Com = −(νth + 1/2) +

√
(νth + 1/2)2 − 2SPM

het /SSN − 1

4ε
. (3.28)

The value of νth was determined using time-of-flight measurements for a particular experi-
mental cycle, while the value of SSN is the noise floor as measured on the un-demodulated
heterodyne spectrum in a spectral window without mechanical response. Why the alterna-
tive determination of Com? In comparing the results of the two methods, we found that the
cooperativity as predicted by the photon number was consistently above that shown by the
optomechanical interaction, as plotted in Fig. 3.10.
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Figure 3.10 : Comparison of Com value as measured by strength of optomechanical interaction
(ordinate) and Com value as determined from measured photon number (abscissa). An overall offset
suggests a calibration error in gom.
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n̄ calculation SPM
het calculation 10% correction to σ+

g0 0.88 g0 (inferred) 0.92 g0
Com 0.6 Com (observed) 0.72 Com

Table 3.1 : Discrepancies in observed coupling g0 and cooperativity Com as calculated using n̄ and
SPM

het , compared to the predicted correction needed for a 10% correction to probe polarization purity.

We ultimately decided that since the optomechanical response would provide our sensi-
tivity measurement, it was more consistent to rely on the Com value obtained from the same
data. We may speculate here, though, as to what could have lead to this discrepancy.

One possible contributing factor could be the polarization of the probe light. In Ch. 1,
we saw that the CQED coupling rate g0 actually depended on the dot product between
the atomic dipole operator and the electric field of the cavity mode. Thus, we expect the
coupling to change with the polarization of the light. Since we have seen that Com is actually
quartic in g0, a 15% reduction in g0 could lead to 50% difference in Com. In more recent
experiments, when we have deliberately changed the polarization of the probe light in order
to address atoms polarized in different directions, we had cause to examine the purity of
σ+ polarization we had been applying. We found that a quarter wave plate (QWP) at the
input to the cavity was 16◦ off from ideally transmitting σ+ light, and that the subsequent
output QWP was 14◦ off. For the input QWP, at least, this resulted in approximately 10%
of the incident power actually polarized σ−. This alone might not explain the difference
in Com, since the σ− light would be detuned far from the σ+ light due to coupled cavity-
atomic birefringence. However, since the measurement of detection efficiency was performed
using an empty cavity, if the output QWP was incorrectly adjusted along with the input
QWP in such a way as to direct some σ− light onto the detector, we would incorrectly
assume more photons were interacting with our atoms during experimental measurements
than was accurate. To put this another way, since g0 is proportional to the dot product of
the atomic electric dipole moment and the local electric field of the cavity mode (that is, the
dipole matrix element), light that is only 90% σ+ and 10% σ− could result in a reduction
of g0 by 8%, compared to perfect σ+ polarization, as calculated using the respective dipole
matrix elements for the rubidium electric dipole transition. The potential contribution of
the polarization impurity is compared with the observed discrepancy in Table 3.1. Such a
miscalibration could explain some of the difference observed in Fig. 3.10, and bolster our
claim (a posteriori) that measuring Com using the optomechanical response is the more
appropriate method.

3.6 Plotting in phase space
Let’s return to the phase-space picture discussed earlier in the chapter. I described the

plotting of incoherent and coherent excitations of light. These are exactly what we measure
using our heterodyne signal. We also know that the optomechanical coupling means that at
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Figure 3.11 : Phase space plot of mechanical response as derived from optical heterodyne signal.
Left: undriven oscillator shows incoherent scatter around zero-mean displacement, consistent with
a near-ground state harmonic oscillator. Right: driven oscillator shows average displacement from
the origin at angle φ = −π/2, consistent with a resonant driving condition.

certain frequencies, the outgoing state of the light is related to the state of the mechanical
oscillator. We can use our knowledge of the optomechanical coupling parameters, therefore,
to plot the mechanical oscillator excitations in phase-space. An example of such a plot is
shown in Fig. 3.11. Phase-space plotting gives added intuition for what the SQL means in
practice, as is discussed in Schreppler et al. [37].

Because of its usefulness, I will derive here the mapping of a complex optical heterodyne
signal to the mechanical oscillator state. As described in Ch. 2, our typical analysis takes
time-series of voltages from the heterodyne receiver and converts them into Watts, given
understanding of detection gains, efficiencies, and bandwidths. It then demodulates at the
10 MHz heterodyne frequency, leaving two quadratures – AM and PM – of data, in Watts.
Next it takes a discrete Fourier transform of these quadratures, giving a complex spectrum
for each. Depending on the experiment, we would like to investigate and plot points on this
complex spectrum, at, near, and far from the mechanical resonance frequency.

We expect the relation between the heterodyne power in the PM quadrature and the
normalized displacement of the oscillator to be given by the equation:

PPM(f) =
hf0
2

4πκg2C(κ2 + f 2)

(κ2 + ∆2 − f 2)2 + 4κ2f 2
f 2
BW

〈∣∣∣∣zfBW

zHO

∣∣∣∣2
〉
. (3.29)

On mechanical resonance, and with the limits of our system (unresolved sideband, for ex-
ample) as simplifying assumptions, Eq. 3.29 reduces to:

PPM(fm) =
hf0
2

4πg2C
κ

〈∣∣∣∣ zzHO

∣∣∣∣2
〉
. (3.30)
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Now for heterodyne detection, given imperfect detection efficiency, we expect to measure:

P het
PM(fm) =

√
εPLOPPM(fm)

=

√√√√εPLO
hf0
2

4πg2C
κ

〈∣∣∣∣ zzHO

∣∣∣∣2
〉
.

(3.31)

So we can convert measured power in Watts to measured displacement in meters by inverting
this equation and taking note of the relations SSN = PLOhf0/2 and g2C = 4n̄g2om:

P het
PM(fm)

√
κ

εSSN16πn̄g2om
≈ z

zHO

. (3.32)

Now we would like to find the statistical variance in the distribution of measurement
points. In order to do so, we calculate the 2 × 2 covariance matrix between the real and
imaginary components (the two axes of the phase-plots in Fig. 3.11) of the data. We plot
the associated error ellipse with 68.3 % confidence interval. The eigenvalues of this matrix
are the minor and major axis lengths, and they give us a measure of the incoherent noise.

For quadrature operators of a harmonic oscillatorX1 andX2, where z(t) = X1(t) cos(ωmt)+
X2(t) sin(ωmt), the commutation relation is [X1, X2] = 2iz2HO. According to Clerk et al.
[42], this commutation relation shows that a weak measurement of two quadratures will
have a total uncertainty that is twice the zero-point motion of the oscillator. The com-
mutation relation is derived using the fact that X1 and X2 are quadrature operators of
the harmonic oscillator with Hamiltonian H = ~Ω(b†b + 1/2), such that X1 = b + b† and
X2 = i(b− b†) and [b, b†] = 1. Using the commutator, we can calculate an uncertainty rela-
tion of ∆X1∆X2 ≥ | 12i〈[X1, X2]〉| = 1. This uncertainty relation includes uncertainty from
the oscillator zero-point motion itself (1/2) and uncertainty from the measurement (1/2).

Clerk et al. [42] point out that this inequality is minimized when the measurement is
performed over the course of one mechanical damping time and with perfect detection ef-
ficiency – the SQL. After each mechanical damping period, the imprecision in phase space
area decreases. We can infer that imperfect detection efficiency would serve to increase
the expected phase space area (and equivalently the expected uncertainty relation product),
since for every photon that is counted at our detector there are ε−1 − 1 photons that have
introduced measurement uncertainty but have not been counted. Therefore, we might ex-
pect the measured phase space area (that is, the product of the semi-major and semi-minor
axes of the error ellipse) to be of size 1/ετΓ where τ is the time over which we measure the
oscillator.

We will revisit the phase-space representation, particularly in Ch. 5, when we consider
how quantum squeezing manifests in phase-space.
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Chapter 4

Ponderomotive Squeezing

To see thus
Is to ignore the revenge of light on shadow,
To confound both in a brittle and false union.

Charles Tomlinson, “Through Binoculars”, 1955

4.1 Introduction
As described in Ch. 1, optomechanical coupling is an interaction between light and me-

chanical motion. The results of our force sensitivity measurements showed how this interac-
tion could lead to a tradeoff between the sensitive measurement of mechanical fluctuations,
thanks to their coupling to the probe light, and the disturbance of those same fluctuations
by the backaction of the light itself. In this chapter, I will discuss another phenomenon that
results from this delicate interplay: ponderomotive squeezing.

From the start, investigations of light squeezing were motivated by the sensitivity of inter-
ferometric measurements. In particular, Caves [57], Braginsky et al. [6], and later members
of the LIGO collaboration [58] proposed using squeezed light to improve the sensitivity of the
minute displacement measurements performed in gravitational wave detectors. The propos-
als identify quadrature squeezed light1 as a means of reducing the measurement imprecision
associated with optical noise. While a coherent light state, shown in blue in Fig. 4.1, has
equal uncertainty in both its amplitude and phase, a quadrature-squeezed state has reduced
uncertainty in one of its quadratures. This “squeezing” of optical noise necessarily comes
at the expense of “anti-squeezing” in the conjugate quadrature. Light that is amplitude-
squeezed will have more uncertainty in its phase and vice versa. Quadrature squeezing is not
limited to amplitude or phase, but can be created (through judicious experimental setup) at
any angle φ, with φ = 0 defining AM and φ = π/2 PM, as discussed in Ch. 2. This could be

1Though the focus in this chapter is limited to quadrature squeezing, Ch. 5 will mention some other kinds
of squeezing on the way to a more generalized form of ponderomotive squeezing.
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φ = π/2 (PM)

PM PM PM

AM AM AM

φ = 0 (AM) φ =  π/4

Figure 4.1 : Quadrature squeezed states (red ovals) have reduced uncertainty in one quadrature at
the expense of increased uncertainty in the conjugate quadrature, compared to equal-uncertainty
coherent states (blue circles). From left to right are phase-squeezed, amplitude-squeezed, and π/4-
squeezed states. The right plot shows a state with squeezing chosen to improve sensitivity to the
coherent displacement of the light along the π/4 axis.

convenient, as shown in Fig. 4.1, if that φ corresponds with the angle of interest for a sen-
sitive measurement. Reduced incoherent fluctuations along the coherent displacement axis
would result in improved sensitivity. Quadrature squeezing of light was first observed exper-
imentally using the method of four-wave-mixing through the interaction between coherent
light and sodium atoms [59].

Simultaneously with investigations of squeezed light, came a theoretical push to under-
stand the implications of radiation pressure in optical interferometric measurements. The
damping effect of radiation pressure in an optomechanical system was proposed by Bra-
ginsky and Manukin [60], when the term “ponderomotive” was introduced to describe the
“friction of light” encountered by the mirrors of a Fabry-Pérot resonator. Debate on the mat-
ter of whether or not this radiation-pressure-driven damping could impact the interference
measurement was ultimately put to rest by Caves [61] with an abstract reading simply:

The interferometers now being developed to detect gravitational waves work by
measuring small changes in the positions of free masses. There has been a con-
troversy whether quantum-mechanical radiation-pressure fluctuations disturb this
measurement. This Letter resolves the controversy: They do.

Further investigation of the effects of radiation pressure led to a surprising result: the ad-
ditional measurement noise it introduces is correlated with the measured optical shot-noise
through the optomechanical interaction [60, 62]. This correlation can lead to frequency-
dependent gain or attenuation of the optical noise in certain quadratures. This is to say that
optomechanics can actually produce its own squeezed light [63, 64], through the phenomenon
of ponderomotive squeezing.
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PMout

AMout
AMin

PMin

Figure 4.2 : Amplifier-style schematic of the optomechanical interaction. When ∆pc=0 (i.e. the
cavity is driven at its resonant frequency, as shown here), input AM fluctuations drive the oscillator
motion, which then imprints onto intra-cavity PM fluctuations. Upon exiting the cavity, the output
AM and PM fluctuations are now correlated. If ∆pc 6=0, variation in cavity frequency ωc induced
by oscillator motion adds modulation onto both AM and PM output fluctuations.

Nearly two decades after its prediction, this effect was observed in three distinct optome-
chanical systems [26–28]. In this chapter I will not detail the full extent of our experimental
efforts in Brooks et al. [26], but rather strive to give intuition for the origins of pondero-
motive squeezing. I will show some unpublished squeezing spectra that additionally confirm
our model of squeezing under varied conditions, and will additionally endeavor to address
the lingering question of whether, after all, this squeezing can be used to improve upon
interferometric displacement and force measurements.

4.2 Predicted spectra
First, I will expand upon the intuition for the origin of ponderomotive squeezing. I will

follow this with a quantitative derivation of the predicted squeezing spectrum in certain
limits, noting that a full and rigorous treatment of the quantum optics of ponderomotive
squeezing is given in Refs. [56] and [26], as well as in Thierry Botter’s thesis.

In an optomechanical system, the radiation pressure fluctuations of the probe light drive
mechanical motion of the oscillator. These random momentum kicks come from the ampli-
tude fluctuations of the light (present even in the vacuum). If we were to measure the light
with a homodyne or heterodyne detector, we would observe these amplitude fluctuations, by
definition, in the AM quadrature. For a coherent state of light, they are completely uncor-
related from the phase fluctuations observed in the PM quadrature (recall the round shape
of the coherent states shown in Fig. 4.1, showing no correlation trend). However, when the
probe light is resonant with the cavity, the mechanical motion of the oscillator imprints onto
the phase fluctuations of the light, as shown in Fig. 4.2. (For simplicity, in this chapter I will
focus on the case where the detuning of the probe light from cavity resonance is ∆pc = 0,
though I will qualitatively describe the effects of probe detuning later.) Thus the phase
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fluctuations of the exiting light carry with them information about the mechanical oscillator
motion, some of which is governed by the amplitude fluctuations of the light. While the
noise level of the outgoing AM quadrature is not affected by the optomechanical interaction,
one can imagine that by choosing the homodyne phase, one could measure a quadrature
angle φ that combines AM and PM (say φ = π/4). In this case, the correlated noise between
AM and PM could interfere, either constructively or destructively. If the destructive inter-
ference is sufficient to bring the noise in that quadrature below its vacuum value, the light
is quadrature squeezed.

A more careful derivation of the expected outgoing optical spectra at different quadra-
tures will help to suggest the parameters under which ponderomotive squeezing might be
observed experimentally. Our predictions for the spectra of ponderomotive squeezing (and
additionally for the force sensitivity derived in Ch. 3) come from the linear amplifier model
of optomechanics we detail in Botter et al. [56]. In that work, we connected the input fields
of our optomechanical system, both optical and mechanical, to optical outputs, via linear
transduction matrices. In doing so, we treated the optomechanical system as a quadrature-
sensitive linear amplifier for optical fluctuations. This is a particularly useful scheme for
illuminating the origins of ponderomotive squeezing, since these input and output fields can
easily be divided into separate quadratures which have different physical interaction with the
mechanical oscillator, as illustrated in Fig. 4.2. The resulting correlations between outgoing
AM and PM quadratures are responsible for the predicted ponderomotive squeezing.

We will generalize the PM quadrature optomechanical spectrum of Ch. 3 to a spectrum
at quadrature angle φ. This angle can be chosen, in homodyne detection, by a constant
phase-offset of the LO light relative to the signal. In heterodyne detection, as described
in Ch. 2, φ rotates at the relative heterodyne frequency, such that all quadrature angles
are available and can be selected by the appropriate demodulation process. Since we must
allow for cross-terms in the power spectral density, we begin our derivation with the Fourier
transform for one quadrature of the light that exits the cavity. It is a linear combination of
AM and PM quadratures at the output.

X̂ (φ, ω) = X̂AM(ω) cos(φ) + X̂PM(ω) sin(φ) (4.1)

Utilizing the Wiener-Khintchine theorem (see Mandel and Wolf [65] for an expansive treat-
ment of the subject), the power spectral density is then the autocorrelation function of the
above equation, here shown in frequency space.

S(φ, ω) = 〈X (φ, ω)X (φ,−ω)〉
= cos2(φ)〈XAM(ω)XAM(−ω)〉+ sin2(φ)〈XPM(ω)XPM(−ω)〉
+ cos(φ) sin(φ)〈XAM(ω)XPM(−ω) +XPM(ω)XAM(−ω)〉

(4.2)

Next we must take an accounting of the sources of power in each optical quadrature.
Here we will mirror the steps of Ch. 3, when we tallied up the noise contributions for
measuring the position of the mechanical oscillator. The outgoing PM quadrature has noise
contributions from the thermal fluctuations of the oscillator, from shot-noise imprecision,
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and from the backaction driven motion of the oscillator. The first of these is related to the
input mechanical field, which we treat as a thermal bath for the mechanical oscillator with
input X̂ in

mech
2. The second is simply due to the phase-fluctuations of the input light, X̂ in

PM.
Finally, the third is due to the amplitude-fluctuations of the input light X̂ in

AM, and shows up
in the PM quadrature as transduced by the mechanics.

XPM(ω) = Xth
PM(ω) +X imp

PM (ω) +XBA
PM(ω)

=
1

2

√
SSN

[(
2mωmΓχ(ω)

√
(νth + 1)εCom

)
X̂ in

mech(ω)

+ X̂ in
PM(ω)

+
(

2mωmΓχ(ω)
√
εC2

om

)
X̂ in

AM(ω)

] (4.3)

All three terms carry with them a factor of
√
SSN, with SSN the shot-noise power density,

dominated by the LO power used in detection of XPM. Two assumptions made in Eq. 4.3 are
that the mechanical oscillator has a high quality factor (Q = ωm/Γ� 1) and that the system
is in the unresolved sideband regime (ωm/κ � 1). Operation in the unresolved sideband
regime is an important requirement for the observation of ponderomotive squeezing. The PM
fluctuations produced by mechanical motion are delayed by one oscillator cycle from the AM
fluctuations that kicked the oscillator to begin the process. Therefore, the correlations have
an inherent time delay set by the mechanical frequency. A cavity that equilibrates faster
than mechanical motion (that is, one for which κ � ωm) has bandwidth large enough to
allow the correlations to develop. An interesting finding of Ref. [56] was that in the resolved
sideband regime, these same correlations can lead to the phenomenon of optomechanically
induced transparency (OMIT).

Though the input AM fluctuations drive the mechanical oscillator, the output AM
quadrature should carry only a record of the input fluctuations.

XAM(ω) = X imp
AM (ω)

=
1

2

√
SSNX̂

in
AM(ω)

(4.4)

Already we can see that both XAM and XPM carry information about X̂ in
AM. Returning to

2Note that this contribution contains a (ν + 1) term which is only correct for negative ω. Due to the
quantum nature of the mechanical oscillator, for positive ω the extra +1 disappears, leading to an asymmetry
in the predicted spectrum between positive and negative frequencies (observable in our system, as shown in
Brahms et al. [35]). We will symmetrize the PSDs in this chapter (that is, arithmetically average positive
and negative spectral densities) to account for this asymmetry.
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the PSD, we find:

S(φ, ω) ≈ SSN

2

{
cos2(φ)

1

2

+ sin2(φ)

[
m2ω2

mΓ2

2
|χ(ω)|2

(
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1

2

)
εCom +

1

2
+
m2ω2

mΓ2

2
|χ(ω)|2 εC2

om

]
+ cos(φ) sin(φ)2mωmΓ Real [χ(ω)]

√
εC2

om

} (4.5)

Here we have assumed that all inputs, X̂ in
mech, X̂ in

AM, and X̂ in
PM, corresponding to optical

vacuum quadratures and the mechanical thermal bath, are uncorrelated at different times
and with each other, such that each obeys 〈X in

i (ω)X in
j (ω′)〉 = δ(ω − ω′)δi,j with {i, j} =

{mech,AM,PM}.
We see that S(φ, ω) reduces to the PM power spectral density discussed in Ch. 3 when

φ = π/2. The important term for ponderomotive squeezing is the final term that links
XAM and XPM and disappears whenever measuring exactly the PM or AM quadrature. At
certain quadrature angles and frequencies it can turn negative. However, its contribution
to the overall noise power is only non-negligible near mechanical resonance, since χ(ω) falls
off quickly. If the thermal mechanical motion is not too large, then a negative correlation
term can in turn lead to an overall reduction in the PSD below its shot-noise level. It is
clear that this negative correlation grows with increasing Com and also depends on detection
efficiency. Additionally, from the prefactor cos(φ) sin(φ), it is obvious that the correlation
appears neither in the AM nor in the PM quadrature.

Figure 4.3 shows four calculations of predicted ponderomotive squeezing as a function
of frequency and quadrature angle for typical experimental conditions, assuming the probe
is resonant with the cavity3. The white contours outline the regions of the plot where the
noise falls below the vacuum level. At higher Com, the depth of the squeezing increases,
but the region over which this squeezing occurs narrows. This is because the increased
backaction at higher Com contributes additional noise which is present to some extent at
every quadrature angle save identically φ = 0. Another aspect of the squeezing to notice
is that for a given frequency, the quadrature opposite the squeezing shows increased noise.
Even a squeezed state must obey the Heisenberg uncertainty principle, such that a squeezed
quadrature necessitates an opposing anti-squeezed quadrature. Finally, one can see that no
squeezing occurs in any quadrature at frequency ωm. This is because Real [χ(ω)] (plotted in

3The formal derivation of the measurement of ponderomotive squeezing on cavity resonance deserves a
note. When considering the linear optomechanical amplifier theory of Ref. [56], one must be careful in taking
the limit as ∆pc goes to 0. While the value of the optomechanical gain G does go to zero in this limit, the
ratio G/∆pc, which appears in some matrix elements, does not necessarily become zero. In fact, we find in
this limit that on cavity resonance, there is no optical transduction of PM fluctuations to AM. However, AM
optical inputs are transduced into AM optical outputs and, by way of the oscillator coupling, PM optical
outputs. Mechanical inputs are transduced only onto the PM optical quadrature with on-resonant probing.
Generally, this is why we choose to measure external forces applied to our oscillator via the output PM
quadrature of our light.
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Figure 4.3 : Predicted optomechanical response for different values of Com, with ∆pc = 0, shown as a
function of quadrature angle φ (ordinate) frequency ω (abcissa), for typical experimental parameters:
κ = 2π× 1.82 MHz, ωm = 2π× 110 kHz, Γ = 2π× 3 kHz, ε = 6%. The regions of squeezing, where
the response in units of optical shot-noise, drops below 1, are outlined by white contours.

Fig. 4.4) crosses zero at ω = ωm. In fact, χ(ωm) is completely imaginary. Recall from the
force sensitivity measurement that this is the frequency where the system is most susceptible
to forces. This suggests that ponderomotive squeezing may not be useful for improving upon
the detection of applied forces. I will return to this point in greater detail later in this chapter.

So far we have assumed that the probe is resonant with the cavity. Detuning of the probe
leads to some qualitatively different behavior for the optomechanical interaction that pro-
duces squeezing. To first order, the detuning of the probe causes a rotation of the quadratures
of the light as they transit the cavity. This can be seen in Fig. 4.5, where the quadrature
of maximum optomechanical response shifts from approximately π/4 for the red-detuned
case to −π/4 for the blue-detuned case. Additionally, it is apparent that the detuning
shifts the mechanical response frequency. This effect is known as the optomechanical spring
shift, an effect well detailed in Ref. [34, 38]. The final consequence of detuning is the open-
ing and closing of a region of squeezing at the shifted mechanical response frequency, due
to optomechanically-induced amplification and damping of the mechanical response. That
squeezing is predicted at the shifted mechanical resonance for red-detuned probe light could
show promise for force detection. However, the theory predicts (and Ref. [26] shows exper-
imentally) that even the smallest amount of thermal occupation of the oscillator is enough
to swamp the squeezing closest to resonance, leaving only the troughs at farther frequencies
observable.

4.3 Experimental observation
Ponderomotive squeezing has now been reported in three different optomechanical sys-

tems: our ultracold atomic oscillator [26], a vibrating photonic crystal cavity [27], and a
silicon nitride membrane [28]. In each of these realizations, its observation required careful
control of experimental noise sources. As in our force sensitivity measurement, we benefited
from having prepared a ground-state oscillator well isolated from mechanical perturbations.
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Figure 4.4 : Spectrum of the real part of mechanical susceptibility χ(ω) (left). The ponderomotive
interaction is proportional to Real [χ(ω)], and thus crosses zero at ω = ωm. This zero crossing occurs
because the argument of χ(ω) (right), is π/2 at ω = ωm. The amplitude of χ(ω) is nonetheless
maximized at this frequency, a fact which may be exploited to achieve better sensitivity, as I will
discuss in Ch. 5.
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Figure 4.5 : Predicted optomechanical response for different values of ∆pc, with Com = 5, shown
as a function of quadrature angle φ (ordinate) frequency ω (abcissa), for the same experimental
parameters as in Fig. 4.3. Though it seems that now there is some squeezing near the (shifted)
mechanical resonance in the red-detuned case, this squeezing is predicted (and observed [26]) to
disappear almost as soon as any additional thermal phonons are introduced.
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Other important experimental tools that were key to the result were the introduction of
heterodyne detection (previous measurements had all been made by photon counting) and
improvements to the experimental stability that allowed for consistent experimental pa-
rameters over many-day data taking sessions. The former allowed us to tune carefully the
detection quadrature and thereby map the squeezing in quadrature maps, as shown in this
chapter. The latter consisted of the introduction of the wavemeter lock described in Ch. 2
as well as an analog heterodyne phase lock that was the precursor to the digital hetero-
dyne phase rotation also described in Ch. 2. Both were necessary since the slight depth of
ponderomotive squeezing together with our limited detection efficiency and atomic oscillator
lifetime required the averaging of many realizations of the squeezing interaction over the
course of a week of nearly non-stop data acquisition.

Each experimental realization consists of the following succession of events. First, an
atomic oscillator is prepared as described in Ch. 2 and positioned within the optical cavity
such that it has linear coupling to the probe field. The probe light frequency is then swept
quickly from very far below cavity resonance to a final frequency of approximately ∆pc = −1.1
MHz (so chosen as to encourage maximal squeezing in the AM quadrature). At this point,
the oscillator is permitted to interact with the probe field for 10’s of milliseconds, during
which time the probe light exiting the cavity is recorded on a heterodyne receiver. Ultimately,
we only use 5 ms of each data stream, due to observed heating of the oscillator that makes it
unusable beyond this period. A small percentage of the exiting probe light is redirected onto
a single photon counting module (SPCM) where its power, combined with the knowledge of
the probe power that was incident on the cavity, determines ∆pc and can be fed back to the
frequency control of the probe4. After the data acquisition period, the atoms are driven out
of the cavity by briefly extinguishing the trap light and turning on very bright imaging light
resonant with the atomic transition, the pressure of which expels the atoms from the cavity
region. Next the same measurement of probe light exiting the cavity is performed, although
now it carries the record of an empty cavity. Finally, and importantly for the determination
of optical shot-noise, the probe light is extinguished and the heterodyne receiver records the
beating of the LO with only the vacuum. This sequence is repeated, in the case of Ref. [26]
approximately 2000 times, ultimately providing 10 seconds of data over which to average the
optomechanical record. The recorded data are analyzed as described in Ch. 2 in order to
acquire the quadrature-dependent spectral response, which can be compared to the responses
without atoms and additionally without probe light. We are thus able to plot spectra in
units of heterodyne shot-noise power by performing the following normalization:

Shet =
Satoms − Sempty

SLO
+ 1, (4.6)

with Satoms, Sempty, and SLO the PSDs for the measurements with atoms, without atoms,
and without probe, respectively. The additional “+1” exists so that plotted records have a

4In all experiments since this one, we have used a different kind of frequency stabilization employing
phase-modulated sidebands applied to the probe and detected only with the heterodyne receiver, acting
more like a Pound-Drever-Hall lock in transmission. Thierry Botter’s thesis [48] details this locking method.
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baseline of one unit of shot-noise.
Because the ultimate effect of ponderomotive squeezing was small, we underwent careful

error analysis to identify any and all systematic errors that could contribute to our measure-
ment. The results of this analysis are detailed in the supplementary information of Ref. [26].
I will highlight the characterization of the contribution of LO power variations here, since
it is relevant to the discussion of new data presented in this chapter. In order to determine
whether an optical state is squeezed, the vacuum noise level must be carefully determined.
For this reason, we record the heterodyne spectrum of the empty cavity and of just the LO
in quick succession after the spectrum with atoms is recorded, repeating these three mea-
surements each experimental cycle. Since the shot-noise power, SSN = PLO~ωp (where ωp is
the probe frequency), can vary with the LO power PLO, the hope is that any variations in
PLO will happen on a time scale slower than the few seconds between these recordings. Any
drifts between experimental repetitions, which happen every 40 seconds, will be common to
the three measurements and therefore be eliminated in the normalization step of Eq. 4.6.
If, despite our best attempts, PLO is always slightly lower for measurements performed with
atoms as compared to those performed without probe light, this could give the appearance
of a reduction of optical noise that would mimic squeezing. By performing careful statisti-
cal analysis of the spectra at frequencies far from those where optomechanical transduction
is expected, we found a small systematic reduction in SSN for measurements with atoms,
shown in Fig. 4.6, and were able to estimate the uncertainty this reduction contributed to
our measurement. We ultimately determined that the slight correction to our measured
squeezing depth was at a level of 10−4 times shot-noise, and we included this information in
our reported squeezing level.

All of this error analysis was performed in the AM quadrature, where the squeezing was
quantified and reported. There was even more technical probe noise in the PM quadrature.
We were careful to verify that our light was shot-nose limited in the AM quadrature, such
that all amplitude fluctuations were no greater than those expected for vacuum5. Because the
mechanical oscillator is only driven by amplitude fluctuations of the light, additional phase
noise does not alter the fact that the optomechanical response we typically measure is driven
by radiation pressure shot-noise. Additionally, since the squeezing measured in Ref. [26] was
reported for the AM quadrature, we were sure that measured suppression of noise meant
observation of squeezing since that quadrature was already limited to the vacuum level.
However, when we try to observe squeezing in any other quadrature, we run up against the
obscuring effect of technical phase fluctuations of the probe light, as shown in Fig. 4.7. In
these data, we inject light resonant with the cavity, such that squeezing occurs primarily
in quadratures that are a mix of AM and PM. The reduction of noise shown is therefore a
reduction of technical noise. While we cannot state that it is squeezing, its trend follows the
predictions of Fig. 4.3, suggesting that if we were to take pains to reduce technical PM laser
noise, we could observe squeezing under these experimental conditions. It turns out that

5One can verify that light is shot-noise limited by observing how the measured power at a relevant
frequency scales with increasing probe power. Shot-noise should rise linearly, while technical noise will
typically be of quadratic or higher order in the input power.



4.3. EXPERIMENTAL OBSERVATION 58

-60

-40

-20

0

20

40

60

N
oi

se
 s

pe
ct

ra
l d

en
si

ty

(u
ni

ts
 o

f s
ho

t-
no

is
e 

x 
10

-3
)

2422201816
Frequency (MHz)

 Satoms-SLO

 Binned average
 Technical noise contribution (700x for comparison)

Figure 4.6 : Difference between noise power for heterodyne measurements made with signal light,
Satoms, and noise power for heterodyne measurements made without signal light, SLO, for experi-
mental results reported in Ref. [26]. The binned average, over the 15-25 MHz range considered, gave
a net difference of about 0.01% of shot-noise, with standard deviation of 0.05% for a 1 MHz bins.
We found that a small portion (only 1.2±0.2%) of this difference could be described by technical
noise on the probe light, well within the ±0.05% standard deviation of the measurement. We thus
recorded an overall systematic correction of our measured squeezing uncertainty of 0 ± 5 × 10−4

relative to shot-noise.
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Figure 4.7 : Experimental data showing technical noise reduction due to ponderomotive interaction
for ∆pc = 0. Data are normalized to Sempty, giving the technical noise level. The regions of
“squashing” of noise, outlined in white contours, behave like ponderomotive squeezing calculated in
Fig. 4.3, but cannot be termed thus because the noise is not reduced below its vacuum value. The
dashed white lines in the quadrature map on the left correspond to the quadratures plotted on the
right.

such an exercise might not be so painful after all, as we observe that the laser phase noise
falls further with increased frequency and appears to be shot-noise limited at frequencies a
few hundred kilohertz from the heterodyne carrier. We are limited in our optomechanical
frequency by available ODT laser power, but increasing laser power is often by comparison
a simpler task than noise hunting.

After the original observation of ponderomotive squeezing, we installed the optical super-
lattice, allowing for the introduction of multiple spectrally-distinct mechanical oscillators.
A natural question that arose was how one oscillator would react to the squeezed vacuum
produced by another, and whether this response would be observable. The motivation for
this investigation was two-fold. First, the “sensing oscillator” would observe the ponderomo-
tively squeezed light within the cavity, where the squeezing has not yet been impaired by
the losses that eventually contribute to our overall detection efficiency. Though our original
measurement of ponderomotive squeezing showed a small effect (only 1.2% of shot-noise),
the squeezing within the cavity could be as much as 20 dB. Second, we wondered if by
placing one oscillator within an AM-quadrature squeezing trough of another we could per-
form a more sensitive force measurement thanks to the reduced backaction. In light of our
work on multi-oscillator optomechanics in Ref. [38], we now believe that these motivations
were misguided, as we have come to understand that the hybridization of mechanical modes
through cavity-mediated coupling will most likely lead to a single squeezing interaction in
much the same way as the single oscillator case. Figure. 4.8 shows some early attempts at
such measurements. Three oscillators interact with the probe field at different detunings.
The squeezing trends are similar to those predicted in Fig. 4.5, though now with three clear
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Figure 4.8 : Experimental data showing technical noise reduction due to ponderomotive interaction
for three oscillators (with unshifted resonances at 118, 130, and 141 kHz). The regions of “squashing”
of noise, outlined in white contours, behave like ponderomotive squeezing calculated in Fig. 4.5, but
cannot be termed thus because the noise is not reduced below its vacuum value. The left and center
figures show secondary peaks for some oscillators due to heating in the anharmonic trap, discussed
in Ch. 3.

oscillator peaks. Again, probe phase noise means that the regions of noise reduction do not
necessarily dip below the vacuum level, except near the AM quadrature. Though the ap-
pearance of noise dips on either side of the highest frequency oscillator for the red-detuned
case may suggest that it sits in a squeezing trough produced by the two lower-frequency
oscillators, the effect of this on overall optomechanical response is difficult to say. This is
because changes of backaction driven response height are difficult to discern from the effects
of oscillator coupling which hybridize the oscillator modes in such a way that their cou-
pling to the probe light differs. This hybridization and redistribution of backaction occurs
independently of any squeezing of the probe light, and is explored in Spethmann et al. [38].

4.4 Squeezing force sensitivity
I would now like to return to the question of whether ponderomotive squeezing can help

with force sensitivity for a single oscillator. In general, we presume that any reduction
of optical noise near mechanical resonance could help our cause. However, in the case of
noise reduction via ponderomotive squeezing, a couple of obstacles stand in the way. One is
that the squeezing often primarily appears in the wrong quadrature, opposite the mechanical
response. Another is that squeezing is necessarily suppressed at mechanical resonance, where,
as shown in Fig. 4.4, the real part of χ(ω) goes to zero. Unfortunately, mechanical resonance,
we have learned, is where force sensitivity is finest. The top row of Fig. 4.9 shows mechanical
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Figure 4.9 : Predicted mechanical susceptibility (top) and force sensitivity (bottom) for different
values of Com, with ∆pc = 0, shown as a function of quadrature angle φ (ordinate) frequency ω
(abcissa), for typical experimental parameters: κ = 2π× 1.82 MHz, ωm = 2π× 110 kHz, Γ =
2π× 3 kHz, ε = 6%. The force sensitivity plots (bottom) are found by taking the ratio of the
susceptibilities (top) to the noise spectra of Fig. 4.3. The onset of ponderomotive squeezing for
Com ≥ 2 may influence the location of optimal sensitivity in the quadrature maps.

susceptibility as a function of frequency and quadrature angle for different values of Com.
The ratio of the spectra in Fig. 4.3 to these susceptibilities gives the sensitivity to applied
force, plotted in the bottom row of Fig. 4.9. The appearance of squeezing, which starts to
take effect as backaction becomes a dominant contributor to the noise (Com &2 for detection
efficiency ε=0.6), affects slightly the frequency and quadrature of the highest sensitivity
regions. However, these sensitivities do not appear to exceed the SQL (recalling that the
SQL is the sensitivity in the PM quadrature at mechanical resonance, and is observed when
Com ≈ 2).

Since the plots in Fig. 4.9 only give a vague sense of the sensitivities we could expect
if we allow ourselves to search the (φ, ω) parameter space, we perform an optimization on
experimental parameters to find the best settings for force sensitivity. This may lend insight
into whether excursions into regions with squeezing ever help the cause. Figure 4.10 shows the
parameters recovered for best sensitivity (that is, minimum SFF or maximum signal-to-noise
1/SFF ), for values of detuning −κ ≤ ∆pc ≤ +κ. Different detunings shift the Com at which
the best sensitivity occurs, and the sensitivity itself appears to depend on ∆pc, decreasing
as the detuning moves from blue to red. Also plotted are the frequency and quadrature
angle at which this maximum sensitivity occurs. The changing frequency with detuning and
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Figure 4.10 : Results of optimization on φ and ω to recover the best force sensitivity as ∆pc and
Com are varied. The result of detuning the probe is to shift the optimal measurement frequency,
due to the optical spring shift, and the optimal measurement quadrature, possibly due to the
presence of ponderomotive squeezing. At high values of Com, where squeezing troughs are narrow,
the optimization algorithm has some difficulty, as observed in the bottom right panel.
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cooperativity can be explained by the optical spring shift. This frequency change accounts
for the differences in optimal sensitivity, since SFF has a prefactor of p2HO ∝ ωm.

What about these results can hint at the role of squeezing in force sensitivity? The fre-
quency of optimal sensitivity is always found to be close to (but not exactly at) the shifted
mechanical resonance. We know that squeezing usually occurs away from that frequency,
which may downplay its importance. However, the observed quadrature for optimal sen-
sitivity may support the case of squeezing. At low Com, where squeezing does not occur,
the optimal response quadratures correspond to those where the typical maximum mechan-
ical response to shot-noise occurs, rotated of course due to the detuning. However, as
Com climbs to values where we know squeezing sets in, the optimal quadratures shift in
a Com-dependent fashion, though the cavity rotation of quadratures has no dependence on
measurement strength. This suggests that the optimization routine may be finding the deep,
narrow squeezing troughs that are very close to mechanical resonance but shifted in quadra-
ture. This evidence is inconclusive, but it does motivate further investigation, since claims
for [58] and against [56] the usefulness of ponderomotive squeezing in force measurements
have been made in the literature.

Finally, the question remains as to whether the ponderomotive squeezing produced by
one mechanical oscillator could help to measure forces applied to another oscillator in the
same cavity with precision beyond the SQL. This is similar to proposals for introducing
squeezed light created outside [58] or inside [66] a cavity optomechanical system to enhance
sensitivity. We recorded the optomechanical spectra of multiple oscillators in Fig. 4.8. By
the same reasoning that led us to conclude that one oscillator would not be effective in
detecting the ponderomotive squeezing of another, we now believe that the effect of mode
hybridization will mean no improvement in force sensitivity in the multioscillator case.
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Chapter 5

Complex Squeezing

The very longest swell in the ocean, I suspect,
carries the deepest memory, the information of actions
summarized (surface peaks and dibbles and local sharp

slopes of windstorms) with a summary of the summaries
and under other summaries a deeper summary...

A. R. Ammons, “Swells”, 1981

5.1 Introduction
In the last chapter, we found that ponderomotive squeezing was nonexistent at mechanical

resonance as a consequence of the phase of χ(ωm). Since a homodyne measurement is only
sensitive to the real part of χ, as shown in Eq. 4.5, our experimental methods did not have
simultaneous access to the strongest correlated backaction noise in the PM quadrature that
occurred exactly π/2 out of phase with its generating AM fluctuations. Figure 5.1 shows
again the real and imaginary components of χ(ω), now plotted parametrically on complex
axes so as to demonstrate clearly that the largest extent of the susceptibility occurs along
the imaginary axis. Knowing that these correlations, though not accessible via homodyne
detection, nonetheless exist and are in fact strongest at this out-of-phase point, we wondered
how we might obtain access to them. We imagine that instead of measuring a quadrature
that is a linear combination of AM and PM, X̂ (φ) = X̂AM cos(φ) + X̂PM sin(φ), where the
coefficients sin(φ) and cos(φ) are real, we would like instead to measure µX̂AM + νX̂PM,
where µ and ν can be complex numbers. This could allow us, for example, to subtract the
imaginary part of X̂PM that carries the backaction noise from the real part of X̂AM that
generated the backaction, thus removing the correlated backaction from the measurement
entirely. Since µ and ν could both be complex, the quadrature being measured would now
be defined by two angles φ and θ, as we will show in the next section.
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Figure 5.1 : Parametric plot of the real and imaginary parts of χ(ω) on complex axes, with points
spaced by equal frequency. The greatest magnitude (largest excursion from the origin) occurs at
ωm, where the real part of the susceptibility vanishes. Half-circles show lines of constant magnitude.

Chapter 4 showed how in-phase correlations showing up at the wings of the susceptibility
spectrum lead to ponderomotive amplification and squeezing of noise. In this chapter, I will
describe how by selecting complex detection angles φ and θ properly, we propose to be able
to subtract correlated noise at all frequencies in an optomechanical system in such a way as
to take advantage of a new kind of squeezing, which we dub “complex squeezing” due to the
nature of the correlations used. I will begin by providing intuition and some derivations for
the parameters and limits of complex squeezing, hewing to the experimentalist’s perspec-
tive. Then I will discuss the attempts to observe such squeezing experimentally, and what
requirements might help in its future realization. Finally, I will introduce a novel detection
scheme that would overcome the limits of homodyne detection and allow for improvements
to force sensitivity, as described more extensively in Buchmann et al. [39].

5.2 Eigenmodes of complex squeezing
The simple description of quadrature squeezing given in Ch. 4 was one of the reduction

of the noise, or uncertainty, of one quadrature (e.g. AM) of phase space below the vacuum
level. When a quantum state is measured repeatedly, the experimental manifestation of this
noise is the variance observed among the measurements. As soon as squeezing occurs, the
phase space distribution no longer has the circular symmetry of the coherent state, as shown
in the left panel of Fig. 5.2. The compression and elongation that characterize squeezing
and anti-squeezing mean that there is now a non-zero covariance between quadratures in
some basis. In Fig. 5.2, for example, correlations between X and Y (and Z in the three-
dimensional case) are apparent due to the angle of the asymmetric distribution. The black
lines show the eigenvectors of the distribution, which fall along the semi-major and semi-
minor axis. They evidently follow the directions containing the least and the most noise:
the squeezed and anti-squeezed quadratures.

Just as the squeezing in Fig. 5.2 does not occur in the (X, Y ) basis, recall that quadrature
squeezing is not restricted to just AM or PM variances, but can occur at some intermediate
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Figure 5.2 : Principal component analysis yields the eigenvectors of the 2×2 (left) and 3×3 (right)
covariance matrix. The black arrows point along the eigenvectors, which contain the least and
greatest variances in the distribution. The lengths of the arrows give the eigenvalues.

quadrature angle φ. Such a rotation is evident in a phase plot like Fig. 5.2, or equivalently
by examining the covariance matrix for noise in the AM and PM quadratures1,

C (XAM, XPM) =

(
Var [XAM] Cov [XAM, XPM]

Cov [XPM, XAM] Var [XPM]

)
. (5.1)

For an uncorrelated coherent state, the off-diagonal covariance terms are zero, and this matrix
is diagonal. In the case of squeezing at some intermediate angle 0 < φ < π/2, the matrix will
no longer be diagonal, but will rather have eigenvectors at the squeezed and anti-squeezed
quadrature angles. Characterization of the squeezing is therefore possible using principal
component analysis to investigate the eigenmodes of the covariance matrix. Furthermore, if
the state is gaussian (as is the case for most of the optical and mechanical states we create
and measure in our experimental efforts), the covariance matrix actually contains all of the
information about the state. Finally, were the phase-space three-dimensional, the same
analysis could be extended to a 3× 3 covariance matrix, resulting in 3 eigenmodes like those
shown in the right panel of Fig. 5.2. A four-dimensional case, as will become important in
the analysis of complex squeezing, is difficult to illustrate, but the same considerations also
hold true.

In this section I will discuss quadrature squeezing in terms of the covariance matrix for
quantum noise. I will then define the four Fourier transformed detection operators that can

1I will define the covariance matrix more carefully in the next section. In the meantime, here Var [X]
means the variance of a value X, and Cov [X,Y ] means the covariance of value X with value Y .
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be combined so as to be sensitive to complex squeezing, studying their 4 × 4 covariance
matrix for the resulting squeezed and anti-squeezed eigenmodes.

5.2.1 Generalized covariance matrices

I will take a somewhat more rigorous quantum optics approach in this chapter. To that
end, here I will carefully detail the connection between the covariance matrix and quadrature
squeezing.

Walls & Milburn [67] define the covariance matrix for two operators as

C (X1, X2)p,q =
1

2
〈{Xp, Xq}〉 − 〈Xp〉 〈Xq〉 (p, q = 1, 2), (5.2)

where {, } is the anticommutator. The anticommutator is required in describing the covari-
ance matrix of quantum operators because in general (and in the cases we study here) X1

and X2 do not commute. Thus, while these operators may be Hermitian, their product may
not be. A covariance matrix, even if it describes complex-valued variables, is real, symmetric,
and positive definite, and thus Hermitian [68]. Therefore, we need to use the symmetrized
product.

To align the definition of squeezing with the covariance matrix, I will follow arguments
from Simon et al. [68] for the “characterization of variance matrices by uncertainty princi-
ples”. Later, I will apply this characterization to understand the uncertainty principles we
should expect for four newly defined Fourier-transformed operators. According to Ref. [68],
classically, any real symmetric positive-definite matrix is a physically realizable variance ma-
trix, as defined in Eq. 5.2 (though generally it can extend to 2n × 2n in size, an extension
we will need). In the quantum case there is an additional restriction required of a matrix in
order for it to be a physically realizable variance matrix. This additional restriction, that

detC ≥ 1/4, (5.3)

is the complete, precise statement of the Heisenberg uncertainty relation (which I will derive
carefully later in this chapter). This restriction takes into account potential off-diagonal
terms in the covariance matrix. Equation 5.3 does not negate the less careful (though often
used) definition of the Heisenberg uncertainty relation, Var [X1]Var [X2] ≥ 1/4. However,
this narrowly defined inequality says nothing about the product of the variances along eigen-
vectors in a rotated quadrature, where there could be squeezing present. Simon et al. [68]
define a squeezed state as one for which some transformed quadrature – obtained by apply-
ing a transformation that is part of the real symplectic group2 Sp(2n,R) to a vector of the
harmonic oscillator quadratures – has variance of less than 1/2. Furthermore they prove
that a state with covariance matrix C is squeezed according to this definition if and only if
the least eigenvalue of the matrix has a value of less than 1/2.

2Sp(2n,R) contains all real canonical linear transformations in 2n dimensions.
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As a final note on this subject, Simon et al. [68] point out that the determinant that forms
the left side of Eq. 5.3 is in fact invariant under such Sp(2n,R) transformations. Let’s take a
moment to understand the scope of these transformations. For a Hermitian Hamiltonian that
is quadratic in the canonical variables X1 and X2 (and therefore equivalently in a and a†),
unitary evolution of the Hamiltonian produces Sp(2,R) transformations on those canonical
variables. This means that the matrix S that solves the canonical evolution equation

eiH
(

a
a†

)
e−iH = S

(
a
a†

)
(5.4)

is a member of the symplectic group Sp(2,R). Two such quadratic Hamiltonian terms that
are important for us are those of form

Ĥ(θ) =
θ

4

(
a†a+ aa†

)
(5.5)

or
Ĥ(z) =

1

4

(
za†2 + z∗a2

)
. (5.6)

The first is related to the normal harmonic oscillator Hamiltonian, and thus its evolution
is just a rotation in phase space. In this case, the symplectic matrix that transforms the
quadrature vector is

S(θ) =

(
cos θ sin θ
− sin θ cos θ

)
. (5.7)

The second Hamiltonian is the quadrature squeezing interaction and evolves as a scaling in
phase space along some axis. The symplectic matrix generating this transformation on the
quadratures is then

S(z) = S(reiθ) = 2

(
cosh(r/2) + sinh(r/2) sin(θ) − sinh(r/2) cos(θ)

− sinh(r/2) cos(θ) cosh(r/2)− sinh(r/2) sin(θ)

)
. (5.8)

Here r is the squeezing parameter, which compresses the state along axis θ.
If we are interested in how covariance matrices change under the evolution of a quadratic

Hamiltonian, we simply transform them by the relevant symplectic matrix, such that C ′ =
S C ST . Since the determinant of Eq. 5.3 is invariant under these transformations, we know
that the time-evolution of the harmonic oscillator and the introduction of quadrature squeez-
ing leave the Heisenberg uncertainty principle intact. These rigorous definitions are useful
since in this chapter we propose an entirely new form of squeezing – “complex squeezing”
– which as yet has not been described. We would therefore like to justify calling this ef-
fect “squeezing”. Furthermore, we may like to allow for states that are not stationary to
be included as potential complex squeezed candidates. As such, understanding of how the
Heisenberg uncertainty principle behaves in time will be important. It is heartening, there-
fore, to learn that the uncertainty bound is invariant under both the quadrature squeezing
and the harmonic oscillator interactions.
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Figure 5.3 : A beamsplitter combines the signal of interest Esig with a classical local oscillator ELO.
The resulting current on the output photodiodes contains information about the magnitudes and
relative phase of the two electric fields. Subtracting the currents of the two photodiodes cancels
common-mode noise.

5.2.2 Homodyne quantum operators

After considerable buildup, I will now describe how the four detection operators of in-
terest come about. Though quadrature operators X̂AM and X̂PM are Hermitian, with real
observable eigenvalues, homodyne detection actually gives us access to two complex quan-
tities X̃AM(ω) and X̃PM(ω), which are complex because of the Fourier transform used to
obtain them. These can equivalently be expressed as four real-valued quantities, which are
directly accessible in our experimental apparatus. Our hope is that by choosing the correct
combination of these four quantities, we can access some combination of X̂PM and X̂AM that
allows us to subtract correlated noise in such a way so as to observe complex squeezing.
We will find, however, that homodyne detection does not give us simultaneous access to the
necessary components, and that we must devise another detection method to observe this
squeezing.

To define the four homodyne detection operators, we consider the simple case of a quan-
tized signal field

Esig = a(t)e−iωct + a†(t)eiωct, (5.9)

with ωc the carrier frequency for the coherent tone and a(t) the amplitude of the field. We
will let the time dependence of a(t) remain general. Note that I have not defined a(t) as
the harmonic oscillator lowering operator, since the amplitude of Esig may be of a more
complicated form. A homodyne detection is performed by combining this signal field on a
beamsplitter (depicted in Fig. 5.3) with a classical local oscillator of fixed amplitude |α|,

ELO = |α|e−iωct+iθ + |α|eiωct−iφ, (5.10)

rotating at carrier frequency ωc and with φ the phase relative to the signal at time t = 0.
The field that exits one port of the beamsplitter is given by

c(t) = a(t)e−iωct + |α|e−iωct+iφ, (5.11)
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(where I have let φ absorb the extra π/2 phase that comes with reflection) and the intensity
of the beat note measured by a subsequent photodetector is

Ic(t) = c†(t)c(t)

= a†(t)a(t) + |α|2 + |α|a†(t)eiφ + |α|a(t)e−iφ.
(5.12)

If we perform balanced detection (subtracting Id from Ic in Fig. 5.3), the first two terms of
this equation drop out, while the last two are doubled. Therefore, we will focus on the latter
terms for the duration of this section.

I(t) ∝ |α|a†(t)eiφ + |α|a(t)e−iφ (5.13)

We are interested in the terms that result from taking the Fourier Transform of I(t):

I(ω) ∝
∫ T

0

dt
[
a†(t)eiωt+iφ + a(t)eiωt−iφ

]
. (5.14)

We are concerned with conjugate quadratures AM (φ = 0) and FM (φ = π/2). We expand
the integrands for each case:

IAM(ω) ∝
∫ T

0

dt
{
a†(t) [cos(ωt) + i sin(ωt)] + a(t) [cos(ωt) + i sin(ωt)]

}
= a†(ω) + a(ω),

(5.15)

IPM(ω) ∝
∫ T

0

dt
{
a†(t) [cos(ωt) + i sin(ωt)]− a(t) [cos(ωt) + i sin(ωt)]

}
= a†(ω)− a(ω).

(5.16)

Both of these have real and imaginary components. Note that we have pulled an overall phase
factor i out of IPM(ω). This is in keeping with the understanding that I(ω) = IAM(ω) +
iIPM(ω).

We will treat each component of AM and of PM as its own operator, meaning we will
have four total operators among which to look for correlations.

X̃Re
AM(ω) = Real [IAM(ω)]

=

∫ T

0

dt
[
a†(t) cos(ωt) + a(t) cos(ωt)

]
= a†(ω) + a†(−ω) + a(ω) + a(−ω)

= X̃AM(ω) + X̃AM(−ω)

(5.17)

X̃ Im
AM(ω) = Imag [IAM(ω)]

=

∫ T

0

dt
[
a†(t) sin(ωt) + a(t) sin(ωt)

]
= −i

(
X̃AM(ω)− X̃AM(−ω)

) (5.18)
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X̃Re
PM(ω) = Real [IPM(ω)]

=

∫ T

0

dt
[
a†(t) cos(ωt)− a(t) cos(ωt)

]
= X̃PM(ω) + X̃PM(−ω)

(5.19)

X̃ Im
PM(ω) = Imag [IPM(ω)]

=

∫ T

0

dt
[
−a†(t) sin(ωt) + a(t) sin(ωt)

]
= i
(
X̃PM(ω)− X̃PM(−ω)

) (5.20)

Thus we see that homodyne detection gives us two complex spectra, or equivalently four
real-valued spectra. We suspect that correlations can arise, for example, between X̃Re

AM and
X̃ Im

PM at ω = ωm for optomechanical interactions. Therefore, we imagine that an eigenmode
of the 4 × 4 covariance matrix with a vector positive along one of these axes and negative
along another might show suppressed noise consistent with our definition of squeezing. The
weights of the contributions from these four operators to the eigenmodes would be the real
and imaginary parts of the complex µ and ν we imagined at the beginning of the chapter.

5.2.3 Limits on squeezing

What level of noise suppression defines squeezing among these new homodyne operators?
That is, what are limits on the 4 × 4 covariance matrix for the new homodyne operators
analogous to that given in Eq. 5.3? In the 2× 2 case, this limit was exactly the Heisenberg
uncertainty principle. To expand to the 4× 4 case, we will first look at how that inequality
is derived. Here I follow closely the derivation in Ch. 9 of Shankar [69].

Let us assume that X1 and X2 are Hermitian. Their variances are given by

σ2
Xi

=
〈
(Xi − 〈Xi〉)2

〉
, i = {1, 2}. (5.21)

With no loss of generality3, we will let both 〈Xi〉 = 0. Also, noting that they are Hermitian,
we can say that their commutator has the form [X1, X2] = iΓ, where Γ is a Hermitian
operator. The product of the variances is

σ2
X1
σ2
X2

=
〈
X2

1

〉 〈
X2

2

〉
. (5.22)

3If 〈Xi〉 6= 0, this is equivalent to a coherent displacement in phase space, which does not affect the noise
distribution. Application of the displacement operator to a state centered at the origin in order to produce
such an offset does not affect the results of the derivation.
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The Cauchy-Schwarz inequality allows us to compare the expectation value of the product of
X1 and X2 to the product of their expectation values: 〈X1〉2〈X2〉2 ≥ |

〈
X†1X2

〉
|2. Therefore,

the product of variances is subject to the inequality:

σ2
X1
σ2
X2

=
〈
X2

1

〉 〈
X2

2

〉
=
∣∣∣〈X†1X2

〉∣∣∣2 = |〈X1X2〉|2
(5.23)

Next we invoke the following trivial equality: X1X2 = 1/2 {X1, X2}+1/2 [X1, X2]. Applying
this to the variance inequality, we find:

〈
X2

1

〉 〈
X2

2

〉
≥
∣∣∣∣〈1

2
{X1, X2}+

1

2
[X1, X2]

〉∣∣∣∣2
=

∣∣∣∣〈1

2
{X1, X2}+

1

2
iΓ

〉∣∣∣∣2
=

1

4
|〈{X1, X2}〉|2 +

1

4
〈Γ〉2

=
1

4
|〈{X1, X2}〉|2 +

1

4
|〈[X1, X2]〉|2

(5.24)

Now let’s re-examine the covariance matrix as defined in Eq. 5.2. Consider first just a 2× 2
matrix, C (Xp, Xq) = 1/2 〈{Xp, Xq}〉 − 〈Xp〉 〈Xq〉 , (p, q = 1, 2). Assuming average values of
X1 and X2 disappear, the determinant of this matrix is

det (C) =
1

4

〈
2X2

1

〉 〈
2X2

2

〉
− 1

4
〈{X2, X1}〉 〈{X1, X2}〉

=
〈
X2

1

〉 〈
X2

2

〉
− 1

4
〈{X2, X1}〉 〈{X1, X2}〉 .

(5.25)

Next we use Eq. 5.24 to put a lower bound on the value of the 〈X2
1 〉 〈X2

2 〉 term.

det (C) ≥ 1

4
|〈{X1, X2}〉|2 −

1

4
〈{X2, X1}〉 〈{X1, X2}〉+

1

4
|〈[X1, X2]〉|2 . (5.26)

Since {X1, X2} = {X2, X1}, the first two terms cancel, and we are left with the inequality:

det (C (X1, X2)) ≥
1

4
|〈[X1, X2]〉|2 . (5.27)

Thus, we see that the commutation relations between operators set the lower bounds on
the determinants of covariance matrices. We will therefore calculate the commutators among
the four new homodyne operators in order to set bounds on determinants within the larger
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covariance matrix.

C
(
X̃Re

AM, X̃
Re
PM, X̃

Im
AM, X̃

Im
PM

)

=
1

2



〈{
X̃Re

AM, X̃
Re
AM

}〉 〈{
X̃Re

AM, X̃
Re
PM

}〉 〈{
X̃Re

AM, X̃
Im
AM

}〉 〈{
X̃Re

AM, X̃
Im
PM

}〉
〈{

X̃Re
PM, X̃

Re
AM

}〉 〈{
X̃Re

PM, X̃
Re
PM

}〉 〈{
X̃Re

PM, X̃
Im
AM

}〉 〈{
X̃Re

PM, X̃
Im
PM

}〉
〈{

X̃ Im
AM, X̃

Re
AM

}〉 〈{
X̃ Im

AM, X̃
Re
PM

}〉 〈{
X̃ Im

AM, X̃
Im
AM

}〉 〈{
X̃ Im

AM, X̃
Im
PM

}〉
〈{

X̃ Im
PM, X̃

Re
AM

}〉 〈{
X̃ Im

PM, X̃
Re
PM

}〉 〈{
X̃ Im

PM, X̃
Im
AM

}〉 〈{
X̃ Im

PM, X̃
Im
PM

}〉


=

 C1 C2

C3 C4



(5.28)

The quadrants C1 and C4 are just 2 × 2 covariance matrices for the real and imaginary
operators respectively. C2 and C3, which combine real and imaginary operators, cannot be
defined thus, and are therefore not so easily related to the commutation relations used in
the derivation of the uncertainty principle. Nonetheless, it may be instructive to check the
limits of the diagonal quadrant determinants.

In the case of the real operators, X̃Re
AM and X̃Re

PM,

[
X̃Re

AM(ω), X̃Re
PM(ω)

]
=

1

T

∫ T

0

∫ T

0

dt′dt

{[
a†(t′) cos(ωt′) + a(t′) cos(ωt′)

] [
a†(t) cos(ωt)− a(t) cos(ωt)

]
−
[
a†(t) cos(ωt)− a(t) cos(ωt)

] [
a†(t′) cos(ωt′) + a(t′) cos(ωt′)

]}
=

1

T

∫ T

0

∫ T

0

dt′dt cos(ωt′) cos(ωt)
{[
a†(t′), a†(t)

]
− [a(t′), a(t)]

+
[
a(t), a†(t′)

]
+
[
a(t′), a†(t)

]}
=

2

T

∫ T

0

dt cos2(ωt)

(5.29)

For the last line, we have assumed that a(t) is uncorrelated with a(t′). Similarly, we find for
the imaginary terms: [

X̃ Im
AM(ω), X̃ Im

PM(ω)
]

= − 2

T

∫ T

0

dt sin2(ωt) (5.30)

If we go through these calculations for every combination of the four operators, we find only
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four non-zero commutators result.[
X̃Re

AM, X̃
Re
PM

]
=

2

T

∫ T

0

dt cos2 (ωt) = 1 +
cos(ωT ) sin(ωT )

ωT[
X̃ Im

AM, X̃
Im
PM

]
= − 2

T

∫ T

0

dt sin2 (ωt) = −1 +
cos(ωT ) sin(ωT )

ωT[
X̃Re

AM, X̃
Im
PM

]
= − 2

T

∫ T

0

dt cos (ωt) sin (ωt) = −sin2(ωT )

ωT[
X̃ Im

AM, X̃
Re
PM

]
=

2

T

∫ t

0

dt cos (ωt) sin (ωt) =
sin2(ωT )

ωT
.

(5.31)

As T gets large, the first and second commutators tend toward 1, while the third and fourth
approach 0. These allow us to put limits on the determinants of the diagonal quadrants of
the covariance matrix.

detC1 ≥
1

4

∣∣∣〈[X̃Re
AM, X̃

Re
PM

]〉∣∣∣2 =
1

4

detC4 ≥
1

4

∣∣∣〈[X̃ Im
AM, X̃

Im
PM

]〉∣∣∣2 =
1

4

(5.32)

This suggests that the pair of real operators and the pair of imaginary operators each con-
stitute a sort of harmonic oscillator with its own uncertainty limits.

The off-diagonal quadrants are not so straight-forward, unfortunately. They do not have
the form of self-contained covariance matrices, and thus, we cannot apply our inequality
to set a limit on their determinants. However, suppose we were considering the covariance
of the operators that we might have access to: C

(
X̃Re

AM, X̃
Im
PM

)
. The determinant of this

matrix would be equal to the product of its eigenvalues, so a lower bound on this would tell
us something about uncertainties in this basis. We know then that

detC
(
X̃Re

AM, X̃
Im
PM

)
≥ 1

4

∣∣∣〈[X̃Re
AM, X̃

Im
PM

]〉∣∣∣2 = 0. (5.33)

That is, there is no lower limit on the product of the eigenvalues of the matrix. The same is
true for C

(
X̃ Im

AM, X̃
Re
PM

)
.

However, this is not entirely a satisfactory result. We still do not know the limits imposed
on products of eigenvalues for the entire covariance matrix C

(
X̃Re

AM, X̃
Re
PM, X̃

Im
AM, X̃

Im
PM

)
. We

hypothesize that if complex squeezing occurs in some complex quadrature Real[µ]X̃Re
AM +

Imag[µ]iX̃
Im
AM +Real[ν]X̃Re

PM + Imag[ν]X̃ Im
PM, then anti-squeezing will appear in the conjugate

complex quadrature, since complex squeezing is really just an extension of real quadrature
squeezing. We might guess, using this comparison, that a limit to the product of all four
eigenvalues would be 1/16, the product of the limits for the two diagonal quadratures. This
would be in keeping with the interpretation of our four operators as composing two individual
harmonic oscillators that can be coupled by optomechanical interaction. If this is the case,
then any quadrature with noise that drops below a vacuum value of 1/4 could be said to be
squeezed.
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Figure 5.4 : Eigenmodes of the covariance matrix for experimental data recorded in Brooks et al.
[26] that showed real ponderomotive squeezing at frequencies away from ωm. Neither eigenmode
dips below the vacuum level at mechanical resonance, a symptom of too much PM laser noise at
the input and an improper detuning for observing the ideal correlation angle between AM and PM
output fluctuations.

5.3 Experimental observations
With a guess as to the vacuum value below which we can define an complex squeezed

state, we now turn to the effort to observe one experimentally. In general, a homodyne
detector cannot measure a quadrature that combines the operators in such a way so as to
observe complex squeezing. This can be understood by considering again Eq. 4.2 for the
homodyne spectrum. It can be rewritten in terms of components of the covariance matrix[
C
(
X̃Re

AM, X̃
Re
PM, X̃

Im
AM, X̃

Im
PM

)]
ij
:

S(φ, ω) = cos2(φ) {[C(ω)]11 + [C(ω)]33}+ sin2(φ) {[C(ω)]22 + [C(ω)]44}
+ cos(φ) sin(φ) {[C(ω)]12 + [C(ω)]21 + [C(ω)]34 + [C(ω)]43} .

(5.34)

The homodyne spectrum is only sensitive to components of the quadrants C1 and C4, and
carries no information about C2 or C3. The diagonal quadrants only compare real compo-
nents of AM with real components of PM, or likewise for imaginary, thus never capturing
correlations that might exist when one is real and one is imaginary.

A heterodyne detector, on the other hand, that cycles through quadratures at a rate
faster than any of the experimental time scales can give access to all four operators defined
in the last section4. Thus, if we calculate the eigenmodes of the covariance matrices for

4As was the case in the force sensitivity measurement of Ch. 3, heterodyne detection introduces some
additional unwanted shot-noise which may make limit squeezing and sensitivity. This is due to the fact that
the receiver spends some portion of the measurement record sampling the “wrong” quadratures, mixing in
noise while detecting no useful signal
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Figure 5.5 : On cavity resonance (center), AM fluctuations injected into the optomechanical system
drive AM output fluctuations directly and PM output fluctuations indirectly through the optome-
chanical interaction. The relative phases of the outgoing AM and PM with respect to the input
AM are plotted. The same are plotted for light detuned to the red (left panel) and the blue (right
panel) of cavity resonance, in which case the detuning of the cavity provides additional rotation of
the quadratures. The grey vertical lines in each panel show the effective mechanical resonance of
the oscillator, shifted by the ∆-dependent spring shift. With the light red-detuned as in the data
in Fig. 5.4, we expect almost no phase difference between correlated AM and PM at mechanical
resonance.

the heterodyne operators recorded for each frequency across a spectrum that includes the
optomechanical response, we may expect to see eigenvalues that show squeezing. We were
originally inclined to examine the data set for which we knew that experimental parameters
had permitted the observation of real ponderomotive squeezing, that used in Ref. [26]. How-
ever, the eigenmodes measured during heterodyne detection, shown in Fig. 5.4, showed no
such squeezing beyond the real squeezing already measured at frequencies away from ωm.

A more careful investigation of the expected phase of the correlation suggests the obstacle.
With the probe red-detuned from cavity resonance, as it was in those data and as shown in
Fig. 5.5, the part of the optical PM fluctuations correlated with AM is actually in phase with
the AM near the shifted mechanical resonance (identified by grey vertical lines), where the
response is strongest. Though the π/2 phase difference is restored at the unshifted resonance
in each case, not enough susceptibility remains at this frequency to allow for much backaction
to contribute. Figure 5.5 instead suggests that a measurement made with a probe resonant
with the cavity would overlay the maximum susceptibility with the imaginary correlations.

5.3.1 New search for complex squeezing

With this motivation, we turned our experiment to measure optomechanical correlations
with a probe resonant with the cavity. We measure the optomechanical response of an
oscillator probed with cooperativity approximately that for achieving the SQL, where the
noise power of measurement backaction should equal that of shot-noise. We therefore expect
that in the appropriate eigenmode, we should see some reduction of the noise power below
the vacuum level due to the coherent subtraction of this backaction. The resulting eigenvalue
spectra for this measurement are shown in Fig. 5.6. To understand this figure, we recall from
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Figure 5.6 : Experimental data (left) and simulation (right) for the covariance matrix eigenvalues
for a mechanical oscillator measured on cavity resonance and with Com near the value which attains
the SQL of sensitivity. The experimental data show no visible dip below the vacuum level that
would suggest complex squeezing. The simulation has similar parameters to the experiment, but
assumes perfect detection efficiency and no thermal phonon occupation.

Ch. 4 that the probe light used is only shot-noise limited in the AM quadrature. The PM
quadrature, in the mean time, contains enough noise to potentially swamp any squeezing.
Since we envision the minimum-valued eigenmode being a complex combination of AM and
PM, it will certainly contain some of this noise. We compare our measured spectra to
simulations with shot-noise limited probe to envision how a complex squeezing observation
would appear. The right panel of Fig. 5.6 shows an obvious dip of one eigenmode below the
vacuum level.

Further investigation into the theoretical extent of complex squeezing yields the expected
dependence on detection efficiency. Our simulation in Fig. 5.6 assumes perfect detection
efficiency, and the decrease in squeezing visibility from this case to the more realistic case
of ε ≈ 0.1 that we regularly encounter experimentally is apparent in Fig. 5.7. With low
detection efficiency, we must rely upon a large ensemble of measurements in order to average
for long enough to be sensitive to complex squeezing at the level of only a few percent.
As discussed in Ch. 4, however, larger ensembles of measurements make us more prone to
experimental drift.

In addition to the limitations imposed by detection efficiency, the thermal occupation of
the mechanical oscillator poses some risk for the observation of complex squeezing. Though
experimentally our mechanical oscillator is near its ground state, we still measure a residual
thermal occupation of approximately one phonon shared among the thousands of atoms
that compose the oscillator. This is of particular concern since the noise from this phonon
occurs exactly at the frequency of interest for complex squeezing. The predicted reduction
in squeezing for additional phonon occupation is plotted in Fig. 5.8.
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Figure 5.7 : Predicted covariance eigenvalues (in units of shot-noise) for experimental parameters
like those in Fig. 5.6 as a function of detection efficiency, assuming no thermal phonon occupation.
Figure 5.6 presents experimental data with approximately 2 photons and 10% detection efficiency.
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Figure 5.8 : Predicted covariance eigenvalues (in units of shot-noise) for experimental parameters
like those in Fig. 5.6 as a function of frequency, assuming perfect detection efficiency and 2 probe
photons. Figure 5.6 presents experimental data with approximately 1 phonon.
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5.3.2 Angles of complex squeezing

Despite the lack of experimental evidence for squeezing, we can examine the composition
of the two eigenmodes of the data to see if the complex coefficients µ and ν match those
theorized. Recalling that the orientation of the eigenmodes in the two-dimensional case could
be described by a single quantity φ, we will find that in the four-dimensional case, two angles
φ and θ, plus a normalization condition, suffice.

As described before, the eigenmodes of the covariance matrix can be given by µX̂AM +
νX̂PM, where µ and ν can be complex numbers. There is an additional normalization re-
striction on µ and ν. Principal component analysis is achieved by first measuring X̃AM(ωi)
and X̃PM(ωi), the complex Fourier responses at frequency ωi. Equivalent to finding the
eigenvalues of the 4× 4 covariance matrix is calculating the value

Σi

∣∣∣µX̃AM(ωi) + νX̃PM(ωi)
∣∣∣2 = P, (5.35)

and then solving for ∂P
∂µi,νi

= 0 with the normalization constraint that |µ|2 + |ν|2 = 1. In
practice, both of these techniques result in 4 eigenvalue/eigenvector pairs. These eigenval-
ues tell us about the strength of the correlations, while the eigenvectors tell us about the
quadrature angles of the correlations.

We can plot the resulting eigenvector angles on a sphere and follow their trajectory as a
function of frequency. This is similar to following the state of a two-level-system on a Bloch
Sphere. In this case, we represent the state of the squeezed eigenmode as

|ψ〉 = µ |0〉+ ν |1〉
= rµe

iφµ |0〉+ rνe
iφν |1〉 ,

(5.36)

where µ and ν can be complex coefficients. However, because the overall phase of |ψ〉 does
not matter as it is not measurable, we can rotate the state to make µ real:

|ψ′〉 = e−iφµ |ψ〉 = rµ |0〉+ rνe
i(φν−φµ) |1〉 . (5.37)

In spherical coordinates, with |0〉 being the north pole of the sphere and |1〉 being the
equator, we can rewrite this as

|ψ′〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 , (5.38)

where θ is now the polar angle and φ the azimuthal angle around the equator. One can
easily find that θ = 2 cos−1 rµ and φ = −i ln( rν√

1−r2µ
) + φν − φµ. But we also know that

|µ|2 + |ν|2 = r2µ + r2ν = 1, so we recover φ = φν − φµ.
How can we interpret these coordinates? The polar angle θ now represents the relative

contribution of AM compared to PM, with θ = 0 giving only AM contribution to correlations
(and thus no correlations between quadratures at all) and θ = π giving only PM contribution.
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Figure 5.9 : Eigenvector angles as a function of frequency for data (top) and simulations (bottom)
presented in Fig. 5.6. Left panels show polar angle θ, which gives the mixing angle of |X̃AM| and
|X̃PM|. Right panels show azimuthal angle φ, which gives the relative phase between the arguments
of X̃AM and X̃PM. Away from mechanical resonance, both angles become ill defined as the backaction
correlation that directs the angles of the eigenmodes disappears.

The azimuthal angle φ is the relative phase between AM and PM of the correlations. For
example, if (θ, φ) = (π/2, 0), then there are maximal correlations between AM and PM
occurring at the same Fourier angle for AM as for PM (e.g. real with real or imaginary with
imaginary). If (θ, φ) = (π/2, π/2), then the Fourier angles for maximal correlations are out
of phase (e.g. real with imaginary or imaginary with real).

In practice, the excursions of θ from the pole and the equator are small, so it is easier
to plot the individual angles as a function of frequency separately, rather than trace both
on the surface of a sphere. Figure 5.9 shows the angles of the eigenvectors for the data with
eigenvalues shown in Fig. 5.6. There is definitely qualitative agreement between experiment
and simulation. That the experimental angles θ are very nearly 0 and π for all frequencies
suggests that the principal component analysis is picking out and isolating the laser phase
noise to the stronger eigenmode. Still, it is the angle φ that hints at the presence of out-of-
phase correlations between X̂AM and X̂PM in the data. As the frequency traverses mechanical
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Figure 5.10 : Schematic for “synodyne” detection method. The optomechanical element OM corre-
lates AM fluctuations and PM fluctuations. A two-colored LO, with components α− at frequency
−ωm and α+ at frequency +ωm, mixes with the signal in such a way as to subtract the correlated
noise.

resonance, the correlations go from in-phase to out-of-phase to in-phase again, precisely the
expected behavior that could contribute to complex squeezing in the absence of excess laser
noise.

5.3.3 Requirements for detection

I have already discussed the experimental limitations that would need to be addressed in
order to detect complex squeezing. While detection efficiency and phonon occupation restrict
the amount of squeezing detectable, they do not preclude its observation. More pressing is
the instance of phase noise on our probe laser which pollutes the detection modes of interest.
As discussed in Ch. 4, by moving the oscillator of interest to higher frequencies, we could
operate in a regime of shot-noise limited laser noise in all quadratures.

Another detection issue is that a heterodyne receiver, despite its ability to cycle through
quadratures and perhaps be sensitive to some complex squeezing, is not maximally sensi-
tive to the effect. This is because it necessarily introduces additional shot-noise as it cycles
through insensitive quadratures. In Buchmann et al. [39], we propose an alternate detec-
tion method that we term “synodyne” for its use of multiple tones to produce the LO. In
particular, we consider the case of an LO composed of two tones detuned by ±ωm from
the carrier frequency of the probe light (α+ and α− as shown in Fig. 5.10). This solu-
tion to the measurement of complex squeezing is intuitive. The two-tone LO mixes the
optomechanically-produced sidebands in such a way that at the carrier frequency of the
probe they interfere with strength and angle determined by the power and relative phase of
the LO tones. Tuning the power and phase of these tones allows for the selection of φ and θ
that correspond to the squeezed eigenmode. Unlike in heterodyne detection, this synodyne
scheme always measures the ideal mode, introducing no additional shot-noise and perfectly
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subtracting the correlated backaction noise. We show in Ref. [39] that there is in principle
no limit to the observable squeezing using this method. Furthermore, we find that we can
tune the synodyne parameters so as to measure a single-quadrature force with imprecision
that decays without bound with increasing cooperativity.

With synodyne detection for complex squeezing, we propose a solution to the problem
of measurement backaction explored throughout this dissertation. Synodyne harnesses the
complex squeezing implied yet obscured in the ponderomotive squeezing measurements of
Ch. 4 to subtract the correlated backaction from force measurements like those in Ch. 3.
We ultimately find that through a careful accounting of noise and correlations, one can the
expand the confines of quantum measurement limits.
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Appendix A

Digital heterodyne demodulation

Because we do not stabilize the LO path length with respect to the signal in our het-
erodyne measurements, we observe the heterodyne phase to drift at rates that are slow
compared to our signals of interest. We nonetheless would like to remove this phase drift
so that we can average signals over longer time records. Here I will describe the process of
our digital heterodyne demodulation, giving examples of the heterodyne signal (Fig. A.1)
after various filtering and downsampling steps have occurred. I additionally include some
code that is paraphrased from an implementation of our algorithm realized in Matlab and
originally developed by Nathan Brahms.

First, we record a raw heterodyne beat note on our digital oscilloscope (GaGe digital
oscilloscope). This signal is usually between 10 and 40 ms in length and is recorded at a
sampling rate of 80 MHz. It contains a large frequency component at 10 MHz (our heterodyne
beat frequency), as well as information about all additional probing and locking tones, the
potential signals of interest, and technical and quantum noise. We receive the signal with
units of Volts, but can convert it to Watts given our knowledge of detector gains, bandwidths,
and quantum efficiencies. In order to remove the slow phase drift attributable to thermal
fluctuations, we first digitally demodulate the raw signal into a quadrature that is in phase
with cos(ωHett) at t = 0 and one that is out of phase, with ωHet the 10 MHz heterodyne beat
frequency. In doing so, we use Matlab’s decimate function, which downsamples a signal at a
chosen rate and applies a low-pass filter. Importantly, this filter is applied twice, processing
the data forward and backward through the filtfilt function. This ideally achieves zero phase
distortion, which is important for maintaining the integrity of the phase information at our
frequencies of interest.

Our next step is to isolate the slow phase drift of the signal by applying another in-
stance of decimate to the two quadratures. We then find the relative phase between the two
quadratures as a function of time, using this phase to create rotation masks that we can then
apply to the original quadratures so that they more accurately represent higher frequency
fluctuations that are either in-phase or out-of-phase with the LO at t=0.

These methods depend on a low-pass-filter that can separate any signals of interest from
slower phase drifts without introducing too much phase ripple in the stopband (since we do
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×  cos(ωHett) ×  sin(ωHett)

LPF + DS

in-phase 
rotation mask

out-of-phase 
rotation mask

Raw signal

Magnitude Phase

I-Quadrature Q-Quadrature

Figure A.1 : The process of digital heterodyne demodulation. Raw time-series data are recorded on
the digital oscilloscope. Steps are, from top to bottom: demodulate at ωHet, low-pass-filter (LPF)
and down-sample (DS) to find slow phase drift between quadratures, create phase masks to apply
to demodulated time records to recover true quadrature information.
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not want our eventual mask to alter the phases at higher frequencies, where our measurement
information resides). There is some opportunity to improve upon the default filter chosen by
Matlab, an 8th order Type 1 Chebyshev filter. A Butterworth filter, for example, provides
a maximally flat passband at the expense of a less steep roll-off. We have found in practice
that the choice between these two filters does not make a difference to the signal strengths
we measure upon demodulation.

Digital heterodyne demodulation and parameter extraction
% Load GageScope voltage data as “raw”

nGageBits = 16;% Number of bits in Gagescope data
vGage = 4; % Gagescope voltage range (Peak-to-peak)

raw = raw/2ˆ(nGageBits)*vGage;

% Rescale raw voltage data to units of power

impedance = 50; % Measurement impedance (ohms)
gainDb = 30.1; % Gain of amp between detector and acquisition (dB)
transimpedance=28.8e3;% Detector transimpedance gain (V/W)

impAtten = 1-50/(50+impedance); % Attenuation due to impedance
gain = 10ˆ(gainDb/20);
raw = raw/transimpedance/impAtten/gain; % Rescaled to units of W

% Fourier transform un-demodulated signal

rawFFT = fftshift(fft(raw));% fftshift used to center dc

% Analyze heterodyne lock for values of nbar and delta_pc

fCar = 10e6; %- Carrier frequency
fMod = 2.87e6; %- Modulation frequency
kappa = 1.82e6; %- Natural cavity linewidth (cyclic)
rbGain = 1.14; %- Relative detection gain of red vs. blue sideband
snRange = [2e5 4e5]; %- 2-element array indicating range over which to evaluate shot

noise
edet = 0.10; %- Heterodyne detection efficiency
kappaN = 2.15e6; %- Broadened cavity linewidth (cyclic)
close = true; %- true if the lock point is within the sidebands, false otherwise

Sb = rbGain*rawFFT.interp(fCar+fMod,’nearest’); %Power in blue sideband



92

Sr = rawFFT.interp(fCar-fMod,’nearest’); %Power in red sideband
rSB = (Sb-Sr)/(Sb+Sr);

% Calculate delta_pc

if close
dpc = (-fMod + sqrt(fModˆ2 - rSBˆ2*(fModˆ2 + kappaˆ2)))/rSB;

else
dpc = (-fMod - sqrt(fModˆ2 - rSBˆ2*(fModˆ2 + kappaˆ2)))/rSB;

end

% Calculate nbar

Sc = rawFFT.interp(fCar,’nearest’); % Power in carrier
Ssn = mean(rawFFT.interp(fCar+min(snRange):rawFFT.dx:fCar+max(snRange),’nearest’))/2;

% Average noise power above carrier
Ssn = Ssn + mean(S.interp(fCar-max(snRange):S.dx:fCar-min(snRange),’nearest’))/2;

% Average noise power below carrier
nbar = (Sc/Ssn - 1)*rawFFT.dx/8/pi/kappaN/edet; % Carrier power in units of noise,

then scaled to units of photons

% Perform heterodyne demodulation
filterBw = 10e3; % BW for quadrature identification, needs to be
%small compared to signal frequencies of interest but large compared to slow thermal

drifts
carrierFreq = 10e6; % Heterodyne beat carrier frequency
doRotation = true; % If true, performs rotation of quadratures

%This is a three-step process. First, the heterodyne signal is demodulated
%at the carrier frequency, yielding the in-phase (I) and quadrature-phase (Q)
%signal components.

dt1 = rawFFT.dx;
0 = rawFFT.x0;

carrierOmega = 2*pi*carrierFreq;
r1 = round(1/dt1/carrierFreq);
nRaw = floor(length(rawFFT)/r1);
quadDt = r*dt1;

% Make the prototypical cos and sin arrays



93

t = linspace(t0,t0+(r1-1)*dt1,r1)’;
iMask = cos(carrierOmega*t);
qMask = sin(carrierOmega*t);

iMask = repmat(iMask,nRaw,1);
qMask = repmat(qMask,nRaw,1);
iMask = rawFFT(:).*iMask;
qMask = rawFFT(:).*qMask;

% Here we use MatlabâĂŹs decimate(x,r) function, which downsamples and %downsamples
x at factor of r and applies a lowpass Chebyshev Type 1 %IIR order 8 filter

iRaw = decimate(iMask,r1); % Filter and downsample
qRaw = decimate(qMask,r1); % Requires Signal Processing Toolbox

%Next, we determine the low-frequency instantaneous carrier amplitude and phase.

r2 = round(1/quadDt/filterBw/2); % Number of points over which to average
avgDt = r2*quadDt;
iAvg = decimate(iRaw,r2); % Again filter and downsample
qAvg = decimate(qRaw,r2);
mag = iAvg.ˆ2+qAvg.ˆ2;
phase = unwrap(atan2(qAvg,iAvg));

%Finally, the quadratures are rotated such that I reflects the true amplitude %modulation
and Q reflects the true phase modulation.

ti = 0:quadDt:(length(iRaw)-1)*quadDt; % Time lookup array
phasei = winterp1(0,avgDt,phase,ti,’linear’); % Expand masks to size of %original quadra-

tures iRaw and qRaw iRot = iRaw.*cos(phasei) + qRaw.*sin(phasei); % Perform rota-
tions

qRot = -iRaw.*sin(phasei) + qRaw.*cos(phasei);
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